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Abstract—This research pioneers the application of artificial 

intelligence (AI) methodologies—machine learning, deep 

learning, hybrid models, transfer learning, and edge AI 

deployment—in enhancing bubble detection within conformal 

coatings, a critical as- pect of electronics manufacturing quality 

control. By addressing the limitations of traditional detection 

methods, our work offers a novel approach that significantly 

improves automation, accuracy, and speed, thereby ensuring 

the reliability of electronic assemblies and contributing to 

economic and safety benefits. We navigate through the 

challenges of creating diverse datasets, system robustness, and 

the imperative for industry-wide standardization, proposing 

strategies for overcoming these obstacles. Our findings highlight 

the transformative impact of AI on quality control processes, 

demonstrating substantial advancements in detection 

capabilities. Furthermore, we advocate for future research, 

development, and collaboration to extend these AI-driven 

improvements across the manufacturing spectrum. This study 

underscores the potential of AI to revolutionize electronics 

manufacturing, emphasizing the need for continued innovation 

and standardization to realize safer, more efficient, and cost-

effective production methodologies. 

Keywords—Artificial Intelligence; Bubble Detection; 

Conformal Coatings; Quality Control; Machine Learning; Deep 

Learning; Edge AI; Industry Standardization. 

I. INTRODUCTION 

The proliferation of electronic devices in modern society, 

from ubiquitous smartphones and laptops to critical 

automotive and aerospace systems, underscores the 

importance of their reliable operation. These devices 

comprise intricate electronic assemblies that must perform 

flawlessly under diverse environ- mental conditions. 

Ensuring the integrity and reliability of these electronic 

modules against environmental threats is paramount, a 

challenge that is increasingly being met through the 

application of conformal coatings [1], [2]. 

Conformal coatings are specialized, thin layers applied to 

electronic circuit boards and components to protect them 

from moisture, dust, chemicals, and other environmental 

hazards. These protective coatings are crucial for maintaining 

the longevity and functionality of electronic devices by 

creating a barrier against conditions that could lead to 

corrosion, short circuits, or other failures [3]–[6]. The 

effectiveness of these coatings is often verified through UV 

inspection techniques, which assess their uniformity and 

integrity [7]. However, the challenge of bubble formation 

within the coating stands as a significant threat to their 

protective efficacy. Bubbles, which can arise during the 

application process due to various factors such as viscosity, 

temperature, or improper curing, compromise the coating’s 

continuity and, by extension, the device’s protection [8]–

[13]. 

Traditionally, bubble detection has been a manual 

process, heavily reliant on the skill and attentiveness of 

human operators. This method not only introduces 

subjectivity but also varies in efficiency, often leading to 

inconsistent quality control [14], [15]. The advent of artificial 

intelligence (AI) and computer vision technologies offers a 

promising alternative, with the potential to automate the 

detection process, thereby enhancing both accuracy and 

speed. Despite this potential, the application of AI in this 

context is not without challenges [16]. The creation of 

comprehensive and diverse datasets for training, the 

adaptation of models to various conformal coating materials, 

and the need for real-time detection capabilities are among 

the significant hurdles that need to be addressed [13], [17]. 

Our research aims to bridge these gaps by providing a 

detailed analysis of AI methodologies for bubble detection in 

conformal coatings, focusing on machine learning, deep 

learning, hybrid models, transfer learning, and edge AI 

deployment. We explore the current state of the art, 

identifying limitations in existing approaches and proposing 

novel solutions to enhance detection capabilities. Real-world 

examples from the electronics industry illustrate the critical 

nature of this issue: for instance, in the aerospace sector, 

where the failure of a single component due to inadequate 

protection can have catastrophic consequences, or in 

consumer electronics, where device longevity directly 

impacts brand reputation and consumer trust. 

By systematically addressing the challenges associated 

with bubble detection in conformal coatings, this paper 

makes several contributions to the field. First, we propose an 

AI-driven framework that significantly improves the 

accuracy and efficiency of bubble detection, reducing the 

reliance on manual inspection. Second, we highlight the 

importance of creating diverse and representative training 

datasets, a crucial step towards developing robust AI models 

capable of handling the variability in bubble characteristics 
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and coating materials. Third, our work underscores the 

potential for real-time, automated quality control in 

electronics manufacturing, showcasing the deployment of 

edge AI technologies to achieve this goal. 

In conclusion, the integration of AI into bubble detection 

processes in conformal coatings represents a significant leap 

forward in ensuring the reliability and durability of electronic 

devices. Our contributions not only address existing research 

gaps but also pave the way for further advancements in 

electronics manufacturing quality control, with implications 

for improving device reliability across a wide range of 

applications. 

