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Abstract—Conditional imitation learning (CIL) has proven 

superior to other autonomous driving (AD) algorithms. 

However, its performance evaluation through physical 

implementations is still limited. This work contributes a 

systematic evaluation to identify key factors potentially 

improving its performance. It modified convolutional neural 

network parameter values, such as reducing the number of filter 

channels and neuron units, and implemented the model into a 

vision-based autonomous vehicle (AV). The AV has front-wheel 

steering with an Ackermann mechanism since it is commonly 

used by passenger cars. Using the Inertia Measurement Unit, we 

measured the vehicle’s location and yaw angle along the 

experimental route. The AV had to move autonomously through 

new road sectors in the morning, afternoon, and night. First, an 

overall performance evaluation was carried out. The results 

showed a 99% success rate from 648 evaluation experiments 

under different conditions in which the 1% failure rate 

happened at new intersections. Then, a turning performance 

evaluation was conducted to identify key factors leading to 

failure at new intersections. They include fast speed, dazzling 

light reflection, late navigation command change instant, and 

the untrained turning driving pattern. The AV never failed 

while driving on the trained routes. It had a 100% success rate 

when driving slower, even under various lighting conditions and 

at various driving patterns, including untrained intersections. 

Although this study is limited to identifying key factors at three 

constant speeds, the results become the foundation for future 

research to improve CIL performance for AD, including by 

incorporating multimodal fusion and multi-route networks. 

Keywords—Autonomous Driving; Convolutional Neural 

Networks; Front-Wheel Steering; Imitation Learning. 

I. INTRODUCTION 

Significant research progress has been achieved in 

autonomous driving (AD) of ground vehicles [1]–[14]. Chen 

et al. categorized two significant paradigms for vision-based 

AD: mediated perception approaches that parse an entire 

scene to make a driving decision and behavior reflex 

approaches that directly map an input image to a driving 

action by a regressor [15]. For behavior reflex approaches, an 

artificial neural network was designed to control an 

autonomous navigation test vehicle for road following [16]–

[19]. 

A learning system that takes raw color images from 

forward-pointing cameras and maps them to a set of steering 

angles through a single trained function was termed end-to-

end learning by the authors in [20], [21]. They developed a 6-

layer convolutional neural network (CNN) for vision-based 

obstacle avoidance of an off-road 1/10 scale electric truck. In 

[22], a CNN framework was adopted to develop an end-to-

end controller that manages a full-scale car following the lane 

on local roads based on image input. The authors developed 

a method for determining which elements in the image most 

influence steering decisions [23]. The framework was also 

used in [24] to build a low-cost modular automated guided 

vehicle (AGV) capable of autonomously following the lane 

in a specific fixed route. Furthermore, several methods have 

been proposed to improve the effectiveness of the end-to-end 

AD approach. For instance, a CNN was combined with a 

feedforward network with a fully connected hidden layer for 

lane following control of a 1/5-scale car, as presented in [25]. 

Most early research studies on imitation learning (IL) for 

AD have focused on lane following and obstacle avoidance 

problems. Later, more research pushed urban driving with 

nontrivial road layouts and traffic [26]–[30]. Codevilla et al. 

proposed an IL method that maps camera images and 

incorporates high-level navigation input to control an 

autonomous vehicle (AV) to navigate the intersections, 

retrospectively known as conditional imitation learning (CIL) 

[31]. This method used a deep learning architecture for the 

image processing module, which consists of 8-layer CNN and 

2-layer Full Connected Network (FCN). It was successfully 

implemented using a 1/5 scale truck in a field experiment. 

Sauer et al. proposed a direct perception approach, called 

conditional affordance learning (CAL), that maps video input 

to an intermediate representation and combines it with high-

level directional inputs using specialized task networks to 

produce affordances [32]. The authors demonstrated that 

CAL outperformed CIL when tested on the CARLA’s 

simulator [33]. However, the work has not been proven in 

field experiments. 

Chen et al. proposed a two-stage learning method 

involving a privileged agent and a purely vision-based 

sensorimotor agent [34]. The authors followed the prior work 

by Codevilla et al., in which the network branched into four 

heads, each producing a K-channel heatmap. It outperforms 

CIL and CAL when tested using the CARLA simulator. 

However, it still also needs to be proven in field experiments. 

Recently, CIL has been adopted to process multimodal 

inputs: RGB and depth modalities [35]. The experiments in 
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the CARLA simulator proved that the CIL with early fusion 

outperformed CAL. 

CIL falls into the end-to-end method for AD. A few 

review articles on AD based on end-to-end methods have 

been published [36]–[42]. Reference [43] provides a 

comprehensive overview of state-of-the-art hardware-

software practices. The authors pointed out that end-to-end 

methods are an emerging trend in AD technology. The 

authors in [44] concluded that researchers rely heavily on 

data generated from simulated environments. In [45], the 

authors underlined that one of the most challenging tasks with 

end-to-end deep driving models remains explainability in 

decision-making. Meanwhile, according to the author in [46], 

the requirement for explainability in deep-learning-based 

self-driving models is influenced by multiple factors, 

including the individual seeking explanations, their level of 

knowledge, and the amount of time available for analyzing 

the explanation. Several research efforts have been 

undertaken to enhance the comprehensibility of the self-

driving model based on deep learning [47]–[58].  

The authors reviewed end-to-end driving [38], and they 

described the standard learning methods in end-to-end 

driving as IL [59] and reinforcement learning (RL) [60]–[63]. 

In [37], the authors reviewed 17 articles published from 2017 

to 2021 regarding end-to-end AD in urban environments. 

They compared the performances of IL and RL approaches 

using two benchmarks in the CARLA simulator. It was found 

that the most effective approach was IL-based architecture for 

the CoRL2017 benchmark and RL-based architecture for the 

NoCrash benchmark. Nevertheless, which approach is 

leading is yet to be more conclusive. Other authors in [64] 

surveyed IL techniques for end-to-end AD and compared 34 

articles published from 2016 to 2022. Only two articles 

implemented the controllers in real-world experiments in 

urban driving: [31], [65]. Both articles rely on CIL. Field 

experiments are necessary since simulation can not capture 

real-world complexities. 

