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Abstract—Batteries in electric vehicles are the primary focus 

battery health care. The Battery Management System (BMS) 

maintains optimal battery conditions by evaluating the system's 

Htate of health (SOH). SOH identification can recommend the 

right time to replace the battery to keep the electric vehicle 

system working optimally. With suitable title and accuracy, the 

battery will avoid failure and have a long service life. This 

research aims to produce estimates and identify SOH 

parameters so that the performance of the battery management 

system increases. The central parameter values obtained are R0, 

Rp, and Cp based on Thevenin battery modeling. Then, to get 

good initialization and accurate results, the parameter 

identification is completed using an adaptive algorithm, namely 

Coulomb Counting and Open Circuit Voltage (OCV). The two 

algorithms compare the identification results of error, MAE, 

RSME, and final SOH. The focus of this research is to obtain 

data on estimation error values along with information 

regarding reliable BMS performance. The performance of the 

current estimation algorithm is known by calculating the error, 

which is presented in the form of root mean square error 

(RMSE) and mean absolute error (MAE). The SOH estimation 

results using Coulomb Counting have a better error than OCV, 

namely 1.770%, with a final SOH value of 17.33%. The 

Thevenin battery model can model the battery accurately with 

an error of 0.0451%. 

Keywords—Battery Management System, State of Health, 

Battery Parameters. 

I. INTRODUCTION 

In electric vehicles, the battery is the primary energy 

source that functions to run the engine so that the car can 

move and is a source of electricity for other systems [1], [2]. 

In contrast to conventional vehicles today, batteries are only 

used as an energy source for the vehicle's electrical system 

[3], [4], [5]. In general, batteries used in electric cars have 

relatively small capacity and voltage. Thus, the battery is 

packaged in a battery module [6], [7]. An electric vehicle 

requires one or more modules according to the vehicle's 

needs. A battery system usually consists of many battery 

cells. A battery management system (BMS) is fundamental to 

managing all the battery cells [8], [9], [10]. In electric 

vehicles, BMS has functions including optimizing the battery 

working system with the crucial parameters of state of health 

(SOH) and state of charge (SOC). SOC is a value that states 

a ratio between the remaining capacity and the battery's 

overall capacity [11], [12]. At the same time, SOH is a value 

that compares a storm's current performance and the battery's 

performance when it is new. The SOC and SOH values are 

fundamental in BMS because these values are the basis for 

determining the battery life condition [13], [14]. However, 

the SOC and SOH values are difficult to decide on because, 

currently, there are no sensors that can measure SOC and 

SOH directly. SOC and SOH estimation is the best step to 

determine the SOC and SOH values. 

The research background is SOH, which quantifies 

battery performance and can determine how long it will last. 

Due to usage and increasing cycle life, the battery will 

experience a process of quality degradation [15], [16], [17]. 

This causes the parameters in the battery to change and causes 

a decrease in performance. One of the parameters of the storm 

that changes is the battery's internal resistance, and another is 

the battery's capacity [18], [19]. As the cycle life increases, 

the battery capacity decreases. Identification of parameters in 

SOH helps determine the actual condition of the battery after 

repeated charge-discharge shapes [20], [21], [22]. When the 

SOH parameters can be known for their accuracy in 

optimizing battery performance, we can recommend the right 

time to replace the battery to extend battery life and keep the 

electric vehicle system working optimally [23], [24]. SOC is 

an estimate of capacity in the form of a ratio of actual power 

to total capacity. Battery capacity cannot be measured 

directly, so it also requires suitable parameters to be accurate 

and reliable. Apart from knowing the remaining battery 

capacity, SOC can be used to prevent the battery from 

overcharging or over-discharging to extend its service life 

[25], [1], [26]. Many SOH or SOC estimation methods have 

been developed. However, a few ways still identify SOC and 

SOH parameters simultaneously and produce suitable 

parameters to create a reliable BMS and reduce the 

computational burden on the BMS [27], [21], [28]. 

