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Abstract—Traditional fuzzy reasoning techniques demand a 

condensed fuzzy rule base to conclude a result. Still, due to 

incomplete data or a deficiency of expertise and knowledge, 

dense rule bases are not always available. Fuzzy interpolation 

methods have been widely explored to reasonably allow the 

interpolation of a fuzzy result using the closest current rules. 

Fuzzy rule interpolation is a type of fuzzy inference system in 

which conclusions can be obtained even with a few fuzzy rules. 

This benefit could be used to adapt the FRI to different 

application areas that suffer from a lack of knowledge. Alzubi 

et al. [17] offered a novel interpolative method that uses a 

weighted average based on the center point of the Incircle of the 

fuzzy sets. Nevertheless, the interpolated observation does not 

completely define the actual observation that is provided. In our 

offered extension to this method, a modification weight measure 

calculation and a shift technique are included to guarantee that 

the center point of the observation and the interpolated 

observation are mapped together. This weight measure 

calculation and shift technique enabled the capability of 

extrapolation to be conducted implicitly, which is also improves 

the performance results of the algorithm in the presence of 

multiple fuzzy rules and multidimensional priors. 

Keywords—Fuzzy Rule Interpolation; Incircle-FRI; 

Antecedent Dimensions; Rule Weight Calculation; Rule Shift 

Ratios. 

I.  INTRODUCTION  

In situations where fuzzy inference methods are used, the 

number of inputs is large due to the requirement of covering 

antecedent and consequent fuzzy partitions and also defining 

all the relationships between the fuzzy sets of antecedents and 

consequences. It is well known that as the number of inputs 

(input dimensions) rises, the size of the rule base and 

complexity will accordingly grow exponentially. To counter 

this case, the number of redundant rules can be reduced, 

which will reduce the system's complexity but may also lead 

to a sparse rule base.  

Nevertheless, traditional fuzzy inference methods are 

suitable for use in complete or near-complete rule-based 

scenarios, as shown in Fig. 1, which describes the relationship 

between inputs and outputs via complete rule bases (Rule 1–

Rule 9). Thus, there is at least one rule that covers the new 

observation. Also, they do not work when the observation 

does not overlap with any current rules, which gives an empty 

inference, as shown in Fig. 2, which shows the gap between 

fuzzy sets and rule bases. Thus, there are no rules covering 

the observation to give the conclusion. Fuzzy rule 

interpolation, on the other hand, can derive a suitable 

conclusion by interpolating results from its current adjacent 

rules. 

 

Fig. 1. Dense Fuzzy Rule-Based System 

 

Fig. 2. Sparse Fuzzy Rule-Based System 
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Fuzzy Rule Interpolation (FRI) techniques can address 

this issue even when certain observations are not entirely 

covered by the fuzzy rule system [30]. FRI techniques do not 

require the use of a complete fuzzy rule base; only the most 

important fuzzy rules are required to perform the reasoning 

to get the conclusion, which positively reduces the 

complexity of fuzzy reasoning. Koczy and Hirota [2] 

proposed the initial idea of the fuzzy interpolation concept, 

which is based on linear rule interpolation that uses the α-cuts 

(𝛼 ∈ [0,1]) of the fuzzy sets. 

Nevertheless, some FRI methods have been known to 

produce non-convex interpolated fuzzy sets.  In [49], Shi et 

al. determined the problem and suggested two types of 

reasoning conditions and methods to produce a "normal and 

convex" (see [18], [19]) fuzzy set for interpolated 

conclusions.  In [61] proposed a further extension that 

produces the normal and convex fuzzy sets and handles the 

problem in [2]. This approach has been proven to ensure the 

"normality and convexity" of the consequent fuzzy outcome. 

Ever since the first approach was corrected, many researchers 

have begun to investigate other methods of interpolation 

based on different measurements and comparisons. Many 

researchers have begun to investigate other methods of 

interpolation based on different measurements and 

comparisons. In recent years, many methods by different 

researchers have been proposed and proved [31]-[44], [57], 

[59], [60]. Many of them were based on the original KH FRI 

concept, e.g. [2]-[9], [11]-[16]. 

Successful applications of fuzzy interpolation have been 

reported in the literature [50]–[54], [56], and [58], including 

fuzzy control and fuzzy modeling. In particular, fuzzy 

interpolation has been used for image edge detection [45]. 

Fuzzy interpolation has also been used to detect slow port 

scans [46], and FRI has been used to detect IoT-botnet attacks 

[47]. FRI has been used to enhance the intrusion detection 

system based on hierarchical bidirectional. Fuzzy 

interpolation has been applied to support fuzzy modeling in a 

broad range of application areas, particularly if only limited 

data are available.  

As a special case, in [55], the authors introduced a novel 

detection method for phishing website attacks while avoiding 

the issues associated with the deficiencies of knowledge-

based representation and binary decision. The proposed 

detection method was perfumed using the Incircle-FRI 

method. The proposed method was applied to an open-source 

benchmark phishing website dataset.  The results showed that 

the accuracy rate of this work is competitive with other 

methods. which obtained a 97.58% detection rate and 

effectively reduced the false alerts. 

Alzubi et al. [17] introduced a novel approach that uses 

the weighted computation method to obtain an interpolated 

fuzzy conclusion. The suggested Incircle-FRI has the 

following benefits: 1) The convexity and normality of the 

consequent fuzzy set are ensured; 2) It can work with 

different membership functions between the antecedent and 

consequent; 3) It can handle fuzzy interpolative reasoning 

with logically consistent properties concerning the ratios of 

fuzziness. However, this method cannot give a desired 

conclusion in the case of multi-input variables and multiple 

fuzzy rules, and it also does not perform extrapolation. 

In this paper, the extension of the Incircle-FRI method 

will be introduced to handle the extrapolation and to improve 

the method with multidimensional rule antecedents, multiple 

fuzzy rules. We formulate a conversion of the modification 

of the weight computation and shift ratio process to produce 

the interpolation of the consequent fuzzy conclusion, which 

can enable the capability of extrapolation and handle 

multidimensional rule antecedent variables and multiple 

fuzzy rules.  In the presented method, the modification weight 

between observation and adjacent rules will be derived 

according to the general distance instead of the current 

method of utilizing the utmost distance. This weight 

calculation is necessary for the performance of the 

extrapolation capability in the case of single and multiple 

antecedents. Then a derived fuzzy rule is produced by the 

shift operation from the fuzzy rules according to the rule 

distances. The fuzzy conclusion will be computed by having 

the same shift ratio between the derived rule antecedent and 

the observation as the shift ratio between the derived rule 

consequent and the extrapolated consequence. 

The rest of the paper is organized as follows: Section (II) 

reviews the Incircle-FRI method of [17] in general. Section 

(III) and Section (IV) discuss how the Incircle-FRI method 

can be applied to multidimensional antecedent variables and 

the capability of extrapolation using the shifting ratio and 

weight modification. Section (V) shows the performance of 

the improved Incircle-FRI approach. The proposed method 

will be compared to other existing FRI methods using several 

numerical examples. Finally, the conclusions are discussed in 

Section (VI). 

II. FUZZY RULE INTERPOLATION BASED ON THE 

INCIRCLE CONCEPT 

A. The Incircle-FRI Interpolation method with Single-

Antecedent Trigonal Membership Function 

The original Incircle-FRI method was created for 

handling Trigonal Fuzzy-Numbers (TFN) [17]. The TFN was 

selected for two purposes, its simplicity and popularity. 