Although CIL has been implemented in field experiments 

and has proven superior to other algorithms, its performance 

evaluation is still limited [31], [65]. For example, in the work 

presented in [31], the authors did not distinguish clearly 

between training and evaluation routes in their physical 

implementation, nor did they systematically evaluate the 

effect of lighting. Moreover, they did not consider the effects 

of vehicle speed and navigation command change instant 

[26]. The authors collected data for training from human 

demonstrations over 30 driving hours in a densely populated 

urban environment where the drivers were free to choose 

random routes [30]. The training data is imbalanced, with the 

majority driving straight and a significant portion stationary. 

They selected two routes for testing. The testing environment 

contains uncontrollable time-dependent factors, e.g., 

weather, lighting, and road users. These randomness and 

uncontrollable conditions made it less systematic and 

challenging to identify key factors more deterministically. 

This work provides research contributions as follows: 

1) It modified the CIL algorithm by reducing the number of 

filter channels and neuron units. It developed an AD 

controller for a 1/10 scale AV that mechanically 

resembles a full-scale car with the Ackermann front-

wheel steering. The camera model is valuable for scaling 

up to a full-scale car. 

2) It performed field experiments in a more deterministic 

manner by evaluating the effects of critical factors: (a) 

experimental lighting conditions in the morning, 

afternoon, and night; (b) vehicle speed; (c) navigation 

command change instant at intersections; (d) the clear 

separation between training and evaluation road sectors. 

3) It explores the possibilities to improve the performance of 

AD in urban environments by considering perception 

accuracy and robustness, vehicle dynamics, and real-time 

implementation.  

The remainder of this paper is organized as follows. 

Section two presents CIL. The experimental platform is 

described in Section 3, including the AV and camera model. 

Section 4 describes the training, validation, and performance 

evaluation experiment scenarios. Section 5 reports the results 

and discussions. Finally, Section 6 presents our conclusion. 

II. METHOD 

This work was carried out sequentially, as illustrated in 

the flowchart in Fig. 1. First, we briefly overviewed the CIL. 

We modified it to reduce computing load while maintaining 

performance. Second, we developed an experimental 

platform that allows efficient experiments but still inherits the 

characteristics of a real car. Third, we established a 

systematic experimental performance evaluation method. 

Fourth, we presented experimental results and discussion. 

The results include evaluating overall performance and 

turning performance at new intersections. We investigated 

the effects of critical factors: road pattern, lighting, speed, and 

navigation command change instant. Finally, we conclude. In 

the following, these aspects of methodology are explained in 

comprehensive detail. 

 

Fig. 1. Flow chart of the research method 

A. Conditional Imitation Learning 

This section briefly provides an overview of imitation and 

conditional imitation learning. We then describe our model 

of conditional imitation learning used in this paper. Imitation 
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learning trains a controller to mimic an expert using a dataset 

𝐷 = {〈𝑜𝑖 , 𝑎𝑖  〉}𝑖=1
𝑁  generated by the expert. In each step, 𝑖, the 

expert receives an observation 𝑜𝑖  and takes an action 𝑎𝑖. The 

dataset is composed of 𝑁 pairs of observations and actions. 

The objective is to find the parameter values of a model 

approximator 𝐹(𝑜𝑖; 𝜃) that fits the mapping of observations 

to actions as expressed in (1). 

𝑚𝑖𝑛
𝜃

∑ 𝑙(𝐹(𝑜𝑖 ; 𝜃), 𝑎𝑖)

𝑖

 (1) 

It requires an assumption that a function 𝐸  exists that 

maps observations to the expert’s actions: 𝑎𝑖 = 𝐸(𝑜𝑖) . 

However, when an autonomous vehicle approaches an 

intersection, the driver’s subsequent action is explained by 

the observations and is affected by the driver’s intention. 

The driver’s intention is exposed to the controller by 

introducing an additional command input 𝑐  [31]. During 

training, the expert provided commands. They provided 

information about the expert’s decision-making. A driver or 

a navigation system can provide commands to affect the 

controller’s behavior at the test time. The training dataset 

becomes 𝐷 = {〈𝑜𝑖 , 𝑐𝑖 , 𝑎𝑖  〉}𝑖=1
𝑁 . The objective of conditional 

imitation learning (CIL) is given by (2). 

𝑚𝑖𝑛
𝜃

∑ 𝑙(𝐹(𝑜𝑖 , 𝑐𝑖 ; 𝜃), 𝑎𝑖)

𝑖

 (2) 

A deep artificial neural network expresses the 

controller 𝐹(𝑜𝑖 , 𝑐𝑖; 𝜃). The network takes images as the input. 

By adopting the branched network architecture of command-

conditional imitation learning from Codevilla et al., we 

assume a discrete set of commands, 𝐶 = {𝑐0, … , 𝑐𝐾} , and 

introduce a particular branch 𝐴𝑖 for each command 𝑐𝑖.  

Fig. 2 illustrates the network architecture used in this 

paper for command-conditional imitation learning. The 

particular branch 𝐴𝑖 learns sub-policies that correspond to the 

navigational commands. We set three modules for decision-

making at an intersection that enable going straight or 

following the lane, turning left, and turning right. The image 

module is implemented as a combination of CNN and FCN, 

whereas the command module is an FCN. 

 

Fig. 2. Network architecture for CIL 

We adapted the architecture of CIL originally proposed in 

[31] with modifications to the network details. The input 

image of our CIL model has dimensions of 100×220 pixels. 

