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Abstract—Currently, the advent of CNN (Convolutional Neural
Network) has brought very convincing results to computer vision
problems. One-stage CNNs are a suitable choice for research
and development to have an overview of the current results of
the process of detecting and classifying OTUM from ovarian
ultrasound images. In this paper, we have performed a compre-
hensive study on one-stage CNNs for the problem of detecting
and classifying OTUM on ovarian ultrasound images. The OTUM
datasets we tested were two popular OTUM datasets: OTU and
USOVA3D. The one-stage CNNs we tested and evaluated belong
to the YOLO (You Only Look Once) family (YOLOv5, YOLOv7,
YOLOv8 variations, and YOLO-NAS), and the SSD (Single Shot
MultiBox Detector) family (VGG16-SSD, Mb1-SSD, Mb1-SSD-
Lite, Sq-SSD-Lite, and Mb2-SSD-Lite). The results of detecting
OTUM (with or without OTUM on ovarian ultrasound images)
are high (with Mb1-SSD of Acc = 98.90%, P = 98.58%, R =
98.9% on ”USOVA3D 2D f r1 80 20” set; with Mb2-SSD-Lite
of Acc = 97.87%, P = 97.16%, R = 97.87% on ”USOVA3D 2D f
r2 80 20” set). The results of detecting and classifying OTUM into
8 classes are low (the highest is Acc = 92.04%, P = 74.81%, R =
92.04% on the OTU-2D dataset). Regarding computation time,
CNNs of the YOLO family have faster computation times than
networks of the SSD family. The above results show that the
problem of classifying ovarian tumors on ultrasound images still
contains many challenges that need to be resolved in the future.

Keywords—Ovarian Tumor Detection, Ovarian Tumors Classifi-
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I. INTRODUCTION

A woman’s risk of developing OCAN in her lifetime is 1
person in 78 people ∼ 1.3% [1]. In particular, a woman’s
lifetime risk of dying from invasive OCAN is 1 person in 108
people ∼0.9%. In particular, the survival rate for OCAN is
much lower than for other cancers that affect women. The
5-year relative survival rate for OCAN is 49.7%. Women
diagnosed at an early stage - before the cancer has spread have
a much higher five-year survival rate than women diagnosed
at a later stage. Therefore, early detection and diagnosis of

OTUM is very important, which increases the patient’s chance
of survival.

Nowadays, using ultrasound images to detect and diagnose
OTUM has become very popular and helps women not to have
to have any surgery. In the new study, Gupta et al. [2] evaluated
a method that uses ultrasound imaging to classify ovarian
lesions into two types: classic and non-classical. Classical
lesions are typically detected as fluid-filled cysts with a very low
risk of malignancy. Atypical lesions include those with solid
components and blood flow detected on Doppler ultrasound.
Classical and non-classical approaches to these ovarian lesions
can help doctors diagnose images more quickly. Currently,
there is also the IOTA organization [2] that relies on these
components to classify the lesions of OTUM [3].

Today, with the strong development of deep learning (DL),
especially the birth of Convolutional Neural Networks (CNNs).
CNNs have brought very convincing results when solving com-
puter vision problems such as object detection and recognition.
The disadvantage of DL is that it requires a large amount of
training data and large computational space, often using GPUs
to perform calculations [4]. Therefore, building a system to
detect and diagnose OTUM that can be applied in hospitals is
a very challenging problem, and requires a very large amount
of training data. At the same time, the real system for OTUM
detection requires low computational space (can be performed
on CPU) but still has high results. The problem of detecting
and classifying OTUM is the problem that receives the first
attention during the application development process.

The problem of detecting objects in images is often solved
by one of the two types of CNNs [5], [6]: One-stage (YOLO
series/family [7], SSD series/family [8]) or Two-stage (RCNN
[9], Fast RCNN [10], Faster RCNN [11], RFCN [12], Mask
RCNN [13]), as shown in Fig. 1.

In the studies by [14] and [15], it is shown that the one-
stage CNNs have lower accuracy than the two-stage CNNs
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Fig. 1. Some CNNs of one stage and two stages.

for object detection, but the computation time is many times
faster than the two-stage CNNs. In a study by Tan Lu et al.
[15], the mAP result and processing time of the Faster R-
CNN model [11] are 87.69%, and 7fps, respectively, and the
mAP result and processing time of the YOLOv3 [16] model
are 80.17%, 51fps, respectively. Due to the actual requirements
of the system, the OTUM detection and diagnosis system allows
the case of ”getting it wrong is better than missing it”. If an
OTUM is not detected, it will lead to the patient not being
treated and the tumor will grow quickly, and when discovered
it will be at a late stage. When an area of data is mistakenly
detected as a tumor, further tests can be performed to determine
whether it is an OTUM or not. Therefore, we use one-stage
CNNs to test the problem of detecting and classifying OTUM.

Recently, MMOTU [17] with OTU-2D and USOVA3D [18]
datasets have been introduced and published. These are two
datasets that are widely used to detect, segment, and classify
OTUM from ultrasound images. The study of Zhao et al. [17]
and Pham et al. [19] tested the segmentation and classification
of OTUM on several CNNs such as ResNet [20], U-net [21],
PSPnet [22], DANet [23], etc. However, the issue of detecting
and classifying OTUM is the first concern in building appli-
cations to support the detection and diagnosis of OCAN in
hospitals.

In this paper, we conduct a comprehensive study and ex-
periment on the use of one-stage CNNs of the YOLO family
(YOLOv5, YOLOv7, YOLOv8, YOLO-NAS) and SSD family
(VGG16-SSD, Mb1-SSD, Mb1-SSD-Lite, Sq-SSD-Lite, Mb2-
SSD-Lite) families for detecting and classifying OTUM on
ovarian ultrasound images from two popular OTUM datasets:
OTU-2D and USOVA3D. This is a fundamental study and pro-
vides results that serve as a basis for improving and proposing
new models for detecting and diagnosing OTUM on ultrasound
images to ensure the requirements of a real system can be
deployed in hospitals.

The main contributions of our research are as follows:

• We have generalized the background and development of
the YOLO and SSD learning one-stage CNNs.

• We have normalized the two databases MMOTU and
USOVA3D to prepare for fine-tuning the networks of the
YOLO and SSD families.

• We have performed fine-tuning of the model to automat-
ically detect and classify OTUM on ultrasound images
from two databases MMOTU and USOVA3D based on
one-stage networks of the YOLO and SSD families.

• We have evaluated and compared the results of OTUM
detection and classification on ultrasound images from the
MMOTU and USOVA3D databases with CNNs of the
YOLO and SSD families.

• We analyzed, discussed, and presented challenges when
using CNNs for the problem of detecting and classifying
OTUM on ultrasound images.

The structure of the paper is organized as follows. In section
II, we briefly present some related works on OTUM detection
and classification. The background on one-stage CNNs of the
YOLO and SSD families is presented in Sec. III. The dataset
and experimental results, discussion, and challenges will be
presented in section IV. We finally conclude and give some
ideas for future works.

II. RELATED WORKS

The ovary serves as both a reproductive organ and an
endocrine gland with a complex process of formation. Ovaries
undergo significant changes in both morphology and function
throughout a woman’s life, and these changes can lead to
irreversible disorders, evolving into pathologies, especially the
formation of OTUM shown in Fig. 2. OTUM is one of the most
common types of tumors worldwide, accounting for up to 30%
of female reproductive system tumors [24].

Making an accurate disease prognosis, in many cases, re-
quires a multidisciplinary approach involving collaboration
among medical professionals, especially the participation of
experienced experts. In local healthcare facilities, doctors often
lack the necessary tools to accurately assess the stage of
OCAN or evaluate the risk level of ovarian cysts (benign or
malignant). Nowadays, artificial intelligence in general, and
machine learning and DL in particular, have made significant
breakthroughs in various fields, including healthcare [25], [26],
[27], [28], [29], [30], [31].