Considering the characteristics of a trigonal-shaped fuzzy set, 

it can be described by 𝐴 = (𝑎1, 𝑎2, 𝑎3;  𝐻), where the vertices 

of the Trigonal Fuzzy set on the Cartesian described as 

[(𝑎1, 0), (𝑎2, 𝐻), (𝑎3, 0)], and Height (𝐻) is 1, which means 

the fuzzy set is "normal" as explained in Fig. 3. 

 

Fig. 3. Trigonal Fuzzy-Number Notations 
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The proposed fuzzy interpolation is built upon two steps: 

Step (I) involves determining the key notations of the 

proposed Incircle-FRI, including the observation and 

adjacent fuzzy rules. Step (II) involves the determination of 

the triangular fuzzy conclusion by calculating the center of 

the fuzzy set referred to by Gergonne Point (𝐺𝑃), and the 

sides of the trigonal (labeled by (𝑆𝐷1), (𝑆𝐷2), and (𝑆𝐷3). 

During the calculation, the "sides of fuzziness" of trigonal 

(labeled by (𝑃𝑆1), (𝑃𝑆2), and (𝑃𝑆3)), which referred to 

trigonal tangent lengths, (see Fig. 3). Using (1) will be used 

to determine the Cartesian Coordinate of the Center-Point 

(𝐺𝑃) of the trigonal fuzzy set (A), as follows using (1):   

𝐺𝑃𝐴 = (𝑋𝐴) = (
𝑎1. 𝛼|𝑆𝐷2| + 𝑎2. 𝛽|𝑆𝐷3| + 𝑎3. 𝛾|𝑆𝐷1|

𝛼|𝑆𝐷2| + 𝛽|𝑆𝐷3| + 𝛾|𝑆𝐷1|
 (1) 

A fuzzy set (A) is called "normal" if: ∃𝑥 ∈ 𝑈, µ𝐴(𝑥): 
Height(A) = 1, where Height(A) is the height of fuzzy set A. 

The sides of fuzziness (𝑃𝑆1), (𝑃𝑆2), and (𝑃𝑆3) of the fuzzy 

rule antecedents and observation will be specified by using 

(2). 

𝐴(𝑃𝑆1) =
(𝑆𝐷1 + 𝑆𝐷3 − 𝑆𝐷2)

2
𝐴(𝑃𝑆2) =

(𝑆𝐷1 + 𝑆𝐷2 − 𝑆𝐷3)

2
𝐴(𝑃𝑆3)

=
(𝑆𝐷2 + 𝑆𝐷3 − 𝑆𝐷1)

2
 

 (2) 

Secondly: As seen in Fig. 4, suppose that the observation 

(𝐴 ∗) locates amidst the rule antecedent fuzzy sets (𝐴1) and 

(𝐴2). Thus, the conclusion fuzzy set (𝐵 ∗) is the consequence 

obtained through fuzzy interpolation. The conclusion of the 

Incircle-FRI (interpolated consequent) is computed based on 

the matching weights of the observation and the two 

antecedent rules, as well as the conclusion and the two rule 

consequents with their center points, and the "sides of 

fuzziness", to produce the trigonal CNF fuzzy conclusions. 

The procedure of the proposed Incircle-FRI method is 

introduced in the following steps:  

• The adjacent two rules are determined according to the 

observation. 

• The center points and the sides of fuzziness are calculated 

for the rule antecedents and consequents and for the 

observation (𝐺𝑃𝑥, 𝑃𝑆1, 𝑃𝑆3) by (1) and (2). 

• The weights between the observation (𝐴 ∗) and the 

adjacent trigonal fuzzy rule antecedents, Rulei are 

computed by using (3). 

 

Fig. 4. The Fuzzy interpolation of the trigonal fuzzy sets 

𝑊𝑖 = 1 −
|𝐺𝑃𝑥 . 𝐴

∗ − 𝐺𝑃𝑥 . 𝐴𝑖|

𝐺𝑃𝑥 . 𝐴2 − 𝐺𝑃𝑥 . 𝐴1
 (3) 

• The conclusion Center-Point (𝐺𝑃𝑥) is defined by (4): 

𝐺𝑃𝑥 . 𝐵
∗ = ∑2𝑖=1 𝑊𝑖 × 𝐺𝑃𝑥 . 𝐵𝑖   (4) 

• The sides fuzziness of the conclusion (𝐵 ∗), which is 

based on the neighboring two rules and observation, will 

be computed by (5): 

𝑃𝑆𝑀(𝐵
∗) = {𝑃𝑆𝑀(𝐴

∗) × ∑2𝑖=1 𝑊𝑖 ×
𝑃𝑆𝑀(𝐵𝑖)

𝑃𝑆𝑀(𝐴𝑖)
,   𝑖𝑓 ∃ 𝑖𝑃𝑆𝑀(𝐴𝑖) >

0  𝑃𝑆𝑀(𝐴
∗),   𝑖𝑓 ∀𝑖𝑃𝑆𝑀(𝐴𝑖) = 0  }  

(5) 

• At the end, the (𝐵 ∗) trigonal fuzzy conclusion will be 

determined by (6): 

𝐵1
∗ = 𝐺𝑃𝑥 . 𝐵

∗ − 𝐵(𝑝𝑠1)
∗ 𝐵2

∗ = 𝐺𝑃𝑥 . 𝐵
∗𝐵3

∗ = 𝐺𝑃𝑥 . 𝐵
∗ + 𝐵(𝑝𝑠3)

∗  

 (6) 

B. The Incircle-FRI Interpolation Method with Single-

Antecedent Trapezoidal Membership Function 

It is also possible to apply the Incircle FRI with the 

trapezoidal fuzzy sets, as a trapezoid can be represented by 

two triangles, for the left 𝐴𝐿 = (𝑎1, 𝑎2, 𝑀𝑃;  𝐻) and for the 

right 𝐴𝑅 = (𝑀𝑃, 𝑎3, 𝑎4;  𝐻). Hence, notations in (3), (4), and 

(5) will be used to compute trigonal (𝐴𝐿) and trigonal (𝐴𝑅). 

Fig. 5 illustrates the center points (𝐺𝑃) of the left and right 

trapezoidal fuzzy sets, which are defined via (𝐺𝑃𝑥 . 𝐴𝐿) and 

(𝐺𝑃𝑥 . 𝐴𝑅). For the left trigonal (𝐴𝐿) (𝑆𝐷𝐿1), (𝑆𝐷𝐿2), (𝑆𝐷𝐿3), 

(𝑃𝑆1. 𝐴𝐿), and (𝑃𝑆3. 𝐴𝐿) will be computed. For the right 

trigonal (𝐴𝑅) (𝑆𝐷𝑅1), (𝑆𝐷𝑅2), (𝑆𝐷𝑅3), (𝑃𝑆1. 𝐴𝑅), and 

(𝑃𝑆3. 𝐴𝑅) are computed. Finally, to derive the conclusion, 

(𝑃𝑆1. 𝐴𝐿) and (𝑃𝑆3. 𝐴𝑅) will be used. 

 

Fig. 5. The trapezoidal fuzzy number notations 

The steps to determine the conclusion of the Incircle-FRI 

for trapezoidal fuzzy sets are the following: 

• The reference of the trapezoid will be specified by the 

average of the two-triangle center-points (𝐺𝑃𝑥 . 𝐴𝐿) and 

(𝐺𝑃𝑥 . 𝐴𝑅) 𝑣𝑖𝑎 𝐴𝑉𝐺. 𝐺𝑃𝑥 = (𝐺𝑃𝑥 . 𝐴𝐿 + 𝐺𝑃𝑥 . 𝐴𝑅)/2. 

