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Abstract—In this paper, our objective is to investigate the unique
solvability and the weak controllability of the fractional degenerate
and singular problem. The energy inequality method is gives a
sufficient conditions for the existence and the uniqueness of the
strong solution of our problem. This problem is ill-posed in the
sense of Hadamard. To address this, we attempt regularization
through a fractional Tikhonov regularization method, which not
only establishes weak controllability but also provides a full
characterization of the optimal control.
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I. INTRODUCTION

The modern fashion in scientific research in mathematics is
the fractional differential equations (FDEs) that brought many
scientists to follow this fashion, the importance and the success
of fractional calculus lies in the accurate result in modeling,
almost phenomena in science and engineering phenomena,
also is a key tool to preserve the memory of processes and
materials [1]–[5]. The paper [6] provides information on the
mapping properties associated with different forms of fractional
integration operators. In physics, FDEs can be used to model
anomalous diffusion, where the movement of particles does
not follow classical diffusion laws. For instance, in the study
of transport phenomena in porous media, FDEs can provide
a more accurate representation of the system’s behavior by
incorporating memory effects. To get more overview about
fractional calculus and its implementations, the reader may refer
to the references [7]–[17].

In other side, a controllability system is the ability to
transform a system from a particular state to a desirable state
exactly or approximately. Designing effective control strategies
in engineering applications is crucial for example, consider an
unmanned aerial vehicle (UAV) that needs to follow a specific
trajectory. The UAV’s motion can be modeled using a set of
differential equations, and controllability ensures that the con-
trol inputs (e.g., rotor speeds) can be manipulated to guide the

UAV along the desired path. This is crucial in applications like
surveillance, where precise control is necessary to cover specific
areas. However, to get more overview about controllability
systems and their implementations, the reader may refer to the
references [18]–[34].

There are many studies published in exact controllability also
in null controllability and weak controllability [35]–[37]. Like
this papers [38], [39] where the authors applied the notion of
exact controllability to solve a semilinear abstract system and
a singular degenerate wave equation. The authors of this paper
[40] are used the null controllability method to solve some
hyperbolique equation depending on a missing parameters, and
this researchers [41]–[43] addressed to the weak controllability
of some evolution systems.

Controllability of fractional differential equation also become
an important topic until now, there are many literatures studies
the controllability of different phenomena modeling by frac-
tional differential equation for instance we cite [44], [45], [56].
The present paper is devoted to studying the solvability and
the weak controllability of ill-posed singular and degenerate
linear fractional parabolic problem with Dirichlet boundary
condition. Anyhow, to get more overview about the solvability
of fractional differential equations, the reader may refer to the
references [46]–[55].

There are some challenges associated with ill-posed problem
including this: ill-posed problem may have multiple solutions
or no solution at all. Small changes or perturbations in the
input data can lead to large variations in the solution, making
the problem unstable. When solving ill-posed problems numer-
ically, the algorithms employed may be prone to amplifying er-
rors. Numerical instability can lead to unreliable results, making
it challenging to trust the accuracy of the solution. Addressing
these challenges requires careful consideration of the problem
formulation for this we will used Tikhonov regularization.

The key tools used to study the existence and the uniqueness
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of the solution is the energy-inequality method which is based
to find an a priori estimate. The weak controllability is achieved
by a Tikhonov regularization method. Since the last method
is applied to regularize the ill-posed problem which does
not verify all the assumptions of the well-posed problem on
the Hadamard sense which are the existence, uniqueness, and
stability related to the given data, if one of these conditions is
not satisfied comes an ill-posed problem.

The paper is divided into two parts, we start the first part
by preliminaries, when we give some definitions and theorems
on fractional calculus differentiation and integration which we
needed in our studies, then we present the energy estimate
method to solve the question of the existence and uniqueness of
our problem when we start by searching for the a priori estimate
which gives the uniqueness easily, moreover by the density
of the range operator we prove the existence of the strong
solution. The second part aims to study the weak controllability
of the fractional problem to this aim we apply the Tikhonov
regularization which also gives a full characterization of the
control.

II. PRELIMINARIES

In this section, we give some basic notions on fractional dif-
ferentiation and integration which are necessary in our studies.

