
Journal of Robotics and Control (JRC)
Volume 5, Issue 1, 2024
ISSN: 2715-5072, DOI: 10.18196/jrc.v5i1.20582 117

Addressing Challenges in Dynamic Modeling of
Stewart Platform using Reinforcement

Learning-Based Control Approach
Hadi YADAVARI 1*,Vahid TAVAKOL AGHAEI 2, Serhat İKİZOĞLU 3

1 Department of Mechatronic Engineering, Istanbul Technical University, Istanbul, Turkiye
2 AVL Research and Development Center, Istanbul, Turkiye

3 Department of Control and Automation Engineering, Istanbul Technical University, Istanbul, Turkiye
Email: 1 yadavari@itu.edu.tr, 2 vahit.tavakol@avl.com

3 ikizoglus@itu.edu.tr
*Corresponding Author

Abstract—In this paper, we focus on enhancing the performance
of the controller utilized in the Stewart platform by investigating
the dynamics of the platform. Dynamic modeling is crucial
for control and simulation, yet challenging for parallel robots
like the Stewart platform due to closed-loop kinematics. We
explore classical methods to solve its inverse dynamical model,
but conventional approaches face difficulties, often resulting in
simplified and inaccurate models. To overcome this limitation, we
propose a novel approach by replacing the classical feedforward
inverse dynamic block with a reinforcement learning (RL) agent,
which, to our knowledge, has not been tried yet in the context
of the Stewart platform control. Our proposed methodology
utilizes a hybrid control topology that combines RL with existing
classical control topologies and inverse kinematic modeling. We
leverage three deep reinforcement learning (DRL) algorithms
and two model-based RL algorithms to achieve improved control
performance, highlighting the versatility of the proposed approach.
By incorporating the learned feedforward control topology into
the existing PID controller, we demonstrate enhancements in the
overall control performance of the Stewart platform. Notably,
our approach eliminates the need for explicit derivation and
solving of the inverse dynamic model, overcoming the drawbacks
associated with inaccurate and simplified models. Through sev-
eral simulations and experiments, we validate the effectiveness
of our reinforcement learning-based control approach for the
dynamic modeling of the Stewart platform. The results highlight
the potential of RL techniques in overcoming the challenges
associated with dynamic modeling in parallel robot systems,
promising improved control performance. This enhances accuracy
and reduces the development time of control algorithms in real-
world applications. Nonetheless, it requires a simulation step
before practical implementations.

Keywords—Stewart Platform; Dynamic Modelling; Reinforcement
Learning; Deep Learning; Control.

I. INTRODUCTION

The primary goal of this study is to address the dynamical
modeling challenges encountered in the control of the Stewart

platform by utilizing a reinforcement learning (RL) approach.
The Stewart platform, widely used in various applications such
as flight simulators, driving simulators, and vibration testing for
large structures, poses unique difficulties in its control due to
its complex dynamics [1]–[3]. By employing an RL approach,
the study aims to develop a solution that can effectively handle
the complex dynamical modeling requirements of the Stewart
platform. One of the goals in the field of artificial intelligence
is to tackle complex problems by leveraging high-dimensional
sensory data [4]. RL is a specialized branch of Machine
Learning (ML) that revolves around an agent’s interaction with
its environment, guided by specific policies to maximize future
rewards [5]. The agent’s objective function is to optimize the
cumulative sum of these rewards, with the Bellman equation
serving as the foundation for defining optimal behavior. The
agent’s learning process is driven by a reward-penalty scheme,
where the quality of selected actions from the policy space
determines the outcomes [6]. In optimal control theory, a perfect
system model with comprehensive descriptions is typically
assumed [7]. However, such models often encounter issues
such as modeling errors, uncertainties, and computationally
expensive approximations. In contrast, RL operates directly on
measured observations, encompassing uncertainties and non-
linearities inherent in the system. Consequently, when dealing
with complex systems and situations where classical analytical
methods may yield inadequate control performance, RL is a
favorable choice [8]–[12].

Within the literature, numerous neural network methodolo-
gies have been proposed to address the forward kinematics of
the Stewart platform which is complex due to a set of high
nonlinear equations [13]–[16]; but in terms of RL, there are
few studies only. In a most recent study done by [17], deep RL
algorithms to tune the gain parameters of a PID controller are
used. This approach facilitated continuous learning and tuning

Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id

Journal of Robotics and Control (JRC) ISSN: 2715-5072 118

of the controller’s parameters. Different from this study, we
show how to learn the forward dynamical control block using
deep RL instead of only tuning PID control gains. In pursuit
of this objective, we first delve into a comprehensive study of
the platform’s dynamics. If the dynamical model of the system
was known precisely, we could perfectly control the platform.
The kinematic model represents how the platform moves, but
the dynamic model describes why the platform moves [18].
Control and simulation greatly rely on dynamic modeling, as
it plays a key role in these domains. Unlike serial robots, the
dynamic modeling of parallel robots is complicated due to the
closed-loop kinematics inherent in their design [10], [19].

There have been various suggestions for conducting dy-
namic analysis on parallel manipulators. One commonly used
approach is the traditional Newton-Euler formulation, which
is also employed to analyze the dynamics of general parallel
manipulators. This formulation offers a framework for assessing
the forces and torques acting on the system, allowing for a
comprehensive understanding of its dynamic behavior [20],
[21]. To accurately describe the system dynamics within this
formulation, it is crucial to derive the equations of motion for
each leg and the moving platform. A preferable approach for
achieving the dynamic formulation involves carefully selecting
a set of independent generalized coordinates and subsequently
deriving the dynamic equations using these coordinates and
their corresponding time derivatives. Typically, these coordi-
nates correspond to the positions of the moving platform. To
achieve this type of formulation, it is necessary to eliminate
internal forces and other passive joint variables. However, this
process results in a large number of equations, which can have
a negative impact on computational efficiency. We also have
the Lagrangian formulation that proves to be highly effective
in eliminating undesired reaction forces. However, the closed-
loop structure of parallel manipulators imposes constraints that
make it challenging and impractical to obtain explicit equations
of motion using a group of separate generalized coordinates
[22], [23].

As articulated, dynamical modeling has its fair share of
challenges. Here, we demonstrate one method to enhance com-
prehension of the subject matter. We derive dynamical equations
of motion using the principle of virtual work and the notion of
link Jacobian matrices, as explained in [24]. Python libraries for
symbolic mathematics (SymPy [25]) and numerical computing
(NumPy [26]) are used to formulate and solve equations of
motions represented in [24]. The primary challenge is to formu-
late the equation. Then we solve these equations by integrating
forward in time. We show that deriving the dynamical model
is a prohibitive task see Appendix A, and the final model is
inaccurate and contains many simplifications; consequently, it
is not suitable for real-time applications. While existing liter-
ature has made some attempts to address feedforward control
methods using a reinforcement learning approach in some cases

[27], [28], our current knowledge indicates a notable absence
of such investigations in the domain of the Stewart platform.
Therefore, we replace the classical feedforward inverse dynamic
block with an RL agent to apply the required actions, which
are the leg’s forces here, for different trajectory states. We
present an RL control topology to benefit from existing classical
control topologies, inverse kinematic modeling, and the inverse
dynamic of the system. We use the RL in a hybrid mode that
helps to increase the performance of the control.

Due to the complexity of dynamic modeling, obtaining its
derivation through conventional methods is challenging. Con-
sequently, many opt to omit dynamic models in feedforward
control, relying solely on feedback control in real-world ap-
plications. The proposed approach has the potential to offer a
solution to overcome this challenge. RL also offers a dynamic
approach that adapts to complex and nonlinear dynamics,
mitigating the shortcomings of classical feedforward inverse
dynamic blocks. By leveraging RL, the control system becomes
more adept at learning optimal strategies, thereby enhancing
precision while concurrently reducing the development time
traditionally associated with precise control algorithms [29].
This explicit integration of RL directly tackles the identified
challenges and presents a promising avenue for improving
Stewart platform control in real-world applications.

We benefit from three Deep Reinforcement Learning (DRL)
algorithms with two model-based RL algorithms. We first em-
ploy three DRL algorithms: the asynchronous advantage actor-
critic (A3C) algorithm [30], the Deep Deterministic Policy
Gradient (DDPG) approach [31], and the Proximal Policy
Optimization (PPO) technique [32] to send force action to six
legs motor directly beside the PID controller force output. Then
we try two model-based RL algorithms, namely probabilistic
inference for learning control (PILCO) [33] and model-based
policy optimization (MBPO) [34], first to learn the dynamic
model of the entire system and then utilize it to control the
Stewart platform like feedforward control.