Algorithms for monitoring battery parameters must be able to 

adapt to changes in parameters and be able to estimate battery 

conditions [29], [30], [31]. There are many different 

approaches to tracking batteries in electric cars. Methods for 

identifying and estimating parameters can be divided into 

three groups: the first method is to use a spectroscopic 

impedance approach, the second method is to use a circuit 

model equation approach, and the third method is to use an 

electrochemical impedance model approach [25], [32], [33]. 

The first method is usually carried out in a laboratory using 

complex measurement equipment using an active signal 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 809 

 

 

Lora Khaula Amifia, Evaluating the Battery Management System's Performance Under Levels of State of Health (SOH) 

Parameters 

 

generator. The second method is based on the dynamic 

characteristics of the battery, a circuit model equation using 

resistors, capacitors, and a voltage source that represents the 

battery voltage [34], [35]. 

The related work from the past research is as follows: 

many methods are used to identify battery parameters; each 

has advantages and disadvantages. CC and OCV methods are 

widely used in battery management systems in electric cars 

[36], [37]. Both are easy to use, depending on the 

performance of the current sensor, are open-loop estimates, 

and can have error accumulation. Furthermore, this method 

requires an accurate initial SOH value. The coulomb counting 

method is an adaptive method for obtaining SOH. This 

method states that the battery capacity value is under standard 

conditions and has a negative current value when charging 

and a positive one when discharging [38], [39]. While the 

OCV after a sufficient rest of the battery can be considered to 

reach a balanced voltage, since there is a correspondence 

between OCV and SOH and supports a slight relationship on 

battery life, this is an effective method to estimate the SOH 

of the battery by considering the condition of the battery 

parameters of the BMS [40], [10]. The CC algorithm 

monitors the capacity flowing in and out of the battery. It 

estimates SOH by determining how much power is lost from 

the battery compared to how much is available from previous 

charging cycles. The CC algorithm accurately determines 

SOH and provides some helpful information about SOH by 

performing voltage recovery. Voltage recovery is a 

commonly used technique to estimate SOH. In this approach, 

SOH estimation applies voltage depression under load and 

performs temporal recovery of battery voltage after load 

removal. The condition of battery parameters is evaluated by 

measuring impedance and internal resistance. This is usually 

done in open circuit conditions but can also be done online. 

SOH reflects the general condition of the battery and its 

ability to provide specified performance compared to new 

requirements. SOH enables the prediction of battery end-of-

life and avoids unexpected system interruptions that could 

cause damage or dangerous events. In an electric car, the 

SOH indicator informs the user that maintenance or 

replacement of the battery is required when it reaches a 

certain degradation threshold, thereby reducing the 

possibility of battery failure [13], [10]. 

This paper focuses on identifying accurate SOH 

parameters needed to prevent damage to the battery so that 

the battery has a longer service life and implementing 

adaptive methods to improve reading results and reduce the 

computational load on the BMS. Apart from intelligent 

algorithms, which consume a lot of computing memory, 

evaluation and identification of SOH parameters are carried 

out based on the battery model [41], [42], [43]. The Thevenin 

battery model was used in this research because it has good 

accuracy, complexity, and durability [38],[44]. An essential 

part of a battery model is the parameters it contains. The 

Thevenin model consists of a voltage source OCV, an internal 

resistance 𝑅0 and a parallel section containing a polarization 

resistance 𝑅𝑝 and a polarization capacitance 𝐶𝑝. The 𝑅0, 𝑅𝑝 

and 𝐶𝑝 parameters are identified using an adaptive algorithm, 

namely recursive least squares (RLS) with recursive 

capabilities that allow updating the parameters at each 

iteration to obtain the parameter characteristics [43]. From 

the battery model, good parameter values are then developed 

from the evaluation results so that accurate SOH estimates 

can be made, and the computational load is light and has a 

low level of complexity.  

The research contribution is the results of testing battery 

parameters, which produce reasonable estimates and a small 

error rate for evaluating the performance of the BMS system. 