We constructed the base model using eight CNN layers and 

two FCN layers. A batch normalization accompanies each 

CNN layer. The first CNN layer has a kernel size of five, 

followed by a kernel size of three in the remaining layers. The 

first, third, fifth, and seventh CNN layers have a stride of two, 

whereas the remaining layers have a stride of one. The two 

FCN layers each contain 128 neuron units. Then, the model 

starts to branch, with each branch specializing in each 

navigation command. Each branched model consists of two 

FC hidden layers with neuron sizes of 256 and 512 for the 

left, right, and straight models, respectively. We applied a 

rectified linear unit activation function after each hidden layer 

and batch normalization after all convolutional layers. 

Some differences exist between our model and that used 

in [31]. First, the seventh CNN layer of their model has a 

stride of one. Second, they applied a dropout layer after each 

convolutional layer. However, applying dropout after the 

convolutional layer decreased model performance in our case. 

Therefore, we did not apply a dropout layer to the 

convolutional layers. Finally, the number of filter channels in 

the convolutional layers and neuron units in the fully 

connected layers are much smaller in our model than theirs. 

Our model assumes a constant vehicle speed, so the 

controller’s action is only the steering angle. This assumption 

makes the vehicle dynamics from the steering angle to the 

yaw rate a linear time-invariant system [66]. Therefore, the 

effect of speed on performance can be analyzed 

systematically.  

B. Experimental Platform 

We built an AV by retrofitting a 1/10 scale radio-

controlled car, model HG P408 US Military Vehicle (Fig. 3). 

It weighs 5.7 kg, has a width of 0.225 m, and has a turning 

radius of 1.3 m. 

 

Fig. 3. Autonomous driving vehicle 

We mounted a forward-pointing RGB camera on the front 

top of the vehicle. The camera has a frame resolution of 

1920×1080 pixels, a frame rate of 30 fps, a field of view 

(FoV) (H×V) of 69° × 42°, and a sensor resolution of two 

MP. The central processing computer is Nvidia Jetson TX2, 

which oversees data acquisition, processing it, and sending 

control commands to the steering servo and electronic speed 

controller (ESC). The receiver unit receives the navigational 

command from the remote controller and sends it to the 

microcontroller via a digital input/output channel. The Jetson 

TX2 receives the navigational command, the camera’s image, 

and measurement data from the inertial measurement unit 

(IMU) via a USB cable (Fig. 4). It sends the steering and 

throttle values calculated by the autonomous controller 

through a PCA9685 servo driver.  
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We installed the Jetson Package into Jetson TX2, 

including Linux for Tegra, TensorRT, CUDA, cuDNN, and 

several computer vision libraries. TensorRT, CUDA, and 

cuDNN are libraries published by NVIDIA. We also installed 

other libraries: Intel librealsense and pyrealsense to access the 

Intel® RealSenseTM camera, OpenCV for real-time 

computer vision, and TensorFlow. We use Python scripts for 

data collection, neural network training, neural network 

testing, and other purposes. 

 

Fig. 4. Schematic of the autonomous driving architecture 

We developed a camera model to obtain parameter values 

related to the images, as illustrated in Fig. 5. The x-axis 

extends in the vehicle’s forward direction, the y-axis points 

to the vehicle’s left, and the z-axis faces upward, 

perpendicular to the ground. The camera’s optical axis points 

to a certain point on the road and captures the entire area 

inside its FoV. FoVV denotes the camera’s FoV in the 

vertical direction. 𝐻c denotes the camera's height on the road 

surface. The pitch angle θ is between the camera’s optical 

axis and the horizontal line. 

 

Fig. 5. Camera model of the camera fixed on the top of the AV 

We define some essential parameters as follows: 

1) Longitudinal distance 𝐷𝑥 is the distance between the camera 

and the camera’s focus point on the road, measured along the 

x-axis. 

2) Short longitudinal distance 𝐷𝑥𝑠 is the distance between the 

camera and the lowest point viewed by the camera, measured 

along the x-axis. 

3) Horizon distance 𝐷ℎ is the distance between the camera and 

the object the camera views on the horizontal line. 

4) Horizon height 𝐻ℎ is the height of the highest point of the 

camera views at the horizon distance measured from the 

horizontal line along the z-axis. 

The longitudinal distance 𝐷𝑥 is given by (3) 

𝐷𝑥 =
𝐻𝑐

𝑡𝑎𝑛(𝜃)
 (3) 

The short longitudinal distance 𝐷𝑥𝑠  and horizon height 

𝐻ℎ  are obtained by incorporating the FoV angle along the 

horizontal axis, as given in (4) and (5) 

𝐷𝑥𝑠 =
𝐻

𝑡𝑎𝑛 (𝜃 +
𝑉𝑜𝑉𝑉

2
)
 (4) 

𝐻ℎ = 𝐷ℎ 𝑡𝑎𝑛 (|𝜃 −
𝑉𝑜𝑉𝑉

2
|) (5) 

where 𝑡𝑎𝑛 (𝜃 +
𝑉𝑜𝑉𝑉

2
) represents the horizon height ratio. 

When the vehicle runs at a speed of 𝑣𝑉 and the sampling 

time of the computer is 𝑡𝑠, we can calculate the longitudinal 

displacement ∆𝐷𝑥𝑠 using the following relationship. 

∆𝐷𝑥𝑠 = 𝐷𝑥𝑠(𝑘) − 𝐷𝑥𝑠(𝑘 − 1) = 𝑣𝑉𝑡𝑠 (6) 

We must determine the appropriate sampling time to get 

an acceptable longitudinal displacement value by considering 

the vehicle velocity. The camera continuously records the 

image at the focus point at time step 𝑘 up to time step 𝑘 + 𝑛, 

where 𝑛 is the image repetition number given by (7). 

𝑛 =
𝐷𝑥 − 𝐷𝑥𝑠

𝑣𝑉𝑡𝑠

 (7) 

Table I lists parameter values of the camera model. The 

mounted camera's pitch angle and height were determined 

based on practical considerations. We found the appropriate 

nominal speed of 0.4 m/s based on trial and error, considering 

the maximum capability of the computer vision of 30 fps. These 

parameter values become a foundation for scaling up the 

experiment to a full-scale car in the future. 