In a second attempt to improve the work carried out in
[17], we propose a hybrid RL algorithm to learn a dynamical
model of the system, resulting in more sample efficiency, well-
suited to real-world applications like robotics [35], [36]. Even
though model-free RL algorithms have succeeded in many
areas, like video games and robotics, high sample complexity
can limit the usage of model-free algorithms to simulated
environments [31], [37]–[39]. Model-based RL algorithms use
significantly fewer samples. Model-based methods extract more
valuable information and are more data efficient than model-
free algorithms. However, they suffer from model bias, meaning
the model assumes it learned the environment’s dynamic accu-
rately. However, a poorly learned model may result in poor
performance [34]. As we explain in Section IV the selected
model-based RL algorithms address the model bias differently.
Like three model-free algorithms, the two model-based RL

Hadi YADAVARI, Addressing Challenges in Dynamic Modeling of Stewart Platform using Reinforcement Learning-Based
Control Approach

Journal of Robotics and Control (JRC) ISSN: 2715-5072 119

algorithms are highly suitable to handle the continuous action-
state spaces characteristic of the Stewart platform. PILCO relies
on analytic gradient computation, and MPBO utilizes ensembles
of models. By employing the probabilistic model (PILCO)
and ensembles (MPBO), these two model-based algorithms are
capable of achieving model-free performance with significantly
fewer samples. To sum up, we experiment with five distinct
RL algorithms using a proposed control framework. By adding
the learned feedforward control topology by model-free and
model-based RL algorithms to the existing PID controller, we
demonstrate a noticeable enhancement in the overall control
performance of the Stewart platform.

Regarding the search for the most effective strategy for the
control of robot manipulators, DRL has demonstrated its effi-
ciency. Nonetheless, there is considerable scope for enhancing
its applicability in controlling parallel robots, motivating us to
explore ways to fill this gap. The current paper’s contributions
are driven by the need for a dynamic model system that
enhances the control performance of parallel robots while
reducing the complexity of deriving the system’s dynamic
model. To summarize, these contributions, facilitated by the
RL algorithm, can be outlined as follows:

1) Enhancing the efficacy of a conventional control loop
applied to parallel robots through the implementation
of a suggested RL-based feed-forward loop. The inte-
gration of a Predictive RL agent within the feedforward
control loop, in conjunction with the classical control
loop, augments the collective control performance.

2) Simplifying the requirements for deriving the classical
dynamic model used in the feed-forward control loop.
The suggested RL topology eliminates the necessity to
formulate a complex dynamical model which is also a
time-intensive task.

3) Performing performance comparison with five DRL
algorithms to explore the control capability of a
parallel robot. We employ a combination of model-
free and model-based RL algorithms and subsequently
conduct a comparative analysis, explaining the respective
advantages and disadvantages within the context of the
Stewart platform.

The rest of this paper is organized as follows: After reviewing
kinematics and a common control strategy for the Stewart
platform in Section II, we try to achieve a dynamic model of the
platform via a classical method in Section III. In Section IV we
present our approach to replacing the feed-forward dynamical
model with a RL agent. The experimental setup and results are
provided in Section V. The final observations of the paper and
possible future works are presented in Section VI.

II. KINEMATICS AND CONTROL STRATEGY OF STEWART
PLATFORM

Calculation of the inverse kinematic of the Stewart plat-
form is straightforward [40]. Therefore, we perform inverse
kinematic modeling to improve the RL agent and final con-
trol performance. The explicit mathematical nature of inverse
kinematics in terms of parallel robots accelerates the learning
process for the RL agent. Because, by providing precomputed
solutions, this approach substantially reduces the time and
computational resources required for the RL agent to deduce
these kinematic relationships independently. Fig. 1 illustrates a
drawing of the kinematics and coordinate system of the Stewart
platform.

Fig. 1. Drawing of the kinematics and coordinate system of the Stewart platform [17]

There are two coordinate systems, base Bxyz and moving
platform Mxyz . Since we have six legs in the Stewart platform
design, we have six attachment points in both the base and
motion platforms. In the inverse kinematic, the goal is to
calculate the length of each leg {l1, l2, l3, l4, l5, l6} given the
pose of the moving platform, which means the position vector,
P = [Px Py Pz], and the orientation vector, O = [ϕ θ ψ]. We
can calculate the connecting point coordinates through Equation
(1).

Ai =

AxiAyi
Azi

 =

rp cos(υi)rp sin(υi)
z

 , {
υi =

iπ
3 − β

2 i = 1, 3, 5

υi = υi−1 + β i = 2, 4, 6

(1)
Therefore, we have all attachment points coordinates (Bi and

Mi) for the given separation angles of the υbi in the base
platform and the υmi for the motion platform. However, we
calculated each attachment point of the moving platform in its
coordinate system. Nonetheless, given the position and orienta-
tion of the moving platform, we want to calculate each point’s
coordination regarding the base. Coordinate transformations
simplify mathematical expressions, decouple limb motions, and
provide a unified representation. In order to transform the
moving platform coordinate frame with respect to the base
platform, we convert the pose of the end-effector using a
translation position vector P Equation (2a) and a rotation matrix
BRT Equation (2b) [41].

Hadi YADAVARI, Addressing Challenges in Dynamic Modeling of Stewart Platform using Reinforcement Learning-Based
Control Approach

Journal of Robotics and Control (JRC) ISSN: 2715-5072 120

P = [Px Py Pz]
T (2a)

BRT =

c(θ)c(ψ) c(ψ)s(ϕ)s(θ)− c(ϕ)s(ψ) s(ϕ)s(ψ) + c(ϕ)c(ψ)s(θ)
c(θ)s(ψ) c(ϕ)c(ψ) + s(ϕ)s(θ)s(ψ) c(ϕ)s(θ)s(ψ)− c(ψ)s(ϕ)
−s(θ) c(θ)s(ϕ) c(ϕ)c(θ)

(2b)

Equation (3) calculates the position vector using the position
and orientation matrices. The actuator length is then obtained
as li = ||Li||.

Li = (BRT)Mi + P −Bi i = 1, 2, ..., 6. (3)

where Mi and Bi are the attachment point coordinates in
moving and base platform frames, respectively.

After inverse kinematic calculation, we want to control the
platform. It means we want the moving platform to reach
the desired reference pose. Plenty of control techniques have
been developed for robotic manipulators, such as a nonlinear
model and a multi-input/multi-output for multiple degrees of
freedom robots [42]–[45]. However, in industry, controllers
usually control individual joints through drivers linearly [46].
Fig. 2 shows one of the known control topologies of the Stewart
platform, which uses the length measurement of each leg as
feedback in the closed-loop system [47].

Fig. 2. General joint space control topology of the Stewart platform with Feedforward
control extension.

In Figure 2, the parameter q is the linear displacement
of an actuated prismatic joint which is equal to each leg’s
length and qd is the desired linear displacement of legs which
is calculated by the inverse kinematic model. Instead of the
Task Space control, measuring the position and orientation
of the end-effector, the controller is implemented in the joint
space, where we calculate the joint space error eq . This control
topology converts the desired trajectory to the desired actuators’
lengths through the inverse kinematic model, which we derived
mathematically. Then, the controller calculates the required
actuator torque τ . Having the inverse dynamic model of the
system has the potential to enhance the efficiency of the
controller, as illustrated in the control topology. Nonetheless,
in Section III we demonstrate that obtaining and resolving the
dynamic model of the Stewart platform is intricate. To address

this complication, as outlined in Section IV, we substitute this
loop with an RL agent. This alteration is intended to address
the aforementioned challenge.

III. DERIVING AND SOLVING DYNAMICAL EQUATIONS OF
MOTION

To derive the dynamical equations of the motion, the prin-
ciple of virtual work and the notion of link Jacobian matrices,
as outlined in [24], are employed and derived in Appendix
A. As demonstrated in the appendix, the main challenge is to
formulate the equations. To address this, we employ Sympy to
methodically compose and derive these equations in a concise
and organized manner. The code is accessible in the open-
source repository provided by [48]. Despite leveraging the
Sympy library and its advantages for handling the formulation,
it remains intricate in that context. The task of deriving the
inverse kinematics of the Stewart platform with considerations
like the elimination of joint frictions is notably laborious. Once
we engage in experiments involving the simulated Stewart
platform in Gazebo [49], it becomes evident that its dynamic
model is considerably more detailed and intricate than the one
we formulated mathematically. It contains features like friction,
damping, and other dynamical values. We ignored most of
these features to model the Stewart platform’s inverse dynamic.
Otherwise, formulation and solving dynamic equations would
be much more challenging tasks.

Upon achieving this derived formulation, the next required
step involves real-time solutions to enable its application.

A. Solving Dynamical Equations of Motion

We solve the dynamical equations using numerical methods.
For solving the equations, we define a trajectory for the moving
platform. It means that we need to specify X , Ẋ , and Ẍ . The
algorithm used to solve the inverse dynamic for specific points
is described in Algorithm 1:

Algorithm 1: Numerical calculation of the inverse
dynamic for the given point

Calculate the Jacobians: Jp, Jx, and Jy are calculated
for the given X and inertial properties;
Calculate the Forces: Fp, Fx, Fy , and Fz are calculated
for the given X , Ẋ , Ẍ , and inertial properties;
Calculate the Leg Forces: The required leg forces are
calculated via inverse dynamic Equation 45.