Then, using (7), the distances will be calculated: 

𝐷 = 𝑑(𝐴𝑖 , 𝐴
∗) = 𝑑(𝐴𝑉𝐺. 𝐺𝑃𝑥 . 𝐴𝑖 , 𝐴𝑉𝐺. 𝐺𝑃𝑥 . 𝐴

∗)  (7) 
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• The weights between two adjacent closest fuzzy rules 

trapezoidal antecedents and the observation can be 

determined by (8): 

𝑊𝐿𝑖 = 1 −
|𝐺𝑃𝑥.𝐴

∗𝐿−𝐺𝑃𝑥.𝐴𝐿𝑖|

𝐺𝑃𝑥.𝐴2𝐿−𝐺𝑃𝑥.𝐴1𝐿
𝑊𝑅𝑖 = 1 −

|𝐺𝑃𝑥.𝐴
∗𝑅−𝐺𝑃𝑥.𝐴𝑅𝑖|

𝐺𝑃𝑥.𝐴2𝑅−𝐺𝑃𝑥.𝐴1𝑅
  

(8) 

(𝑊𝐿𝑖) and (𝑊𝑅𝑖) refer to the left and right weights of 

Rulei, where (0 ⩽ 𝑊𝐿𝑖 ⩽ 1), (0 ⩽  𝑊𝑅𝑖 ⩽ 1), and 𝑖 = 1, 2. 

The weight between antecedent and observation fuzzy sets, 

holding the properties of (𝑊𝐿1  +  𝑊𝐿2)  =  1 and (𝑊𝑅1 +
𝑊𝑅2) = 1, as illustrated in Fig. 4. 

The Center-Points of the left trigonal (𝐺𝑃𝑥 . 𝐴𝐿) and the 

right trigonal (𝐺𝑃𝑥 . 𝐴𝑅) of the fuzzy conclusion (𝐵 ∗) can be 

defined by (9): 

𝐺𝑃𝑥 . 𝐵
∗𝐿 = ∑2𝑖=1 𝑊𝐿𝑖 × 𝐺𝑃𝑥. 𝐵𝐿𝑖𝐺𝑃𝑥 . 𝐵

∗𝑅 =
∑2𝑖=1 𝑊𝑅𝑖 × 𝐺𝑃𝑥 . 𝐵𝑅𝑖  

(9) 

By using (10) and (11) the sides of fuzziness for the (𝐵 ∗) 

fuzzy conclusion could be determined by: 

𝑃𝑆𝑀(𝐵
∗𝐿) = {𝑃𝑆𝑀(𝐴

∗𝐿) × ∑2𝑖=1 𝑊𝐿𝑖 ×
𝑃𝑆𝑀(𝐵𝐿𝑖)

𝑃𝑆𝑀(𝐴𝐿𝑖)
,   𝑖𝑓 ∃ 𝑖𝑃𝑆𝑀(𝐴𝐿𝑖) >

0  𝑃𝑆𝑀(𝐴
∗𝐿),   𝑖𝑓 ∀𝑖𝑃𝑆𝑀(𝐴𝐿𝑖) = 0  }  

(10) 

𝑃𝑆𝑀(𝐵
∗𝑅) = {𝑃𝑆𝑀(𝐴

∗𝑅) × ∑2𝑖=1 𝑊𝑅𝑖 ×
𝑃𝑆𝑀(𝐵𝑅𝑖)

𝑃𝑆𝑀(𝐴𝑅𝑖)
,   𝑖𝑓 ∃ 𝑖𝑃𝑆𝑀(𝐴𝑅𝑖) >

0  𝑃𝑆𝑀(𝐴
∗𝑅),   𝑖𝑓 ∀𝑖𝑃𝑆𝑀(𝐴𝑅𝑖) = 0  }  

(11) 

where 𝑀 ∈  [𝑃𝑆1, 𝑃𝑆3], (𝑃𝑆1) is the side of left fuzziness 

from the left trigonal (𝐴𝐿), and (𝑃𝑆3) is the side of right 

fuzziness from the right trigonal (𝐴𝑅). 

Finally, if the fuzzy set is trapezoidal, the (𝐵 ∗) fuzzy 

conclusion can be specified based on the following four 

cases: 

• If the trigonal fuzzy sets (𝐴𝐿) and (𝐴𝑅) provide identical 

results, then, the following conclusion may be derived 

using (12): 

𝐵∗ = [𝐺𝑃𝑥 . 𝐵
∗𝐿, 𝐺𝑃𝑥 . 𝐵

∗𝐿, 𝐺𝑃𝑥 . 𝐵
∗𝑅, 𝐺𝑃𝑥 . 𝐵

∗𝑅] (12) 

• If all the values of the left (𝐴𝐿) trigonal are similar, and 

for the right (𝐴𝑅) trigonal, then, the conclusion values 

will be defined by (13) : 

𝐵∗ = [𝐺𝑃𝑎𝑣𝑔, 𝐺𝑃𝑎𝑣𝑔, 𝐺𝑃𝑎𝑣𝑔, 𝐺𝑃𝑎𝑣𝑔] (13) 

Where 𝐺𝑃𝑎𝑣𝑔  =  (𝐺𝑃𝑥𝐵 ∗ 𝐿 +  𝐺𝑃𝑥𝐵 ∗ 𝑅)/2. 

• If only all the values of the left (AL) trigonal are similar, 

the conclusion (𝐵1
∗) will be used, in contrast, if only all of 

the values of the right (𝐴𝑅) trigonal are equal, the 

conclusion (𝐵2
∗) will be utilized by (14): 

B1
∗ = [GPx.B*L, GPx.B*L, GPx.B*R, 

GPx.B*R+B*Rps3] 

B2
∗ = [GPx.B*L-B*Lps1, GPx.B*L, GPx.B*R, 

GPx.B*R] 

(14) 

• If all values of the left (𝐴𝐿) and right (𝐴𝑅) trigonals are 

dissimilar. The conclusion (𝐵 ∗) will be specified by (15): 

𝐵1
∗ = 𝐺𝑃𝑥 . 𝐵

∗𝐿 − 𝐵∗𝐿(𝑃𝑆1)𝐵2
∗

= 𝑀𝑃. 𝐵∗ − 𝐺𝑃𝑥 . 𝐵
∗𝐿𝐵3

∗

= 𝑀𝑃. 𝐵∗ − 𝐺𝑃𝑥 . 𝐵
∗𝑅𝐵4

∗

= 𝐺𝑃𝑥 . 𝐵
∗𝑅 + 𝐵∗𝑅(𝑃𝑆3) 

(15) 

To calculate the trapezoidal fuzzy set’s Mid-Point (𝑀𝑃), 

the following equation will be used: 

𝑀𝑃.𝐵 ∗ =  𝑀𝑃. 𝐺𝑃𝑥𝐵1 + ((( 𝑀𝑃. 𝐺𝑃𝑥𝐴 ∗
−𝑀𝑃. 𝐺𝑃𝑥𝐴1) × (𝑀𝑃. 𝐺𝑃𝑥𝐵2 −𝑀𝑃. 𝐺𝑃𝑥𝐵1)) /

(𝑀𝑃. 𝐺𝑃𝑥𝐴2 −  𝑀𝑃. 𝐺𝑃𝑥𝐴1)). 