TABLE I.  PARAMETER VALUES OF THE CAMERA MODEL 

Parameter Value 

Camera height 𝐻𝑐 0.18 m 

Camera pitch angle 15° 

Sampling rate 0.05 s 

Longitudinal distance 𝐷𝑥 0.672 m 

Short longitudinal distance 𝐷𝑥𝑠 0.248 m 

Nominal vehicle speed 0.4 m/s 

Longitudinal displacement ∆𝐷𝑥𝑠 0.02 m 

Image repetition number 22 

 

C. Experimental Performance Evaluation 

This section describes experimental scenarios, data 

acquisition and preprocessing, training and validation, and 

the performance evaluation process. 

First, a systematic experimental scenario is explained, 

including experimental route, driving patterns, training road 

sectors, testing road sectors, and lighting conditions setting. 

Fig. 6 illustrates a top view of the route used in our 

experimental scenario. The plotted virtual numbers (1 to 16) 

represent the locations along the route to define the road 

sectors (RSs) and trajectory, where the AV navigated based 
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on the scenario. We set nine unique driving patterns (DPs) to 

drive the AV along the route. The patterns include lane 

following on a straight road (DP1), moving straight by 

passing an intersection on the left-hand side (DP2) or right-

hand side (DP3), turning left (DP4) or right (DP5) at a curve, 

turning left (DP6) or right (DP7) at an intersection, and 

turning left (DP8) or right (DP9) facing a T junction. 

Table II summarizes the experimental scenarios denoted 

by the road sector’s numbers, with the trajectory fraction 

from one corresponding location to another and its driving 

pattern. The objective is to evaluate the AD performance at 

various driving patterns under different conditions.  

The experimental scenarios consist of the following: 

1) Training road sectors: RS1 (DP1), RS2 (DP6), RS3 

(DP1), RS4 (DP5), RS5 (DP1), RS6 (DP3), RS7 (DP1), 

RS8 (DP1), RS9 (DP7), RS10 (DP1), RS11 (DP4), and 

RS12 (DP1). They are shown as the blue line in Fig. 6 (a) 

and indicated by T in Table II. 

2) Validation testing road sectors: RS8 (DP1), RS12 (DP1), 

RS13 (DP4), RS14 (DP1), RS15 (DP6), RS16 (DP1), 

RS17 (DP9), and RS18 (DP3). The validation testing 

road sectors are shown as the red line in Fig. 6 (a) and 

indicated by E in Table II. 

3) Performance evaluation road sectors: overall performance 

evaluation is carried out through the same road sectors as 

the validation sectors. The turning performance 

evaluation is conducted through road sectors shown as 

purple and green lines in Fig. 6 (b). 

We selected evaluation road sectors that reflected seven 

driving patterns. The CIL model has already been trained to 

experience DP1 but has never been trained for DP9. 

Moreover, the evaluation road sectors differed from the 

training road sectors for DP3, DP4, DP6, and DP7. 

In order to evaluate the CIL's efficacy under various 

lighting conditions, we conducted experiments with multiple 

lighting configurations. As illustrated in Fig. 6, we fixed light 

bulbs (L1 to L8) at 4 m high in the experiment area. In the 

middle between L7 and L8, apart at a distance of 4.5 m, we 

had a side field bulb L9. The bulbs L1 to L8 were turned on 

or off to represent various illumination conditions, whereas 

L9 was always on. Thus, the illumination becomes a 

controllable and independent variable. Between bulbs L1 and 

L6, there are glass windows, and the other sides of the 

experiment field are enclosed by walls. The effect of sunlight 

on the glass windows introduces stochastic characteristics, an 

uncontrollable independent variable. To determine the 

combined effects of lighting, we conducted experiments in 

the morning (07:00–10:00), afternoon (12:00–15:00), and 

night (18:00–23:00). 

 
(a) 

 
(b) 

Fig. 6. Experiment route. (a) training, validation, and overall performance evaluation. (b) evaluation of turning performance 
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TABLE II.  EXPERIMENT SCENARIO 

Road sector 
(RS) number 

Road sector 
trajectory 

Driving Patterns 

DP1 DP2 DP3 DP4 DP5 DP6 DP7 DP8 DP9 

1 (1) to (2) T         

2 (2) to (3)      T    

3 (3) to (4) T         

4 (4) to (5)     T     

5 (5) to (6) T         

6 (6) to (7)   T       

7 (7) to (8) T         

8 (13) to (14) T E         

9 (14) to (3)       T   

10 (12) to (11) T         

11 (11) to (10)    T      

12 (10) to (9) T E         

13 (9) to (8)    E      

14 (8) to (7) E         

15 (7) to (16)      E    

16 (16) to (15) E         

17 (15) to (13)         E 

18 (14) to (2)   E       

19 (6) to (16)       E   

 

We trained the model using a particular nominal speed 

value to evaluate the effect of vehicle speed on performance. 

We then evaluated the trained model under three different 

speed values, i.e., the slower pace at 15 %, the nominal speed 

at 25 %, and the faster speed at 35 % of the throttle. 

Furthermore, we evaluate the efficacy of turning under 

three different navigational command change instants: too 

early, the normal instant, and too late. The normal instant is 

provided when the vehicle approaches an intersection at 

approximately 60 cm. It is said too late if the distance is 

approximately 40 cm or less. Conversely, it is considered too 

early if the space is approximately 120 cm or more. 

In contrast to our experimental scenarios, in the work by 

Codevilla et al., the authors did not distinguish between 

training and evaluation routes in their physical 

implementation. They collected most training data in sunny 

weather and evaluated their model in overcast weather 

conditions. They did not evaluate the effects of vehicle speed 

and navigation command change instant [31]. Our 

experimental scenario enables us to evaluate the hypothesis 

that the driving pattern, illumination, vehicle speed, and 

navigation command are independent variables. We expect 

these variables to be critical factors affecting the vehicle’s 

position and yaw angle when running on the route. 

