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Abstract—Human-Robot Interaction (HRI) has challenges 

in investigation of a nonverbal and natural interaction. This 

study contributes to developing a gesture recognition system 

capable of recognizing the entire human upper body for HRI, 

which has never been done in previous research. Preprocessing 

is applied to improve image quality, reduce noise and highlight 

important features of each image, including color segmentation, 

thresholding and resizing. The hue, saturation, value (HSV) 

color segmentation is executed by utilizing blue color backdrop 

and additional lighting to deal with illumination issue. Then 

thresholding is performed to get a black and white image to 

distinguish between background and foreground. The resizing 

is completed to adjust the image to match the size expected by 

the model. The preprocessed data image is used as input for 

gesture recognition based on Convolutional Neural Network 

(CNN). This study recorded five gestures from five research 

subjects in difference gender and body posture with total of 450 

images which divided into 380 and 70 images for training and 

testing respectively. Experiments that performed in an indoor 

environment showed that CNN achieved 92% of accuracy in the 

gesture recognition. It has lower level of accuracy compare to 

AlexNet model but with faster training computation time of 9 

seconds. This result was obtained by testing the system over 

various distances. The optimal distance for a camera setting 

from user to interact with mobile robot by using gesture was 2.5 

m. For future research, the proposed method will be improved 

and implemented for mobile robot motion control. 

Keywords—Gesture; Upper Human Body; Convolutional 

Neural Network; Mobile Robot Control. 

I. INTRODUCTION 

Human-Robot Interaction (HRI) is a field of research on 

how to develop systems that allow robots to interact with 

humans in human environments. HRI has the challenge of 

developing nonverbal interactions with a natural approach 

that must be carried out in real-time. Several previous studies 

had been carried out for HRI investigations [1]. One of 

problems required to solve for the mobile robot is how to 

control position and orientation of its wheels [2]. Control 

technology allowed human to manage the robot movement by 

using joystick [3]–[14] and android-based smart device [15]–

[32]. Another approach to control the robot motion is by 

utilizing computer vision technology [33]–[37].  

Computer vision technology has been emerged to be 

solution for developing motion control of a mobile robot 

based on perception of feedback from camera.  Computer 

vision that used in robotics are known as robot vision have 

been explored in some previous researches to solve position 

and orientation control of mobile robot. Kinect sensor was 

investigated in [33] to control the motion of omnidirectional 

three wheeled vacuum cleaning mobile robot by interpreting 

distance and heading angle based on RGB-D images. Other 

study on motion control of an omnidirectional mobile robot 

was utilized the landmarks of the environment [34]. Linear 

and angular velocity of mobile robot was controlled by 

proposing distance estimation and landmark recognition 

based on RGB and depth images from Kinect sensor. Work 

on mobile robot orientation estimation by utilizing 

progressive probabilistic Hough transform with law of 

cosines, quadrant principle, and voting mechanism was 

explored in [35] to control its turning movement. In other 

side, controlling translation motion of mobile robot was 

investigated in [36] by exploiting RGB and depth image 

matching. RGB-D images from depth camera were placed in 

the side of mobile robot.  

Robotic vision in special forms with a focus on gesture 

recognition has developed into a state of the art of HRI 

researches in [38]–[120]. Application of gesture recognition 

involves virtual reality [121], augmented reality [122], bio 

medics [123], and robotics [37]. Robot control based on 

gesture recognition have been investigated in [37], [124]–

[126]. The movement of robot arm manipulator SCORBOT-

ER 9 Pro was controlled in [37] by detecting human body 

landmarks. The joints of human arm were proposed as 

landmarks to enable ability of robot arm to imitate the user 

action. Geometry algorithm in the form of law of cosines was 

exploited to provide the angle of each robot’s joint. Gesture 

was recognized by detecting the landmarks represented by a 

configuration of joints in human arm.  