We use the Solver module of the SymPy library to numer-
ically solve the derived inverse dynamics. For every value of
X , Ẋ , and Ẍ without considering orientation, it takes about
6 to 7 seconds to complete all these calculations. In the case
of orientation, the calculation takes too long. Some test point
results are given in Table I. The experiments were accomplished

Hadi YADAVARI, Addressing Challenges in Dynamic Modeling of Stewart Platform using Reinforcement Learning-Based
Control Approach

Journal of Robotics and Control (JRC) ISSN: 2715-5072 121

on Amazon EC2 (Amazon Elastic Compute Cloud) R6a in-
stances [50]. These instances are equipped with 3rd generation
AMD EPYC processors. Specifically, we utilized the r6a.xlarge
instance type, which includes 4 CPUs with a turbo frequency
of 3.6 GHz and 32 GiB of memory.

Some points for orientation took too long (26 seconds and
more) to calculate the final answer. To speed up the calculation
of forces for a set of points (trajectory), Sympy expressions
are converted to Numpy utilizing the Lambdify method. Inverse
dynamic calculations take a long time and are complex to track.
For this reason, we found it appropriate to make evaluations
on various examples. During these processes, we observed a
large jump in required forces for values of Pz around zero,
which is not realistic to meet in practice. An example of this
phenomenon is Example 1 where the trajectory is defined as
in Equation (4). Related curves are presented in Fig. 3 (a), (b),
(c).

X = [0.001 ∗ sin t, 0.001 ∗ sin t, 1 + sin t, 0, 0, 0] (4)

Fig. 3. Platform trajectories of Example 1 and the inverse dynamic solutions.

Fig. 3 (d) shows the inverse dynamic solution for the trajec-
tory 4, which takes 9 min to solve for 70 separate time points
between 0 to 7 seconds. Around 4.8 s we have Pz close to
zero. In order to verify our observation about the trajectory
values around zero, we performed further experiments. First,
by moving the Pz trajectory a bit up as shown in Equation (5)
and Fig. 4 (a), (b), (c), we observe that the effect of this point
has been reduced but still causing a significant jump in the
required forces. Fig. 4 (d) shows the inverse dynamic solution
for this Example 2 trajectory, which took 8 min to solve for 70
separate time points between 0 to 7 seconds.

X = [0.001 ∗ sin t, 0.001 ∗ sin t, 1.1 + sin t, 0, 0, 0] (5)

Second, we move the Pz trajectory a bit down from 1.1 to 1
and increase the amplitude by 10 percent as shown in Equation
(6) and Fig. 5 (a), (b), (c). Although not as high as in Example
1, we observe still large values for the forces corresponding

Fig. 4. Platform trajectories of Example 2 and the inverse dynamic solutions.

to the near-zero values of Pz . The inverse dynamic solution is
shown in Fig. 5 (d).

X = [0.001 ∗ sin t, 0.001 ∗ sin t, 1 + 1.1 ∗ sin t, 0, 0, 0] (6)

Fig. 5. Platform trajectories of Example 3 and the inverse dynamic solutions.

Finally, we investigate the fourth example limiting z as
defined in Equation (7) and shown in Fig. 6 (a), (b), (c) as
Example 4. Fig. 6 (d) shows the inverse dynamic solution for
this trajectory, which takes 9 min to solve for 70 separate time
points.

Fig. 6. Platform trajectories of Example 4 and the inverse dynamic solutions

X = [1 + 0.5 ∗ sin t, 0.5 ∗ sin t, 1 + 0.5 ∗ sin t, 0, 0, 0] (7)

Hadi YADAVARI, Addressing Challenges in Dynamic Modeling of Stewart Platform using Reinforcement Learning-Based
Control Approach

Journal of Robotics and Control (JRC) ISSN: 2715-5072 122

TABLE I. SIMPLE POINTS CALCULATION OF THE INVERSE DYNAMIC FORMULATION

Test Point X Ẋ Ẍ Result leg Forces run-time(s)
point 1 [1,1,1,0,0,0] [1,0,0,0,0,0] [0,0,0,0,0,0] [-0.25,0.6,-2.5,-0.03,0.68,-2.3] 6.5
point 2 [2,1,1,0,0,0] [1,1,1,0,0,0] [0,0,0,0,0,0] [-2.5,7,-9,0.35,8.9,-7.6] 6.5
point 3 [2,2,2,0,0,0] [1,1,1,0,0,0] [1,1,1,0,0,0] [2.65,2.043,-11.79,7.09,5.53,-9.49] 6.6
point 4 [1,1,1,1.047,0,0] [0,0,0,0,0,0] [0,0,0,0,0,0] [-1.4,0.36,-1.37, -1.9,-1.86, 1.2] 45.2
point 5 [1,1,1,1.047,1,0] [0,0,0,1,1,1] [0,0,0,0,0,0] [6.6,-6.03,1.6,-1.69,1.15, 0.49] 112.1

This is the problem with this prolonged method for real-time
control applications. We note that we even ignored dynamic
features like friction and damping to simplify the formulation
and calculations. In addition, we assumed that the manipulator
Jacobian matrix Equation (28) is not singular. If Jp is singular,
we can’t solve the inverse dynamic equations. Even though
using the inverse dynamic model in feedforward could increase
the controller performance, the numerical model is too slow to
respond. One could linearize around the equilibrium point to
have a more straightforward and fast-to-run model. However,
we aim to learn such a model through RL without explicitly
deriving all formulation that ignores many dynamical features.
The classical methods also solve this simplified model with
further assumptions under linearization, which is not optimal.
We aim to learn the complex dynamic model with all features
through RL and utilize it in the feedforward control loop.

IV. FEED FORWARD CONTROL VIA REINFORCEMENT
LEARNING

The disadvantages of the method which uses the inverse
dynamic model and a classical feedback control loop structure
as presented in Fig. 2 are the complexity of both derivation and
solving of the equations. Determining the inverse dynamics is
a tough task. In addition, following various simplifications, it
becomes necessary to once again linearize this model around
a designated equilibrium point for practical applications [51],
[52]. Yet, this process is task-specific, and we need to do all
steps in case new changes are made to the design and structure
of the platform. In this section, we present an RL control
topology to benefit from existing classical control topologies,
inverse kinematic modeling. We use RL in a hybrid mode that
helps to increase the performance of the control, as presented
in Fig. 7.

We form RL and control blocks similar to the RL setup
experimented in [17]. However, we change the action space
completely from changing PID gains to applying force to
each leg. As shown in Fig. 7, we also benefit from inverse
kinematic modeling, feedback control loop, and PID controller.
The essential components of the RL setting are as below:
1. Action space: The action space at time step t can be
expressed as:

At = [f1 f2 f3 f4 f5 f6] (8)

Fig. 7. Propsed RL topology in the control of Stewart platform in a feedforward manner

where f1, f2,..., and f6 represent the applied force to each leg
of the Stewart platform.
2. State space: We define our problem states as Equation (9):

X = [x y z ϕ θ ψ] (9)

where X is the pose vector of the end-effector at time step t.
It is worth noting that the pose velocity Ẋ and the difference
between the target pose of the end-effector and the actual pose
∆X can be considered as additional state variables. However, it
is important to be mindful that increasing the dimensionality of
the state space can lead to slower convergence of the algorithms
[53], [54]. However, we utilize ∆X directly in the reward setup,
and the pose velocity Ẋ checks whether the episode is done.

For the three model-free DRL algorithms, we define a similar
reward function introduced in [17]. We consider the well-known
reaching task as our goal.
3. Reward setup: We choose a quadratic reward function
similar to work in [55] and given in Equation (10), with a
modification that in case of any goal reaching failure or insta-
bility of the system, the agent is being penalized significantly
by a value of −1000.

Rt =

{
−∆XTV∆X for D < δ

−1000 otherwise
(10)

In Equation (10), V ∈ R4x4 is a diagonal positive definite
weight matrix for the errors, D = exyz is the distance to the
goal value, and δ defined as a threshold distance to handle
the falling of the platform. For the reward function defined in
Equation (10) with the desired pose having index d, error vector
is calculated as ∆X = [exyd, eϕ, eθ, eψ] containing all the
error terms given in Equations (11a), (11b), (11c), and (11d).

Hadi YADAVARI, Addressing Challenges in Dynamic Modeling of Stewart Platform using Reinforcement Learning-Based
Control Approach

Journal of Robotics and Control (JRC) ISSN: 2715-5072 123

exyz =
√

(x− xd)2 + (y − yd)2 + (z − zd)2 (11a)

eϕ = |ϕ− ϕd| (11b)

eθ = |θ − θd| (11c)

eψ = |ψ − ψd| (11d)

The three DRL algorithms utilize a parameterized policy
function to enable the utilization of continuous actions or the
ongoing adjustment of leg force values. This policy function
takes the robot’s state, represented as X, as inputs and generates
continuous leg forces as outputs using its corresponding neural
network. Nevertheless, directly learning the policy network
comes with inherent high variability. This challenge prompted
the introduction of actor-critic methods [56]–[58]. In this
paradigm, the ”Critic” assesses the value function Q(s, a|WQ)
using the Bellman equation, akin to Q-learning. Subsequently,
the ”Actor,” parameterized by the function µ(s|Wµ)”, adjusts
the policy distribution following the guidance provided by the
Critic. While these three DRL algorithms share the foundational
Actor-Critic framework, they diverge in their architectures,
which we elucidate below.