Recently there has also been a lot of research on using deep
learning to build cancer detection and diagnosis systems. There
are several fairly complete surveys on the use of DL for lung
cancer detection and diagnosis [32], [33]. Studies [34], [35],
[36], [37], [38], [39] proposed methods using deep learning
techniques for early detection, classification, and segmentation
of lung cancer. Some research studies and proposed methods
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Fig. 2. Research and comparison diagram for detecting and classifying OTUM on ultrasound images.

to detect skin cancer are also presented [40], [41]. Or studies
on breast cancer detection and diagnosis using DL [42], [43],
[44], [45].

OTUM represents the most common diagnostic challenge
for gynecologists. Ultrasonography has become the primary
technique for assessing ovarian pathology and distinguishing
between malignant and benign OTUM before surgery. In recent
years, DL analysis has been widely used in medical image
processing. Scientists have proposed many methods to process
medical images using deep neural network models, such as
CNNs, Fully Convolutional Networks (FCNs), or Recurrent
Neural Networks (RNNs), which can segment and assist in
diagnosing ovarian diseases from ultrasound images [46]. Re-
cently, there have also been many studies and surveys on
detecting and diagnosing ovarian tumors and ovarian cancer
based on machine learning and DL [47], [48], [49], [50], [51],
[52], [53], [54], [55], [56]. These studies have had very positive
results.

In the research of Shih-Tien Hsu et al. [57], they proposed
an automatic system that utilizes an ensemble CNN to interpret
OTUM ultrasonic images. The system incorporates technologies
such as image preprocessing, data augmentation, and ensem-
ble Grad-CAM. For the validation strategy, they repeated the
random sampling of the training and validation data ten times
to verify model robustness. The means of ACC, SE, and SP
of the single network model with optimal performance were
90.51%, 89.02%, and 92%, respectively. The study proposed the
ensemble method based on the confidence scores of multiple
decision-making models, which achieved the means of ACC,

SE, and SP of 92.15%, 91.37%, and 92.92%, respectively. The
proposed method increased the means of ACC, SE, and SP of
the single network model with optimal performance by 1.64%,
2.35%, and 0.92%, respectively.

In the study by Martinez et al. [58], the authors employed tra-
ditional machine learning methods (Linear Discriminant (LD)
and Support Vector Machine (SVM)) on a dataset consisting
of 384 images from 187 patients to distinguish between benign
and malignant OTUM. The results achieved an accuracy with
Precision and Recall of approximately 80% and 92%, respec-
tively. However, the study also highlighted limitations in terms
of the number of images and patients, which constrained the
statistical significance and potential of the reported results.

The authors [59] presented 2-D ultrasound images of a 24-
year-old woman’s ovarian follicles with multiple cystic areas
(antral follicles). The use of convolutional neural networks to
segment the cysts and nodules within OTUM has garnered
attention in recent research [60].

In the study by Y. Wang and colleagues, the authors provided
a visually intuitive comparison table when using advanced ma-
chine learning algorithms (e.g., VGNet, CNN with performance
> 93%) with traditional models such as Logistic Regression,
SVM, or Random Forest (performance < 80%). The adjustment
of the VGG-16 model has proven to be effective in OTUM
detection, as demonstrated in the research conducted by Sakshi
et al. [61].

The term ”VGG-16” derives from the ”Visual Geometry
Group,” a group of visual geometry researchers at the Uni-
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versity of Oxford who conceived the idea of creating this
special 16-layer network and trained it on the ImageNet dataset.
The traditional VGG-16 model consists of multiple 3x3 kernel
filters to enable the model to learn more complex features by
increasing network depth. The convolutional layers in VGG
are followed by three fully connected layers, and the authors
proposed an adjustment algorithm within the network to save
time by not starting from scratch. Modifying the last four layers
by training them on OTUM data using complex neural network
architecture was performed to achieve a high accuracy rate of
92.11%.

Juebin et al. [62], authors emphasized the significance of
detecting and automatically segmenting abnormal regions on
ultrasound images for patients with OCAN. In this work, the
classical U-net scheme and its multiple variations were used for
the automatic segmentation task. The average Pearson correla-
tion was 0.86 (95% CI, 0.83–0.89), 0.87 (95% CI, 0.84–0.90),
0.88 (95% CI, 0.86–0.91), and 0.90 (95% CI, 0.88–0.92) for
U-net++, U-net, U-net with Resnet, and CE-Net, respectively.

III. CNNS FOR OTUM DETECTION AND CLASSIFICATION

Nowadays, CNNs provide very convincing results in the
problem of detecting objects in images and they are divided
into two types: one-stage and two-stage. One-stage CNNs are
networks that can predict the bounding box (BB) of an object
right on the grid. Two-stage CNNs use a proposal network to
find objects and a second network to fine-tune the proposals
and produce a final result that predicts the object’s BB [61].

To decide between two-stage and one-stage CNNs for detect-
ing ovarian cysts in ultrasound images, consider the following
detailed factors: Size and Characteristics of Ovarian tumor:
If ovarian tumors are typically large, and have clear and
distinguishable features, one-stage CNNs may be a suitable
choice. Models like YOLO or SSD can process images quickly
and are suitable for large and easily classifiable objects. If
ovarian cysts are typically small, with complex features, two-
stage CNNs may yield better results. Models like Faster R-
CNN often focus on accurately proposing object regions and
have high accuracy in classification. Accuracy and Accuracy
Requirements: If accuracy is a decisive factor, and it is crucial
to ensure that every ovarian cyst is accurately detected, two-
stage CNNs may be a reasonable choice. They often can
propose accurate object regions and have high accuracy in the
classification process. Next, we will present the YOLO and SSD
families for object detection in images.

A. YOLO Families

YOLO (You Only Look Once) [63] is a typical and most used
CNN for object detection problems. YOLO has a fairly basic
architecture, as presented in Fig. 3, including a base network
and extra layers. The development and improvement process of
YOLO is shown in Fig. 4, versions of YOLO were announced as

YOLOv1 [63] in 2015, YOLOv2/9000 [64] in 2016, YOLOv3
[16] in 2018, YOLOv4 [65] in 2020, YOLOR [66] and YOLOx
[67] in 2021, YOLOv5 [68], YOLOv6 [69] and YOLOv7 [46]
in 2022, YOLOv8 [70] and YOLO-NAS [71] in 2023. The base
network is a Convolution network responsible for extracting
image features. Extra layers are the final layers used to analyze
features and detect objects. The base network commonly used
is Darknet.

The input image is divided into a grid of S × S cells, also
known as cells. Here there is no real image division, but the
nature of image division is dividing the output and target into
a matrix A of size S×S. If the image, the center of the object
is in the (i, j)th cell, then the corresponding output will be in
A[i, j].

YOLO’s implementation process includes 2 steps:
- The first is a convolution network that extracts image
features.
- The second is extra layers (fully connected layers) to
analyze and detect objects. Returns output is a matrix A with
dimensions (Shape(A)) as Eq. (1).