In recent years, Convolutional Neural Networks (CNN) 

have experienced rapid development and made a positive 

impression on the field of image classification [127] and 

robot vision [128]. In the work [129], CNN was used for 

image recognition of the US postal handwritten digit dataset. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 857 

 

Muhammad Fuad, Towards Controlling Mobile Robot Using Upper Human Body Gesture Based on Convolutional Neural 

Network 

Researchers carried out a series of processes to improve the 

performance of the Faster R-CNN algorithm to recognize 

hand posture from NUS dataset [130]. In that work, gesture 

was constructed by using one hand with complex background 

with human noise. For controlling mobile robot motion based 

on human intention, it is desirable to investigate a natural way 

of interaction. This research has objective to investigate a 

gesture recognition system to identify the entire human upper 

body, not just one hand posture as in previous research, in 

order to move mobile robots by using natural interaction 

signal. 

Based on challenge to improve the simplicity of human-

robot interaction, this research aims to utilize nonverbal and 

natural interaction. Three contributions of this study are 

developing of upper body gesture dataset consist of 450 

images recorded from five research subjects with different 

gender and body posture, preprocessing using hue, saturation, 

value (HSV) color segmentation and the architecture of CNN 

for gesture recognition.   

II. METHOD 

This study manages its research methodology according 

to the flow such as shown in Fig. 1. It begins with the first 

contribution in this study in that the developing of gesture 

dataset consist of images of upper body of human.  

A. Development of Gesture Dataset 

There are 450 images which have proportion 80% and 

20% for training and testing respectively. This gesture dataset 

is recorded from upper body gestures of five person with 

different gender and body posture that classified into 5 

motions. The recording images process begins with taking a 

picture of body gestures by using a webcam and adjusting in 

environment such as described in Fig. 2. Then, preprocessing 

based on HSV color segmentation is applied to images of the 

upper body human gesture dataset. 

Start

Images recording of upper body 

of human for gesture dataset

Preprocessing using color 

segmentation with HSV images

Training of gesture 

recognition using CNN

Testing of gesture 

recognition using CNN

Finish

 

Fig. 1. Research methodology of CNN-based gesture recognition 

 

Fig. 2. Environment setting in image recording process 

B. Preprocessing 

The preprocessing sequential processes aim to improve 

image quality by reducing noise and highlighting the 

important features of image This study proposes a series of 

processes consisting of color segmentation of background 

image, thresholding, and reducing the size of the image to 

match the input data model such as depicted in Fig. 3. The 

RBG image recorded by webcam is converted to HSV. The 

blue color backdrop is utilized to facilitate color 

segmentation on HSV image. The HSV trackbar is used for 

searching of background color. The brightness level of the 

light at the time of testing is determined by the range of 

minimum and maximum values for hue, saturation, and 

value. The image change from RGB to binary in 

preprocessing phase is illustrated in Fig. 4. 

Start

Result of Gesture dataset

Convert RGB to HSV

Color segmentation of object of interest

Image thresholding

Image resizing to 100 x 100 pixels

Data labeling

RGB images 

recorded by webcam

Finish

 

Fig. 3. Sequential process in preprocessing step 
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Fig. 4. Image change in preprocessing step 

Labelling is carried out after the image data has been 

obtained. For supporting the model to learn and identify 

patterns or relationships between input and output features 

appropriately, the correct labels must be provided. To be 

more precise, data labelling facilitates the model to learn the 

rules and correlations existing in the data. Data labelling is 

used to save preprocessed image into each class directory. 

Python code for data labelling implementation is described in 

Fig. 5. 

 

Fig. 5. Code for image data labelling 

C. The Architecture of CNN 

At this stage, the design of a CNN system for body gesture 

classification is discussed. CNN is a type of Deep Learning 

architecture that is effective in processing image data with 

high pattern recognition capabilities. The CNN system 

flowchart will be explained in detail in Fig. 6. Based on Fig. 