The first algorithm we consider is the DDPG approach, an
adaptation of the deterministic policy gradient (DPG) algorithm
[59] that incorporates deep learning principles. DDPG stands
as an off-policy and model-free Deep DRL algorithm capable
of acquiring proficient policies for various tasks, even when
presented with low-dimensional observations like joint angles
and Cartesian coordinates [31]. Implementing DDPG involves
a relatively simple actor-critic architecture, employing parame-
terized actor and critic functions: µ(s|Wµ) and Q(s, a|WQ). To
enhance learning stability, DDPG incorporates target networks
for both the actor and critic functions. This entails creating
duplicates of the actor and critic networks, referred to as
µ′(s|Wµ′) and Q′(s, a|WQ′), respectively. The next algorithm
is A3C, an on-policy and model-free DRL approach. A notable
benefit of A3C lies in its utilization of parallel actor-learners,
which contribute to stabilizing the training process. A3C has
proven successful in addressing a diverse range of continuous
motor control challenges [30]. While DDPG is trained off-
policy using samples from a replay buffer to mitigate sample
correlations, A3C employs an alternative approach. Instead
of relying on experience replay, A3C simultaneously runs
multiple agents asynchronously across multiple instances of the
environment. This strategy aims to reduce the issue of data
correlation. For our third DRL algorithm, we utilize PPO, a
data-efficient and dependable variant derived from the trust
region policy optimization (TRPO) approach [60]. Similar to
the prior algorithms, PPO is also a model-free, on-policy
method that follows a pattern of gathering data from the policy
and then undergoing multiple optimization epochs to enhance
the policies.

In the subsequent algorithms, we explore two model-based
RL approaches. However, the fundamental question arises: why
should we consider employing a model-based RL algorithm?
In general, an agent in RL can make decisions in two main
ways, model-based and model-free. In model-based RL, the
agent utilizes its model to decide what action to take. However,
in model-free RL, without having a model, the agent tries to
learn the optimum policy. The main question is if we need
such a model to take action. Model-free RL algorithms have
succeeded in many areas, like video games and robotics, in
recent years [31], [37], [38]. However, high sample complex-
ity limits their usage to simulated environments mostly. On
the other hand, model-based RL algorithms use significantly
fewer samples than model-free ones. Therefore, by learning a
dynamical system model, we expect sample efficiency, which
is very important in real-world applications like robotics [36].
In general, model-based methods extract more valuable infor-
mation and are more data efficient than model-free algorithms.
However, they suffer from model bias, meaning the agent thinks
it accurately learned the environment’s dynamic. Whereas, a
poorly learned model results in poor performance. Many model-
based RL algorithms have tried to address the model bias
differently. Many successful machine learning applications are
based on data augmentation [61]–[63]. Sutton in [64] presents
a model-based Dyna algorithm in which a model is learned
in a supervised manner through collected data and new data
generated under the model. The policy improvement utilizes the
model data. But, as a problem of model-based RL, modeling
errors could cause diverging temporal-difference updates. In
Dyna and standard RL framework, we want to maximize the
expected return from acting according to policy π in the
environment under some dynamics p:

π⋆ = argmaxπη[π] = argmaxπ Eπ
T∑
t=0

[γ∞r(st, at)] (12)

However, the learned model is commonly reliable for a
single-step predictive model. However, the modeling errors
could sum up for the long horizon, resulting in poor perfor-
mance for long rollouts.

We experiment model-based RL approach first with the
MBPO algorithm which utilizes short rollouts from the pre-
dictive model rather than full-length rollouts starting the initial
state distribution to gather data and update the policy [34].
MBPO addresses three key aspects to enhance the Algorithm:
the parameterization of the predictive model pθ, the policy
optimization π based on model samples, and the method of
querying the model for samples. In MBPO, the predictive model
utilizes a bootstrap ensemble of dynamic models, denoted as
p1θ, ..., p

B
θ , which are probabilistic neural networks that generate

Gaussian parameterizations [34]. To ensure diversity in the dy-
namics models, MBPO uniformly selects one predictive model

Hadi YADAVARI, Addressing Challenges in Dynamic Modeling of Stewart Platform using Reinforcement Learning-Based
Control Approach

Journal of Robotics and Control (JRC) ISSN: 2715-5072 124

at random from the ensemble. This approach allows for the
sampling of different dynamic models. For policy optimization,
MBPO employs the soft actor-critic (SAC) algorithm [37].
When the horizon span k is short, MBPO uses the predictive
model to conduct multiple short rollouts. This approach helps
generate a substantial collection of model samples for policy
optimization. This comprehensive set of model samples enables
MBPO to take multiple policy gradient phases per environment
sample, exceeding the capabilities of model-free algorithms
[34].

As a second model-based RL approach we experiment with
PILCO that uses its observed samples efficiently. The problem
with the model-based methods is model errors. In PILCO, the
dynamic model of the system is approximated by Gaussian
processes. In this manner, PILCO addresses the model-bias
problem of the model-based RL while using less sample of
data. The assumption in PILCO or model-based RL is that we
do not have prior or expert knowledge about the model of the
system, like differential equations for the dynamics. However,
we want to learn the model from scratch.

PILCO utilizes non-parametric probabilistic Gaussian pro-
cesses (GPs) as the basis for its dynamic model, considering
model uncertainties as noise in the system. To account for these
uncertainties during planning and policy evaluation, PILCO
incorporates them into its framework. For policy search and
update, PILCO employs an analytic policy gradient method,
enabling effective optimization of the policy [65]. PILCO
considers model dynamic as Equation (13):

xt+1 = f(xt, ut) (13)

The system under consideration involves continuous-valued
states denoted by x ∈ RD and controls denoted by u ∈ RF . The
transition dynamics of this system, represented by the function
f , are not known prior. The objective of policy improvement
is to discover a deterministic policy or controller denoted as
π, which maps states x to actions u such that π(x, θ) = u.
The goal is to minimize the expected return associated with
the policy:

Jπ(θ) =

T∑
t=0

Ext
[c(xt)] (14)

where c(xt) is the negative reward or cost of being in state x
at time t.

Regarding policy optimization, PILCO aims to maximize
the expected cumulative reward within a finite time horizon,
utilizing the learned Gaussian process (GP) model for each
potential policy. This involves simulating the system forward
in time and calculating the expected cumulative reward. The
optimization problem is subsequently solved using gradient-
based techniques such as the conjugate gradient or L-BFGS-

B method. After optimization, PILCO continues collecting the
dataset by executing the policy and updating the probabilistic
model of the system dynamics. This allows the algorithm to
learn effectively with relatively little data, which is particularly
useful when data collection is expensive or time-consuming.
However, we note that PILCO is very computationally expen-
sive in model and policy optimization steps. In terms of the
exploration-exploitation trade-off, PILCO employs a saturating
cost function that facilitates natural exploration when the pre-
dictions are distant from the target [65]. This means that the
policy explores more actively in situations where predictions
are far from the target. Conversely, when predictions are close
to the target, the policy remains close to the learned trajectory
and focuses on exploitation. The fast learning speed of PILCO
makes it suitable for controlling real-world applications such as
robotics. However, it is worth noting that PILCO is currently
limited to episodic setups.

V. EXPERIMENTS SETUP AND RESULTS

We experiment on the similar simulated Stewart platform
presented in [17] with our newly proposed algorithm, where
the same inertial properties of the experimented platform are
shown in Table II. The inertial characteristics impact how the
platform responds to external forces and influences the overall
behavior that the learning process must adapt to.