The coulomb counting method makes it easier to calculate 

battery capacity; the battery will experience a decrease in 

maximum power as the number of charge-discharge cycles 

increases to see changes in SOH and changes in internal 

resistance also influence the condition of the battery. In 

addition, the Thevenin battery model was successfully 

carried out with a relative error of <2%. The SOH 

initialization value is one of the successful identifications of 

battery health parameters through several battery cycles from 

full battery to empty. Regarding the accuracy of SOH 

estimation with both methods (OCV and CC), it was found 

that CC accuracy was better than RLS. It was also found that 

CC could estimate the terminal voltage and SOC of the 

battery, while OCV could only estimate battery parameters. 

II. BATTERY MANAGEMENT SYSTEM 

A. Battery Element 

The BMS regulates the battery system, which consists of 

hundreds or thousands of battery cells in electric vehicles. 

The BMS is essential in monitoring, estimating parameters, 

protecting, providing reports, and balancing battery batteries 

[45], [46]. In electric cars, the BMS consists of several 

sensors, actuators, and controllers with various algorithms 

and signals. The three primary functions of BMS in electric 

vehicles include: 

1) To protect the cells and battery pack from damage. 

2) To make the battery work at appropriate voltage and 

temperature intervals, ensuring safety and extending 

battery life [47], [48].  

3) To maintain the battery to work with parameters, such as 

SOC, SOH, and SOF (State of Function) required by the 

system. Parameter information on the BMS is essential to 

determine battery life. In addition, the information is used 

to avoid overcharge and over-discharge, which can cause 

permanent internal damage to the battery [49]. 

Optimizing the BMS with a battery protection system can 

make its performance good. The BMS must provide 

comprehensive cell protection to overcome hazardous 

conditions [50]. In addition, battery operation must comply 

with the desired specifications and design. Accurate battery 

parameter estimation techniques will be helpful for various 

functions of the BMS. The BMS can produce information on 

the health condition of the battery and can find out the 

maximum current and voltage values during charging and 

discharging [51], [52]. The SOC also needs these battery 

parameters. 

Fig. 1 shows the software and hardware framework of a 

BMS for an electric vehicle. Input on the BMS consists of a 
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primary circuit of current and voltage sensors to measure 

current and voltage; temperature sensors to measure the 

temperature of battery cells and battery surfaces; pedal 

sensors for acceleration and digital input, such as start key 

on/off signal charging switch, for BMS output includes: 

thermal management module for cooling and heat control; 

balancing modules such as capacitors and spacer resistance 

to equalize batteries, battery safety management module, 

battery charge indicator, failure alarm and communication 

module [53], [54], [55]. The software on the BMS includes 

several functions, including battery parameter detection, 

battery parameter estimation, OBD (On-Board Diagnosis), 

battery safety control and alarm, charge control, battery 

equalization, thermal management, communication lines, and 

information storage [56], [55]. The BMS generally consists 

of a Power Module (PM), DC/DC Converter, battery, and 

load. Measured variables, parameter values, and control 

commands between BMS parts are communicated via 

communication channels as shown in Fig. 2. This channel 

works from the wire that controls the PWM (Pulse Width 

Modulation) switch to the bus [57], [58], [59]. 

 

Fig. 1. Main framework of software and hardware in BMS in electric 

vehicles 

 

Fig. 2. Battery management system 

CVM (Cell Voltage Measurement), battery parameter 

estimation, battery balancing, and battery fault diagnosis are 

the main issues in BMS. Difficulties with CVM on batteries 

include; 

1) The battery pack in an electric vehicle consists of 

hundreds of battery cells installed in series, and there are 

channels to measure voltage. This allows differences in 

the voltage of each cell, which accumulate when the 

battery cell voltage is measured. Therefore, it is 

challenging to design a suitable circuit to minimize the 

voltage difference across each battery cell in the BMS 

[60], [61]. 