Definition 1: [57], [58] For α ∈ R+, we define the fractional
integral of a function f ∈ L1 ([0, T ] , X) of order α as follows:

Iαf (t) =
1

Γ (α)

t∫
0

(t− s)
α−1

f(s)ds,

where Γ is the Gamma function.
Definition 2: [57], [58] Let 0 < α < 1 and f ∈

L1 ([0, T ] , X). We define

1) The Left Caputo Derivative as

cDα
t f =

1

Γ (1− α)

t∫
0

(t− s)
−α

f ′(s)ds.

2) The Right Caputo Derivatives as

c
tD

αf =
−1

Γ (1− α)

T∫
t

(s− t)
−α

f ′(s)ds.

3) The Left Riemann-Liouville Derivative as

RDα
t f =

1

Γ (1− α)

∂

∂t

t∫
0

(t− s)
−α

f(s)ds.

4) The Right Riemann-Liouville Derivative as

R
t D

αf =
−1

Γ (1− α)

∂

∂t

T∫
t

(s− t)
−α

f(s)ds.

The right Caputo and Riemann-Liouville derivatives are
connected by the following relationship:

RDα
t f =c Dα

t f +
f(0)

Γ (1− α) tα
.

If f(0) = 0, then Riemann-Liouville derivative and Caputo
derivative are coincides, i.e.,

RDα
t f =c Dα

t f.

Definition 3: [57], [58] For any σ > 0, we define the
following semi-norms:

|f |2ιHσ(Ω) : =
∥∥RDσ

t f
∥∥2
L2(Ω)

,

|f |2rHσ(Ω) : =
∥∥R
t D

σf
∥∥2
L2(Ω)

,

|f |2cHσ(Ω) : =

∣∣∣∣∣∣
(
RDσ

t f,
R
t D

σf
)2
L2(Ω)

cos (σπ)

∣∣∣∣∣∣
1
2

,

and the following norms:

∥f∥2ιHσ(Ω) =
(
∥f∥2L2(Ω) + |f |2ιHσ(Ω)

) 1
2

,

∥f∥2rHσ(Ω) : =
(
∥f∥2L2(Ω) + |f |2rHσ(Ω)

) 1
2

,

∥f∥2cHσ(Ω) : =
(
∥f∥2L2(Ω) + |f |2cHσ(Ω)

) 1
2

,

where the space ιHσ
0 (Ω) and rHσ

0 (Ω) are the closure spaces
of C∞

0 (Ω) with respect to the norms ∥.∥2ιHσ(Ω) and ∥.∥2rHσ(Ω),
respectively.

Lemma 1: [57], [58] For any real σ ∈ R+, if f ∈ι Hσ (Ω)
and g ∈ C∞

0 (Ω), then(
RDσ

t f, g
)
L2(Ω)

=
(
f,Rt D

σg
)
L2(Ω)

.

Lemma 2: [57], [58] For 0 < σ < 2 such that σ ̸= 1 and
f ∈ H

σ
2
0 (Ω), we have

RDσ
t f =R D

σ
2 R
t D

σ
2
t f.

Lemma 3: [57], [58] For σ ∈ R+ such that σ ̸= n+ 1
2 , the

semi-norms |.|ιHσ(Ω), |.|rHσ(Ω) and |.|cHσ(Ω) are equivalent.
Then we pose

|.|ιHσ(Ω)
∼= |.|rHσ(Ω)

∼= |.|cHσ(Ω) .

Lemma 4: For σ > 0, the space rHσ (Ω) with respect to the
norm ∥.∥rHσ(Ω) is complete.

Theorem 1: [45] The mild solution z = z(x, t, v) ∈
C ([0, T ] , Y ) of the problem (2) is given by

z (t) = Sα(t)z0 +

t∫
0

(t− s)
α−1

Pα (t− s) (f (s)− v(s)) ds,

for t ∈ [0, T ] for every v ∈ L2 ([0, T ] , U).
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Let Φα be a Mainardi function defined as

Φα (z) =

+∞∑
n=0

(−z)n

n!Γ (−αn+ 1− α)
.

We set

Sα (t) =

∞∫
0

Φα (θ)R (θtα) dθ,

S∗
α (t) =

∞∫
0

Φα (θ)R∗ (θtα) dθ,

Pα (t) =

∞∫
0

αθΦα (θ)R (tαθ) dθ,

where Sα and Pα verifying the assumptions in [45].

III. POSITION OF THE PROBLEM

Studying the singular degenerate fractional problems is a rel-
evant and important area in mathematics and applied sciences.
Many physical systems exhibit fractional behavior, especially
those with memory effects, and singular degenerate fractional
models provide more accurate descriptions of their dynamics.
Examples include viscoelastic materials, anomalous diffusion
processes, and various biological and engineering systems.