Second, we present data acquisition and preprocessing. 

During training data collection, an expert manually operated 

the vehicle and directly observed the lanes while providing 

appropriate navigation commands following the 

experimental scenario via a remote controller. The command 

values and images were recorded synchronously. The raw 

image was recorded with a 640×360 pixels image dimension. 

The final dataset for training contains 10,652 observations. 

Table III to Table V summarize the statistics of the training 

dataset concerning the driving pattern, time, light condition, 

initial lateral position, and navigation command. The data 

was acquired in the morning, afternoon, and night with the 

setup lights on or off. We collected training data for three 

initial vehicle positions: the middle of the road, on the right, 

and the left sides. Meanwhile, the validation data was 

collected only with the initial position in the middle. 

TABLE III.  TRAINING DATASET: ROAD SECTOR AND DRIVING PATTERN 

Road 

sector 

Observation amount 
Driving pattern (DP) 

- % 

RS1 421 3.95 

Straight following the lane (DP1) 

RS3 1,736 16.30 

RS5 730 6.85 

RS7 1,103 10.35 

RS8 1,215 11.41 

RS10 848 7.96 

RS12 950 8.92 

RS6 430 4.04 
Straight at the intersection on the 

right-hand side (DP3) 

RS2 806 7.57 Turn left at the intersection (DP6) 

RS11 755 7.09 Turn left at curve (DP4) 

RS4 822 7.72 Turn right at curve (DP5) 

RS9 836 7.85 Turn right at the intersection (DP7) 

Total 10,652 100.00  

TABLE IV.  TRAINING DATASET: TIME AND LIGHT CONDITIONS 

Time of 
day 

Observation amount 

On Off Total 

Ori. Aug. Ori. Aug. - % 

Morning 1,906 185 1,624 158 3,873 36.4 

Afternoon 1,670 162 1,482 144 3,458 32.4 

Night 1,492 145 1,535 149 3,321 31.2 

Total 5,086 492 4,641 451 10,652 100.0 

 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 245 

 

Estiko Rijanto, Key Factors that Negatively Affect Performance of Imitation Learning for Autonomous Driving 

TABLE V.  TRAINING DATASET: INITIAL LAT.  POSITION AND NAV. 

COMMAND 

Initial lat. 

position 

Observation amount Nav. 

command 

Observation amount 

- % - % 

Middle 3.305 31.03 Straight 8.067 75.73 

Left 3.640 34.17 Left 1.325 12.44 

Right 3.707 34.80 Right 1.260 11.83 

Total 10.652 100.00 Total 10.652 100.00 

 

Regarding the amount of driving pattern observation, 

DP1 encompasses 65.74%. Other patterns occupy from 

4.04% to 7.85%. We performed image augmentation to 

provide perception robustness against variations in lighting 

conditions. The observation amount of original (Ori.) and 

augmented (Aug.) images are listed in Table IV. The 

observation amount of each augmented image is around 9.7% 

of the corresponding original image. 

The original image dataset was preprocessed by cropping 

the region of interest, resizing, converting the color system, 

and augmenting it. Fig. 7 depicts three samples captured at 

different road sectors at night with the bulbs switched on. Fig. 

8 shows the preprocessing results of the raw image in Fig. 7 

(a). After cropping the upper section and resizing, the image’s 

resolution became 220×100 pixels (Fig. 8(a)). The RGB 

image was then converted into a YUV image (Fig. 8(b)). The 

image in the YUV color system is more efficiently processed 

by a digital computer [67]. The image was then randomly 

augmented by adding Gaussian noise (Fig. 8 (c)). 

Next, we describe the training and validation processes. 

We acquired training and validation data using the nominal 

speed and normal navigation command change instant. To 

accommodate a systematic analysis of critical factors, we 

associated the training dataset with three different models 

based on navigation command type as follows: model 1, 

which refers to the dataset recorded when the vehicle is 

moving along road sectors 1, 3, 4, 5, 6, 7, 8, 10, 11, and 12; 

model 2, which refers to those when the vehicle is moving 

along RS2; and model 3, which refers to RS9. We set the 

mini-batch size to 64, a learning rate decay of 0.001, and the 

epoch number to 65. The IL model was trained using the 

Adam optimizer [68]. We used the mean absolute error as the 

loss function. Given mini-batch size 𝑚𝑏  and predicted and 

ground truth steering angles 𝑠𝑝  and 𝑠𝑔𝑡 , we define the loss 

function 𝐿(𝑠𝑝 , 𝑠𝑔𝑡) per mini-batch in (8). 

𝐿(𝑠𝑝 , 𝑠𝑔𝑡) =
1

𝑚𝑏

∑|𝑠𝑝𝑖 − 𝑠𝑔𝑡𝑖|

𝑚𝑏

𝑖=1

 (8) 

The training process took approximately 45 minutes using 

a processor Intel® Core TM i7-7700HQ CPU @ 2.80 GHz (8 

CPUs). It was equipped with 24 GB RAM, GTX 1050 GPU, 

CUDA V11.2, and Python 3.9.  

We conducted a validation by running the vehicle through 

the validation road sectors six times. For each run, the number 

of observations was 225, 45, and 44 for model 1, model 2, 

and model 3, respectively. Fig. 9 plots the model loss of each 

epoch obtained from the training and validation phases. The 

model loss of the validation phase fluctuates relatively, 

particularly for the right-turn navigation command. It is likely 

because the data in the validation dataset has never been seen 

in the training dataset. 

The final process is performance evaluation, which 

includes overall performance and turning performance at 

intersections. Here, performance metrics are formulated. The 

autonomous controller performance was evaluated by 

comparing the vehicle position with the road sector 

coordinates. We defined reward and penalty values to 

evaluate the overall performance throughout all the road 

sectors. 

1) When the vehicle stays inside the road, it is said to be 

successful and is given a reward of 1.  