2) Voltage measurement requires high precision, especially 

for LiFePO4 batteries. Estimating SOC and other battery 

parameters requires high precision regarding battery cell 

voltage [62], [63], [64]. This is related to the relationship 

between OCV and battery SOC. The level of accuracy in 

battery voltage reaches 5 mV, with the SOC rate changing 

4 percent per mV. The scope of the battery parameter 

estimation algorithm as shown in Fig. 3, namely SOC, 

SOH, and SOF, can be defined as the ratio of remaining 

capacity and total battery capacity when the battery 

capacity is complete under the same specific conditions 

[65], [66], [67].  

 

Fig. 3. Scope of parameter estimation algorithms in BMS 

SOH can be defined as life prediction and fault diagnosis 

related to battery aging factors, SOC range, temperature 

range, and fault rate. Meanwhile, the SOC algorithm aims to 

determine the remaining capacity of the battery using a 

specific method [68], [69], [70]. Battery variables such as 

voltage, current, temperature, and operating time are 

measurable quantities used to estimate SOC [71]. The SOH 

algorithm in BMS includes two aspects: identification of 

SOH parameters and prediction of the battery. To determine 

SOH parameters and predictions, measured battery quantities 

are required [72], [73]. The SOH function related to battery 

failure limits is based on the results of battery fault diagnosis. 

Battery error diagnosis results include sensor errors, 

overvoltage, overload, network errors, battery cell errors, 

temperatures too high or low, very rapid temperature 

changes, and SOC too low or high. The SOF algorithm in 

BMS is based on the SOC and SOH parameters [74], [75]. 

B. Battery Modelling 

In this research, battery modeling was used to determine 

SOH parameters. This battery modeling is carried out by 

changing the input battery parameters in voltage, current, and 

temperature into SOH so that the estimation produces 

accurate values [37], [76]. The Thevenin battery model uses 

battery modeling by selecting the internal parameters of 
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battery resistance and capacitance, which represent the 

voltage transient response to describe polarization in 

electrochemical processes in batteries [77], [78]. Battery 

modeling can be seen as Fig. 4. 

 

Fig. 4. Model baterai Thevenin 

The mathematical equation of the battery model uses the 

up parameter 𝑢𝑝 as the voltage on the parallel RC section. 

Other parameters used are 𝑉𝑜𝑐 , 𝑅0, 𝑅𝑝, and 𝐶𝑝. The 𝑉𝑜𝑐  value 

is the value from measuring the terminal voltage when it is 

open and steady state. The internal resistance 𝑅0 is 

proportional to the instantaneous voltage drop, and the 

polarization resistance and capacitance (𝑅𝑝, 𝐶𝑝) are related to 

the transient part of the terminal voltage when the battery 

current changes. The mathematical equation is shown as (1). 

𝐺(𝑍−1) = −

𝑅0𝑇 + 𝑅1𝑇 + 2𝑅0𝑅𝑝𝐶𝑝

𝑇 + 2𝑅𝑝𝐶𝑝
+

𝑅0𝑇 + 𝑅1𝑇 − 2𝑅0𝑅𝑝𝐶𝑝

𝑇 + 2𝑅𝑝𝐶𝑝
𝑧−1

1 +
𝑇 − 2𝑅𝑝𝐶𝑝

𝑇 + 2𝑅𝑝𝐶𝑝
𝑧−1

 

 (1) 

From equation (1), enter the following parameter values. 

𝑎1 =
𝑇 − 2𝑅𝑝𝐶𝑝

𝑇 + 2𝑅𝑝𝐶𝑝

, (2) 

𝑏0 =
(𝑅𝑝 + 𝑅0)𝑇 + 2𝑅0𝑅𝑝𝐶𝑝

𝑇 + 2𝑅𝑝𝐶𝑝

, (3) 

𝑏1 =
(𝑅𝑝 + 𝑅0)𝑇 − 2𝑅0𝑅𝑝𝐶𝑝

𝑇 + 2𝑅𝑝𝐶𝑝

, (4) 

From this equation, 𝑅0, 𝑅𝑝, and 𝐶𝑝 are obtained as (5) to (7). 