We consider a degenerate and singular fractional parabolique
controller problem, when the control fact in the second member
of the equation. This problem describe the heat conduction in
relation to the body geometric shape more details see [59], we
want to study the weak controllability of our problem. We start
our studies by the existence and the uniqueness of the strong
solution to the problem (1), then we try to achieve the weak
controllability of the problem.

Let Ω be an open bounded domain with smooth boundary
Γ, we denoted by Q = Ω× (0, T ) and Σ = Γ× (0, T ), where
Ω = (0, l). We consider the following fractional controller for
degenerate and singular problem:

c
0D

α
t y(x, t)−

∂

∂x
(xβ

∂

∂x
y(x, t)) + b(x, t)y(x, t) = f̃ + v, in Q

y(x, 0) = φ(x), on Ω,

y(0, t) = y(l, t) = 0, in Σ,
(1)

where 0 < α < 1, 0 ≤ β < 1, and cDα is the Caputo fractional
derivative, whereas b, f̃ and φ are known functions, and v is the
control function that belongs to the control space U for which
the function φ satisfies the following compatibility condition:

φ (0) = φ (l) = 0,

and the function b verifies

0 < b0 ≤ b(x, t) ≤ b1.

Now, we assume that

z(x, t) = y(x, t)− φ(x),

which implies

y(x, t) = z(x, t) + φ(x).

Thus, problem (1) becomes

c
0D

α
t z(x, t)−

∂

∂x
(xα

∂

∂x
z(x, t)) + b(x, t)z(x, t) = f + v, in Q

z(x, 0) = 0, on Ω,

z(0, t) = z(l, t) = 0, in Σ,
(2)

where

f = f̃ −c
0 D

α
t φ(x) +

∂

∂x
(xα

∂

∂x
φ(x))− b(x, t)φ(x).

The problem (2) can be then rewritten as follows:

Lz = F ,

where L = (L, l) with the domain of definition E, while F =
(f + v, 0) belongs to F = L2 (Q) such that

Lz =c
t D

α
t z(x, t)−

∂

∂x
(xα

∂

∂x
z(x, t))+ b(x, t)z(x, t) = f + v,

with the initial condition

lz = z(x, 0) = 0, ∀x ∈ (0, l).

We shall next study the existence and the uniqueness of strong
solution to the controller problem (2).

IV. SOLVABILITY OF THE FRACTIONAL CONTROLLER
SYSTEM

This section concerned to study the strong solution of the
problem (1) using energy estimate method. This method based
to find an a priori estimate which is obtained by the help of an
multiplicators which is specific for each problem. It is evident
to conclude the uniqueness of the solution from the a priori
estimation and also it’s play a main role to prove the existence
of the strong solution. Recently these scientific papers [57], [58]
published to study the unique solvability of fractional problems.

A. A Priori Estimation

In this step, we choose the multiplicator Mv(x, t) = v(x, t)
to establish an a priori estimate in specific space to solve the
problem. We consider

Lz = F ,

where L = (L, l) with the domain of definition E such that
c
0D

α
2 t , ∂v

∂x ∈ L2 (Q) and F = (f + v, 0).
Theorem 2: For any function z ∈ E, we have the inequality

∥z∥E ≤ c ∥Lz∥L2(Q) , (3)
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where c is a positive constant independent of z. The precedent
estimation proves the uniqueness of the solution.

Proof: By multiplying the first equation in the problem (2)
by the following operator:

Mz = z(x, t),

and then by integrating the result over Q, we obtain∫
Q

(
c
0D

α
t z(x, t)−

∂

∂x
(xβ

∂

∂x
z(x, t)) + b(x, t)z(x, t)

)

× z(x, t)dxdt =

∫
Q

(f + v) z(x, t)dxdt.

Now, we have that z(x, o) = 0, which implies that c
0D

α
t =R

0

Dα
t . So, we can apply Lemmas (3) and (4) and Definition (3),

we get∫
Q

c
0D

α
t z(x, t)z(x, t)dxdt =

(
c
0D

α
2
t

c
0D

α
2
t z, z

)
L2(Q)

=
(
c
0D

α
2
t z,

c
t D

α
2

T z
)
L2(Q)

= cos
(απ

2

)
|z|cH α

2 (Q)

≃ cos
(απ

2

)
|z|lH α

2 (Q)

= cos(
απ

2
)
∥∥∥c0D α

2
t

∥∥∥2
L2(Q)

,

and by integration by parts over (0, l), we then obtain

−
∫
Q

(
∂

∂x
(xβ

∂

∂x
z(x, t))

)
z(x, t)dxdt =

∥∥∥∥x β
2
∂z

∂x

∥∥∥∥2
L2(Q)

.