Shape(A) = S ∗ S ∗ (5 ∗B + C) (1)

where B is the number of bounding boxes (BBs), each BB
consists of five components (x, y, w, h, confidence score),
(x, y) are the coordinates of the upper left corner of the BB,
(w, h) are the width and height of the BB, confidence score
is the probability that there is an object in that cell or not.
Finally, the C element represents the probability distribution
about the type of object, that is, the class distribution because
this C element is a probability distribution and it needs to be
guaranteed according to Eq. (2). Thus, YOLO calculates the
BB coordinates, the probability of an object appearing, and the
probability distribution to classify the object, and it’s all done
in one go.

c∑
0

pi = 1 (2)

A very important next calculation of YOLO is the loss
function, YOLO’s loss function is divided into 2 parts: Lloc
(localization loss) measures the error of the BB, and Lcls

(confidence loss) measures the error of the probability distribu-
tion of classes, as computed in Eq. (3). It can be understood
more simply, that Lloc is the loss function of the predicted
BB compared to the actual, that Lcls is the loss function of
the probability distribution where the first sum is the loss of
predicting whether there is an object in the cell or not? The
second sum is the loss of the probability distribution if there
are objects in the cell.
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Fig. 3. The general architecture of YOLO [63].

Fig. 4. Time to announce versions of YOLO.
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where ⊮obj
ij is an indicator function with a value 0 or 1 to

determine whether the cell contains an object or not. Equals 1
if it contains an object and 0 if it does not. ⊮obj

ij is the jth BB
of the cell ith, whether it is the BB of the predicted object or
not. Cij is the cell’s confidence score, P (contain object) * IoU
(predict BB, ground truth BB). Ĉij is the prediction confidence
score. C is the set of all classes. pi(c) is the conditional
probability of whether or not cell ith contains an object of
class c ∈ C. p̂i(c) is the predicted conditional probability.

The next step is to predict the BB. To predict the BB for an
object, we rely on a transformation from the anchor box and
cell. YOLOv2 [64] and YOLOv3 [16] predict the BB so that it
will not deviate too much from the center position. This is an
improvement of YOLOv2 and YOLOv3 compared to YOLOv1.
This will improve object detection results when many objects
are located in the same cell. If the prediction BB can be placed
on any part of the image, as in a regional proposal network,
model training can become unstable. Given an anchor box of
size (pw, ph) at a cell located on the feature map with its
top left corner being (cx, cy), the model predicts 4 parameters
(tx, ty, tw, th) in the first 2 parameters are the offset compared
to the top left corner of the cell and the last 2 parameters are the
ratio compared to the anchor box. These parameters will help
determine the prediction BB b with center (bx, by) and size
(bw, bh) through the sigmoid function and exponential function
like Eq. (4).

bx = σ (tx) + cx

by = σ (ty) + cy

bw = pwe
tw

bh = phe
th

(4)

In addition, because the coordinates have been adjusted
according to the width and height of the image, the value
is always within the threshold [0, 1]. Therefore, applying the
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sigmoid function helps us limit the coordinates not to exceed
these thresholds shown in Fig. 5.

Fig. 5. Estimating BB from anchor box. The outer dashed rectangle is the anchor box
with dimensions of (pw, ph). The coordinates of a BB will be determined based on
both the anchor box and the cell to which it belongs. This helps control the position of
the predicted BB somewhere around the position of the cell and the BB without going
too far outside these limits. Therefore, the training process will be much more stable
than YOLOv1 [64], [16]

Next, we will only introduce and present versions of YOLO
from YOLOv5 onwards. YOLOv5 [68]: YOLOv5 focuses on
speed and easy use. YOLOv5 model architecture [68] has three
important parts: Backbone, Neck, and Head, as illustrated in
Fig. 6.

Fig. 6. YOLOv5 architecture [68]

• The backbone aims to extract rich features from the input
image. A Cross Stage Partial Network (CSPNet) is used
as a model backbone. CSPNets are faster than deeper net-
works. YOLOv5 improves YOLOv4’s CSPResBlock [65]
into a new module, little more than a Convolution layer
called a C3 module. In YOLOv5 still use CSPDarkNet53
for predicting the original object candidates according to
the boxes. In the activation function, YOLOv4 [65] uses
Mish or LeakyReLU for the lightweight version, while in
YOLOv5, the activation function used is SiLU.

• The Neck constructs feature pyramids. This component
helps the model to detect and identify the same objects at
different sizes and scales. This leads to better performance
with unlearned data. Different types of feature pyramids
are used by many models, like FPN, BiFPN, and PANet

which is used in YOLOv5. YOLOv5 adopts a module
similar to SPP, but twice as fast and calls it SPP-Fast
(SPPF). Instead of using parallel MaxPooling as in SPP,
YOLOv5 SPPF uses sequential MaxPooling. Furthermore,
the kernel size in the MaxPooling of SPPF is all 5 instead
of (5,9,13) like the SPP of YOLOv4.

• The Head performs the final detection. It applies anchor
boxes on generated features and outputs final vectors
containing class probabilities, objectiveness scores, and
BBs. YOLOv5 has the same model head as YOLOv3 and
YOLOv4.

Other improvements of YOLOv5 compared to YOLOv4 are as
follows: (1) About data augmentation: mosaic augmentation,
copy-paste augmentation, mixup augmentation; (2) About loss
function: add scale factor for Objectness Loss; (3) About anchor
boxes: auto anchor using genetic algorithm; about removing
grid sensitivity but the formula is different; about exponential
moving average weight.

YOLOv7 [72]: YOLOv7 surpasses all known object detectors
in both speed and accuracy in the range from 5fps to 160fps
and has the highest accuracy at AP = 0.568 among all known
real-time object detectors with 30fps or higher on GPU V100.
The architecture of YOLOv7 is illustrated in Fig 7.

Fig. 7. YOLOv7 architecture [46]

This architecture also includes three main parts.

• The backbone used the ELAN (YOLOv7-p5, YOLOv7-p6)
and E-ELAN (YOLOv7-E6E).

• The neck used the SPPCSPC + (CSP-OSA)PANet
(YOLOv7-p5, YOLOv7-p6) + RepConv.

• The head used the YOLOR + Auxiliary Head (YOLOv7-
p6).

YOLOv7 was announced in 2022 and has been several im-
provements over previous versions. (1) One of the main im-
provements is the use of anchor boxes. Anchor boxes are a set
of predefined boxes with different aspect ratios that are used to
detect objects of different shapes, each anchor box is illustrated
in Fig. 5. YOLOv7 uses nine anchor boxes, allowing YOLO to
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detect a wider range of object shapes and sizes than previous
versions, the process of predicting an object’s BB based on
anchor boxes is illustrated in Fig. 5, thus helping to reduce
the number of wrong identifications. (2) Another important
improvement of YOLOv7 is using a new loss function called
“focal loss”. Previous versions of YOLO used the standard
cross-entropy loss function, which is known to be less effective
at detecting small objects. Therefore, the results of detecting
small-sized objects are not good. In YOLOv7, the focal loss
solves this problem by reducing loss weights for well-classified
examples and focusing on hard examples such as hard-to-detect
objects. YOLOv7 also has different versions like YOLOv7-p5,
YOLOv7-p6. Which YOLOv7-p5 group including YOLOv7-
tiny, YOLOv7, and YOLOv7x is to use the images with size
(640 × 640) for training. Which YOLOv7-p6 group including
YOLOv7-w6, YOLOv7-e6, and YOLOv7-d6 is to use the
images with size (1280× 1280) for training.