6, the CNN process begins by reading the training data. Then 

the webcam captures image data from the operator's gestures 

and a series of preprocessing is carried out to adjust the data 

type to the CNN model created. The feature extraction 

process is carried out according to the training model that has 

been created previously.  

In creating a CNN network architecture, there are several 

parameters that need to be considered. The following are 

several parameters of the CNN network architecture: 

1. Filters 

Filters in CNN are also known as convolution filters. 

Convolution filters are filters (multidimensional data) used in 

convolution layers to help extract certain features from input 

data. The features detected are edges, curves, shapes, etc. that 

can be learned by CNN. There are various types of filters such 

as Gaussian Blur, Prewitt Filter and many more. 

2. Padding 

Padding is the process of adding zeros to the input matrix 

symmetrically. If observed, the output size will be smaller 

than the input for each filter. So to keep the output dimensions 

the same as the input, you need to use padding.  

3. Strides 

Stride shows how many steps are moved at each step in 

the convolution. By default, the stride used is 1. The filter will 

shift 1 pixel horizontally and then vertically. The smaller the 

stride, the more detailed the information obtained from an 

input, but it requires more computation compared to a large 

stride. 

A simple CNN is formed from a series of layers, each 

layer converting one activation volume into another volume 

through a different function. The following are several layers 

in the CNN network architecture: 

1. Input Layers 

The input layer in CNN is image data represented by a 

three-dimensional matrix, namely height, width and number 

of image channels. The 3-dimensional matrix values 

contained in an image will then be calculated in a 

convolutional process. 

2. Convolutional Layers 

The convolutional layer is the first layer that changes an 

input with the value in the filter. At this stage a convolution 

process occurs based on the output of the previous layer. Part 

of the image will be connected to a filter based on the number 

of kernels used, then shifted with a predetermined stride and 

performs the same operation again. The process repeats until 

the filter successfully completes all image data. The output 

from the convolutional layer will be the input for the next 

layer. In producing an output there are influencing parameters 

such as stride and zero padding. 

 

 

 

 

 

 

if interrupt & 0xFF == ord('1') : 

    cv2.imwrite( 

 dirs + "0/" + "Maju" + str(i) 

  + ".jpg", frame) 

    print("data gesture Maju ke-",i) 

    i+=1 

if interrupt & 0xFF == ord("2") : 

    cv2.imwrite(dirs + "1/" +  

        "Mundur" + str(j) +  

        ".jpg",frame) 

    print("data gesture Mundur ke- 

          ",j) 

    j+=1 
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3. Activation Function 

One of the important parameters in determining the 

output, accuracy and efficiency of the training model is 

determined by the activation function. The activation 

function can determine whether to activate a neuron with 

reference to the input to the network being important or not 

in the prediction process using simple mathematical 

operations. There are several examples of activation 

functions such as Sigmoid, Tanh, ReLU, Leaky ReLU, 

Parametrized ReLU, Exponential Linear Unit, Swish, and 

SoftMax. The commonly used activation function is ReLU. 

Using ReLU can speed up the training process by 

thresholding the zero value of the pixel values in the input 

image. The task of the ReLU activation function is to change 

pixels that are negative or less than zero in the image to 0. 

4. Pooling Layer 

Pooling is a process to reduce the input size spatially or 

reduce the number of parameters with down sampling 

operations. The dimensions of each feature map carried out 

by the pooling process will be reduced but still retain 

important information in each data. Pooling layers can also 

be used to speed up the performance of the entire 

convolutional layer. The most common form of pooling layer 

is to use a 2×2 filter with steps of 2. There are two methods 

for pooling layers, namely max pooling and average pooling. 

5. Flattening Layers 

After the feature extraction stage is complete, proceed to 

the final stage in CNN, namely the classification stage. The 

first classification stage is flattening, which is the process of 

creating a 1D vector that is used to store the previous layer's 

output data. Input to the fully connected process requires 

individual features like other classifiers. So it is necessary to 

change the output part of the CNN which was originally in 

the form of a 3D matrix into a 1D vector so that it is used in 

the fully-connected process. 