Now, by replacing the two expressions in (IV-A), we get

cos
(απ

2

)∥∥∥c0D α
2
t

∥∥∥2
L2(Q)

+

∥∥∥∥x β
2
∂z

∂x

∥∥∥∥2
L2(Q)

+ (b0 − ϵ) ∥z∥2L2(Q) ≤
1

2ϵ

(
∥f∥2L2(Q) + ∥v∥2L2(Q)

)
.

Consequently, we obtain∥∥∥c0D α
2
t z

∥∥∥2
L2(Q)

+

∥∥∥∥x β
2
∂z

∂x

∥∥∥∥2
L2(Q)

+ ∥z∥2L2(Q)

≤ C
(
∥f∥2L2(Q) + ∥v∥2L2(Q)

)
,

where
C =

1

2ϵ

(
1

min(cos(απ2 ), 1, b0 − ϵ)

)
.

Hence, we have

∥z∥E ≤ c ∥Lz∥L2(Q) ,

with
c =

√
C.

Let z1 and z2 be two distinguish solutions, then{
Lz1 = F ,
Lz2 = F .

Due to the linearity of the operator L, we can have

L (z1 − z2) = 0,

which implies

∥z1 − z2∥E ≤ c ∥L(z1 − z2)∥L2(Q) = 0.

This consequently gives

∥z1 − z2∥E ≤ 0.

Finally, we can have

z1 − z2 = 0,

which proves the uniqueness of the solution.
Proposition 1: The operator L with the domain of definition

D(L) has a closure L.
Proof: The main idea here for proving that the operator L

admits a certain closure is to assume that there exists a sequence
(wn)n∈N ⊂ D(L) such that

wn → 0 in E, (4)

and
Lwn → F in L2(Q). (5)

This immediately implies

f + v = 0.

From (4) and (5), we deduce

wn → 0 in D′(Q),

and
Lwn → F in D′(Q).

Thank’s to the continuity of the fractional derivation and the
first order of the derivation from D′(Q) to D′(Q) that gives

Lwn → 0 in D′(Q).

Due to the uniqueness of the limit in D′(Q), we get

F = 0.

It means that
f + v = 0.

Definition 4: We say that z is a strong solution to problem
(2) iff z verifies the following equation:

Lz = F ,
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where L is the closure of L with the domain of definition D(
−
L).

The priori estimate stays valid for the strong solution, i.e.,

∥z∥E ≤ c
∥∥∥Lz∥∥∥

L2(Q)
.

We therefore deduce from the last estimation that the strong
solution of (2) is unique, if it exists.

Corollary 1: The range R(L) is equal to the closure of R(L).
It means that R(L) = R(L).

Proof: The proof here can be performed in the same way
of [57], [58].

B. Existence of Solution

In this step, we aim to prove the existence of the strong
solution to problem (2). To this end, it is sufficient to check
the density of the operator R(L).

Theorem 3: Let the estimation (3) be satisfied, then for all
F = (f+v, 0) ∈ F = L2 (Q), the problem (2) admits a unique
strong solution.

Proof: Let P = (p, 0) such that p ∈ R(L)⊥ ⊂ L2 (Q).
For all z ∈ E, we can have

(Lz, P )F =

∫
Q

z.pdxdt.

Now, we need to demonstrate that R(L)⊥ = {0}. For this
purpose, we choose p = z to get∥∥∥c0D α

2
t z

∥∥∥2
L2(Q)

+

∥∥∥∥x β
2
∂z

∂x

∥∥∥∥2
L2(Q)

+ ∥z∥2L2(Q) = 0.

This yields to (3), and so we have

∥z∥E ≤ 0.

Thus, we obtain that p = z = 0, and hence R (L) = F .

V. APPROXIMATE CONTROLLABILITY

Understanding the controllability of singular degenerate frac-
tional problems is crucial for designing effective control strate-
gies for systems described by such models. Optimal control
aims to find the best control input to guide a system to a
desired state while considering the constraints and dynamics
of the system. We aims to study the weak controllability of
the fractional degenerate and singular problem, this problem is
ill-posed in the sense of Hadamard which requires us to use a
Tikhonov regularization method also, it helps us to prove the
weak controllability. The controller will be characterized by an
optimality system.