2) When one of the front tires slightly gets out of the lane 

marking yet manages to get back to the track and continue 

moving autonomously, it is said to return safely. We 

assign zero points for this case. 

3) It fails when the vehicle exits lane markings and does not 

return to the lane. We assign -1 point for this case. 

We conducted the experiments three times for each 

evaluation road sector under specific controllable conditions, 

including speed, navigation command instant, and light 

on/off. The experiment was also under the effect of random 

light from the outside environment. The reward or 

punishment value 𝑃𝑖  is summed to obtain the overall 

performance indicator 𝐼𝑝1  throughout the evaluation road 

sectors, as given by (9). 𝑛1  denotes the total number of 

observations. 

𝐼𝑝1 =
1

𝑛1

∑(𝑃𝑖)

𝑛1

𝑖=1

 (9) 

 

   
(a) (b) (c) 

Fig. 7. Example of raw images, (a) At road sector 3, (b) At road sector 6, (c) At road sector 4 
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(a) (b) (c) 

Fig. 8. Example of pre-processed images, (a) Cropped and resized image, (b) YUV image, (c) Augmented image 

   
(a) (b) (c) 

Fig. 9. Model losses during training and validation phases, (a) model 1, (b) model 2, (c) model 3

Moreover, we introduced a more detailed measurement to 

evaluate the turning performance of the vehicle in terms of 

the location and yaw angle at a specific intersection. Before 

starting an evaluation experiment, we placed the x-axis of the 

vehicle parallel to the road lanes. We initially positioned the 

vehicle in the middle of the road and measured its position as 

it moved through the intersection. 

The turning performance indicator in terms of location is 

given by (10), where (𝑥𝑟𝑖 , 𝑦𝑟𝑖 ) and (𝑥𝑖 , 𝑦𝑖 ) represent the 

reference and vehicle locations at each time step 𝑖 , 

respectively. 𝑛2 denotes the total number of observations. 

𝐼𝑝2 = √
1

𝑛2

 ∑(𝑥𝑖 − 𝑥𝑟𝑖)2 + (𝑦𝑖 − 𝑦𝑟𝑖)
2

𝑛2

𝑖=1

 (10) 

We first set the vehicle’s initial yaw angle to 𝜑𝑣(0). Then, 

the yaw angle 𝜑𝑣(𝑡) was measured relative to the initial yaw 

angle. We evaluated the turning performance indicator in 

terms of the yaw angle at the intersections by observing the 

plot of the yaw angle and the qualitative description. 

III. RESULT AND DISCUSSION 

First, we discuss the results of overall performance 

evaluation experiments. Table VI summarizes the overall 

performance of the CIL implementation in the experimental 

scenario. Effects of critical factors on performance are 

investigated. They include driving patterns (DPs), lighting 

conditions, vehicle speed, and navigation command change 

instant. M, A, and N represent morning, afternoon, and night. 

L1 and L0 denote the field bulbs on and off. S1, S2, and S3 

refer to the vehicle speed slower than the nominal speed, the 

nominal speed, and faster than the nominal speed. C1, C2, 

and C3 refer to the navigation command change instant that 

is too late, timely, and too early compared to the normal 

instant. They apply only to RS15 and RS17. For other road 

sectors, we use C0. 

Recall that statistics of the training dataset are displayed 

in Table III, Table IV, and Table V. Statistics of the 

evaluation dataset are explained in the paragraph below (8), 

and Table VI shows that each evaluation experiment was 

conducted three times. 

The evaluation results demonstrate that the vehicle could 

autonomously drive successfully through road sectors 8, 12, 

13, 14, 16, and 18 in all experiments. However, it failed five 

times when traversing the new intersections at road sectors 

15 and 17. Except for road sector 8, they are new road sectors 

for the vehicle, as they have never been traveled during 

training. Nevertheless, the vehicle experienced the same 

driving patterns at other locations during the training session, 

except road sector 17 (RS17) with DP9. 

Even though the vehicle had never been trained to pass 

through DP9 at RS17, during the evaluation, out of 162 

experiments, it slightly deviated from the route three times 

and returned. The conditions occurred under the following 

scenarios: ML1-S3C1, AL0-S3C2, and NL1-S3C1. 

During training, the vehicle had never traveled through 

RS15. However, it had been trained at the same driving 

pattern in RS2 even under different lighting conditions, as 

RS15 is close to glass windows. During the evaluation, out of 

162 trials, the vehicle escaped from the lane once but returned 

under AL1-S3C1 and failed once under the conditions of 

NL1-S3C1. 

From the overall performance evaluation, the AV failed 

once when it turned left at a new intersection (RS15) near the 

glass windows. It occurred under the following specific 

conditions (NL1-S3C1): at night, with the field’s bulbs 

switched on, at a faster speed, and with a navigation 

command change moment that occurred too late. Under the 

specific conditions (L1-S3C1), it got out slightly and returned 

to the lane twice when turning right at a new intersection with 

an untrained driving pattern (RS17) and once when turning 
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left at a new intersection (RS15). It also got out lightly and 

returned to the lane once when turning right at the new 

intersection with an untrained driving pattern (RS17) under 

the specific conditions (AL0-S3C2): in the afternoon with the 

field’s bulbs off, faster speed, and normal navigation 

command change instant. 

It is worthwhile to note that evaluation in the morning and 

night with the bulbs off under different conditions yielded 

108 out of 108 successful autonomous driving, respectively. 

It can be concluded that the CIL model produced a success 

rate of 99.1% from 648 experiments under different 

conditions of driving patterns, lighting, vehicle speeds, and 

navigation command change instants.