YOLOv8 [70]: YOLOv8 is the current latest version of the
YOLO family to be published. Like other versions of YOLO,
YOLOv8 also includes two main components: Backbone and
Head. The architecture of YOLOv8 is shown in Fig. 8. YOLOv8
was developed by Ultralytics, who also created the YOLOv5
model. YOLOv8 includes many changes and improvements in
architecture and developer experience compared to YOLOv5.
Those changes and improvements are shown as follows:

(1) First, the backbone of YOLOv8 is the same as YOLOv5,
it uses the CSPDarknet53 feature extractor. It has some changes
like C2f replacing C3 to combine high-level features with
contextual information to improve detection accuracy. The first
6 × 6 convolution in the body is converted to the 3 × 3
convolution. In C2f , the output from the bottleneck (which
is a combination of two 3 × 3 transitions with the remaining
connections) is combined, as illustrated in Fig. 9, where ”f” is
the number of features, ”e” is the expansion rate and CBS is a
block composed of a Conv, a BatchNorm and a SiLU. While
in C3, only the output from the last bottleneck is used. (2)
Second, YOLOv8 has an improvement in using an anchor-free
model with a detached head to handle object, classification,
and regression tasks independently. This model allows each
prediction branch to focus on its task and improves the overall
accuracy of the prediction model. The sigmoid function as
the activation function for the feature score is used in the
output layer of YOLOv8. From this, the probability that the BB
contains an object is represented with the softmax function for
the class probability, which represents the probability of objects
belonging to each possible class. (3) Third, two convolutions
(#10 and #14 in the YOLOv5 config) were removed. YOLOv8
provides a semantic segmentation model called the YOLOv8-
Seg model to achieve state-of-the-art results on various object
detection and semantic segmentation benchmarks while main-
taining high speed and efficiency. The loss functions for BB loss
and binary cross-entropy for classification loss and to improve

the predicted results on small objects. (4) Fourth, the bottleneck
in YOLOv8 is still the same as in YOLOv5, except that the
kernel size of the first convolution has been changed from 1×1
to 3× 3. This change represents a change to the ResNet block,
as illustrated in Fig. 10.

Currently, YOLOv8 offers five types of pre-trained models
for object detection: YOLOv8n (Nano), YOLOv8s (Small),
YOLOv8m (Medium), YOLOv8l (Large), and YOLOv8x (Ex-
tra Large). Among them, YOLOv8n is the fastest and smallest,
and YOLOv8x is the most accurate but slowest.

YOLO-NAS: YOLO-NAS [71] is developed by Deci.ai com-
pany [73] and it offers state-of-the-art (SOTA) performance
with superior speed and accuracy performance compared to
other versions of YOLO such as YOLOv5, YOLOv6, YOLOv7,
and YOLOv8. The NAS is abbreviated from Neural Architec-
ture Search. The architecture of YOLO-NAS is presented in
Fig. 11.

YOLO-NAS works on the principle of automatically re-
designing a model’s architecture to increase its performance
when it comes to things like speed, memory usage, and through-
put. It typically involves a search space that defines the set of
possible architectural choices, such as the number of layers,
layer type, kernel size, and interconnection type. The search
algorithm then evaluates the different architectures by training
and evaluating them on a given task and dataset. Based on these
evaluations, the algorithm iteratively explores and refines the
architectural space, ultimately returning the space that provides
the best performance. In the architecture of YOLO-NAS, there
are some new points compared to previous versions of YOLO:

• The use of QSP and QCI blocks [74] combines the
advantages of re-parameterization and 8-bit quantization.
The blocks above allow for minimal loss function of
precision during post-training quantization.

• AutoNAC was used to determine the optimal size and
structure of the stages in the backbone and neck parts,
including block type, number of blocks, and number of
channels in each stage.

• A quantization method that combines selective quanti-
zation of certain parts of the model, reducing informa-
tion loss and balancing latency and accuracy. Standard
quantization affects all model layers, often leading to a
significant loss of accuracy. Their hybrid method optimizes
quantization to maintain accuracy by only quantizing cer-
tain layers while leaving other layers untouched. Their
layer selection algorithm considers the impact of each
layer on accuracy and latency, as well as the impact of
converting between 8-bit and 16-bit quantization on overall
latency.

• The pre-training mode includes automatically labeled data,
self-distillation, and large datasets.

• YOLO-NAS architecture is available under an open-source
license. Its pre-trained weights are available for (non-
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Fig. 8. YOLOv8 architecture [70].

Fig. 9. Illustrating of the C2f module in YOLOv8.

commercial) research use on SuperGradients, Deci’s open-
source, PyTorch-based, computer vision training library.

B. SSD Families

SSD (Single Shot Multibox Detector) [75]: Like most other
object detection architectures, the input to SSD is the BB
coordinates of the object (also known as the offsets of the BB)
and the label of the object contained in the BB. The special
feature that makes the SSD model’s speed is that the model
uses a single neural network. Its approach is based on object
recognition in feature maps (which is a 3D shape output of
a deep CNN network after removing the last fully connected
layers) with different resolutions (300× 300, 512 × 512). The
model will create a grid of squares called grid cells on the
feature maps, each cell is called a cell and from the center of
each cell determines a set of default boxes for frame prediction.
capable of surrounding objects. At prediction time, the neural
network will return two values: the probability distribution of
the label of the object contained in the BB and a coordinate
called the offsets of the BB. The training process is also
the process of fine-tuning the label and bounding truth box
probabilities to match the ground input values of the model
(including labels and BB offsets). Thus, the SSD model will
be a combination of two steps:

• Extracting feature maps from the CNN (VGG16 [76],
VGG19 [77], ResNet [78], InceptionNet [79], or Mo-
bileNet, etc).

• Applying convolutional filters (or kernel filters) to detect
objects on feature maps with different resolutions (revolu-
tion).

The architecture of the SSD network is shown in Fig. 12.
For example, the first step of SSD uses VGG16 as the base

network to extract feature maps:
- Inputs are images with dimensions (width × height × chan-

nels) = 300×300×3 for SSD300 architecture or 500×500×3
for SSD500 architecture.

- Conv5 3 Layer: This is the base network that uses the
architecture of VGG16 but removes some fully connected layers
at the end. The output of this layer is Conv4 3 Layer and is a
feature map with dimensions of 38× 38× 512.

- Conv4 3 Layer: We can consider Conv4 3 as a feature
map with dimensions of 38 × 38 × 512. On this feature map,
we will apply 2 main transformations: Apply a convolutional
layer like a regular CNN network to obtain the next output
layer. Specifically, the convolutional layer has a convolutional
kernel of size 3 × 3 × 1024, and the resulting output Conv6
has a size of 19 × 19 × 1024. At the same time, in this step,
we also apply a classifier as shown in Fig. 13 and rely on
a convolutional filter of size 3 × 3 to detect objects on the
feature map. This is a rather complicated process because it
must ensure object detection (through BB detection) and object
classification. First, we will divide the feature map of size 38×
38 × 512 into a grid cell of size 38 × 38 (ignore the depth
because we will perform convolution over the entire depth).
Then each cell on the grid cell will create 4 default BBs with
different aspect ratios. For each default BB, we need to find the
following parameters: the probability distribution of the label
is a vector. Silk has n classes + 1 dimension (Note that the
number of classes always adds 1 for background). At the same
time, we need to add 4 parameters, offsets, to determine the
BB of the object in the frame. Therefore, on a default BB there
will be n classes + 4 parameters and on 1 cell there will be
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Fig. 10. (a) the detection head of YOLOv5, (b) The detection head for YOLOv8.

4 ∗ (n classes+ 4) output to predict. Multiply by the number
of cells of Conv4 3 to obtain the number of outputs which is
a tensor of size 38 × 38 × 4 × (n classes + 5). In case the
background is also considered a label, the tensor has a size of
38× 38× 4× (n classes+ 4). The number of BBs produced
is 38× 38× 4.