𝑅𝑝 =
2(𝑎1𝑏0 + 𝑏1)

1 − 𝑎1
2

, (5) 

𝐶𝑝 =
𝑇(1 + 𝑎1)2

4(𝑎1𝑏0 + 𝑏1)
, (6) 

𝑅0 =
𝑏0 − 𝑏1

1 + 𝑎1

. (7) 

The values 𝑎1, 𝑏0, and 𝑏1  are obtained using the RLS 

algorithm so that the parameter values 𝑅0, 𝑅𝑝, and 𝐶𝑝 can be 

brought to be applied to the Thevenin battery model. 

Assuming the initial value of the voltage on the parallel part  

of the 𝑢𝑝 is equal to zero because due to the response of the 

RC circuit, the up dynamics is 0, with 𝑘 being the time step. 

Assuming the initial value of the voltage on the parallel part 

of the 𝑢𝑝 is equal to zero because, due to the response of the 

RC circuit, the dynamics of the 𝑢𝑝 are shown in (8). 

𝑢𝑝(𝑘 + 1) =  𝑒
−

𝑇
𝑅𝑝𝐶𝑝  𝑢𝑝(𝑘) + (1 − 𝑒

−
𝑇

𝑅𝑝𝐶𝑝) 𝑅𝑝𝐼𝑏𝑎𝑡𝑡(𝑘), (8) 

𝑢𝑝(0) = 0,  

With 𝑘 is time step.  

III. IDENTIFY STATE OF HEALTH PARAMETERS 

Accurate SOH parameters are critical in BMS 

performance [79], [80]. The adaptive algorithm used to 

identify these parameters is Coulomb Counting to get 

maximum results to obtain the SOH initialization value. So, 

this can be used as an essential reference in knowing BMS 

performance [81], [82], [83]. 

Fig. 5 is the SOH estimation analysis technique used to 

identify battery model parameters and OCV-SOC functions 

using the Thevenin battery model. The current input is given 

to the battery model to determine the response to the terminal 

voltage output. Then, the terminal voltage data analyzes the 

voltage value immediately before the current pulse enters the 

battery; the terminal voltage is sampled and connected to 

become a 𝑉𝑜𝑐  voltage line against time. By changing the time 

domain to the SOC domain, the voltage line 𝑉𝑜𝑐  versus SOC 

is obtained. By applying curve fitting, the OCV-SOC 

function will be received. The relationship between current 

input and voltage output on the battery is parameters 𝑎1, 𝑏0, 

and 𝑏1. The parameters obtained are recorded and stored to 

get the dynamics of the battery model parameters; the 

parameter identification process is repeated until the SOH 

produces reasonable estimates and a small error rate to 

evaluate the performance of the BMS system. So, this 

contributes to this research, which is used as a lesson from 

previous similar research cases. 

 

Fig. 5. System design of SOH parameter identification 

A. OCV-SOC Function 

The open circuit voltage OCV (SOC) is required as a 

source voltage parameter based on the Thevenin battery 

model. OCV is obtained by testing the battery voltage, which 

is not connected to a load, and the voltage immediately before 

joining the pack so that it can provide information on the open 

terminal voltage value at certain SOC conditions [84], [85]. 

Battery 

(V, I) 

Adaptive 

Algorithm→ 

OCV-SOC 

function 

Thevenin 

Battery 
Modelling 

Parameter 

Identification→ 

𝑎1(𝑘), 𝑏0(𝑘), 𝑏1(𝑘) 
 

Parameter 

Identification → 

R0(𝑘), Rp(𝑘), and 

Cp(𝑘) 

SOH 
estimation 
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Constant load test data are used to estimate the SOC-OCV 

curve. Battery usage is easier and more precisely expressed 

in SOC. The curve fitting equation for OCV-SOC is a 

twelfth-order polynomial as (9). 