TABLE VI.  OVERALL PERFORMANCE EVALUATION RESULT  

No 
Autonomous Driving Conditions: 

Time | Light | - | Speed | Command Instant 
The Road Sector, which is characterized by the Driving Pattern (Table II) 

Total 
12 13 14 15 16 17 8 18 

1 ML1-S1C1    3  3   6 

2 ML1-S1C2 or ML1-S1C0 3 3 3 3 3 3 3 3 24 

3 ML1-S1C3    3  3   6 

4 ML1-S2C1    3  3   6 

5 ML1-S2C2 or ML1-S2C0 3 3 3 3 3 3 3 3 24 

6 ML1-S2C3    3  3   6 

7 ML1-S3C1    3  2   5 

8 ML1-S3C2 or ML1-S2C0 3 3 3 3 3 3 3 3 24 

9 ML1-S3C3    3  3   6 

10 ML0-S1C1    3  3   6 

11 ML0-S1C2 or ML0-S1C0 3 3 3 3 3 3 3 3 24 

12 ML0-S1C3    3  3   6 

13 ML0-S2C1    3  3   6 

14 ML0-S2C2 or ML0-S2C0 3 3 3 3 3 3 3 3 24 

15 ML0-S2C3    3  3   6 

16 ML0-S3C1    3  3   6 

17 ML0-S3C2 or ML0-S3C0 3 3 3 3 3 3 3 3 24 

18 ML0-S3C3    3  3   6 

19 AL1-S1C1    3  3   6 

20 AL1-S1C2 or AL1-S1C0 3 3 3 3 3 3 3 3 24 

21 AL1-S1C3    3  3   6 

22 AL1-S2C1    3  3   6 

23 AL1-S2C2 or AL1-S2C0 3 3 3 3 3 3 3 3 24 

24 AL1-S2C3    3  3   6 

25 AL1-S3C1    2  3   5 

26 AL1-S3C2 or AL1-S3C0 3 3 3 3 3 3 3 3 24 

27 AL1-S3C3    3  3   6 

28 AL0-S1C1    3  3   6 

29 AL0-S1C2 or AL0-S1C0 3 3 3 3 3 3 3 3 24 

30 AL0-S1C3    3  3   6 

31 AL0-S2C1    3  3   6 

32 AL0-S2C2 or AL0-S2C0 3 3 3 3 3 3 3 3 24 

33 AL0-S2C3    3  3   6 

34 AL0-S3C1    3  3   6 

35 AL0-S3C2 or AL0-S3C0 3 3 3 3 3 2 3 3 23 

36 AL0-S3C3    3  3   6 

37 NL1-S1C1    3  3   6 

38 NL1-S1C2 or NL1-S1C0 3 3 3 3 3 3 3 3 24 

39 NL1-S1C3    3  3   6 

40 NL1-S2C1    3  3   6 

41 NL1-S2C2 or NL1-S2C0 3 3 3 3 3 3 3 3 24 

42 NL1-S2C3    3  3   6 

43 NL1-S3C1    1  2   3 

44 NL1-S3C2 or NL1-S3C0 3 3 3 3 3 3 3 3 24 

45 NL1-S3C3    3  3   6 

46 NL0-S1C1    3  3   6 

47 NL0-S1C2 or NL0-S1C0 3 3 3 3 3 3 3 3 24 

48 NL0-S1C3    3  3   6 

49 NL0-S2C1    3  3   6 

50 NL0-S2C2 or NL0-S2C0 3 3 3 3 3 3 3 3 24 

51 NL0-S2C3    3  3   6 

52 NL0-S3C1    3  3   6 

53 NL0-S3C2 or NL0-S3C2 3 3 3 3 3 3 3 3 24 

54 NL0-S3C3    3  3   6 
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Second, since the unsuccessful autonomous driving 

during the evaluation session happened at new intersections, 

we discuss further in more detail the results of turning 

performance at new intersections. We measured the turning 

performance when the AV turned right at the intersection 

along RS19 and turned left at the intersection along RS15. 

The AV positions, yaw angles, yaw rates, and steering angles 

are depicted in Fig. 10 and Fig. 11. The reference trajectory 

was the middle line of the turning curve. 

Fig. 10 depicts the experimental results obtained from 

three different navigation command change instants under the 

same conditions: nominal speed, night, and the experiment 

field bulbs were switched on. The solid red line in Fig. 10(a) 

denotes the reference trajectory. The dotted, dotted-dashed, 

and dashed lines represent the trajectories when the 

navigation command change instant is too late, normal, and 

too early, respectively. The corresponding yaw angles, yaw 

rates, and steering angles are plotted in Fig. 10(b), Fig. 10(c), 

and Fig. 10(d), respectively. These conditions correspond to 

NL1-S2C1, NL1-S2C2, and NL1-S2C3 in Table VI. We 

observe similar dynamical patterns among the experimental 

results – the AV locations remained close to the references 

without undergoing drastic change. 

Fig. 11 plots the experimental results obtained from three 

different vehicle speeds under the same conditions: normal 

navigation command instant, at night, and the experiment 

field bulbs were on. The solid red line in Fig. 11(a) denotes 

the reference trajectory. The dotted, dotted-dashed, and 

dashed lines represent the trajectories when the vehicle speed 

is faster, nominal, and slower, respectively. In Fig. 11(b), Fig. 

11(c), and Fig. 11(d), the dotted, dotted-dashed, and dashed 

lines represent the yaw angles, yaw rates, and steering angles 

of the corresponding conditions. These conditions correspond 

to NL1-S3C2, NL1-S2C2, and NL1-S1C2 in Table VI. It can 

be seen from Fig. 11 that the vehicle locations remained close 

to the references. However, the vehicle experienced 

overshoot and undershoot in the location and yaw angle 

responses when it was faster than the nominal speed. The 

steering angle rapidly increased from the straight moving-

steering angle and decreased back to the straight moving-

steering angle to maintain the AV inside the lane. The 

steering angle moved to the opposite angle to compensate for 

the overshoot before returning to the straight-moving steering 

angle. 