The incircle method always generates a convex and 

normal fuzzy conclusion because of the following condition: 

[(𝐵1
∗  ⩽  𝐵2

∗  ⩽  𝐵3
∗  ⩽  𝐵4

∗)]. 

III. THE INCIRCLE-FRI INTERPOLATION METHOD WITH 

MULTIPLE FUZZY RULES AND MULTIPLE ANTECEDENT 

UNIVERSES 

In this section, fuzzy interpolation with multiple fuzzy 

rules and multidimensional antecedents will be discussed. 

The fuzzy rules with multidimensional antecedents have the 

following format:  

𝑅1:If 𝑋1 is 𝐴12 and 𝑋2 𝑖𝑠 𝐴12…and 𝑋𝑚 is 𝐴1𝑚  Then 𝑌 𝑖𝑠 𝐵1 

𝑅2:If 𝑋1 is 𝐴21 and 𝑋2 𝑖𝑠 𝐴22…and 𝑋𝑚 is 𝐴2𝑚  Then 𝑌 𝑖𝑠 𝐵2 

…...……………………………………………………………… 

𝑅𝑛:If 𝑋1 is 𝐴𝑛𝑚 and 𝑋2 𝑖𝑠 𝐴𝑛𝑚…and 𝑋𝑚 is 𝐴𝑛𝑚  Then 𝑌 𝑖𝑠 𝐵𝑛 

Observation: If 𝑋1 is 𝐴1
∗  and 𝑋2 is 𝐴2

∗  … and 𝑋𝑚 is 𝐴𝑛
∗  

Let’s assume that there are two antecedent variables, one 

consequent variable, and two observations (𝐴 ∗ 1), (𝐴 ∗ 2) for 

the first and second antecedent dimensions, respectively. 

Each observation is surrounded by four fuzzy rules. For (𝐴1
∗) 

has two rules (𝐴11) and (𝐴21) on the left and has two rules 

(𝐴31) and (𝐴41) on the right. For (𝐴2
∗ ) has two rules (𝐴12) and 

(𝐴22) on the left, and two rules (𝐴32) and (𝐴42) on the right, 

which can be represented as follows: 

(𝐴11 ∧ 𝐴12 → 𝐵1, 𝐴21 ∧ 𝐴22 → 𝐵2, 𝐴31 ∧ 𝐴32 → 𝐵3, 
𝑎𝑛𝑑 𝐴41 ∧ 𝐴42 → 𝐵4) 

 

The (𝐵 ∗) fuzzy conclusion, represented by 

(𝑏0
∗, 𝑏1

∗, 𝑏2
∗, 𝑏3

∗), is obtained according to the following five 

steps: 

Step 1: Selecting the closest fuzzy rules to the observation to 

perform the interpolation (𝐴𝑖𝑗 ⪯  𝐴𝑖
∗ ⪯ 𝐴𝑖𝑗 + 1), the fuzzy 

rules are described as Rule1, Rule2, ..., and Rulen [20], where 

(𝑛) denotes the number of the fuzzy rules, as seen by Fig. 6. 

Having trapezoidal fuzzy sets, the average of Center-Points 

for the left (𝐺𝑃𝑥 . 𝐴𝐿𝑖𝑗) and the right (𝐺𝑃𝑥 . 𝐴𝑅𝑖𝑗) can be 
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computed via: 𝐴𝑉𝐺. 𝐺𝑃𝑥 . 𝐴 = (𝐺𝑃𝑥 . 𝐴𝐿𝑖𝑗  𝑎𝑛𝑑 𝐺𝑃𝑥 . 𝐴𝑅𝑖𝑗)/

2). Then, to determine the distance between adjacent rules 

and observations to select the closest fuzzy rules using (16). 

𝐷 = 𝑑(𝐴𝑖𝑗 , 𝐴𝑖
∗) = 𝑑(𝐴𝑉𝐺. 𝐺𝑃𝑥 . 𝐴𝑖𝑗 , 𝐴𝑉𝐺. 𝐺𝑃𝑥. 𝐴𝑖

∗)  (16) 

 

Fig. 6. Four fuzzy rules with two dimensional observations (A∗1, A∗2), the 

conclusion is (B∗) 

Step 2: (17) and (18) will be used to determine the weight 

between adjacent fuzzy rules and observations, using (19) 

that will be used to find the Center-Point of the derived 

conclusion (𝐵′). 

𝑤(𝑠)𝑖𝑗 = 1 −
|𝐺𝑃𝑥.𝐴𝑗

∗(𝑠)−𝐺𝑃𝑥.𝐴(𝑠)𝑖𝑗|

𝐺𝑃𝑥.𝐴𝑛𝑗(𝑠)−𝐺𝑃𝑥.𝐴1𝑗(𝑠)
  (17) 

𝑊(𝑠)𝑖 =
∑𝑚𝑗=1 𝑤(𝑠)𝑖𝑗

∑𝑛𝑖=1 ∑𝑚𝑗=1 𝑤(𝑠)𝑖𝑗
 (18) 

𝐺𝑃. 𝐵′(𝑠) =∑

𝑛

𝑖=1

𝑊(𝑠)𝑖𝐺𝑃𝑥. 𝐵(𝑠)𝑖
 (19) 

The variable 𝑠 ∈  [𝐿, 𝑅] indicates the left and right of the 

weight of the Rulei, holding (0 ⩽ 𝑊𝐿𝑖𝑗 ⩽ 1), (0 ⩽ 𝑊𝑅𝑖𝑗 ⩽

1), and (𝑖 = 1,2, … , 𝑛) indicates the number of the fuzzy 

rules, (𝑗 = 1,2, . , 𝑚) refers to the dimension of the antecedent 

variables. See example on Fig. 6, in case if 𝑛 =  4 and 𝑚 =
 2. And (𝑊𝐿1𝑗  +  𝑊𝐿2𝑗) = 1, (𝑊𝑅1𝑗  +  𝑊𝑅2𝑗 = 1), for 

holding the condition (𝑊1 +  𝑊2)  =  1. 

Step 3: The conclusion is Center-Points (𝐺𝑃𝑥 . 𝐵 ∗ 𝐿) and 

(𝐺𝑃𝑥 . 𝐵 ∗ 𝑅) can be calculated based on (20). 

𝐺𝑃𝑥. 𝐵
∗𝐿 = ∑𝑛𝑖=1 𝑊𝐿𝑖 × 𝐺𝑃𝑥. 𝐵𝐿𝑖 ,   

𝐺𝑃𝑥. 𝐵
∗𝑅 = ∑𝑛𝑖=1 𝑊𝑅𝑖 × 𝐺𝑃𝑥. 𝐵𝑅𝑖   

(20) 

Step 4: The sides of fuzziness (Left and Right) of the 

conclusion (𝐵 ∗) can be computed using (21) and (22). 