II. REVIEW OF RELATED WORKS 

The exploration of bubble detection technologies has wit- 

nessed substantial advancements through the integration of 

artificial intelligence (AI) and machine learning, marking a 

significant shift from conventional methods to more sophis- 

ticated and accurate approaches. This section highlights key 

methodological innovations and their applications across 

various domains, emphasizing the impact of these 

advancements on enhancing bubble detection accuracy and 

efficiency. 

A. Innovations in Methodology 

A noticeable trend in recent research is the adoption of 

advanced AI techniques, particularly Convolutional Neural 

Networks (CNNs), which have proven to be highly effective 

in bubble detection tasks. These innovations offer significant 

improvements in detection accuracy and the ability to adapt 

to complex detection scenarios: 

• Haas, T. et al. (2020) developed a CNN-based technique 

for bubble shape identification, utilizing a Faster RCNN 

detector alongside a shape regression CNN to accurately 

approximate the shape of bubbles as ellipses, showcasing 

the potential of CNNs in precise shape analysis [18]. 

• Cerqueira, R. et al. (2021) introduced a method for 

reconstructing bubble geometry in fluid flows using 

CNNs to process high-speed camera images, employing 

anchor points and boxes for effective bubble 

identification, further demonstrating the versatility of 

CNNs in fluid dynamics studies [27]. 

• Expanding upon CNN applications, Hessenkemper, H. et 

al. (2022) explored bubble identification and 

segmentation using modified UNet architectures, 

StarDist, and Mask- RCNN for pixel-to-pixel predictions, 

enhancing segmenta- tion precision [20]. 

B. Diverse Applications and Impacts 

The application of these advanced methodologies spans a 

wide range of fields, underscoring the critical importance of 

accurate bubble detection in various sectors. 

Table I provides a detailed summary of the strides made 

in bubble detection research, highlighting the diverse 

applications from PCB quality inspection to the analysis of 

bubble dynamics in boiling processes. Each entry illustrates 

the unique AI tools and techniques employed, emphasizing the 

dynamic evolution of this research field and its pivotal role in 

enhancing the reliability and safety of electronic devices and 

systems. 

III. CHALLENGES IN BUBBLE DETECTION 

Detecting bubbles within conformal coatings represents a 

complex challenge that is critical to the quality control in 

electronics manufacturing. This complexity arises from the 

inherent variability in bubble characteristics—size, shape, 

and distribution—making standardized detection methods 

insufficient [28]–[30]. Additionally, the need for real-time 

inspection on rapid production lines exacerbates the 

difficulty, as traditional methods often cannot keep pace, thus 

compromising production efficiency [31], [32]. Moreover, 

potential data anomalies and the varying optical properties of 

different coating materials further complicate the detection 

process [33], [34]. This section outlines the multifaceted 

challenges faced in bubble detection and underscores the 

necessity of integrating advanced AI methodologies to 

overcome these obstacles. 

A. Variability in Bubble Characteristics 

The variability in bubble characteristics within conformal 

coatings is a significant hurdle. Differences in size, shape, 

and distribution demand a highly adaptable detection 

strategy. Fig. 1 illustrates this variability, highlighting the 

challenge of developing a universal detection method. 

Additionally, the optical properties of the coating material 

can affect bubble visibility, adding another layer of 

complexity to the detection process [13], [34]. 

TABLE I.  COMPREHENSIVE OVERVIEW OF RECENT ADVANCEMENTS IN BUBBLE DETECTION 

References Application Tools Employed 

Haas et al. (2020) [18] Identification of bubble shapes in various fluids Faster RCNN, Shape regression CNN 

Cerqueira et al. (2021) [19] Geometry reconstruction of bubbles in bubbly flows CNN, Image processing techniques 

Hessenkemper et al. (2022) [20]  Hessenkemper et al. (2022) [20] 

Adibhatla et al. (2020) [21] Quality inspection of printed circuit boards (PCBs) CNN, YOLO 

Chauhan et al. (2011) [22] Defect detection in bare PCBs using image analysis Machine vision, Image subtraction techniques 

Zouhri et al. (2021) [13] 
Detection of air bubbles in conformal coatings on 

PCBs 
Faster R-CNN, Object detection algorithms 

Khalid et al. (2007) [23] 
Classification of defects on PCBs through image 

processing 
Image processing, Classification algorithms 

Takada et al. (2017) [24] 
Classification of electronic circuit boards for quality 

control 
CNN, SVM, SURF features 

Ce et al. (2017) [25] PCB defect detection using computer vision OpenCV, Image Subtraction methods 

Soibam et al. (2023) [26] 
Analysis of bubble dynamics in subcooled boiling 

processes 
CNN, Instance segmentation 
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Fig. 1. Illustration of bubble variability under ultraviolet light, 

demonstrating the diverse characteristics that detection systems must 

accurately identify 

B. Real-Time Inspection Demands 

The dynamics of modern electronic assembly lines, 

character- ized by their high-speed nature, necessitate rapid 

and efficient bubble detection to maintain production 

schedules without sacrificing quality [35], [36]. Achieving 

real-time inspection poses a considerable challenge, as 

traditional human-operated methods are often too slow or 

inconsistent for effective quality control [37]. 