TABLE II. INERTIAL PROPERTIES OF THE EXPERIMENTED STEWART PLATFORM

Link Type Mass (kg) Ixx(kg.m2) Iyy(kg.m2) Izz(kg.m2)
platform cylinder 0.1 0.065 0.065 0.128

bottom ball sphere 0.01 0.00004 0.00004 0.00004
top ball sphere 0.01 0.00001 0.00001 0.00001
cylinder cylinder 0.1 0.02777 0.02777 0.00012

shaft cylinder 0.1 0.027725 0.027725 0.00003

Our objective is to guide the moving platform to achieve
the target pose (reaching task) defined as

[
x = 0, y = 0, z =

1.1, ϕ = 0, θ = 0, ψ = 30
]
, originating from the initial state

characterized by the pose
[
x = 0, y = 0, z = 0.2, ϕ =

0, θ = 0, ψ = 0
]
. This transition entails a heave motion of

90 cm and a yaw rotation of 30 deg for the platform. It’s
worth noting that these specific poses were experimented with
in a prior study [17], and we opted for the same target to
facilitate comparative analysis and validate the effectiveness of
the proposed methodology. Across all conducted experiments,
we establish the episode count at 500, with a maximum of
200 steps allowed per episode. These values were determined
based on a careful consideration of the learning process and
computational efficiency. The choice of 500 episodes allows
for a sufficiently iterative learning process, allowing the re-
inforcement learning agent to adapt and refine its strategies
over a substantial number of training iterations. Meanwhile,
setting a maximum of 200 steps per episode is a balance
between capturing complex learning scenarios and managing
computational resources effectively. At the beginning of each

Hadi YADAVARI, Addressing Challenges in Dynamic Modeling of Stewart Platform using Reinforcement Learning-Based
Control Approach

Journal of Robotics and Control (JRC) ISSN: 2715-5072 125

episode, the robot is positioned in the initial pose, while the
agent’s distance threshold is defined as δ = 1.5 m. Within
each learning episode, the platform is subject to a penalty if it
deviates significantly from the desired final pose (surpassing a
distance of 1.5 m). The penalty value is configured as −1000,
as indicated in Equation 10. The penalty value was chosen to
strongly discourage undesired actions and deviations during the
learning process and the distance threshold was determined in
alignment with a comparable setup to [17]. The weight matrix
for error diagonals is established as V = diag[1, 1, 1, 1]. The
neural network structure for all three algorithms, along with
their respective hyperparameters, is detailed in Table III and
Table IV, respectively. In the case of MBPO, the network
architectures, and hyperparameters are specifically presented in
Table V.

TABLE III. ARCHITECTURE OF THE NEURAL NETWORKS OF THE DRL ALGORITHMS

DRL algorithms layer Actor/target-Actor Critic/target-Critic
input numbers 6 6
1st activation Relu. Relu
layer 1 units 400 400

2nd activation Relu Relu
PPO layer 2 units 300 300

3rd activation - Relu
layer 3 units - 200

final activation. sigmoid linear
final output nums. 3 (denormalized) 1

std activation. softplus -
std output nums. 6 -
input numbers 6 6
1st activation Relu. Relu
layer 1 units 400 400

2nd activation Relu Relu
layer 2 units 300 300

A3C 3rd activation - Relu
layer 3 units - 200

final activation. sigmoid linear
final output nums. 6 (denormalized) 1

std activation. softplus -
std output nums. 6 -
input numbers 6 6+3
1st activation Relu. Relu
layer 1 units 400 400+32

DDPG 2nd activation Relu Relu
layer 2 units 300 300 + 16

output activation. sigmoid linear
output nums. 6 (denormalized) 1

For PILCO, a similar reward function configuration is used.
In PILCO, the cost function imposes a penalty based on the
Euclidean distance between the current state and the target
state. Although a defined reward is obtained from the reaching
task, it is not utilized in the policy optimization of PILCO.
Instead, only distance penalties are employed to address the
task, as specified in the PILCO paper [33]. In the PILCO
setup, reaching the target with high speed often directs to
overshooting, resulting in elevated long-term costs. Therefore,
the effects of the failing task resulting in a negative -1000
reward are not directly considered in the PILCO’s policy
optimization, but it shows its effect as the Euclidean distance
from the target is too high in case of failure. We determine
the specific hyperparameters used in PILCO according to our

TABLE IV. ARCHITECTURE OF THE NEURAL NETWORKS OF THE DRL ALGORITHMS

DRL Algorithms Hyper-parameter Value
PPO discount factor (γ) 0.99

actor learning rate 0.0005
critic learning rate 0.001

update interval 5
clip ration 0.1

GAE parameter (λ) 0.95
Entropy coefficient c2 0.01

A3C discount factor (γ) 0.99
actor learning rate 0.0005
critic learning rate 0.001

update interval 5
Entropy coefficient (β) 0.01

DDPG discount factor (γ) 0.99
actor learning rate 0.0001
critic learning rate 0.001

batch size 64
target network τ 0.001

Ornstein-Uhlenbeck process - θ 0.15
Ornstein-Uhlenbeck process - σ 0.2

TABLE V. HYPER-PARAMETERS AND NEURAL NETWORK
ARCHITECTURE USED IN THE TRAINING OF MBPO

Layer/HP Value/Actor Critic
SAC in MBPO number of inputs 6+6 6+6

1st activation ReLU. ReLU
1st layer units 256 256

output activation linear linear
MBPO discount factor (γ) 0.99

learning rate 0.0003
target smoothing coe.(τ) 0.005

Temperature parameter (α) 0.02

reaching task environment shown in Table VI.

TABLE VI. HYPER-PARAMETERS OF PILCO

Hyperparameter value
GP (for each 6 GP model) Length Scale different for each GP

Kernel Variance different for each GP
Noise Variance different for each GP

Policy Search Hyperparameters Number of Policy Updates 200
Step Size 200

Exploration Hyperparameters Exploration Noise 0.5
Exploration Horizon 20
Number of Rollouts 200

Fig. 8 shows the final reaching task rewards of the five RL
algorithms, 3 DRL, and 2 model-based RL algorithms. We
experiment with each algorithm 5 times and average over the
runs to have a valid scientific comparison. As shown in Fig.
8, all five rewards started from negatively large values toward
converged to zero.

The best steady performance is for PILCO with the minimum
convergence step. The worst convergence is for MBPO even
though it is more stable in the last steps in comparison to
the other three model-free algorithms. In general, model-based

Hadi YADAVARI, Addressing Challenges in Dynamic Modeling of Stewart Platform using Reinforcement Learning-Based
Control Approach

Journal of Robotics and Control (JRC) ISSN: 2715-5072 126

Fig. 8. Reaching task rewards of the five RL algorithms.

algorithms tend to exhibit more stable convergence compared
to model-free algorithms.

The overall control performance of the three model-free algo-
rithms is more stable than the result experimented in [17] with
faster convergence. Comparing the quantitative time-domain
response of the results obtained from the newly proposed
method with those in [17], we observe an approximate 96%
enhancement in rise time and a 75% improvement in settling
time, despite a similar overshoot observed in [17] in the PILCO
case. This underscores a substantial improvement achieved by
integrating reinforcement learning (RL) into the new proposed
structure, particularly in the feedforward loop section. It is
noteworthy that the RL methodology applied in [17] focused
solely on tuning the PID values of the controller, whereas in
our approach, we learn a dynamic model. The utilization of
this acquired knowledge contributes to an overall performance
improvement alongside the classical PID controller. PILCO
shows great performance, in terms of stability and convergence,
against the other three model-free and one model-based RL
algorithms. It learns the system’s dynamics well and utilizes
it to optimize the policy, resulting in the best performance
PILCO often integrates a probabilistic model and incorporates
uncertainty into its predictions. This can enhance its adaptability
to varying conditions, contributing to stability in learning tasks.
Furthermore, PILCO may leverage a model-based approach
that refines its understanding of the system dynamics, leading
to more efficient convergence The only disadvantage of the
PILCO algorithm is that it is very computationally expensive.
We show the result of GPU utilization in Fig. 9. As we see
each training PILCO run takes over 10 hours, almost 10 times
longer than model frees’ training time, and 3 times longer than
the other model-based algorithm (MBPO). In addition to the
duration, GPU utilization and GPU temperature in training with
the PILCO algorithm are very high as shown In Fig. 9. Overall,
even though model-based algorithms are sample efficient, they
are computationally expensive, requiring more computational
resources.

Regarding the time response performances of the five RL
algorithms, we run an episode for each learned algorithm
and compare their performances. Fig. 10 illustrates the time-
domain performance of the moving platform’s states for the

(a) Process GPU Utilization Percentage

(b) Process GPU Temperature

(c) GPU Memory Allocation Percentage

Fig. 9. Computation time and GPU usage of different RL algorithms in training

five RL algorithms. Our primary objectives for the reaching
task involve achieving a heave of 1.1 with a 30-degree yaw. As
depicted in Figure 10, PILCO exhibits the best performance,
demonstrating minimum rise time with a stable response and the
least steady-state error, particularly for these two main goals.
The platform’s roll, pitch, surge, and sway performance for the
learned control scenario is also presented, showing comparable
performance to heave and yaw in these four movements,
surpassing PILCO in these aspects. It’s worth noting that since
we have minimal movement in roll, pitch, surge, and sway, we
have magnified the y-axis for these variables to facilitate a clear
examination of their time response. PILCO’s probabilistic and

Hadi YADAVARI, Addressing Challenges in Dynamic Modeling of Stewart Platform using Reinforcement Learning-Based
Control Approach

Journal of Robotics and Control (JRC) ISSN: 2715-5072 127

model-based approach allows it to effectively capture system
uncertainties, enabling better adaptability to dynamic changes
in the environment. This adaptability contributes to PILCO’s
reduced rise time, as it can swiftly adjust its control policies in
response to evolving conditions. Moreover, the incorporation
of uncertainty modeling aids PILCO in minimizing steady-
state errors. By accounting for and mitigating uncertainties,
PILCO exhibits enhanced precision in maintaining the desired
pose. The stability exhibited by PILCO can be linked to its
comprehensive understanding of system dynamics through a
probabilistic and model-based approach. This enables PILCO
to navigate the learning process with increased robustness,
resulting in more stable and reliable control performance. Table
VII shows the time domain performances of the 5 algorithms.