𝑃𝑆𝑀(𝐵𝐿
∗) =

{
 
 

 
 𝑃𝑆𝑀(𝐴𝐿

∗) × ∑ 𝑊𝐿𝑖 ×
𝑃𝑆𝑀(𝐵𝐿𝑖𝑗)

∑ 𝑃𝑆𝑀(𝐴𝐿𝑖𝑗)
,𝑚

𝑗=1

𝑛
𝑖=1

𝑖𝑓 ∃𝑖  𝑃𝑆𝑀(𝐴𝐿𝑖𝑗) > 0 
∑ 𝑃𝑆𝑀(𝐴𝐿𝑗

∗)𝑚
𝑗=1

𝑚
,

𝑖𝑠 ∀𝑖  𝑃𝑆𝑀(𝐴𝐿𝑖𝑗) = 0 }
 
 

 
 

  (21) 

𝑃𝑆𝑀(𝐵𝑅
∗) =

{
 
 

 
 𝑃𝑆𝑀(𝐴𝑅

∗ ) ×∑ 𝑊𝑅𝑖 ×
𝑃𝑆𝑀(𝐵𝑅𝑖𝑗)

∑ 𝑃𝑆𝑀(𝐴𝑅𝑖𝑗)
,𝑚

𝑗=1

𝑛

𝑖=1

𝑖𝑓 ∃𝑖  𝑃𝑆𝑀(𝐴𝑅𝑖𝑗) > 0 
∑ 𝑃𝑆𝑀(𝐴𝑅𝑗

∗)𝑚
𝑗=1

𝑚
,

𝑖𝑠 ∀𝑖  𝑃𝑆𝑀(𝐴𝑅𝑖𝑗) = 0 }
 
 

 
 

 (22) 

(𝑀)  ∈  [𝑃𝑆1, 𝑃𝑆3]. The fuzzy conclusion (𝐵 ∗) can be 

computed based on (𝑃𝑆1) and (𝑃𝑆3), of antecedents and 

observation notations. Consequently, if the values of (𝑃𝑆1) or 

(𝑃𝑆3) are greater than 0, the upper portion of (21) and (22) 

will be used. However, if the values of (𝑃𝑆1) or (𝑃𝑆3) are 

equal to 0, the bottom portion will be applied instead. 

Step 5: Finally, using (12), (13), (14), the fuzzy conclusion 

(B∗) can be determined. 

IV. THE EXTENSION OF THE INCIRCLE-FRI 

INTERPOLATION METHOD 

The original Incircle FRI method is defined as an 

"interpolation" method. However, it cannot handle 

"extrapolation", multiple fuzzy rules, or multidimensional 

antecedents. This is due to the weight of the derivative and 

also because of the lack of transformation in the fuzzy range. 

It is significant to recognize that extrapolation, as outlined in 

[63], is a "special case" of interpolation. In cases where all 

the specified nearest rules align on one side of the provided 

observation, the interpolation method transforms into 

extrapolation. The process of selecting the closest rules and 

creating the intermediary rule stays consistent with that used 

in interpolation. 

An essential consideration is the possibility of specific 

attribute values for the intermediate rule within the specified 

limitations of the domain space for that attribute. This 

happens during the construction of the intermediate rule, 

especially when extrapolation is involved, leading to an 

intermediate fuzzy rule that extends outside the predefined 

range.  

Additionally, there is the possibility of fuzzified data 

objects exceeding the confines of the domain space. 

Consequently, special treatment is deemed necessary for 

cases of interpolation. For general "interpolation", if either 

the fuzzified data object or the fuzzy term of the intermediate 

rule exceeds the input space on a special attribute, such an 

attribute is skipped when fulfilling the interpolation as this 

method cannot handle this special case. The following 

subsections will present the extension and modifications to 

address these limitations by modifying the derivation of the 

modification weight calculation and the shifting operation. 

A. The Weight Computation Extension 

The current weight calculation in (18) is used for two 

adjacent fuzzy rules but is unsuitable for extrapolation. Fig. 7 

represents an example of the various antecedent fuzzy sets 

with different distances: dis(1) = 4, dis(2) = 7, dis(3) = 10, 

dis(4) = 3, dis(5) = 6, dis(6) = 36, dis(7) = 40.  
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Fig. 7. Fuzzy Sets Distances 

To explain that, let fuzzy set (A2) be the observation, and 

the rest of the fuzzy sets be neighboring rules. Thus, the 

current implementation will take the distance between fuzzy 

sets (A1) and (A4), which is dis (3) as the denominator for 

(18). 

The extended weight computation makes the proposed 

Incircle-FRI method applicable for extrapolation. The weight 

calculation in (18) works for two adjacent fuzzy rules with a 

single-dimensional antecedent. To extend the weight 

calculation to multiple rules and multidimensional 

antecedents, the weight calculation can be extended to 

calculate the weights to the closest and farthest rules. 

For the extended weight by (23), all the rule antecedent-

observation distances are taken into consideration. The 

denominator is the sum of all the rule antecedent-observation 

distances. As shown in (24) the weights for each antecedent 

domain must be normalized. This helps the method preserve 

the appropriate weight value, i.e., the largest distances have 

less effect on the weight distribution. This method also 

preserves the property, if the rule distance is zero, then the 

corresponding rule weight is equal to one. 

𝑤𝑖𝑗 = 1 − |
𝐺𝑃𝑥𝐴𝑗

∗ − 𝐺𝑃𝑥𝐴𝑖𝑗

∑𝑛𝑖=1 |𝐺𝑃𝑥𝐴𝑗
∗ − 𝐺𝑃𝑥𝐴𝑖𝑗|

| (23) 

𝑊𝑖𝑗 =
𝑤𝑖𝑗

∑𝑛𝑖=1 𝑤𝑖𝑗
 (24) 

where 𝑖 refers to fuzzy sets, n indicates the number of 

current fuzzy rules, 𝑗 refers to the number of antecedent 

dimensions. 

The Incircle-FRI preserves the respective weight values 

and shows that the distribution of weights stays unaffected by 

the extreme rules. Table I provides a comparative analysis of 

weights between the extension Incircle-FRI and the original 

Incircle-FRI across configurations involving three and four 

rules. In instances with three rules, the weights pertain to 

observations of individual rules at a closer distance, whereas 

in configurations applying four rules, the weights are 

evaluated when one of the closest rules is slightly further 

away.  

TABLE I.  WEIGHT COMPARISON BETWEEN INCIRCLE-FRI AND 

EXTENSION INCIRCLE-FRI 

Distances 
Incircle-FRI Extension Incircle-FRI 

3 Rules 4 Rules 3 Rules 4 Rules 

WA1A2 0.353 0.324 0.346 0.306 

WA1A3 0.412 0.333 0.3845 0.313 

WA1A4 0.235 0.306 0.2695 0.293 

WA1A5 -- 0.036 - 0.088 

 

The results derived from the extension Incircle-FRI 

indicate a high weight allocation for a rule location at the 

greatest distance from the observation in comparison to the 

original Incircle-FRI. Specifically, the original method 

augmented the weight of WA1A4 from 0.235 to 0.306 and 

assigned a weight of 0.036 to WA1A5 upon the inclusion of 

the fourth rule. In contrast, our extension of the Incircle-FRI 

method demonstrates a more acceptable distribution of 

weights, assigning a weight of 0.088 to WA1A5 for the 

farthest rule. This highlights that the proposed method not 

only benefits closer rules but also apportions substantial 

weight to the rule location at the furthest rule distance. 

Let us take an extrapolation scenario shown in Fig. 7, 

where fuzzy set (A1) serves as the observation and fuzzy sets 

(A2), (A3), and (A4) represent the three closest rules. The 

distances between all fuzzy sets remain consistent. In this 

instance, the distance between the extreme rules is denoted 

by dis(5). When calculating the weight values for (WA1A3) 

and (WA1A4) using (18), a negative weight arises due to the 

numerator exceeding the denominator. To address this issue, 

(23) presents a solution, which will also assist in establishing 

the extrapolation capability. Further discussion on this aspect 

will be expounded upon in subsequent sections.  