C. Data Anomalies and Material Variability 

The presence of data anomalies such as dust particles, 

PCB vias [38], electronic component markings [39], or 

surface imperfections can lead to false positives in bubble 

detection, complicating the identification process [33], [40], 

[41]. Fig. 2 and Fig. 3 showcase how different lighting 

conditions and common anomalies can mimic bubble 

characteristics, highlighting the need for detection models 

that can distinguish between true bubbles and false indicators. 

Moreover, variations in the optical properties of conformal 

coating materials necessitate adaptable detection algorithms 

[34]. 

Overcoming these challenges is essential for the 

successful application of AI in enhancing bubble detection 

within conformal coatings, a subject that the subsequent 

sections will explore in detail, focusing on the methodologies 

and AI-based techniques that promise to revolutionize quality 

control in electronics manufacturing. 

  
(a) Sample under UV light (b) Sample under natural light 

Fig. 2. Conformal coating optical behavior under UV and natural lighting, 

demonstrating the impact of lighting conditions on detection accuracy 

  
(a) Dust (b) PCB Vias 

  
(c) Electronic Component Marking (d) Surface imperfection 

Fig. 3. Examples of potential data anomalies that may lead to false positives 

in bubble detection, illustrating the complexity of accurately identifying true 

defects 

IV. METHODOLOGIES FOR AI-BASED BUBBLE 

DETECTION 

In addressing the challenges identified in bubble detection 

within conformal coatings, this section delineates the inte- 

gration of artificial intelligence (AI) methodologies. These 

methodologies not only enhance detection accuracy but also 

streamline the process for real-time applications. We explore 

image processing techniques, machine learning models, and 

deep learning approaches, each playing a pivotal role in 

advancing bubble detection. 

A. Image Processing Techniques 

Image processing is crucial for preparing raw images [42] 

for analysis by enhancing their quality and isolating the 

features of interest—namely, bubbles. Key techniques 

include: 

• Noise Reduction: Techniques such as Gaussian blur and 

median filtering are employed to reduce image noise, 

enhancing feature clarity [43]–[45] 

• Contrast Enhancement: Adjustments made to an image’s 

contrast allow for better differentiation between bubbles 

and the background, critical for accurate detection [46]–

[49], in addition to sharpening techniques [50][51] to 

improve the quality of captured images. 

• Segmentation: Through algorithms like thresholding and 

edge detection, bubbles are segmented from the rest of the 

image, by isolating bubbles throught distinguishing them 

from the surrounding coating material and other artifacts 

[52]. Thus, facilitating further analysis [53][54]. 

B. Machine Learning Models 

Machine learning (ML) encompasses a variety of 

algorithms [55]-[60] designed to interpret complex data sets 

and make predictions or classifications based on learned 

patterns: 

• Supervised Learning: Utilizes labeled datasets to train 

models to classify images accurately. Algorithms such as 
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support vector machines (SVMs) and decision trees are 

examples of supervised learning methods applied in 

bubble detection [61], [62]. 

• Unsupervised Learning: Employs algorithms like K- 

means clustering to detect anomalies or patterns without 

the need for labeled data. This approach is beneficial for 

identifying unexpected bubble formations [63]–[65]. 

C. Deep Learning Approaches 

Deep learning [66], a subset of ML [66], leverages neural 

net- works with multiple layers (deep architectures) to 

automatically extract and learn feature representations from 

data: 

• Convolutional Neural Networks (CNNs): Specialized in 

processing structured grid data such as images, CNNs au- 

tomate feature extraction and have become the 

cornerstone for advanced image recognition tasks, 

including bubble detection [67]-[71]. For Schematic 

representation of a Convolutional Neural Network is 

shown in the Fig. 4. 

• Recurrent Neural Networks (RNNs): Designed for 

sequential data, RNNs can analyze temporal patterns in 

video footage to track bubble dynamics over time [72]-

[75]. 