6. Fully Connected Layer 

Fully connected layer is a basic structure in a neural 

network that can connect neurons in one layer to all neurons 

in other layers. Fully connected layers involve weights, 

biases and neurons These layers are used to classify images 

between different categories by training. This layer is usually 

implemented at the end of the network. This layer uses a 

softmax activation function in the output layer which aims for 

classification. Softmax activation function to solve multi-

class neural network learning and image classification 

problems with a set of pixels as input. The output from 

softmax can represent the distribution of a class. Softmax 

calculates all the probabilities of labels with values 

between 0 and 1, if they are all added up they will have a 

value of 1. 

7. Outputs 

The output is the final layer of the CNN network carrying 

information that has been learned through hidden layers and 

providing a final value as a result. 

The CNN model used is 2 convolution layers with ReLU 

activation function, 2 pooling layers (MaxPooling), 1 hidden 

layer (256), output layer with softmax activation function. 

After the output layer, the probability of each class will be 

known. The class that has the largest probability value is 

considered a detected gesture. The process to find out which 

class has the largest probability value is by sorting the 

probability values between classes through a program. 

The architecture of the CNN model created by the 

researcher is shown in Fig. 7. The CNN architecture created 

consists of 2 repetitions of the convolution operation. 

The first convolution operation uses filter 32 with a kernel 

of 3×3 and stride 1. Then the Rectified Linear Unit (ReLU) 

function is used to change the output from the operation 

which was originally negative to 0. Then perform image data 

reduction or a down sampling process with pooling. The 

pooling layer here is used to reduce the spatial size of the data 

by taking the maximum value from the 2×2 kernel. This 

process is repeated to obtain more optimal feature extraction. 

Optimizing the feature extraction process on a CNN is done 

by designing and setting the CNN architectural parameters so 

that the most relevant features can be extracted from the 

image. The goal of this optimization is to improve the 

performance and efficiency of the model in image 

classification tasks according to what researchers want. 

 

Fig. 6. Flowchart of gesture recognition 

 

Fig. 7. Architecture of CNN 

CNN architecture in Fig. 6 made simple with the aim of 

reducing the computational process when training the model. 
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The feature extraction process in CNN generally occurs 

repeatedly by applying many filters. In this research, the 

features of the image data have first been extracted through 

data preprocessing. There is no need for repeated feature 

extraction because the special characteristics of each image 

data have been extracted. 

Before the gesture recognition process can be carried out, 

training of the detection system is required, the results of this 

training will become a CNN model. Training was carried out 

on 80% of gesture dataset that recorded a total of 450 images 

from five participants each demonstrating five gestures. 

Computer with AMD Ryzen 5 3500 U Quad Core 64 bit 

processor, Radeon Vega 8 GPU, 8 GB RAM, Realtek 

RTL8723DE 802.11b/g/n for networking and Bluetooth® 4.2 

combo was used to complete the training process. 

Researchers compared the training time process with the 

AlexNet architecture model and found that the model created 

was 9 seconds faster than the AlexNet architecture. The 

researcher's architecture took 40.22 seconds, while the 

AlexNet model took 49.89 seconds when training the model. 

D. Training Stage 

Gesture is a movement from various poses. In this 

research, 5 gestures (forward, backward, stop, turn right, turn 

left) were chosen as case studies for gesture recognition. 

Before carrying out gesture recognition using the CNN 

method, it is necessary to carry out a training process as 

shown in Fig. 8.  

It is known that the CNN model designed requires an 

input image measuring 100×100 pixels with a black and 

white image type. Then there is a feature extraction process 

such as convolution with two layers and pooling with two 

layers. The type of pooling used is max pooling, which takes 

the largest value based on the specified number of kernels. 

Visualization of several steps in CNN is described in Table I. 

The following are the feature extraction stages. 