B. The Shift Ratio Extension 

The conclusion can be calculated based on the 

interpolation of the center points of the two nearest fuzzy rule 

consequences, applying the corresponding weights calculated 

by (3) (See e.g. in Fig. 4). However, as shown in Fig. 8, when 

three rules are considered, the derived observation (𝐺𝑃𝑥 . 𝐴′) 
and observation (𝐴 ∗) do not have the same center point. 

(𝐺𝑃𝑥 . 𝐴′) can be calculated using a modification weight, 

where (𝑊𝐴1𝐴2) = 0.34, (𝑊𝐴2𝐴3) = 0.38, and 

(𝑊𝐴2𝐴4) = 0.269, and with the Center-Points for (𝐴1) = 3, 

(𝐴2) = 8, (𝐴3) = 10, and (𝐴) = 5. The Center-Point of 

(𝐺𝑃𝑥 . 𝐴𝑗
′) can be determined by using (25). 

𝐺𝑃𝐴𝑗
′ = ∑𝑛𝑖=1 𝑤𝑖𝑗𝐺𝑃𝐴𝑖𝑗  (25) 

where 𝑖 =  1, 2, . . . , 𝑛 refers to fuzzy rules, 𝑗 = 1, 2, . . . , 𝑚 

refers to the number of antecedent dimensions. In the 

example shown in Fig. 8, (𝐺𝑃𝑥 . 𝐴′) is calculated, which is 

(5.648). 

 

Fig. 8. Interpolation of three rules 

Thus, the derived observation (𝐺𝑃𝑥 . 𝐴′) to the original 

observation (𝐺𝑃𝑥. 𝐴 ∗) to align the same center point. By 

using the distance between the center point of (𝐺𝑃𝑥 . 𝐴′) and 

(𝐺𝑃𝑥 . 𝐴 ∗). using (26) and (27) will be used to calculate the 

shift ratio. 
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𝛿𝐴 =
∑𝑚𝑗=1 𝛿𝐴𝑗

𝑚
,  (26) 

Where 

𝛿𝐴𝑗 =
𝐺𝑃𝑥𝐴𝑗

∗−𝐺𝑃𝑥𝐴𝑗
′

|𝐺𝑃𝑥𝐴𝑛𝑗−𝐺𝑃𝑥𝐴1𝑗|
  (27) 

The 𝐴𝑛𝑗  is the last fuzzy rule in the antecedent, where 𝑗 =

1, 2, . . . , 𝑚 represents the number of antecedents dimensions. 

(𝐺𝑃𝑥 . 𝐴𝑛𝑗) denotes the center point of the antecedent 

dimension. Using the distance of the center points between 

the observation and the derived observation, the distances of 

the center points for all the antecedent dimensions can be 

calculated. Therefore, (27) calculates the shift ratio over an 

antecedent domain. (28) calculates the conclusion as a 

weighted average with the corresponding rule weights 

according to the antecedent distances (27). 

Based on (𝛿𝐴) and the derived conclusion (𝐺𝑃𝑥𝐵′) by 

using (19), the conclusion Center-Point (𝐺𝑃𝑥 . 𝐵 ∗) can be 

calculated by (28): 

𝐺𝑃𝑥. 𝐵∗ = 𝐺𝑃𝑥. 𝐵′ + 𝛿𝐴(|𝐺𝑃𝑥. 𝐵𝑛𝐺𝑃𝑥. 𝐵1|).  (28) 

In the example in Fig. 8, the center-point of the conclusion 

(𝐺𝑃𝑥 . 𝐵 ∗) is (4.615). This leads us to the fact that the weight 

modification and shift ratio allow the extended Incircle-FRI 

to work as an extrapolation. Referring to Fig. 8, assuming 

that, the two fuzzy rules, (𝐴2 ⇒ 𝐵2), (𝐴3 ⇒ 𝐵3), and 

observation (𝐴 ∗) is not in between the two fuzzy rules 

(extrapolation). Consequently, (𝑊𝐴 ∗ 𝐴2) is (0.60) and 

(𝑊𝐴 ∗ 𝐴3) is (0.40) using (24), (𝐺𝑃𝑥 . 𝐴′) is (9.6) using (25), 

by (19), the (𝐺𝑃𝑥 . 𝐵′) is (8.20). The (𝛿𝐴) is (-1.512) calculated 

by using (26), (𝐵3 − 𝐵2) = 3 is the difference between the 

consequent’s fuzzy sets, and finally the extrapolated Center-

Point of the conclusion (𝐺𝑃𝑥𝐵 ∗) using (28) is equal (3.66). 

Fig. 9. represents a summary diagram of how the Incircle-

FRI method works based on the details found in this research. 

It represents the beginning of the algorithm by determining 

whether the new observation falls within the current rules or 

is outside the scope of the current rules. Accordingly, we will 

determine whether to use the original or modified weights. 

 

Fig. 9. Interpolation of three rules 

V. EXPERIMENTAL RESULTS 

In this section, four numerical examples will be 

introduced to compare the performance of the proposed 

extended Incircle-FRI with some other FRI methods, which 

can be found in the literature: KH [2], KH stabilized [21], 

VKK [22], CCL [23], HS [10], HTY [24], HCL [25], MACI 

[26], IMUL [27], and CRF [28]. These examples simulate the 

validity of the modified weight and shifting ratio processes 

for the extension of the Incircle-FRI method. This is intended 

to demonstrate the extension of the Incircle-FRI approach.  

The four examples will be used to test the extension of the 

Incircle-FRI method and other FRI methods: The first 

example will be used to test the validity of FRI methods in 

the case of a single antecedent with two fuzzy rules. The 

second example will be used in the case of multi-antecedent 

variables with three fuzzy rules. The third example will be 

used to test the validity of FRI methods in the case of 

extrapolation with a single antecedent part and two fuzzy 

rules. The last example will be used to test the validity of FRI 

methods in the case of extrapolation with multiple antecedent 

variables and two fuzzy rules. performs in the context of 

multidimensional antecedent variables, multi-rules, and 

extrapolation properties. To perform these examples, the 

MATLAB FRI toolbox was used. 

Where the FRI toolbox was developed by Z.C. Johanyák 

et al. [62]. It is implemented in MATLAB and Octave 

environments [1], [29]. The main goal of the FRI toolbox is 

to unify different fuzzy interpolation methods, which could 

be used to evaluate the current FRI methods. The current 

version of the FRI toolbox is available to download in [48]. 

It includes the various FRI methods. The package of the FRI 

toolbox contains software with a graphical user interface, 

providing easy-to-use access. 

A. Example 1: Testing the FRI Methods with Single-

Antecedent Variable 

The purpose of this example is to show how well the 

Incircle-FRI performs when all of the fuzzy rule antecedents, 

consequents, and observations are trigonal fuzzy sets. Based 

on the attributes and results of FRI methods, as shown in Fig. 

10 and Table II, we conclude the following facts: 

 

 

Fig. 10. The fuzzy conclusions of Example 1 
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The conclusion of Incircle-FRI generated "a singleton 

type of fuzzy set" using (4), where the center-point of 

(𝐺𝑃𝑥 . 𝐵 ∗) = 5.4. The left-fuzziness (𝑃𝑆1) is (0) and the right-

fuzziness (𝑃𝑆3) is (0), which were computed using (5). The 

conclusion value (𝐵 ∗) of the proposed Incircle-FRI method 

using (6) is [5.42, 5.42, 5.42]. 