The method of Tikhonov regularization for the control prob-
lem is constructed to solve the following problem:

inf
v∈L2(Q)

J (v) , (6)

where

J(v) =
∥∥I1−αz(T )− h

∥∥2
L2(Q)

+ λ ∥v∥2L2(Q) , (7)

and where z ∈ Y = L2 (Q), h is desired state that belongs to
L2 (Q), and λ is the regularized parameter.

Definition 5: We say that the problem of control (2) is
approximate controllable on [0, T ] if

C(T, z0, v) = X,

where

C(T, z0, v) =
{
I1−αz(T, z0, v), v ∈ L2(Q)

}
.

Theorem 4: For 1
2 < α < 1, the problem (6) with (7) admits

a unique optimal control.
Proof: Let a minimizing sequence (vn) be such that

inf
v∈L2(Q)

J (v) = lim
n→+∞

J(vn) = m.

Moreover, we have

J(vn) ≤ m.

This implies that there exists a constant C such that∥∥I1−αzn(T )− h
∥∥
L2(Q)

≤ C,

∥vn∥L2(Q) ≤ λ
−1
2 C.

So, there exist subsequences, denoted by (vn) and(
I1−αzn(T )

)
, such that

I1−αzn(T ) → θ in L2 (Q) ,

vn → u in L2 (Q) .

Thus, we have

zn (t) = Sα(t)z0+

t∫
0

(t− s)
α−1

Pα (t− s) (g (s) + vn(s)) ds,

where t ∈ [0, T ]. For any function ϕ ∈ L2 (Q), we can then
have

⟨zn, ϕ⟩L2(Q) = ⟨Sα(t)z0, ϕ⟩L2(Q)

+

t∫
0

(t− s)
α−1 ⟨Pα (t− s) g (s) , ϕ⟩L2(Q) ds

+

t∫
0

(t− s)
α−1 ⟨vn(s), P ∗

α (t− s)ϕ⟩L2(Q) ds.
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Now, passing to the limit in the previous expression yields

lim
n→∞

⟨zn, ϕ⟩L2(Q) = ⟨Sα(t)z0, ϕ⟩L2(Q)

+

t∫
0

(t− s)
α−1 ⟨Pα (t− s) g (s) , ϕ⟩L2(Q) ds

+

t∫
0

(t− s)
α−1 ⟨Pα (t− s)u(s), ϕ⟩L2(Q) ds

= ⟨z, ϕ⟩L2(Q) ,

which means
zn → z in L2 (Q) .

According to Proposition 3.5 in [45], we can get

zn → z in C ([0, T ] , Y ) .

Also, we have zn ∈ C ([0, T ] , Y ). Then, we obtain I1−αzn ∈
C ([0, T ] , Y ), and consequently we have

⟨I1−αzn (T ) , ϕ⟩L2(Q) =
1

Γ (1− α)

×
T∫

0

(T − s)
−α ⟨Sα (s) z0, ϕ⟩L2(Q) +

1

Γ (1− α)

×
T∫

0

s∫
0

(T − s)
−α

(s− τ)
1−α ⟨Pα (s− τ) g (τ) , ϕ⟩L2(Q) dτds+

1

Γ (1− α)

T∫
0

s∫
0

(T − s)
−α

(s− τ)
1−α ⟨vn (τ) , P ∗

α (s− τ)ϕ⟩L2(Q) dτds.

By passing to limit, we get

⟨θ, ϕ⟩L2(Q) =
1

Γ (1− α)

T∫
0

(T − s)
−α ⟨Sα (s) z0, ϕ⟩L2(Q) +

1

Γ (1− α)

T∫
0

s∫
0

(T − s)
−α

(s− τ)
1−α ⟨Pα (s− τ) g (τ) , ϕ⟩L2(Q) dτds+

1

Γ (1− α)

T∫
0

s∫
0

(T − s)
−α

(s− τ)
1−α ⟨Pα (s− τ)u (τ) , ϕ⟩L2(Q) dτds

=
〈
I1−αz (T ) , ϕ

〉
L2(Q)

.

As a result, we deduce

I1−αzn(T ) → I1−αz(T ) in L2 (Q) .

Due to J is coercive and lower semi-continuous, we get

J (u) ≤ lim
n→+∞

inf
v∈L2(Q)

J (vn) = inf
v∈L2(Q)

J (v) = m.