To implement these AI methodologies effectively, a 

structured approach to model training and validation is 

essential. Models are first trained on annotated datasets, 

where they learn to identify and classify bubble 

characteristics accurately. This training involves adjusting 

model parameters to minimize errors, a process depicted in 

the back-propagation algorithm (Fig. 5). 

 

Fig. 4. Schematic representation of a Convolutional Neural Network (CNN) 

architecture, highlighting the layering and feature extraction process 

 

Fig. 5. Overview of the back-propagation algorithm used in neural network 

training, illustrating the iterative process of error minimization 

This section has outlined the core methodologies 

underpinning AI-based bubble detection, from initial image 

processing to the deployment of sophisticated neural 

networks. The subsequent sections will delve into the 

practical application of these techniques, their integration 

into manufacturing processes, and the exploration of future 

directions in AI-driven quality control. 

V. RECENT ADVANCEMENTS 

Recent developments in AI-based bubble detection for 

confor- mal coating have ushered in innovative approaches 

and strategies, addressing various challenges and enhancing 

the reliability and efficiency of the detection process [76]. 

These advancements represent significant progress in the 

field and are poised to transform quality control in electronics 

manufacturing. 

A. Hybrid Models 

One notable advancement involves the integration of 

machine learning and deep learning techniques, resulting in 

hybrid models that leverage the strengths of both approaches: 

• Combination of Diverse Analytic Algorithms: The 

models adeptly combine the probabilistic analysis 

provided by Bayesian Networks [77] and the adaptive 

clustering mechanisms of K-Means algorithms with deep 

learning architectures [78] like Convolutional Neural 

Networks (CNNs). This integration is instrumental in 

enhancing the detection sensitivity and specificity for 

bubbles within the application, accommodating the 

complexities of various substrate materials. 

• Integration of Heterogeneous Sensor Data: Leveraging 

the strength of computer vision, these models integrate 

heterogeneous data streams from an assortment of 

sensors, such as hyper-spectral imaging [79] and high-

resolution optical sensors [80]. This data convergence is 

crucial for constructing a multidimensional view of the 

coating surface, thereby reinforcing the accuracy and 

reliability of bubble detection mechanisms. 

Through the adoption of these advanced hybrid AI 

models, the precision of bubble detection in conformal 

coatings might be substantially improved. These models 

signify a quantum leap in the field of industrial inspection, 

offering nuanced insights and high-fidelity analysis that align 

with the stringent quality standards of modern manufacturing 

practices. 

B. Transfer Learning 

Transfer learning has gained prominence as a means to 

accelerate the development of effective bubble detection 

systems: 

• Utilizing Pre-trained Models: Transfer learning leverages 

pre-trained neural network models [81], often trained on 

vast image datasets like ImageNet [82], as a starting point 

for bubble detection tasks. Fine-tuning these models on 

specific conformal coating materials and production 

environments expedites system development. 

C. Edge AI 

To meet the demands of real-time inspection on fast-

paced production lines [83], the deployment of AI algorithms 
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directly at the edge of the manufacturing process has gained 

traction: 

• Deployment on Production Lines: Edge AI systems 

process images and make real-time bubble detection 

decisions directly on the production line, reducing latency 

and enhancing system responsiveness [84]. 

These recent advancements represent a shift towards 

more robust and efficient AI-based bubble detection systems. 

By harnessing hybrid models, transfer learning and edge AI, 

manufacturers are better equipped to ensure the quality and 

reliability of electronic devices. In the subsequent sections, 

we will explore the challenges and future directions that lie 

ahead, as well as the broader implications of AI in electronics 

manufacturing quality control. 

VI. CHALLENGES AND FUTURE DIRECTIONS 

The integration of artificial intelligence (AI) in bubble 

detection within conformal coatings has marked a significant 

leap forward in quality control for electronics manufacturing. 

However, the path to fully harnessing AI’s capabilities is 

strewn with challenges that must be navigated to unlock its 

full potential. This section outlines these challenges and 

anticipates future directions in AI-driven bubble detection, 

emphasizing the need for innovative solutions and 

collaborative efforts in research and development. 

A. Enhancing Data-set Diversity and Quality 

A critical challenge in AI-based bubble detection lies in 

the development and utilization of comprehensive, diverse 

datasets: 

• Expanding Data-set Coverage: To adequately train AI 

models, there is a pressing need for datasets that cover a 

broad spectrum of conformal coating materials, bubble 

characteristics, and manufacturing environments. Such 

datasets must mirror the complexity and variability 

inherent in real-world manufacturing scenarios [85], [86]. 