The proposed Incircle-FRI shows better performance 

compared to the VKK, HCL, KH, and KHstabilized FRI 

methods, as they generate non-convex fuzzy conclusions and 

outperform CCL, HS, HTY, as they have singleton 

conclusions. 

TABLE II.  FUZZY INTERPOLATIVE REASONING RESULTS OF EXAMPLE 1 

WITH TRIANGULAR FUZZY SETS OF ALL FUZZY RULE BASES 

Attribute 

Values 
Methods 

Results of Fuzzy Interpolative 

reasoning 

A1=[0 5 6] 

A2=[11 13 14] 

B1=[0 2 4] 
B2=[10 11 13] 

A*=[8 8 8] 

KH-FRI 
KHstabilized-FRI 

VKK-FRI 

CCL-FRI 
HS-FRI 

HTY-FRI 

HCL-FRI 

B∗=(7.27 5.38 6.25) 

B∗=(7.27 5.38 6.25) 

B∗=(7.00 5.38 7.00) 

B∗=(5.38 5.38 5.38) 

B∗=(6.49 6.49 6.49) 

B∗=(6.49 6.49 6.49) 

B∗=(7.27 - 6.25) 

The Incircle-FRI B∗=(5.42 5.42 5.42) 

Note: the sign (-) indicates no clear evidence for the method to handle 

the case in the example 

 

B. Example 2: Testing the FRI Methods with Multiple-

Antecedent Variables and Multiple Fuzzy Rules 

The purpose of this example is to show how well the 

Incircle-FRI performs in the case of multiple fuzzy rules and 

multidimensional antecedents. Supposing that the three fuzzy 

rules (𝐴11 ∧ 𝐴12 ⇒ 𝐵1), (𝐴21 ∧ 𝐴22 ⇒ 𝐵2), (𝐴31 ∧ 𝐴32 ⇒
𝐵3), and two-dimensional observations (𝐴1

∗) =[3.5, 5, 5, 7], 

(𝐴2
∗) =[5, 6, 6, 7]. Thus, based on attribute values and the 

conclusions of the FRI methods as shown in Fig. 11 and Table 

III, the following outcomes are derived:  

The derived observations of the antecedent variables (𝐴1
′ ) 

and (𝐴2
′ ) using (25) are (𝐴𝐿. 𝐴1

′ ) =5.30, (𝐴𝑅. 𝐴1
′ ) = 5.74, 

(𝐴𝐿. 𝐴2
′ ) = 5.30, and (𝐴𝑅. 𝐴2

′ ) = 5.74. (26) and (27) will be 

used to derive the center-points (GP) of the observation and 

shift ratio calculation of the antecedent variables, thus, (𝛿𝐴1) 

= (AL= -0.373 and AR= 0.0373) and (𝛿𝐴2) = (AL= -0.0373 

and AR=0.0373). Based on (26) the average shift ratios are 

(𝛿𝐴1) ≈ 0 and (𝛿𝐴2) ≈ 0.  
 

 

Fig. 11. The fuzzy conclusions of Example 2 

TABLE III.  FUZZY INTERPOLATIVE REASONING RESULTS OF EXAMPLE 2 

WITH MULTIPLE FUZZY RULES HAVING MULTIPLE ANTECEDENTS 

Attribute 

Values 
Methods 

Results of Fuzzy 

Interpolative reasoning 

A11=[0 1 1 3] 
A12=[1 2 2 3] 

B1=[0 2 2 3] 

A21=[8 9 9 10] 
A22=[7 9 9 10] 

B2=[9 10 10 11] 

A31=[11 13 13 14] 
A32=[11 12 12 13] 

B3=[12 13 13 14] 

A*
1=[3.5 5 5 7] 

A*
2=[5 6 6 7] 

KH-FRI 

KHstabilized-FRI 
VKK-FRI 

CCL-FRI 

HS-FRI 
HTY-FRI 

HCL-FRI 

MACI-FRI 
IMUL-FRI 

CRF-FRI 

B∗=(4.67 6.24 6.24 7.57) 

B∗=(6.21 7.66 7.66 8.9) 

B∗=(4.87 6.26 6.26 7.53) 

B∗=(4.79 6.22 6.22 7.54) 

B∗=(6.19 7.65 7.65 8.96) 

B∗=(-) 

B∗=(-) 

B∗=(5.23 6.57 6.57 7.57) 

B∗=(4.1 6.25 6.25 8.89) 

B∗=(5.39 6.25 6.25 7.25) 

The Incircle-FRI B∗=(4.73 6.27 6.27 7.55) 

Note: the sign (-) indicates no clear evidence for the method to handle 
the case in the example 

 

The center point of the derived fuzzy conclusion is 

calculated using (19), where (𝐺𝑃𝑥 . 𝐵𝐿
′) is (6.2) and 

(𝐺𝑃𝑥 . 𝐵𝑅
′) is (6.2). The center points for the left-trigonal and 

the right-trigonal were computed by using (28), resulting in 

(𝐺𝑃𝑥 . 𝐵 ∗ 𝐿) = (6.2) and (𝐺𝑃𝑥 . 𝐵 ∗ 𝑅) = (6.2) respectively, 

based on the average shift ratios. Because the fuzzy set used 

is trapezoidal, represented by two trigonal (AL and AR) fuzzy 

sets, the sides of fuzziness (𝐴𝐿. 𝑃𝑆1) and (𝐴𝑅. 𝑃𝑆3) could be 

calculated using (21) and (22), therefore, (𝐴𝐿. 𝑃𝑆1. 𝐵 ∗)= 

(1.5) and (𝐴𝑅. 𝑃𝑆3. 𝐵 ∗) = (1.2). The conclusion (𝐵 ∗) is 

(4.73, 6.27, 6.27, 7.55).  

Accordingly, both the HCL and the HTY methods show 

no clear evidence of being able to deal with multidimensional 

antecedent variables. On the other hand, Fig. 11 describes that 

the convex and normal results were produced by the KH 

technique, KHstabilized, VKK, the HS, CCL, MACI, IMUL, 

and CRF, as well as with the suggested Incircle-FRI. 
 

C. Example 3: Testing the FRI Methods with an 

Extrapolation Case with a Single-Antecedent Variable  

This example is to show the performance of the Incircle-

FRI in the case if the location of the observation (𝐴 ∗) is not 

in-between the fuzzy rules ((𝐴1 ⇒ 𝐵1), (𝐴2 ⇒ 𝐵2)) 

(Extrapolation).  

All the fuzzy sets in this example are trigonal fuzzy sets. 

Fuzzy extrapolation is a problem that arises when we must 

make predictions outside of the range of observed data. It can 

occur, e.g., when all the rules are located on the right side of 

an observation, as shown in Fig. 12. This can lead to 

difficulties in determining the fuzzy rules for interpolation. 

Consequently, to solve this issue, the modification weight 

and shift ratio will be used.  

 

Fig. 12. The fuzzy conclusions of Example 3 
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Accordingly, the derived observation (𝐺𝑃𝑥𝐴
′) can be 

calculated using (25), which is (𝐺𝑃𝑥𝐴
′) = 6.33. By (26) the 

shift ratio is (𝛿𝐴) = -1.32. Using (19) the derived conclusion 

(𝐺𝑃𝑥𝐵
′) is calculated, where (𝐺𝑃𝑥𝐵

′) = 5.99, and the center-

point (𝐺𝑃) of (𝐺𝑃𝑥𝐵 ∗) = 5.99, which was computed by (28). 