The process of applying a classifier
to a feature map is similar to layers
Conv7, Conv8 2, Conv 9, Conv10 2, andConv11 2. The
shape of the following layers will depend on the way the
convolutional process is applied in the previous layer, the
filter kernel size (as in the diagram above, the kernel size is
always 3 × 3), and the stride (jump size) of the convolution
layer. On each cell in the feature map, we define several 4 or 6
default BBs. Therefore, the number of default boxes produced
in the following layers is as follows:

Conv7 : 19× 19× 6 = 2166 boxes (6 boxes/cell)
Conv8 2 : 10× 10× 6 = 600 boxes (6 boxes/cell)
Conv9 2 : 5× 5× 6 = 150 boxes (6 boxes/cell)
Conv10 2 : 3× 3× 4 = 36 boxes (4 boxes/cell)
Conv11 2 : 1× 1× 4 = 4 boxes (4 boxes/cell)

The total number of boxes in the output will be: 5776 +
2166 + 600 + 150 + 36 + 4 = 8732

The second step is object prediction through a convolutional
network. Each feature layer added to the extra feature layers
will create a fixed set of outputs y that helps detect objects in
the image through the application of convolutional filters. The
output size (with×height×chanel) at each feature layer size
will depend on the kernel filters and is calculated completely
similarly to a regular convolutional neural network. We need to
associate a set of default BBs with each cell on the feature map.
The default boxes will be distributed tiled on the feature map
in order from top to bottom and from left to right to calculate
convolution, so the position of each default box corresponding
to the cell it is associated with is fixed corresponding to an
image area on the original image, as shown in Fig. 14.

At each default BB of the feature map, we predict 4 offsets
corresponding to a coordinate and its size. The 4 offsets here
are understood as a coordinate consisting of 4 parameters
(cx, cy, w, h) in which (cx, cy) helps determine the center and
(w, h) is the length and width of the BB. The second component
predicted is the score of the BB corresponding to each class.
Note that we will have an additional class (C + 1) to mark
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Fig. 11. Architecture of YOLO-NAS [71].

Fig. 12. Architecture of SSD network [75].

Fig. 13. Feature map division method to detect objects with images of different sizes
[75]. Fig. 14. The position of the default BBs on the original image when applied to a 4x4

feature map [75].
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the case where the default BB has no objects (or falls into the
background).

During SSD training, the loss function includes two compo-
nents: localization loss and confidence loss. Localization loss
is a Smooth L1 function that measures the error between the
parameters of the predicted box (p) and the ground truth box
(g). We will need to regress the offsets for the center (x, y)
and of the default BB (d) and the height h and the width w,
as computed in Eq. (5).

Lloc(x, l, g) =

N∑
i∈ Pos

∑
m∈{cx,cy,w,h}

xk
ij smoothL1

(
lmi − ĝmj

)
ĝcxj =

(
gcxj − dcxi

)
/dwi ĝcyj =

(
gcyj − dcyi

)
/dhi

ĝwj = log

(
gwj
dwi

)
ĝhj = log

(
ghj
dhi

)
(5)

Confidence loss is a loss function calculated based on the
label prediction error. For each positive match prediction, we
penalize the loss function according to the confidence score of
the corresponding labels. For each negative match prediction,
we penalize the loss function according to the confidence score
of the label ”0” which represents the background containing no
objects. The confidence loss function is computed as Eq. (6).

Lconf (x, c) =−
N∑

i∈ Pos

xp
ij log (ĉ

p
i )−

∑
i∈ Neg

log
(
ĉ0i
)

where ĉpi =
exp (cpi )∑
p exp (c

p
i )

(6)

As described above about VGG16-SSD, VGG16 is the back-
bone for the feature extraction process and building feature
maps for the training process of the SSD network. We will
present next about Mb1-SSD [80], Mb1-SSD-Lite, Sq-SSD-
Lite, and Mb2-SSD-Lite.

MobileNet v1 SSD (Mb1-SSD): In this network, SSD uses
MobileNet v1(Mb1) [80] as its backbone. The CNNs such
as LeNet [81], AlexNet [82], VGG-16, VGG-19, GoogLeNet
[81], and ResNet have a very large number of parameters
because these networks perform conventional 2-dimensional
convolution, illustrated in Fig. 15. 2-dimensional convolution
will normally be computed over the entire depth (channel -
c). Therefore, the number of model parameters will increase
significantly depending on the depth of the previous layer.

Suppose we have an input of size (w × h × c), the usual
convolution would need (k × k × c) parameter to perform
convolution over the entire depth of the layers. Each filter will
create an output matrix of size (w

′ × h
′ × 1). Applying c’

different filters will create an output of size (w
′ × h

′ × c
′
)

Fig. 15. 2-dimensional (2D) convolution will normally be computed over the entire
depth (channel). [80].

(the output matrices when applying convolution on each filter
will be concatenated according to depth). Then the number of
parameters needed for a normal convolution will be c

′×k×k×c.
Usually, the layers in the first position have a small depth.
However, the depth gradually increases to the final layers of
the CNN network, and the number of model parameters will
increase greatly.

The main idea of MobileNet is that depth-separated convolu-
tion will find a way to eliminate the dependence on depth, while
convolution still produces an output shape of equivalent size
compared to conventional convolution. Specifically, the process
will be divided into two sequential steps:

- Depthwise Convolution: the input tensor3D block (w, h, c)
is divided into matrix slices according to depth, and performing
convolution on each slice as shown in Fig. 16. The output of this
step is to obtain an output of size (h

′ ×w
′ × c

′
). Each channel

will apply a different filter and does not share parameters. This
has three main effects on the model: (1) feature detection: The
process of learning and recognizing features will be separated
by each filter. If the features on the channels are far apart, using
channel-specific filters will be more specialized in detecting the
features. For example, if the input is three RGB channels, each
channel applies a different, specialized filter. (2) Minimizing the
amount of computation: To create a pixel point on the output,
normal convolution is needed (k × k × c) calculation while
separated depth convolution only needs (k×k) calculations. (3)
Reducing the number of parameters: In the depth convolution,
we need to use (k × k × c) parameters. This is c

′
times less

than regular deep convolution. The results after convolution are
concatenated according to depth. Thus, the output obtained is
a 3D tensor block with dimensions (h

′ × w
′ × c).

- Pointwise Convolution: This has the effect of changing the
depth of the output of the above step from c to c

′
. We will apply

c
′

filter size (1× 1× c) so the width and height dimensions do
not change, only the depth changes, as illustrated in Fig. 17.
The final result we get is an output of size (h

′ ×w
′ × c

′
). The

number of parameters to apply in this case is (c
′ × c).

To summarize, the improvement of MobileNet compared to
other CNNs is shown on two values.

- Number of parameters: To generate a shape with dimen-
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Fig. 16. Performing convolution on each slice [80].

Fig. 17. Computing the point convolution [80].

sions (h
′×w

′×c
′
), the depthwise convolution: k×k×c+c

′×c,
Normally c

′
will be larger than c because the later the layers, the

greater the depth. Therefore the ratio: c
′
×k×k×c

k×k×c+c′×c
= c

′
×k×k

k×k+c′
.

This ratio will be close to (k × k) when c′ decreases to near
(k × k).

- Number of operations to be performed: To generate an
output shape with dimensions (h

′ ×w
′ ×c

′
), the depth-separate

convolution only has to be performed sequentially on the deep
convolution is (h

′ ×w
′ × c)× (k×k) multiplication operation,

the point convolution is (h
′ ×w

′ ×c)×(h
′ ×w

′
) multiplication

operation.
The ratio of calculations between regular convolution and

deep convolution is computed as Eq. (7).

h
′
× w

′ × c
′ × k × k × c

h′ × w′ × c × k × k + h′ × w′ × c × h′ × w′ =
c
′ × k × k

k × k + h′ × w′
(7)

MobileNet v2 SSD (Mb2-ssd): In this network, SSD uses
MobileNet v2 (Mb2) [83] as its backbone. MobileNet V2 has
several improvements over MobileNetV1 that give it higher ac-
curacy, fewer parameters, and fewer calculations. MobileNetV2
also uses shortcut connections like the ResNet [20]. Blocks
in the previous layer are added directly to the next layer. If
we consider the previous layer as x, after going through two-
dimensional convolution processing, we get the result f(x), then
the final output is a residual block with value x+ f(x), as
presented in Fig. 18.