TABLE VII. TIME DOMAIN SPECIFICATIONS OF HEAVE AND YAW STATES OF FIVE RL
ALGORITHMS

Algorithm Specification Heave Yaw
Overshoot (%) 11.76 24.7

PPO Settling Time (s) 15.55 15.95
Rise Time (s) 0.05 0.55

Positioning Error 0.05 (cm) 0.16 (rad)
Overshoot (%) 9.61 25

A3C Settling Time (s) 15 15.45
Rise Time (s) 0.01 0.35

Positioning Error 0.03 (cm) 0.15 (rad)
Overshoot (%) 4.25 50.8

DDPG Settling Time (s) 1.09 13.9
Rise Time (s) 0.41 0.67

Positioning Error 0.02 (cm) 0.12 (rad)
Overshoot (%) 4.26 52.08

MBPO Settling Time (s) 3.18 7.23
Rise Time (s) 1.11 1.86

Positioning Error 0.1 (cm) 0.2 (rad)
Overshoot (%) 12 56.25

PILCO Settling Time (s) 0.65 1.05
Rise Time (s) 0.01 0.15

Positioning Error 0.01 (cm) 0.01 (rad)

Fig. 11 presents the action applied via each RL agent in
every step of the running with a trained RL agent. MBPO
always selects to go to the boundaries of action spaces. The
boundary-seeking tendency exhibited by MBPO, stands as a
crucial determinant in the suboptimal performance of MBPO
across all scenarios. This behavior contributes to an elevated
steady-state error in the final response. However, the other 4
algorithms are hovering around zero. The A3 and PPO have
more erratic behavior than others. DDPG and PILCO have the
smoothest learned action closer to zero.

VI. CONCLUSION

In this study, we presented an RL topology for control of
the Stewart platform in which we can learn and apply the

(a) Heave Performance (b) Yaw Performance

(c) Roll Performance (d) Pitch Performance

(e) Surge Performance (f) Sway Performance

Fig. 10. Time domain performances of the moving platform’s states

(a) Force Action of the leg 1 (b) Force Action of the leg 2

(c) Force Action of the leg 3 (d) Force Action of the leg 4

(e) Force Action of the leg 5 (f) Force Action of the leg 6

Fig. 11. Legs force values of the five RL algorithms.

required force through RL agents in the reaching task as shown
in Figure 7. We experimented with three model-free and two
model-based RL algorithms. All five algorithms could learn to
apply the required forces to boost the controller’s performance.
The key findings underscore the potential of RL algorithms in
refining the control of the Stewart platform, with PILCO leading
in terms of performance metrics. The application of RL, as
evidenced in this study, holds promise for improving precision

Hadi YADAVARI, Addressing Challenges in Dynamic Modeling of Stewart Platform using Reinforcement Learning-Based
Control Approach

Journal of Robotics and Control (JRC) ISSN: 2715-5072 128

and adaptability in real-world scenarios. In conclusion, the
PILCO algorithm has an overall better performance than other
algorithms. The convergence of MBPO is notably the weakest,
even though it shows more stability in the final steps compared
to the other three model-free algorithms. In general, model-
based algorithms tend to achieve more stable convergence than
their model-free counterparts. However, all algorithms struggle
in terms of both time performance and convergence when mea-
sured against PILCO. This Algorithm, grounded in probability
and models, effectively handles system uncertainties, making it
adaptable to dynamic environmental changes. This adaptability
reduces rise time by allowing swift adjustments to control poli-
cies in evolving conditions. Additionally, uncertainty modeling
minimizes steady-state errors, enhancing precision in maintain-
ing the desired pose. Although PILCO is sample-efficient and
has better and faster convergence performance in learning, it is
the most computationally expensive algorithm.

Acknowledging the computational expense associated with
PILCO, future research endeavors should prioritize optimizing
computational efficiency without compromising performance.
Also, expanding the experiment to encompass reaching an
area rather than a precise pose could yield insightful findings
about the platform’s operational range. This broader exploration
would provide a more comprehensive understanding of its
capabilities and limitations. Moreover, conducting tests of the
learned reaching task in similar scenarios would yield signifi-
cant benefits. Engaging in such extensive testing would validate
the applicability of the learned reaching task and set the stage
for the platform’s broader utilization in real-world applications.
Furthermore, introducing trajectory following as a task can
contribute to a deeper comprehension of how RL algorithms
navigate and engage within the context of the Stewart platform
environment. In future works, exploring this broader area of
study could greatly improve our ability to control the Stewart
platform. This might help us create better ways to control the
platform for various applications. Finally, To validate learned
behaviors in practice, extensive testing in controlled yet realistic
settings is crucial. Simulating challenging conditions, such as
turbulence in flight simulators (using the Stewart platform as
a motion platform), can provide insights into the platform’s
adaptability. Collaborating with industry experts and conducting
field trials in relevant environments will be instrumental in
validating the learned behaviors and assessing the platform’s
effectiveness in addressing the complexities of real-world ap-
plications. Additionally, these findings may also have broader
applicability to other robotic systems or real-world scenarios,
such as serial manipulators, due to the similar duality that exists
in those contexts.

REFERENCES

[1] X. Yang, H. Wu, B. Chen, S. Kang, and S. Cheng, “Dynamic modeling
and decoupled control of a flexible stewart platform for vibration isola-

tion,” Journal of Sound and Vibration, vol. 439, pp. 398–412, 2019, doi:
10.1016/J.JSV.2018.10.007.

[2] T. Ono, R. Eto, J. Yamakawa, and H. Murakami, “Analysis and control of
a stewart platform as base motion compensators-part i: Kinematics using
moving frames,” Nonlinear Dynamics, vol. 107, pp. 51–76, 2022, doi:
10.1007/s11071-021-06767-8.

[3] A. Jishnu, D. K. Chauhan, and P. R. Vundavilli, “Design of neural
network-based adaptive inverse dynamics controller for motion control
of stewart platform,” International Journal of Computational Methods,
vol. 19, no. 08, p. 2142010, 2022, doi: 10.1142/s021987622142010x.

[4] S. O. Abioye, L. O. Oyedele, L. Akanbi, A. Ajayi, J. M. D. Delgado,
M. Bilal, O. O. Akinade, and A. Ahmed, “Artificial intelligence in the
construction industry: A review of present status, opportunities and future
challenges,” Journal of Building Engineering, vol. 44, p. 103299, 2021,
doi: 10.1016/j.jobe.2021.103299.

[5] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction,”
2018, doi: 10.1109/TNN.1998.712192.

[6] Z. Ding, Y. Huang, H. Yuan, and H. Dong, “Introduction to reinforce-
ment learning,” Deep reinforcement learning: fundamentals, research and
applications, pp. 47–123, 2020, doi: 10.1007/978-981-15-4095-0.

[7] S. P. Sethi and S. P. Sethi, “What is optimal control theory?,” Springer,
2019.

[8] Y. Fang, Z. Huang, J. Pu, and J. Zhang, “Auv position tracking and
trajectory control based on fast-deployed deep reinforcement learning
method,” Ocean Engineering, vol. 245, p. 110452, 2022.

[9] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” The International Journal of Robotics Research, vol. 32, no. 11,
pp. 1238–1274, 2013, doi: 10.1177/0278364913495721.

[10] M. I. Hosseini, S. A. Khalilpour, and H. D. Taghirad, “Practical robust
nonlinear pd controller for cable-driven parallel manipulators,” Nonlinear
Dynamics, vol. 106, no. 1, pp. 405–424, 2021.

[11] M. Tipaldi, R. Iervolino, and P. R. Massenio, “Reinforcement learning
in spacecraft control applications: Advances, prospects, and challenges,”
Annual Reviews in Control, 2022.

[12] I. A. Zamfirache, R.-E. Precup, R.-C. Roman, and E. M. Petriu, “Rein-
forcement learning-based control using q-learning and gravitational search
algorithm with experimental validation on a nonlinear servo system,”
Information Sciences, vol. 583, pp. 99–120, 2022.

[13] L. Ghorbani and V. E. Omurlu, “Neural networks based real time solution
for forward kinematics of a 6× 6 upu flight simulator,” Intelligent Service
Robotics, vol. 15, no. 5, pp. 611–626, 2022.

[14] J. A. Houck, R. J. Telban, and F. M. Cardullo, “Motion cueing algorithm
development: Human-centered linear and nonlinear approaches,” 2005.

[15] H. Sadjadian, H. D. Taghirad, and A. Fatehi, “Neural networks approaches
for computing the forward kinematics of a redundant parallel manipula-
tor,” International Journal of Computer and Information Engineering,
vol. 2, no. 1, pp. 1664–1671, 2008.