This implies that u is the optimal control corresponding to the
associate optimal state z. The uniqueness of u can be then
obtained from the strictly convexity of J .

A. Characterization Of the Optimal Control

This subsection is devoted to characterize the optimal control
solution of the regularization problem via optimality systems,
and also to give some necessary conditions to achieve the weak
controllability. In fact, a first-order optimality condition for J
can give

J ′ (u) (v − u) = 0, ∀v ∈ L2 (Q) .

By performing simple calculations, we obtain

J ′ (u) (v − u) =
〈
I1−αz(T )− h, I1−αψ (T )

〉
L2(Q)

+ λ ⟨u, v − v⟩L2(Q) = 0, ∀v ∈ L2 (Q) ,

where ψ (t) is solution of the following problem:

c
0D

α
t ψ(x, t)−

∂

∂x
(xβ

∂

∂x
ψ(x, t)) + b(x, t)ψ(x, t) = v − u,

ψ(x, 0) = 0, on Ω,

ψ(0, t) = ψ(l, t) = 0, in Σ.
(8)

Now, we can define an adjoint state q = q(t, x, v) solution as
follows:

c
tD

α
T q − ∂

∂x (x
β ∂
∂xq) + b(x, t)q = 0, in Q

q(T ) = I1−αz(T )− h, on Ω,
q(0, t) = q(l, t) = 0, in Σ.

(9)

The solution of problem (9)is then given by

q(t) = S∗
α (T − t)

[
I1−αz(T )− h

]
, t ∈ [0, T ] .

By multiplying the first equation of (8) by q solution of (9),
and by using Lemma 4, we can have

⟨I1−αz(T )− h, I1−αψ (T )⟩L2(Q)

=
〈
q (T ) , I1−αψ (T )

〉
L2(Q)

= ⟨q, v − u⟩L2(Q) ,

which implies

J ′ (u) (v − u) = ⟨q, v − u⟩L2(Q) + λ ⟨u, u− v⟩L2(Q) = 0,

for all v ∈ L2 (Q). Consequently, we obtain

u = −λ−1q = −λ−1S∗
α (T − t)

[
I1−αz(T )− h

]
a.e in Q.

Then, the optimal control is characterized by the following
optimality system:

c
0D

α
t z(x, t)−

∂

∂x
(xβ

∂

∂x
z(x, t)) + b(x, t)z(x, t) = f + u,

z(x, 0) = 0, on Ω,

z(0, t) = z(l, t) = 0, in Σ.

−Dαq(x, t)− ∂

∂x
(xα

∂

∂x
q(x, t)) + b(x, t)q(x, t) = 0,

q(x, T ) = I1−αz(T )− h, on Ω,

q(0, t) = q(l, t) = 0, in Σ.

with

u = −λ−1q = −λ−1S∗
α (T − t)

[
I1−αz(T )− h

]
a.e in Q.
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Theorem 5: The problem (2) is weak controllable iff the
operator λR (λ,−ΛT ) converges to zero when λ → 0, where
ΛT is an operator defined from L2 (Q) to L2 (Q) by

ΛT =
1

Γ (1− α)

T∫
0

s∫
0

(T − s)
−α

(s− τ)1−α
Pα (s− τ)S(s− τ)dτds,

and
R (λ,−ΛT ) = (λI + ΛT )

−1

such that (λI + ΛT ) is invertible.
Proof: We can have

I1−αz(T ) =
1

Γ (1− α)

T∫
0

(T − s)
−α

[Sα(s)z0 + r(s)] ds

− λ−1ΛT

[
I1−αz(T )− h

]
,

where

r(s) =

s∫
0

(s− τ)
α−1

Pα (s− τ) g(τ)dτ.

Consequently, it is easy to get

I1−αz(T )− h = λR (λ,−ΛT )

×

 1

Γ (1− α)

T∫
0

(T − s)
−α

[Sα(s)z0 + r(s)] ds− h

 .

By using the Theorem 2 in [60], we can infer that if
λR (λ,−ΛT ) → 0, when λ tends to 0, then we have

C(T, z0, v) = X,

which proves the approximate controllability.

VI. CONCLUSION

From the fact that the controllability of singular and degen-
erate fractional problem is an important result in the theory
of FDE, we have discussed the solvability of a controllability
problem using the energy estimate method. We have proved the
weak controllability of the problem in question by Tikhonov
regularization method. Then we have characterized the optimal
control by an optimality system.
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