However, the shortcut connection in MobileNet V2 is ad-
justed so that the number of channels (or depth) at the input
and output of each residual block is narrowed. That’s why they

Fig. 18. The residual block of ResNet [20].

are called bottleneck layers (the bottleneck is a term often used
in DL to refer to architectures that shrink in size in a certain
dimension), as presented in Fig. 19.

Fig. 19. The the bottleneck block of MobileNet V2 [83].

SqueezeNet SSD (Sq-SSD-Lite): In this network, SSD uses
SqueezeNet(Sq) [84] as its backbone. The architecture of
SqueezeNet includes 3 strategies, as shown in Fig. 20.

Strategy 1: This strategy reduces the number of 9x parameters
by replacing a series of 3×3 filters with 1×1 filters. Typically,
a larger 3×3 convolution filter captures the spatial information
of pixels that are close together. A 1 × 1 convolution filter
focuses on a single pixel and captures the relationship between
its channels instead of neighboring pixels.

Strategy 2: This strategy reduces the number of parameters
essentially just by using fewer filters. “Squeeze” layers are
convolutional layers made up of only 1×1 filters, and “expand”
layers are convolutional layers with a combination of 1×1 and
3×3 filters. By reducing the number of filters in the “squeeze”
layer that feeds into the “extend” layer, we are reducing the
number of connections into these 3 × 3 filters, thus reducing
the total number of parameters. The authors of this article call
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Fig. 20. The architecture of SqueezeNet [84].

this particular architecture the “fire module,” and it serves as
the basic building block for the SqueezeNet architecture.

Strategy 3: This strategy performs late sampling in the
network so that the convolutional layers have large activation
maps. Classification accuracy is increased by reducing the
stride with later convolutional layers and thus creating larger
feature/activation maps later in the network.

Single Shot Detection Lite (SSD-Lite): In this paper, we
use SSD-Lite [85] to train models based on feature maps
extracted from backbones, the architecture is presented in Fig.
21. This architecture includes three parts: the backbone, the
detection neck part, and the detection part. The MBlitenet
lightweight backbone is proposed for feature extraction. The
CFPN [86](Circle Feature Pyramid Networks) used the level
3-7 feature maps from the backbone network for feature fusion
in the detection of the neck part. The detection part used the
fused feature maps to get the object class and BB regression.

Fig. 21. The architecture of SSD-Lite [85].

IV. EXPERIMENTAL RESULTS

A. OTUM Ultrasound Images Datasets

OTU-2D dataset: The MMOTU image dataset [17] com-
prises two subsets with two modes: OTU-2D and OTU-CEUS,

including 1469 2D ultrasound images and 170 CEUS images.
Across both subsets, there are semantic pixel-wise annotations
and global category annotations. All images were collected
from the Beijing Shijitan Hospital, Capital Medical University.
The OTU dataset contains 1639 ovarian ultrasound images col-
lected from 294 patients. The MMOTU image dataset includes
eight typical categories of OTUM masses. The samples in each
class are imbalanced, mainly due to certain types of tumor
masses being more common while others are rare, as detailed in
Table I. The OTUM annotations for the MMOTU image dataset
are provided at a pixel-level and were created by 27 experts
from the Obstetrics and Gynecology department. Each image is
initially annotated by one expert and subsequently reviewed by
another expert, ensuring the quality of the annotations. During
the annotation process, experts reference pathology reports,
making the annotations accurate and convincing.

TABLE I. NUMBER OF IMAGES IN OTU-2D DATASET

Labels Classes Number
of images

1 Chocolate cyst 336
2 Serous cystadenoma 219
3 Teratoma 336
4 Theca cell tumor 88
5 Simple cysts 66
6 Ovary normal 267
7 Mucinous cystadenoma 104
8 High grade serous cystadenoma 53

The images in the dataset have varying aspect ratios. In the
OTU-2D dataset, the width and height of the images range from
302 to 1135 and 226 to 794 pixels, respectively. In the OTU-
CEUS set, the width and height of the images range from 330 to
888 and 218 to 657 pixels, respectively. Before training, input
images are resized and randomly cropped to 384× 384 pixels.
In this paper, we only use the OTU-2D dataset to fine-tune the
OTUM detection and classification model. The OTU-2D dataset
is divided into two sets, the training set includes 1000 images
for model training and the testing set includes 469 images for
model testing. The labels of OTUM types are shown in Fig.
22.

The OTU-2D dataset with 8 classes of OTUM is called
”OTU-2D 8classes” and is presented in the link (1). The
characteristics of the tumor classes (as Tab. I) are challenging
to distinguish between the classes. Tumors in the classes with
labels ”1”, ”2”, ”3”, and ”7” are protruding, darker in color
compared to the surrounding area, and quite distinct. Tumors
in the classes with labels ”4”, and ”5” are no common features
among the tumors. Tumors in the classes with labels ”6”,
and ”8” are unclear characteristics, pale in color, similar to
the surrounding area. The class imbalance occurs when there
is a significant difference in the number of samples between
different classes. In tumor classification, the classes with labels

1https://drive.google.com/drive/folders/1zZAXzgYdrNjXUMgr0GkWxRiN1sbrAC
w?usp=sharing

Van-Hung Le, Ovarian Tumors Detection and Classification on Ultrasound Images Using One-stage Convolutional Neural
Networks



Journal of Robotics and Control (JRC) ISSN: 2715-5072 574

Fig. 22. Illustrating the ultrasound images and eight labels OTUM annotations of OTU-2D dataset MMOTU. The top row is an ultrasound image. The bottom row is the annotation
data, each label has a different color.

”2”, ”3”, ”4”, ”7” in the OUT-2D dataset have more instances
than another so leading the model to be biased towards the
majority class. Meanwhile, ultrasound images in the tumor
mass of classes with the label ”7” and label ”8” lacks clear
characteristics, appearing faint and blending in color with the
surrounding area, making them challenging to differentiate.
To prepare data for training the model to detect with or
without OTUM on ovarian ultrasound images, we perform data
normalization of the annotation ovarian mass data. If a data
region has a label of ”1” to ”8” of OTUM labels as shown in
Tab. I and Fig. 22, then that region is labeled ”1”. This set is
called ”OTU-2D 1class” and is presented in the link (2).

USOVA3D dataset: In 2020, Potočnik et al. [18] developed
and introduced the USOVA3D ultrasound image dataset. OTUM
masses were evaluated and labeled by two independent ex-
perts. The USOVA3D ovarian ultrasound image dataset was
constructed by a group of gynecologists and ultrasound experts
from UKC along with researchers from UM FERI. Medical ex-
perts assessed the images and provided annotations for OTUM
masses. This dataset comprises 35 volumes of OTUM masses
from women that have been annotated. Each entry in USOVA3D
dataset includes a 3D ultrasound image and corresponding
annotations of OTUM masses. Entries in the dataset are linked
to five files, each as follows: One file contains the 3D image,
two files contain the segmentation of the ovary, and two files
contain the segmentation of the OTUM mass, performed by two
independent evaluators. All data files are in VTK data format.

All entries in the USOVA3D dataset are divided into two
datasets: a training set and a testing set. The training set
includes 16 volumes, with each entry containing the original 3D
image and annotations for both the ovary and OTUM masses
from both evaluators. In contrast, the testing set consists of
19 volumes, where only the original 3D images are provided,
as presented in Fig. 23. The dataset’s separation and design,
without ground truth data for the testing set, allow for algorithm
evaluation using the USOVA3D web service. From the various

2https://drive.google.com/drive/folders/1MVcfb84cUZZkEQa30ETgzoCp9P5\
\H8KCA?usp=sharing

volumes, we can extract 2D ultrasound images for training, and
testing, and the OTUM annotation is illustrated in Fig. 24.