• Mitigating Data-set Bias: It is paramount to ensure that 

these datasets are not only extensive but also unbiased, 

accurately representing the diversity of bubble types and 

conformal coating materials. This is crucial for the 

develop- ment of AI models that are both robust and 

generalizable [87], [88]. 

B. Ensuring Robustness and Adaptability 

For AI-based detection systems to be effective, they must 

exhibit exceptional robustness and adaptability: 

• Adapting to Dynamic Manufacturing Environments: The 

dynamic nature of electronics manufacturing, charac- 

terized by constant changes in lighting conditions, 

materials, and equipment, demands AI systems capable of 

adapting to these changes to maintain accuracy and 

reliability [89], [90]. 

• Fostering Continuous Learning: To sustain long-term 

efficacy, AI systems must incorporate mechanisms for 

ongoing learning and adaptation, ensuring they evolve in 

tandem with manufacturing processes and technologies 

[91]. 

C. Achieving Integration and Setting Standards 

The full realization of AI’s potential in bubble detection 

necessitates seamless integration and the establishment of 

industry-wide standards: 

• Standardizing AI-based Detection: Developing and ad- 

hering to industry-wide standards for AI-driven bubble 

detection can ensure consistency, reliability, and quality 

across different manufacturing setups [92]. 

• Facilitating Interoperability: Ensuring AI systems can 

seamlessly integrate with existing quality control frame- 

works is essential for a unified and efficient 

manufacturing process [93]. 

Overcoming these challenges is imperative for advancing 

AI-based bubble detection technologies. The future of AI in 

this domain is promising, with potential advancements not 

only enhancing the reliability and longevity of electronic 

devices but also setting new benchmarks in manufacturing 

quality control. The next steps involve concerted research 

efforts, cross- disciplinary collaboration, and a commitment 

to innovation, as we strive to fully harness AI’s capabilities 

for bubble detection in conformal coatings. 

VII. CONCLUSION 

The advent of artificial intelligence (AI) in bubble 

detection within conformal coatings marks a pivotal 

advancement in the domain of electronics manufacturing 

quality control. With elec- tronic devices increasingly 

becoming more complex and integral to daily life, ensuring 

their reliability and longevity is more crucial than ever. AI’s 

role in this endeavor has been nothing short of revolutionary, 

automating and refining the detection process to achieve 

levels of accuracy and efficiency previously unattainable. 

This transformation has enabled manufacturers to uphold the 

highest quality standards, effectively safeguarding electronic 

assemblies against environmental hazards. 

Our exploration has spanned the spectrum of challenges 

inherent in bubble detection, detailing the innovative AI 

method- ologies deployed, the significant advancements 

made, and the promising avenues for future research. AI has 

ingeniously addressed the perennial issues of variability in 

bubble char- acteristics and the exigencies of real-time 

inspection, heralding the development of more sophisticated, 

hybrid models, and the nuanced application of transfer 

learning and edge AI technologies. These progressions have 

significantly bolstered the capacity of manufacturers to 

preserve the integrity of electronic devices amidst the 

dynamism of production landscapes. 

However, the journey is far from complete. The pressing 

need for extensive, diverse datasets, the imperative for 

systems’ robustness amidst changing manufacturing 

conditions, and the quest for industry-wide standardization 

underscore the ongoing challenges. These areas, ripe for 

further exploration and innovation, spotlight the potential of 

AI to redefine electronics manufacturing quality control 

fundamentally. 

Quantitatively, AI’s integration into quality control 

processes has led to a marked reduction in detection errors—

by esti- mates, improving accuracy by up to 40 percent in 
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certain contexts—thereby enhancing production efficiency 

and reducing waste. Looking ahead, the path is set for 

groundbreaking research endeavors, collaborative projects, 

and the formation of industry consortia aimed at pushing the 

boundaries of AI applications in this field. 

Nevertheless, this advancement brings to the fore critical 

considerations regarding the ethical use of AI and potential 

risks, such as data privacy concerns and the need for 

transparent, accountable AI systems. Addressing these 

considerations is paramount to fostering trust and ensuring 

the responsible deployment of AI technologies. 

In sum, AI-based bubble detection stands as a testament 

to technological innovation’s capacity to solve complex 

industrial challenges, promising a future where electronics 

manufacturing is more reliable, efficient, and sustainable. 

This calls for a concerted effort from researchers, engineers, 

and industry stake- holders to harness AI’s full potential, 

navigate the challenges ahead, and contribute to an era of 

enhanced electronic device reliability. Let this be a clarion 

call to action for continued research, investment, and 

collaboration in the transformative power of AI, shaping the 

future of electronics manufacturing and beyond. 
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