𝑂𝐶𝑉(𝑆𝑂𝐶) = 𝑘1𝑆𝑂𝐶10 + 𝑘2𝑆𝑂𝐶9 + 𝑘3𝑆𝑂𝐶8

+ 𝑘4𝑆𝑂𝐶7 + 𝑘5𝑆𝑂𝐶6 + 𝑘6𝑆𝑂𝐶5

+ 𝑘7𝑆𝑂𝐶4 + 𝑘8𝑆𝑂𝐶3 + 𝑘9𝑆𝑂𝐶2

+ 𝑘10𝑆𝑂𝐶1 

(9) 

The constant value 𝑘 is shown in Table I. The tenth-order 

polynomial has the best accuracy for estimating battery 𝑉𝑜𝑐 . 

This is demonstrated by the root mean square error (RMSE) 

value being the smallest of several polynomials tried, as 

shown in Table I. Thus, the accuracy of this estimation is very 

influential on the accuracy of the SOC and OCV functions. 

B. 𝑅0, 𝑅𝑝, and 𝐶𝑝  Parameters 

The Thevenin battery model requires the open circuit 

voltage OCV at the SOC as the source voltage. OCV is 

obtained from the pulse test when the condition is at rest and 

the battery voltage is not connected to the load. The voltage 

immediately before joining the pack is sampled for each pulse 

and combined to obtain the OCV. The parameter values 𝑅0, 

𝑅𝑝, and 𝐶𝑝 provide input data for the voltage and current 

pulse test, and the output parameter values are obtained. 

Parameter 𝑅0 is the internal resistance, which has a value 

greater than the other resistances, and there is a voltage that 

responds down with a slight current difference so that the 

internal resistance becomes large. The cause is that the 

sampling period is still significant, so it can less capture small 

data changes. The Table I shows identification accuracy 

values for the OCV-SOC function. 

TABLE I.  ACCURACY OF OCV-SOC FUNCTION IDENTIFICATION 

Polynomials 

of order - 
RMSE 

1 0.13400766912 

2 0.11283579477 

3 0.01289977689 

4 0.0089769965 

5 0.0081987633 

6 0.0068885438 

7 0.005648997 

8 0.00498765 

9 0.00448765 

10 0.00429865 

 

The average value of 𝑅0 is 0.027735 Ω. Meanwhile, to get 

the 𝑅0 to deal with those changes with SOC, a second-order 

polynomial curve fitting is applied with the equation (10). 

𝑅0(𝑆𝑂𝐶) = 𝑘1𝑆𝑂𝐶2 + 𝑘2𝑆𝑂𝐶 + 𝑘3 (10) 

with 𝑘1 = 0,006890736528890, 𝑘2 = 0,0089754792929, and 

𝑘3 = 0,0457891083763715. 

C. Experimental Result 

BMS performance evaluation is analyzed through SOH 

parameters with battery monitoring to obtain physical 

parameter data from a battery. These parameters consist of 

terminal voltage data current entering and leaving the battery. 

The parameter data is identified based on battery modeling 

(parameter values 𝑅0, 𝑅𝑝, and 𝐶𝑝) and then used as a basis for 

operating the battery condition monitoring system and 

protection system. The protection system in this section 

prevents the battery from running in overcurrent, overcharge, 

and over-discharge conditions, resulting in the battery not 

lasting long. This condition is a condition that is not permitted 

in the operation of a storm. This condition can cause damage 

to the battery material, which results in a decrease in the SOC 

and SOH values. 

The SOH estimation method can generally be determined 

using two methods: measuring the resistance value in a 

battery and measuring changes in battery capacity. The 

measurement of resistance in a battery can be determined by 

Ohm's law, which is expressed in equation (11). 

𝑅𝑖 =
∆𝑉

∆𝐼
, (11) 

with, 𝑅𝑖 is the internal resistance of a battery, ∆𝑉 is the 

change in terminal voltage, ∆𝐼 is the change in current. 