Fig. 23. Sample ultrasound volume from the USOVA3D dataset: a 3D view of selected
cross-sections through volume with annotated follicles (bottom-right) and 2D views of
annotated follicles superimposed on selected cross-sections (from top-left to bottom-left)
[18].

Fig. 24. Illustration of ovarian ultrasound images and annotation data of OTUM in the
USOVA3D dataset obtained in 2D space.

Based on the annotation data of two experts, the annotation
data of the first expert is called ”USOVA3D 2D f r1”, and
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is presented in the link (3), the annotation data of the second
expert is called ”USOVA3D 2D f r2”, and is presented in
the link (4). To prepare for training and testing the model,
we divide the data into a training set, validation set, and
testing set with the following ratios: 70% training, 15% valida-
tion, 15% testing (called the ”USOVA3D 2D f r1 70 15 15”,
”USOVA3D 2D f r2 70 15 15”); 80% training, 20% testing
(called the ”USOVA3D 2D f r1 80 20”,
”USOVA3D 2D f r2 80 20”). In USOVA3D dataset, ultra-
sound image data has some challenges. (1) Limited data:
ultrasound data is often quite limited and expensive to gather.
This can pose challenges in training deep learning models
with high accuracy. (2) Low resolution: ultrasound images
typically have lower resolution compared to images captured
using conventional imaging methods. This can increase dif-
ficulties in extracting crucial information from the images.
(3) Noise issues: ultrasound images often contain high levels
of noise, especially when collected from hard-to-reach areas.
The model needs to effectively operate in noisy conditions to
ensure accuracy. (4) Uniformity across hospitals: the data from
multiple hospitals may exhibit low uniformity. Models need to
efficiently work across various types of equipment and diverse
datasets.

B. Fine-Tuning OTUM Detection and Classification Model

YOLO families allow fine-tuning of OTUM detection models
on custom datasets. As shown in Fig. 24, we perform fine-
tuning of the OTUM detection and classification model on two
datasets: OTU-2D and USOVA3D.

On the OTU-2D dataset, we normalized to the size of
640 × 480 pixels, and the BB is normalized in the format
of the COCO2017 dataset [87], and the labels of OTUM on
the images. We perform fine-tuning YOLOv8n, YOLOv8s,
YOLOv8m, and YOLOv8l for two types of output predictions
(study 1): (a) with or without OTUM on the image; (b) detection
and classification of 8 types of OTUM. The implementation
process is shown in Fig. 27. In this paper, we use the source
code of YOLOv5 (in link (5)), YOLOv7 (in link (6)), YOLOv8
(in link (7)), YOLO-NAS (in link (8)). In this paper, we also
perform fine-tuning of the OTUM detection and classification
model with CNNs of the SSD (VGG16-SSD, Mb1-SSD, Mb1-
SSD-Lite, Sq-SSD-Lite, Mb2-SSD-Lite) families, the source
code is shown in the link (9). These CNNs also use original
data with the same structure as COCO format, but the original

3https://drive.google.com/drive/folders/1lK2OFzMHbqbjVL GcwcGx 3
Lmy m334?usp=sharing

4https://drive.google.com/drive/folders/1Kc-geRaAfhKrLz28yhWfxzSKb7weVkDT?
usp=sharing

5https://github.com/ultralytics/yolov5
6https://github.com/WongKinYiu/yolov7
7https://github.com/ultralytics/ultralytics
8https://github.com/naseemap47/YOLO-NAS
9https://github.com/tensorturtle/mobilenet-ssd-training

data is formatted in a ”.json” file, the data format source code
is also saved with the dataset.

On the USOVA3D dataset, we normalized to the size of 180×
120 pixels. USOVA3D data is also standardized according to
the COCO2017 format. In this paper, we only perform fine-
tuning of the model to detect with or without ovarian masses
on ovarian ultrasound images (study 2).

Before performing the training and evaluation of the right-
hand detection model on the image, we normalize the BB
annotation (as illustrated in Fig. 25) of the hand to YOLO’s
BB format with the COCO2017 dataset [87], as presented in
Eq. (8).

a =
x max+x min

2

w b
; b =

y max+y min
2

h b

c =
w b

w im
; d =

h b

h im

(8)

where (x max, y max) are the coordinates of the top right
corner of the hand BB on the image, (x max, y max) is the
coordinates of the bottom left corner of the hand BB on the
image, w b is the width size of the BB of the hand on the
image, h b is the height size of the hand BB on the image,
w im is the width size of the image, h im is the height size
of the image.

Fig. 25. Illustration of the BB annotation of the OTUM.

The data structure of the BB in the format of COCO2017
used for training and evaluation has the form (l, a, b, c, d),
where l is the label of the object. In this paper, we deployed
the fine-tuning and testing models on a server with NVIDIA
GeForce RTX 2080 Ti, 12GB GPU. The programs were written
in the Python language (≥3.7 version) with the support of
the CUDA 11.2/cuDNN 8.1.0 libraries. In addition, there are
several libraries such as OpenCV, matplotlib, mmcls≥0.20.1,
numpy, packaging, prettytable, PyTorch 1.5+, etc.

C. Evaluation Matrix

To evaluate OTUM detection and classification, we em-
ploy common metrics such as Recall(R), Precision(P ),
Accuracy(Acc), and IoU .

• Recall:
Recall =

TP
TP + FN

(9)
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• Precision:
Precision =

TP
TP + FP

(10)

• Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

where TP (True Positive) is the correct label prediction, FP
(False Positive) is a mislabeled prediction, TN (True Neg-
ative) is the correct prediction of the negative label, and
FN (False Negative) is a false negative label prediction.

• IoU: Intersection Over Union (IoU ) is a number that
quantifies the degree of overlap between two boxes. In the
case of object detection and segmentation, IoU evaluates
the overlap of the ground truth and prediction region.

The threshold of IoU we use is 0.5. In the process of
fine-tuning the model to detect ovarian tumors on ultrasound
images, we performed it many times with different numbers of
epochs. When the number of epochs is 300, the trained model
is no longer better when evaluating the validation set and the
evaluation result on the validation set is the highest. Therefore,
we choose the number of epochs being 300 to limit all CNNs
tested and compared in this paper.

D. Results, Discussions, and Challenges

As compared in [88], and [89], Faster R-CNN (two-stage
network) has more accurate mAP results than YOLOv3 and
SSD. However, the computation time of Faster R-CNN is much
slower than YOLOv3 and SSD. Due to the computational time
requirements of an ovarian tumor detection system, it needs
to be the processing time in real-time. In this paper, we only
compare single-stage networks (YOLO family and SSD family).
The results of detecting with or without OTUM in ovarian
ultrasound images (USOVA3D 2D f r1 70 15 15) are shown
in Table II. The results of detecting with or without OTUM
on ovarian ultrasound images (USOVA3D 2D f r2 70 15 15)
are shown in Table III. In this paper, we compared the detection
results of YOLOv5, YOLOv7, YOLOv8, YOLO-NAS, VGG16-
SSD, Mb1-SSD, Mb1-SSD-Lite, Sq-SSD-Lite, Mb2-SSD-Lite
with or without ovarian tumors with MU Net [90], the results
are shown in Table II and Table III.

The results of detecting with or without OTUM on ovar-
ian ultrasound images in ”USOVA3D 2D f r1 70 15 15” and
”USOVA3D 2D f r2 70 15 15” sets of MU Net [90] are the
highest (Acc = 98.4%, P = 98.3%, R = 63.8%). The results of
CNNs belonging to the SSD family are superior to those of the
YOLO family, MU Net [90] is improved with the combination
of MobileNetV2 and U-Net for ovarian tumor detection, so its
results are higher than the networks belonging to the YOLO
family and SSD family. However, the result of R = 63.8%
of MU Net is very low. This problem shows that the falsely
detected result of MU Net [90] was 36.2%, which is a very

high rate of mistakenly detecting ovarian tumors on ultrasound
images. While the results of detecting the with or without
ovarian tumors on ultrasound images of Mb1-SSD-Lite are high
(Acc = 96.%50, P = 95.70%, R = 96.52% in Table II) and
(Acc = 97.%69, P = 97.11%, R = 97.69% in Table III).