[16] Z. E. Kuzeci, V. E. Omurlu, H. Alp, and I. Ozkol, “Workspace analysis
of parallel mechanisms through neural networks and genetic algorithms,”
in 2012 12th IEEE International Workshop on Advanced Motion Control
(AMC), pp. 1–6, 2012, doi: 10.1109/AMC.2012.6197147.

[17] H. Yadavari, V. Tavakol Aghaei, and S. İkizoğlu, “Deep reinforcement
learning-based control of stewart platform with parametric simulation in
ros and gazebo,” Journal of Mechanisms and Robotics, vol. 15, no. 3, p.
035001, 2023, doi: 10.1115/1.4056971.

[18] S. Pedrammehr, B. Danaei, H. Abdi, M. T. Masouleh, and S. Na-
havandi, “Dynamic analysis of hexarot: axis-symmetric parallel ma-
nipulator,” Robotica, vol. 36, no. 2, pp. 225–240, 2018, doi:
10.1017/S0263574717000315.

[19] S. Staicu, “Dynamics of Parallel Robots,” Springer, 2019.
[20] A. Arian, B. Danaei, and M. Tale Masouleh, “Kinematic and dy-

namic analyses of tripteron, an over-constrained 3-dof translational
parallel manipulator, through newton-euler approach,” AUT Journal
of Modeling and Simulation, vol. 50, no. 1, pp. 61–70, 2018, doi:
10.22060/MISCJ.2018.13020.5055.

[21] S. Pakzad, S. Akhbari, and M. Mahboubkhah, “Kinematic and dynamic
analyses of a novel 4-dof parallel mechanism,” Journal of the Brazilian
Society of Mechanical Sciences and Engineering, vol. 41, pp. 1–13, 2019,
doi: 10.1007/s40430-019-2058-3.

Hadi YADAVARI, Addressing Challenges in Dynamic Modeling of Stewart Platform using Reinforcement Learning-Based
Control Approach

Journal of Robotics and Control (JRC) ISSN: 2715-5072 129

[22] R. F. Abo-Shanab, “Dynamic modeling of parallel manipulators based on
lagrange–d’alembert formulation and jacobian/hessian matrices,” Multi-
body System Dynamics, vol. 48, no. 4, pp. 403–426, 2020, doi:
10.1007/s11044-019-09705-0C.

[23] S. Chen, G. Cheng, and Y. Pang, “Dynamic analysis and trajectory
tracking control for a parallel manipulator with joint friction,” Applied
Sciences, vol. 12, no. 13, p. 6682, 2022, doi: 10.3390/app12136682.

[24] L.-W. Tsai, “Solving the inverse dynamics of a stewart-gough manipulator
by the principle of virtual work,” J. Mech. Des., vol. 122, no. 1, pp. 3–9,
2000, doi: 10.1115/1.533540.

[25] A. Meurer, C. P. Smith, M. Paprocki, O. Čertı́k, S. B. Kirpichev,
M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake,
S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats,
F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, v. Roučka,
A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz, “Sympy:
symbolic computing in python,” PeerJ Computer Science, vol. 3, p.
e103, 2017, doi: 10.7717/peerj-cs.103.

[26] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant,
“Array programming with NumPy,” Nature, vol. 585, no. 7825, pp.
357–362, 2020, doi: 10.1038/s41586-020-2649-2.

[27] I. Faktorovich, C. Bohn, and J. Vogelsang, “Reinforcement learning
motivated feedforward control approach for disturbance rejection and
tracking,” in 2021 European Control Conference (ECC), pp. 138–143,
2021, doi: 10.23919/ecc54610.2021.9655160.

[28] J. Seo, Y.-S. Na, B. Kim, C. Lee, M. Park, S. Park, and Y. Lee,
“Feedforward beta control in the kstar tokamak by deep reinforcement
learning,” Nuclear Fusion, vol. 61, no. 10, p. 106010, 2021, doi:
10.1088/1741-4326/ac121b.

[29] R. Liu, F. Nageotte, P. Zanne, M. de Mathelin, and B. Dresp-Langley,
“Deep reinforcement learning for the control of robotic manipulation:
a focussed mini-review,” Robotics, vol. 10, no. 1, p. 22, 2021, doi:
10.3390/robotics10010022.

[30] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International conference on machine
learning, pp. 1928–1937, 2016.

[31] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” CoRR, 2015.

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[33] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11), pp. 465–472,
2011.

[34] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your model:
Model-based policy optimization,” Advances in neural information
processing systems, vol. 32, 2019.

[35] X. Li, L. Dong, L. Xue, and C. Sun, “Hybrid reinforcement learning for
optimal control of non-linear switching system,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 34, no. 11, pp. 9161–9170,
2023, doi: 10.1109/TNNLS.2022.3156287.

[36] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois,
S. Zhang, G. Zhang, P. Abbeel, and J. Ba, “Benchmarking model-based
reinforcement learning,” Computer Science, 2019.

[37] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in International conference on machine learning, pp.
1861–1870, 2018.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” nature, vol.
518, no. 7540, pp. 529–533, 2015, doi: 10.1038/nature14236.

[39] F. Xue, Q. Hai, T. Dong, Z. Cui, and Y. Gong, “A deep reinforcement
learning based hybrid algorithm for efficient resource scheduling in edge

computing environment,” Information Sciences, vol. 608, pp. 362–374,
2022, doi: 10.1016/j.ins.2022.06.078.

[40] S. Kizir and Z. Bingül, “Design and development of a stewart platform
assisted and navigated transsphenoidal surgery,” Turkish Journal of
Electrical Engineering and Computer Sciences, vol. 27, no. 2, pp.
961–972, 2019, doi: 10.3906/ELK-1608-145.

[41] Z. Bingul and O. Karahan, “Dynamic modeling and simulation of
stewart platform,” 2012, doi:10.5772/32470.

[42] D. Rawat, M. K. Gupta, and A. Sharma, “Intelligent control of robotic
manipulators: a comprehensive review,” Spatial Information Research,
vol. 31, no. 3, pp. 345–357, 2023, doi: 10.1007/s41324-022-00500-2.

[43] V. S. D. M. Sahu, P. Samal, and C. K. Panigrahi, “Modelling,
and control techniques of robotic manipulators: A review,”
Materials Today: Proceedings, vol. 56, pp. 2758–2766, 2022, doi:
10.1016/j.matpr.2021.10.009.

[44] A. P. Singh, D. Deb, H. Agrawal, K. Bingi, and S. Ozana, “Modeling
and control of robotic manipulators: A fractional calculus point of view,”
Arabian Journal for Science and Engineering, vol. 46, no. 10, pp.
9541–9552, 2021, doi: 10.1007/s13369-020-05138-6.

[45] Z. Liu, K. Peng, L. Han, and S. Guan, “Modeling and control of
robotic manipulators based on artificial neural networks: a review,”
Iranian Journal of Science and Technology, Transactions of Mechanical
Engineering, pp. 1–41, 2023, doi: 10.1007/s40997-023-00596-3.

[46] M. Engin, “Controller design for parallel mechanism solar tracker,”
Machines, vol. 11, no. 3, p. 372, 2023, doi: 10.3390/machines11030372.

[47] H. D. Taghirad, Parallel robots: mechanics and control. CRC press,
2013.

[48] H. Yadavari, “library to calculate the inverse dynamic problem of the
stewart platform.” Available: https://github.com/HadiYd/stewart inverse
dynamic

[49] Gazebo Development Team, “Gazebo: An Open-Source Simulator for
Robotics Research,” http://gazebosim.org, 2023.

[50] Amazon Web Services. (2023) Amazon Elastic Compute Cloud
(Amazon EC2). Amazon Web Services. [Online]. Available: https:
//aws.amazon.com/ec2/

[51] T.-T. Do, V.-H. Vu, and Z. Liu, “Linearization of dynamic equa-
tions for vibration and modal analysis of flexible joint manipulators,”
Mechanism and Machine Theory, vol. 167, p. 104516, 2022, doi:
10.1016/J.MECHMACHTHEORY.2021.104516.

[52] A. A. Kumar, J.-F. Antoine, and G. Abba, “Input-output feed-
back linearization for the control of a 4 cable-driven parallel
robot,” IFAC-PapersOnLine, vol. 52, no. 13, pp. 707–712, 2019, doi:
10.1016/j.ifacol.2019.11.154.

[53] K. Senda, S. Mano, and S. Fujii, “A reinforcement learning accelerated
by state space reduction,” in SICE 2003 Annual Conference (IEEE Cat.
No. 03TH8734), vol. 2, pp. 1992–1997, 2003.

[54] T. Sadamoto, A. Chakrabortty, and J.-i. Imura, “Fast online reinforcement
learning control using state-space dimensionality reduction,” IEEE Trans-
actions on Control of Network Systems, vol. 8, no. 1, pp. 342–353, 2020,
doi: 10.1109/TCNS.2020.3027780.