During turning performance evaluation experiments, the 

AV never escaped from the road; in other words, it achieved 

a 100% success rate. To deepen our evaluation, we calculated 

quantitative turning performance indicators regarding 

location (Table VII). During the right turn at RS19, the yaw 

angles gradually changed from approximately 0° to -90° 

between 3.5 s and 4.5 s. When turning left at RS15 at nominal 

and slower speeds, the vehicle did not overshoot or 

undershoot. The yaw angles changed from approximately 

180° to 270° within 4 s at the nominal speed and 9 s at the 

slower speed. 

TABLE VII.  TURNING PERFORMANCE INDICATOR IN TERMS OF LOCATION 

Description of Performance Indicator 𝐼𝑝2 Value (cm) 

Under too late nav command change instant 4.4 

Under normal nav command change instant 6.5 

Under too early nav command change instant 6.0 

Under a faster speed 7.2 

Under nominal speed 5 

Under a slower speed 5.5 

 

  
(a) (b) 

  
(c) (d) 

Fig. 10. (a) Locations, (b) yaw angle, (c) yaw rate, and (d) steering angle along RS19 under three navigation command change instants 
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(a) (b) 

 
 

(c) (d) 

Fig. 11. (a) Locations, (b) yaw angle, (c) yaw rate, and (d) steering angle along RS15 under three different vehicle speeds 

The main findings of our study are summarized as 

follows: 

1) The AV could not maintain itself inside the road five 

times out of 648 experiments when it turned at new 

intersections. 

2) The AV could not maintain itself inside the road at new 

intersections because of the adverse effects of dazzling 

light reflection, faster speed, and too-late command 

change instant. 

3) The AV could not maintain itself inside the road at new 

intersections because of the untrained driving pattern 

combined with faster speed. 

We use 73 references relevant to this work on 

autonomous driving of ground vehicles from several 

databases, including Science Direct (three articles and one 

book), IEEE Xplore (30 articles), Springer (12 articles), 

MDPI (seven articles), Wiley (two articles), Frontiers (one 

article), Scopus (11 articles), and others (six articles). Fifty-

six articles were published in journals, ten articles in 

proceedings, and one book was published by Elsevier. This 

limited number of references indicates that the research topic 

of autonomous driving based on the end-to-end approach is 

still an infant. Only two articles on end-to-end autonomous 

driving reported physical experimental results in urban 

driving [31], [65]. In [31], the authors did not distinguish 

between training and evaluation routes, nor did they 

systematically evaluate the effect of lighting. Moreover, they 

did not consider the effects of vehicle speed and navigation 

command change instant. In [65], the testing environment 

contained uncontrollable time-dependent factors, e.g., 

weather, lighting, and road users. Also, the drivers selected 

the experiment routes randomly and controlled both steering 

angle and vehicle speed. These uncontrollable conditions, 

route randomness, and time-varying speed made identifying 

key factors more difficult. 

Time-constant speed in our experiments may be a 

limitation of this study and, at the same time, becomes the 

strength since it enables systematical analysis of speed effects 

on performance by comparing three different time-constant 

speed values: low speed, nominal speed, and fast speed. 

This study’s second and third main findings contribute to 

AD by suggesting avenues for enhancing AD technology. For 

example, the second main finding motivated us to employ an 

if-then logic to avoid a turning failure, i.e., if the controller 

identifies dazzling light reflections before turning, drive 

slower, and do not change the navigation command too late. 

The third main finding stimulated us to employ a second if-

then logic: if the autonomous controller identifies a new 

intersection with an untrained driving pattern, then do not 

drive at a faster speed. However, these two logics require 

more accurate and robust object identification capabilities. 

Some researchers proposed multimodality fusion and training 

data augmentation to enhance perception capability, target 

recognition and tracking, and semantic segmentation [35], 

[69]–[73]. 

The original CIL model was modified using 

multimodality fusion in the CARLA simulator, including 

color images (RGB)-stereo depth fusion [35] and RGB-

LiDAR point cloud fusion [69]. A multimodality fusion from 

camera and Radar was developed to process a real-world 

dataset for target tracking based on a switchable dual-level 
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long short-term memory (LSTM) network [70]. They 

validated the method in three illumination conditions: day, 

dusk, and night modes. However, they did not report running 

time. 

A homography augmentation using the DeepLabv3+ 

network from stereo-images was developed and proven to 

outperform six state-of-the-art Deep CNNs regarding 

accuracy, precision, recall, and runtime [71]. This method is 

potentially developed for collision-free space detection 

algorithms for autonomous driving. 

CIL model implementation in real-world urban driving 

also necessitates efficient running time. Besides multimodal 

fusion and training data augmentation, exploring more 

powerful preprocessing methods combined with multi-route 

networks to answer this challenge is also interesting.  

IV. CONCLUSION 

Two failure conditions decreased the success rate to 99% 

out of 648 experiments. One is turning at a new intersection, 

coupled with the combination of three factors: dazzling light 

reflection, faster speed, and too-late command change 

instant. The other is turning at a new intersection with an 

untrained driving pattern coupled with faster speed. 

Under controllable conditions, we need to ensure a 

success rate of 100%. Based on our knowledge obtained in 

this study, we can embed the following two if-then logics into 

the autonomous controller to avoid any turning failure: if the 

controller identifies dazzling light reflections before turning, 

then drive slower and do not change the navigation command 

too late; if the autonomous controller identifies a new 

intersection with an untrained driving pattern, then do not 

drive at a faster speed. 

The two logics require more accurate and robust object 

identification capabilities. Implementing the autonomous 

controller in real time requires efficient running time. For 

future work, we intend to develop a model incorporating 

multimodal fusion, training data augmentation, powerful 

preprocessing, and multi-route networks. 

One limitation of this study is that the dazzling light 

reflection happened accidentally during the experiment. To 

develop a robust CIL model against dazzling light reflections, 

we need to be able to reconstruct several dazzling light 

reflections and systematically evaluate the model’s 

performance against such dazzling light reflections. The 

other limitation is that no obstacles exist in the road sectors. 

A natural extension of this study is to develop a CIL model 

that can avoid obstacles. 
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