The left fuzziness-side and right fuzziness-side according to 

(5) are (𝑃𝑆1𝐵 ∗) = 0.83 and (𝑃𝑆3𝐵 ∗) = 1.28, respectively. 

According to (6), the extrapolated fuzzy conclusion is (𝐵 ∗) 
= (5.16, 5.96, 7.28). 

Based on Table IV, which explains the numerical results 

of this example, there is no conclusion for the KH, VKK, 

HCL, HTY, MACI, IMUL, and CRF methods to address the 

fuzzy interpolation with extrapolation property. Fig. 11 

explains the properties of the convex and normal conclusions 

for the results of the FRI methods, which were produced only 

by the KH stabilized method as well as by the proposed 

Incircle-FRI method. 

TABLE IV.  FUZZY INTERPOLATIVE REASONING RESULTS OF EXAMPLE 3 

WITH TRIANGULAR FUZZY SETS IN CASE EXTRAPOLATION OBSERVATION 

Attribute 

Values 
Methods 

Results of Fuzzy 

Interpolative reasoning 

A1=[3.5 5 7] 

A2=[8 9 10] 
B1=[3 4 5 

B2=[9 10 11 

A*=[0 1 3] 

KH-FRI 

KHstabilized-FRI 
VKK-FRI 

HTY-FRI 

HCL-FRI 
MACI-FRI 

IMUL-FRI 

CRF-FRI 

B∗=(-) 

B∗=(4.82 6 6 7.18) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

The Incircle-FRI B∗=(5.16 5.99 7.28) 

Note: the sign (-) indicates no clear evidence for the method to handle 
the case in the example 

 

D. Example 4: Testing the FRI Methods with an 

Extrapolation Case with a Multiple-Antecedent 

Variables and Multiple Fuzzy Rules 

This example is to show the performance of the Incircle-

FRI with multidimensional antecedents as shown in Fig. 13, 

where the locations of the observations are not in-between the 

fuzzy rules. All the fuzzy sets of this example are trigonal 

fuzzy sets. Consequently, to solve this issue, the modification 

weight and shift ratio will be used with the same steps used 

for interpolation. Table V shows the results obtained by 

KHstabilized, HS, CCL, and Incircle-FRI methods. The 

derived observations (𝐺𝑃𝑥𝐴1
′ ) and (𝐺𝑃𝑥𝐴2

′ ) can be calculated 

using (25), which are (𝐺𝑃𝑥𝐴1
′ ) = 10.32 and (𝐺𝑃𝑥𝐴2

′ ) = 9.97. 

TABLE V.  FUZZY INTERPOLATIVE REASONING RESULTS OF EXAMPLE 4 

WITH TRIANGULAR FUZZY SETS IN CASE EXTRAPOLATION OBSERVATION 

Attribute 
Values 

Methods 
Results of Fuzzy Interpolative 

Reasoning 

A11=[8 9 10] 
A21=[11 13 

14] 
A12=[7 9 10] 

A22=[11 12 

13] 
B1=[9 10 11] 

B2=[12 13 14 

A*
1=[3.5 5 7] 

A*
2=[5 6 7] 

KHstabilized-FRI 
HS-FRI 

CCL-FRI 
KH-FRI 

VKK-FRI 

HTY-FRI 
HCL-FRI 

MACI-FRI 

IMUL-FRI 
CRF-FRI 

B∗=(10 11 11.9) 

B∗=(6.3  7.7  8.7) 

B∗=(6.1  7.01  8.5) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

B∗=(-) 

The Incircle-FRI B∗=(6.1  7  8.4) 

Note: the sign (-) indicates no clear evidence for the method to handle 

the case in the example 
 

 

 

 

Fig. 13. The fuzzy conclusions of Example 4 

Using the derived observations can calculate the average 

of the shift ratio with (26), which is (𝛿𝐴) = -1.32. The center-

point of the derived consequent is specified by (19), giving 

us (𝐺𝑃𝑥𝐵
′)= 10.9, and the Center-Point (𝐺𝑃) of (𝐺𝑃𝑥𝐵 ∗) = 

7.02, which was computed by (28). The left fuzziness-side 

and right fuzziness-side according to (5) are (𝑃𝑆1𝐵 ∗) = 0.87 

and (𝑃𝑆3𝐵 ∗) = 1.42, respectively. According to (6), the 

extrapolated fuzzy conclusion is (𝐵 ∗) = (6.1, 7.0, 8.4).  

According to FRI methods results, which are shown in 

Table V and Fig. 13, there is no obvious indication for the 

KH method, VKK-FRI, HCL-FRI, HTY-FRI, MACI-FRI, 

IMUL-FRI, and CRF-FRI to handle extrapolation case with 

multi-antecedent variables. In contrast, the KHstabilized-

FRI, HS-FRI, CCL-FRI, and the Incircle-FRI generate a 

conclusion with convex and normal results. 

Table VI presents a summary of the outcomes obtained 

from the chosen Fuzzy Rule Interpolation (FRI) methods 

based on the preceding examples. In this representation, the 

addition symbol (√) signifies that the technique achieved 

results consistent with the example's characteristics. whereas 

the minus sign (×) denotes instances where the method did 

not achieve results consistent with the example's 

characteristics. 

TABLE VI.  SUMMARY OF THE FRI METHODS AND THEIR CONFORMITY TO 

EXAMPLES (1, 2, 3, 4) 

Methods Example (1) Example (2) Example (3) Example (4) 

KH-FRI √ √ × × 

KHstb-FRI √ √ √ √ 

VKK-FRI √ √ × × 

CCL-FRI √ √ √ √ 

HS-FRI √ √ √ √ 

HTY-FRI √ × × × 

HCL-FRI √ × × × 

MACI-FRI √ √ × × 

CRF-FRI √ √ × × 

IMUL-FRI × √ × × 

Incircle-FRI √ √ √ √ 

 

VI. CONCLUSIONS 

The extension of the Incircle-FRI method includes 

enhancements to adapt to multiple fuzzy rules and multiple 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 226 

 

Maen Alzubi, EI-FRI: Extended Incircle Fuzzy Rule Interpolation for Multidimensional Antecedents, Multiple Fuzzy Rules, 

and Extrapolation Using Total Weight Measurement and Shift Ratio 

antecedent dimensions, as well as extrapolation capabilities. 

This extension concerns a modified computation for both 

weight and shift ratio. 

Wherein the modified weight considers all distances 

between the observation and rule antecedents, differing from 

the original Incircle-FRI, which exclusively considers the 

distance to the closest rule antecedents. Additionally, an 

extended shift ratio is introduced between the derived rule 

and observation to determine the fuzzy conclusion.  

The proposed modifications in weight and shift ratio 

calculation exhibit proficiency in ascertaining both 

interpolated and extrapolated fuzzy conclusions. The 

comparative analysis and results from the provided examples 

demonstrate the superior performance of the proposed 

extended Incircle-FRI method across all scenarios.  

This approach provides convexity and normality fuzzy 

inferences for multiple fuzzy rules characterized by 

multidimensional antecedents, including extrapolation 

scenarios. The applicability of Incircle-FRI depends on the 

inherent characteristics of the data and the specific problem 

domain under consideration.  Also, particularly well-suited 

for scenarios characterized by sparse rule bases, Incircle-FRI 

addresses challenges that traditional fuzzy systems encounter 

in providing precise inferences. In the future, we seek to 

apply this Incircle-FRI in different areas to determine its 

effectiveness and its ability to give the desired results, 

especially in those areas that have insufficient data. 
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