The test data used to determine internal resistance is pulse 

test data, which changes terminal voltage ∆𝑉 or voltage drop 

when a battery is given a load current. The value of the 

voltage drop ∆𝑉 based on equation (11) is proportional to the 

resistance value in a storm. Thus, it can be concluded that 

changes in the SOH value will be marked by changes in the 

battery voltage drop when a load is applied. Apart from that, 

the initialization value of SOH is obtained. The initialized 

SOH is 80%, with the actual value being 100%. Then, the 

SOH error value is added to get accurate performance, and 

the battery lifetime can be determined. 

The subsequent identification of SOH parameters is by 

calculating changes in the storage capacity of a battery. SOH 

is defined in equation (12). 

𝑆𝑂𝐻 =
𝐶𝑛𝑜𝑤

𝐶𝑛𝑜𝑚

 × 100% (12) 

With, 𝐶𝑛𝑜𝑤 is the current battery capacity, 𝐶𝑛𝑜𝑚 is the 

nominal battery capacity. 

Current battery capacity is determined through the 

charge-discharge process of a battery. The charge-discharge 

process determines the most charge that can be stored in a 

storm. The Coulomb Counting (CC) method determines the 

amount of control. CC measures the stored charge by 

integrating the current entering or leaving the battery against 

time (t). The coulomb counting method is expressed in 

equation (13). 

𝐶 = ∫ 𝐼 𝑑𝑡. (13) 

The OCV value can be entered into the relationship 

equation function between OCV-SOC to obtain the SOC and 

SOH values. Then, testing was also carried out, which 

resulted in several parameter identifications that produced 

estimates and accuracy. 

Battery testing is used to determine the 

properties/characteristics of the battery, calculate the battery 
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capacity, choose the battery voltage when it is discharged, 

and select the battery's health based on its parameters [86], 

[87]. This test is carried out by loading a full-capacity battery 

for one hour and then opening it to measure the open circuit 

voltage. The battery test results are shown as Fig. 6. 

 

Fig. 6. Terminal voltage OCV-CC 

Batteries are nonlinear and dynamic systems. This 

research carried out was a static discharge test by providing a 

constant load in the form of a 3A (1C) current, then a 

discharge current for 30 seconds, and an open circuit for 30 

seconds for each period. Assuming that the initial condition 

of the battery is total capacity after the discharge process lasts 

for one hour with a current of 3A (1C), this voltage is the 

voltage at which the battery is discharged. Fig. 6 shows the 

terminal voltage from complete to discharge in the discharge 

condition. The maximum or terminal voltage is 4.22 Volts, 

and the minimum is 3.75 Volts. In the picture, two data are 

using the OCV and CC methods that are interconnected. 

The CC algorithm gets changes in SOH from the current 

value multiplied by time, while the OCV algorithm uses the 

terminal voltage value on the battery model or as an OCV 

value to get the SOH value. Fig. 7 shows a graph of changes 

in SOH. Method 1 and method 2 have almost the same SOH 

change graph; the SOH value will increase when charging the 

battery, and the SOH value will decrease when discharging 

the battery. 

 

Fig. 7. SOH parameter identification results 

The results of this test are the identification of battery 

parameters. It is known that the relaxation properties of the 

battery can be observed and considered in parameter 

identification. This test is also essential for estimation 

because the faster the testing period, the more accurate SOH 

estimates can be produced. The SOH identification results are 

shown in Fig. 7, with the identification parameter SOH value 

being 98%. This indicates that the adaptive method can 

correct SOH initialization errors in less than 150 seconds, and 

this is a reference for later error analysis. 