1. First Convolution 

The image from the preprocessing results will be 

subjected to a convolution process. The value that is obtained 

from this process will be used as input for the ReLU. To find 

out the height and width of the output of the convolution 

process, it can be determined using the following equation: 

𝑂𝑢𝑝𝑢𝑡 =  
𝑊 − 𝐹 + 2𝑃

𝑆
+ 1 (1) 

Where, 𝑂𝑢𝑡𝑝𝑢𝑡 is size of the feature map in the output, 𝑊 is 

the size of the input feature map, 𝑃 is the padding size, 𝐹 is 

the filter size, 𝑆 is stride size. 

In the first convolution process, input measuring 

100×100 is then processed using a filter measuring 3×3, 

stride of 1 and adding padding of 1. This results in feature 

maps measuring 100×100. 

2. ReLU 

ReLU is a function that is used to change negative values 

to 0 of the output of the first convolutional layer.  

TABLE I.  STEPS IN CNN 

Label 

Input 

Image 

(100x100) 

Convolution 1 

(100x100) 

ReLU 

(100x100) 

Max 

Pooling 1 

(50x50) 

Convolution 2 

(50x50) 

ReLU 

(100x100) 

Max 

Pooling 2 

(25x25) 

Stop 

Gesture  

   

   

 

Move 

Forward 

Gesture  

   

   

 

Move 

Backward 

Gesture  

   

   

 

Turn 

Right 

Gesture  

   

   

 

Turn Left 

Gesture  
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Fig. 8. Training phase of CNN 

3. First Pooling 

The pooling process is a process of reducing the size of 

the matrix to become smaller. There are two types of pooling, 

namely max and average pooling. Max pooling uses the 

largest value of the selected matrix, while average pooling 

uses the average value of the selected matrix. The pooling 

process used is average pooling with a filter size of 2×2 and 

stride 2. In the first pooling process, input measuring 

100×100 is then processed using a filter measuring 2×2, 

stride of 2 and without adding padding. It produces feature 

maps measuring 50×50. 

4. Second Convolution 

The image from the first pooling will be subjected to a 

second convolution process. Then a value is obtained, this 

value will be used as input for the ReLU process. In the 

convolution process, the two inputs are 50×50 in size and 

then processed using a 3×3 filter, a stride of 1 and additional 

padding of 1. This results in feature maps measuring 50×50. 

5. ReLU 

ReLU is a function that is used to change negative values 

to 0 of the output of the second convolution. 

6. Second Pooling 

The pooling process is a process of reducing the size of 

the matrix to become smaller. The pooling process used is 

average pooling with a filter size of 2×2 and stride 2. In the 

pooling process, the two inputs measuring 50×50 are then 

processed using a filter measuring 2×2, stride of 2 and 

without adding padding. It produces feature maps measuring 

25×25. 

7. Flattening 

The flattening process is the process of changing the 

resulting matrix from the feature extraction process into a 

single vector which will later become the input layer for the 

CNN process. 

8. Fully Connected Layer 

Fully Connected Layer (FCL), also known as Dense 

Layer, is a type of layer that is generally used in CNN 

architectures to extract further features from features that 

have been extracted by previous convolution layers and 

pooling layers. FCL differs from convolution layers in that it 

has convolution operations based on kernel matrices. The 

FCL consists of neurons that are fully connected to all 

neurons in the previous layer. Based on the previous results, 

the values obtained are carried out further calculations and 

activation functions such as ReLU can be applied. 

𝑁[𝑘] =  𝑊[𝑘] 𝑥 𝐼 +  𝐵[𝑘] (2) 

𝑎[𝑘] = 𝑓(𝑁[𝑘]) =  𝑚𝑎𝑘𝑠 (0, 𝑁[𝑘]) (3) 

where 𝑁[𝑘] summing junction in layer 𝑘; 𝑊[𝑘] value of the 

weights in layer 𝑘; 𝐼 is the input; 𝑎[𝑘] is value of neurons in 

layer k; 𝐵 [𝑘] value of biases in layer k. 