[55] V. T. Aghaei, A. Ağababaoğlu, S. Yıldırım, and A. Onat, “A real-world
application of markov chain monte carlo method for bayesian trajectory
control of a robotic manipulator,” ISA transactions, vol. 125, pp. 580–590,
2022, doi: 10.1016/j.isatra.2021.06.010.

[56] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural
information processing systems, vol. 12, 1999.

[57] N. D. Nguyen, T. T. Nguyen, P. Vamplew, R. Dazeley, and S. Naha-
vandi, “A prioritized objective actor-critic method for deep reinforcement
learning,” Neural Computing and Applications, vol. 33, pp. 10335–10349,
2021, doi: 10.1007/s00521-021-05795-0.

[58] Y. Yuan, K. Dehghanpour, Z. Wang, and F. Bu, “A joint distribution
system state estimation framework via deep actor-critic learning method,”
IEEE Transactions on Power Systems, vol. 38, no. 1, pp. 796–806, 2022,
doi: 10.1109/TPWRS.2022.3155649.

[59] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International conference on
machine learning, pp. 387–395, 2014.

[60] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region
policy optimization,” in International conference on machine learning, pp.
1889–1897, 2015.

Hadi YADAVARI, Addressing Challenges in Dynamic Modeling of Stewart Platform using Reinforcement Learning-Based
Control Approach

Journal of Robotics and Control (JRC) ISSN: 2715-5072 130

[61] O. O. Abayomi-Alli, R. Damaševičius, A. Qazi, M. Adedoyin-Olowe,
and S. Misra, “Data augmentation and deep learning methods in sound
classification: A systematic review,” Electronics, vol. 11, no. 22, p. 3795,
2022, doi: 10.3390/electronics11223795.

[62] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017, doi: 10.1145/3065386.

[63] A. Mumuni and F. Mumuni, “Data augmentation: A comprehen-
sive survey of modern approaches,” Array, p. 100258, 2022, doi:
10.1016/j.array.2022.100258.

[64] R. S. Sutton, “Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming,” in Machine learning
proceedings 1990, pp. 216–224, 1990, doi: 10.1016/b978-1-55860-141-
3.50030-4.

[65] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” IEEE transactions on
pattern analysis and machine intelligence, vol. 37, no. 2, pp. 408–423,
2013, doi: 10.1109/TPAMI.2013.218.

APPENDIX A
DERIVING DYNAMIC FORMULATION

For consistency with the numbering of the equations,
the generalized coordinates of the system are defined as
(l1, l2, l3, l4, l5, l6), which correspond to the six joints of the
platform. Each link in the system is associated with a reference
frame that is attached to it. The two most essential reference
frames are the base (B) and moving platform (M) frames. Their
orientation matrix is defined as Equation (15). Here, the angles
β, α, and γ represent successive rotations respectively near the
x-axis, y-axis, and z-axis.

c(β(t))c(γ(t)) s(α(t))s(β(t))c(γ(t))− s(γ(t))c(α(t)) s(α(t))s(γ(t)) + s(β(t))c(α(t))c(γ(t))
s(γ(t))c(β(t)) s(α(t))s(β(t))s(γ(t)) + c(α(t))c(γ(t)) −s(α(t))c(γ(t)) + s(β(t))s(γ(t))c(α(t))

−s(β(t)) s(α(t))c(β(t)) c(α(t))c(β(t))

(15)

The platform pose, speed, and acceleration are defined in
Equations (16),(17), (18):

X = [Px(t), Py(t), Pz(t), α(t), β(t), γ(t)] (16)

Ẋ =
[
Ṗx, Ṗy, Ṗz, α̇, β̇, γ̇

]
(17)

Ẍ =
[
P̈x, P̈y, P̈z, α̈, β̈, γ̈

]
(18)

Equation (19) from [24] is utilized to compute the velocity
of the center of the ball joint Bi:

vbi = vp + ωp × bi (19)

Equations (20), (21) are employed to calculate the linear and
angular velocity of the piston relative to the cylinder:

ḋi =
i vbi,z (20)

iωi =
1

di
(isi × ivbi) =

1

di

−ivbi,yivbi,x
0

 (21)

The velocity of the cylinder (iv1i) and pistons’ centers of
mass (iv2i) are calculated as in (22),(23):

iv1i = ei1ωi × isi =
e1
di

ivbi,xivbi,y
0

 (22)

iv2i = (di− e2)iωi×i si+ ḋi
i
si =

e1
di

(di − e2)
ivbi,x

(di − e2)
ivbi,y

diivbi,y

 (23)

The Jacobian matrix does the necessary transformation re-
quired in finding the actuator forces from the moving platform’s
forces and moments, besides the velocities [47].

The matrix form of Equation (19), denoted as Equation (24),
is expressed as follows:

vbi = JbiẊp (24)

In Equation (24), the vector Ẋp represents the linear and
angular velocities of the moving platform, and Jbi is defined
according to Equation (25).

Jbi =

1 0 0 0 bi,z −bi,y
0 1 0 −bi,z 0 bi,x
0 0 1 bi,y −bi,x 0

 (25)

We can write Equation (20) like Eqation (26) as below:

ḋi =
i Jbi,zẊp (26)

Repeating Equation (26) six times for each leg, we have the
equations in matrix form represented in Equation (27).

q̇ = JpẊp (27)

where

Jp =

1Jb1,z
2Jb2,z
3Jb3,z
4Jb4,z
5Jb5,z
6Jb6,z

 (28)

Equation (28) is known as the manipulator Jacobian matrix.
Also, we can write Equations (21), (22) and (23) as:

Hadi YADAVARI, Addressing Challenges in Dynamic Modeling of Stewart Platform using Reinforcement Learning-Based
Control Approach

Journal of Robotics and Control (JRC) ISSN: 2715-5072 131

iωi =
1

di

−iJbi,yiJbi,x
01x6

 Ẋp (29)

and,

iv1i =
e1
di

iJbi,xiJbi,y
01x6

 Ẋp (30)

and,

iv2i =
1

di

(di − e2)
iJbi,x

(di − e2)
iJbi,y

diiJbi,y

 Ẋp (31)

Then, if we combine the Equations (29) , (30) and (31) we
have :

iẊ1i =
i J1iẊp (32)

iẊ2i =
i J2iẊp (33)

where the link Jacobian matrices are Equations (34) , (35):

iJ1i =
1

di

ei1Jbi,x
ei1Jbi,y
01x6

−iJbi,y
iJbi,x
01x6

 (34)

iJ2i =
1

di

(di − e2)

iJbi,x
(di − e2)

iJbi,y
diiJbi,z
−iJbi,y
iJbi,x
01x6

 (35)

With the availability of these Jacobian matrices, we can now
proceed to solve the inverse dynamics problem, which involves
determining the forces required to achieve a desired motion. As
outlined in [24], the equations of motion are formulated using
the principle of virtual work.

Equation (36) demonstrates the external and inertia forces
acting on the center of mass of the moving platform.

FP =

[
f̂p
n̂p

]
=

[
fe +mpg −mpv̇p

ne −A Ipω̇p − ωp × (AIpωp)

]
(36)

In Equation (36), fe and ne represent the external force
and moment, respectively, applied at the center of mass of
the moving platform [24]. Similarly, we can consider the same
forces for the cylinder and piston of each leg, assuming that
the gravitational force is the only external force present:

iF1i =

[
f̂1i
n̂1i

]
=

[
m1i

iRAg −m1i
iv̇1i

−iI1i iω̇i −i ωi × (iIi1iωi)

]
(37)

iF2i =

[
f̂2i
n̂2i

]
=

[
m2i

iRAg −m2i
iv̇1i

−iI2i iω̇i −i ωi × (iIi2iωi)

]
(38)

The principle of virtual work is stated as below:

δqT τ + δXT
p Fp +

6∑
i

(δ iXT
1i
iF1i + δ iXT

2i
iF2i) = 0 (39)

where in the leg frame, we have the applied and inertia forces,
iF1i and iF2i, and their corresponding virtual displacements
δ (iX1i) and δ (iX2i).

To establish a relationship between these virtual displace-
ments, we need to express them in terms of a set of generalized
virtual displacements, which can be defined as follows:

δq = JpδXp (40)

δiX1i =
i J1i δXp (41)

δiX2i =
i J2i δXp (42)

By substituting Equations (40), (41), and (42) into Equation
(39), we can derive the dynamics of the Stewart platform as
follows:

JTp τ + Fp +

6∑
i

(δ iXT
1i
iF1i + δ iXT

2i
iF2i) = 0 (43)

Then,

JTp (τ + Fz) + Fp + JTx Fx + JTy Fy = 0 (44)

If Jp is not singular, we can have the final inverse dynamic
as shown in Equation (45):

τ̄ = −Fz − J−T
p (Fp + JTx Fx + JTy Fy) (45)

Hadi YADAVARI, Addressing Challenges in Dynamic Modeling of Stewart Platform using Reinforcement Learning-Based
Control Approach