Fig. 8 and Fig. 9 shows the simulation carried out: SOH 

initialization of 82%. This results from identifying SOH 

parameters using the Coulomb Counting and OCV methods 

from full battery to empty. These results show that the CC 

method is better at initializing SOH values, so the estimation 

will be more accurate than the identification results from the 

OCV method. The SOH change graph samples the SOC value 

immediately before discharging, as seen in Fig. 8, to obtain 

the initial SOH value for each method. Apart from that, the 

terminal voltage value immediately before removing is used 

to determine the SOH value, which is considered the True 

SOH value because this voltage value is the actual battery 

OCV voltage value. These SOH values are used as the 

maximum SOH value, which will be used to estimate the 

SOH value. 

 

Fig. 8. Initialization of SOH 

 

Fig. 9. Gap initialization of SOH 
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Identifying parameters that produce SOH estimates using 

Coulomb Counting is done by integrating current over time. 

In the research carried out, the application of this method was 

tested using current loading data based on Thevenin battery 

modeling by considering its internal resistance. 

Table II is the error data resulting from identifying SOH 

parameters. Mean Squared Error (MSE) is a parameter that 

shows the average square between actual data and estimated 

data. Meanwhile, Root Mean Square Error (RMSE) is the 

difference between real and estimated data. This parameter 

has a relatively high significant influence on the estimation. 

The accuracy of modeling can be measured instead of using 

the MSE parameter. The MSE value resulting from the 

implementation of the adaptive algorithm on SOH estimation 

error data is 0.0111 with a final SOH value of 17.33%, MSE 

of 16.5 × 10-5 with an error percentage of 1.770, and RMSE 

of 0.01329. Meanwhile, a more significant error value is 

shown in the OCV algorithm, namely with an MAE of 0.0185 

with a final SOH value of 18.86%, MSE of 16.5 × 10-5 with 

an error percentage of 3.256, and RMSE of 0.04387. Extreme 

initialization testing was also carried out with 0% SOH 

initialization. Fig. 7 shows that the CC method can correct 

SOH values. However, the OCV method requires a longer 

time than the CC method. 

TABLE II.  ERROR DATA IDENTIFICATION OF SOH PARAMETERS 

Metode SOH MAE % Error MSE RMSE 

OCV 18.86 % 0.0185 3.256 16.5 × 10-5 0.04387 

CC 17.33 % 0.0111 1.770 13.5 × 10-5 0.01329 

 

The discussion of findings from this research are: 

1) Internal battery resistance affects the CC and OCV 

algorithms, which have almost equivalent accuracy. CC 

can understand the battery's internal resistance with a 

more minor error, namely 0.0111. 

2) This estimation test shows that CC successfully 

simultaneously estimates the terminal voltage Vt, SOC, 

and SOH of the battery. The Vt and SOC estimation error 

is less than 2%. 

3) Discharging testing results in the initialization of SOH 

with the OCV algorithm with CC. The results show CC 

has better accuracy than OCV. The estimated MSE with 

CC is 1.770%, while the OCV is 3.256%. 

This finding is a supporting factor for the success of 

research or strength in conducting BMS evaluations in terms 

of parameter identification so that it can be a reference for 

data collection and analysis in subsequent research. 

IV. CONCLUSION 

The performance evaluation results of the battery 

management system based on SOH parameter identification 

show that the Coulomb Counting algorithm is better based on 

the estimation results. The SOH estimation results using 

Coulomb Counting have an error of 1.770%, with a final SOH 

value of 17.33%. The Thevenin battery model can model the 

battery accurately with an error of 0.0451%. In terms of the 

accuracy of SOH estimation with both methods, it was found 

that the accuracy of Coulomb Counting was better than OCV. 

Apart from that, it was also found that the adaptive algorithm 

based on battery modeling was able to estimate the terminal 

voltage and SOH of the battery. 

Future research can collect continuous data from static 

capacity tests to CC-charge and CC-discharge tests by 

appropriate procedures and rest times. Next, you need to 

carry out experiments with a more significant number of 

cycles and temperature conditioning to see changes in battery 

SOH. Implement the estimation algorithm online because this 

method can potentially update the battery model parameters 

after a certain number of charging-discharging cycles. 
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