9. Softmax 

Softmax is an activation function that serves to distribute 

the probabilities of existing classes. In There are five neurons 

that represent the class to be predicted, namely stop, forward, 

backward, turn right, and turn left gesture respectively. 

After completing the training process, a training results 

file is created with the extension .json and .h5. These files in 

machine learning are generally used for storing and managing 

CNN training results. These two formats have different 

purposes, json files are used to store the structure, model 

configuration, and other information related to the 

architecture of the CNN model being created. Meanwhile, the 

h5 file is used to store the weights and biases in each layer 

produced during the model training process. This file is used 

in the real time gesture detection by using a webcam in testing 

stage such as described in the following section. 

E. Testing Stage 

 At testing stage, the gesture detection process using the 

CNN method begins by reading the training results files in 

json and h5 files to be compared with the result of gesture 

recognition process of human gesture frame data via a 

webcam. A prediction process is performed based on the 

results of training and webcam. The index with the highest 

prediction probability results is selected as a successfully 

detected gesture. The results of the gesture detection as 

depicted in Fig. 9, will be used as control commands for the 

mobile robot.  

 

Fig. 9. Result of Model Testing 
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III. RESULTS AND DISCUSSION 

Experiments were carried out to determine the level of 

success of the proposed method in recognizing human upper 

body gestures towards controlling the movement of mobile 

robot. Gesture was demonstrated by human operator in front 

of webcam at a distance of 2.0 m as illustrated in Fig. 10. The 

list of names of gestures for testing is shown in Table II. It 

presents the overall test result of the gesture-based mobile 

robot movement control system, researchers carried out the 

test 10 times on 5 participants which demonstrate 5 gesture 

of test data samples. From tests that were carried out 250 

times, there were 227 trials where the gesture was 

successfully recognized, while 23 trials where the gesture 

failed to be identified. The percentage accuracy of system 

testing in identifying gestures was 90.8%. Fig. 11 shows the 

result of tests that have been carried out by involving variance 

in gender and size of posture. Small man, big man, small 

woman, and big woman are four variances used in the 

experiments.  

 

Fig. 10. Experiment’s scenario for investigating the impact of distance 

TABLE II.  RESULT OF UPPER HUMAN BODY GESTURE RECOGNITION 

State 
Move 

Forward 

Move 

Backward 

Stop Turn 

Right 

Turn 

Left 

Succeed 46 45 50 45 44 

Failed 4 5 0 5 6 

Total 50 50 50 50 50 

Total number of experiments 250 

Total number of failed 23 

Total number of succeed 227 

 

This research extends to some experiments to examine the 

impact of difference distance between human users and 

cameras on the reliability of the proposed method. There are 

seven test scenarios by setting the distance between 1.0 m and 

4.0 m. Table III summarize the accuracy of gesture 

recognition from various distances. The first scenario 

reported 4.4% of accuracy where the distance between the 

webcam and the user was 1.0 m. In the second scenario where 

the distance was 1.5 m, resulting in an average success of the 

system in recognizing gestures of 9.0%. 

The third test scenario was resulting in an average success 

of the system in recognizing gestures of 90% where the 

distance was 2.0 m. The best accuracy was achieved in the 

fourth test scenario that resulting in an average success of the 

system in recognizing gestures of 92% where the distance 

between the webcam and the user was 2.5 m. 

 

TABLE III.  TESTING THE DISTANCE OF THE GESTURE DETECTION SYSTEM 

Scenario 

Accuracy (%)  
Move 

For 

ward 

Move  

Back 

ward 

Stop Turn 

Right 
Turn 

Left Ave 

rage 

Std 

Dev 

Scenario 1  

(1.0 m) 0 6 10 6 0 4.4 3.87 

Scenario 2  

(1.5 m) 5 10 10 10 10 9.0 2.00 

Scenario 3  

(2.0 m) 80 90 100 90 90 90 6.32 

Scenario 4  

(2.5 m) 92 90 100 90 88 92 4.19 

Scenario 5  

(3.0 m) 80 80 100 90 90 88 7.48 

Scenario 6  

(3.5 m) 60 70 100 80 80 78 13.26 

Scenario 7  

(4.0 m) 10 0 0 0 0 2.0 4.00 

 

The average accuracy of the proposed system in 

recognizing gestures decreased to 88% in the fifth scenario 

where the distance between the webcam and the user was 3.0 

m. The accuracy has a lower score of 78% in the sixth 

scenario where the user-webcam distance was 3.5 m. The 

lowest average score of 2.0% resulted in the seventh scenario 

where the distance between the webcam and the user was 4.0 

m. Of the various distances that have been tested, the optimal 

distance between the webcam and the user to be used to 

control the movement of a mobile robot is 2.5 m.  

Gesture for Stop is relatively easy to identify, while other 

gestures such as Move Forward, Move Backward, Turn 

Right, and Turn Left are relatively difficult to recognize. This 

condition occurs because of the emergence of false positives 

due to noise in the image. By removing noise through 

preprocessing by using Gaussian filter or such other filter, it 

is hoped that the false positive rate can be reduced so that 

accuracy increases. Several CNN architectures for image 

denoising will also be investigated in future research. 

Adaptive HSV color segmentation which will be explored in 

the next research could also be the solution to overcome the 

influence of lighting and clothing color in gesture 

recognition. 

These experiments include the scenario at the nearest 

distance of 1.0 m and at the furthest distance from the capture 

device of 4.0 m. The data distribution in scenario 4 with a 

distance of 2.5 m, the best accuracy in these experiments 92% 

has the smallest value compared, namely 4.19, compared to 

the data distribution in other scenarios with accuracy above 

70%. This study results lower computation time of 9 seconds 

with 92% of accuracy. Although it has lower computation 

time, but it has lower accuracy than AlexNet model that 

scores 100%. 

Based on the experimental results, it can be seen that there 

are still several limitations in this proposed approach in the 

form of limited sensor range, dependence on backdrops, HSV 

settings in the color segmentation section are still manual, and 

accuracy is still low. In the next research, some of these 

limitations will be corrected and the results will be 

implemented in the control of mobile robots in human work 

environments. Viewed from a qualitative perspective based 

on user experience, in future research it is necessary to 

examine several additional gestures, especially for more 

complex mobile robot movements. 
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(a) (b) 

  
(c) (d) 

Fig. 11. Results of several experiments with gender and the size of posture variance: (a) man with small posture, (b) man with big posture, (c) 

woman with small posture, (d) woman with big posture 

IV. CONCLUSION 

The CNN architecture created by the author succeeded in 

detecting gestures supported by our developed gesture dataset 

and HSV-based color segmentation resulted the accuracy on 

average by 92%. The testing process was carried out 

optimally at a distance of 2.5 m in front of the webcam sensor. 

In the detection process, lighting settings and the color of the 

clothes worn have a big influence on the system. It will be 

difficult to carry out color segmentation so that the feature 

map of each gesture image is not formed perfectly. A gesture 

image that is not formed will make it difficult for CNN to 

detect because of the noise that exists even though the CNN 

already has a filter at the convulsive stage. Tests were carried 

out at different distances to determine the robustness of the 

system from various distances as explained in the experiment 

stage above. Based on the comparison results, the research 

model has a faster model training computing time of 9 

seconds with 92% of accuracy, but has a lower level of 

accuracy than the AlexNet model that has accuracy with 

score 100%. 

For future research, several improvements must be 

developed to overcome limited sensor range, independence 

system of the cluttered background, adaptive color 

segmentation, enhance the accuracy of system, decrease the 

computational time, and system implementation to real 

mobile robot in the human environment, gaming, and 

assistive technologies. 
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