The results of detecting with or without OTUM on ovarian
ultrasound images (USOVA3D 2D f r1 80 20) are shown in
Table IV. In Table IV, the highest result in detecting OTUM is
Mb1-SSD (Acc = 98.9%, P = 98.58%, R = 98.9%). The re-
sults show that when the SSD network uses the standard model,
it gives the highest results and is higher than when using the
lightweight model. The CNNs belonging to the YOLO family
with YOLOv8l have the highest results (P = 97.22%, R =
75.48%). The results of detecting with or without OTUM
on ovarian ultrasound images (USOVA3D 2D f r2 80 20) are
shown in Table V. In Table V, the highest result in detecting
OTUM is YOLOv8l (P = 99.34%, R = 81.27%). The results
of detecting and classifying 8 classes of OTUM of the OTU-
2D dataset are presented in Table VI. In Table VI, the best
result based on the Acc measure is Sq-SSD-Lite model with
(Acc = 92.04%), the best result based on the P measure is
YOLOv5 model with (P = 82.91%), the best result based on
the R measure is Sq-SSD-Lite model with (R = 92.04%).

Fig. 26 shows the confusion matrix of OTUM detection and
classification with 8 classes of OTUM of the OTU-2D dataset
when using the fine-tuned YOLOv5 model for prediction. Fig.
26 also shows the prediction result of the 3rd label (Teratoma)
having the highest result of 81%, and the 5th label (Simple
syst) having the lowest result of 53%. As Fig. 22, the geometric
structure of OTUM on ultrasound and ground-truth images is
the simplest geometric structure. The 5th label is detected and
wrong classified with the 2nd label (Serous cystadenoma) and
the background. Another label that also has a high rate of wrong
classification is the 4th label, which is often wrongly classified
with the 5th label.

Fig. 27 illustrates the ground truth and predictive results for
8 classes of OTUM and the BB of OTUM on the OTU-2D
dataset. The top (four rows of images above) is the ground
truth BB and tumor label data, and the bottom (four rows of
images below) is the BB and label prediction result of OTUM.

At the top, the first image is named ”1002.jpg”, labeled
”5”, and the OTUM is represented by a green BB. Prediction
results at the bottom, the first image is named ”1002 .jpg”, the
OTUM label prediction is ”6”, and the confidence score is 0.3,
represented by a lighter blue BB labeled ”5”. This is a case
where the label of an OTUM was wrong predicted.

In the second image of row 1 at the top, the image is named
”548.jpg”, the label of the OTUM is ”1” and is represented by
a BB with the IndianRed color. The prediction and classification
results are shown in the second image row 1 at the bottom, the
image is named ”548.jpg”, the prediction result is labeled ”1”,
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TABLE II. OTUM DETECTION RESULTS ON THE USOVA3D 2D F R1 70 15 15 SET (300 EPOCHS)

Models/
Metrics

VGG16-
SSD

Mb1-SSD
Mb1-SSD-

Lite
Sq-SSD-

Lite
Mb2-SSD-

Lite
YOLO

v5
YOLO

v7
YOLO

v8m
YOLO

v8s
YOLO

v8n
YOLO

v8l
YOLO

-NAS-m
MU
Net

Acc(%) 81.44 95.60 96.50 95.07 94.49 - - - - - - - 98.4
P(%) 66.67 94.87 95.70 91.75 93.69 95.50 93.20 96.22 94.33 95.49 97.48 51.29 98.3
R(%) 81.44 95.60 96.52 95.07 94.49 66.80 62.11 73.10 64.10 71.58 75.24 58.04 63.8

TABLE III. OTUM DETECTION RESULTS ON THE USOVA3D 2D F R2 70 15 15 SET (300 EPOCHS)

Models/
Metrics

VGG16-
SSD Mb1-SSD Mb1-SSD-

Lite
Sq-SSD-

Lite
Mb2-SSD-

Lite
YOLO

v5
YOLO

v7
YOLO

v8m
YOLO

v8s
YOLO

v8n
YOLO

v8l
YOLO

-NAS-m
MU
Net

Acc(%) 84.73 97.41 97.69 95.39 97.12 - - - - - - - 98.4
P(%) 33.10 96.59 97.11 92.98 95.91 97.10 94.50 98.55 95.78 96.34 98.72 55.27 98.3
R(%) 84.73 97.41 97.69 95.39 97.12 72.70 64.25 68.40 66.32 68.29 73.85 62.79 63.8

TABLE IV. OTUM DETECTION RESULTS ON THE USOVA3D 2D F R1 80 20 SET (300 EPOCHS)

Models/
Metrics

VGG16-
SSD

Mb1
-SSD

Mb1-SSD-
Lite

Sq-SSD-
Lite

Mb2-SSD-
Lite

YOLO
v5

YOLO
v7

YOLO
v8m

YOLO
v8s

YOLO
v8n

YOLO
v8l

YOLO
-NAS-m

Acc(%) 80.62 98.90 98.24 96.70 98.46 - - - - - - -
P(%) 28.41 98.58 97.83 95.19 97.92 96.50 92.46 96.73 94.37 95.44 97.22 52.99

R(%) 80.62 98.90 98.24 96.70 98.46 67.20 65.34 72.19 67.29 68.17 75.48 59.35

TABLE V. OTUM DETECTION RESULTS ON THE USOVA3D 2D F R2 80 20 SET (300 EPOCHS)

Models/
Metrics

VGG16-
SSD

Mb1
-SSD

Mb1-SSD-
Lite

Sq-SSD-
Lite

Mb2-SSD-
Lite

YOLO
v5

YOLO
v7

YOLO
v8m

YOLO
v8s

YOLO
v8n

YOLO
v8l

YOLO
-NAS-m

Acc(%) 79.74 96.80 97.44 95.95 97.87 - - - - - - -
P(%) 33.19 95.44 97.01 94.31 97.16 98.50 94.23 98.44 97.66 96.74 99.34 54.46

R(%) 79.74 96.80 97.44 95.95 97.87 73.30 69.47 75.24 74.55 72.94 81.27 59.76

TABLE VI. THE RESULTS OF DETECTING AND CLASSIFYING 8 OTUM CLASSES OF THE OTU-2D DATASET (300 EPOCHS)

Labels Model
Metrics

VGG16
-SSD

Mb1
-SSD

Mb1-SSD
-lite

Sq-SSD
-Lite

Mb2
-SSD-Lite

YOLO
v5

YOLO
v7

YOLO
v7-w6

YOLO
v7-d6

YOLO
v7-e6

YOLO
v8m

YOLO
v8s

YOLO
v8n

YOLO
v8l

YOLO
-NAS-m

Acc (%) 80.30 93.94 98.48 100.00 100.00 - - - - - - - - - -
1 P (%) 45.20 90.91 87.50 77.78 85.71 73.30 56.70 58.20 55.40 52.50 69.20 73.50 74.60 80.00 -

R (%) 80.30 93.94 98.48 100.00 100.00 70.00 76.10 74.50 74.50 80.00 71.80 68.20 70.90 62.70 -
Acc (%) 75.00 98.15 93.52 100.00 92.59 - - - - - - - - - -

2 P (%) 32.45 95.34 66.67 82.70 81.35 82.50 44.40 42.10 36.70 39.30 63.70 67.40 74.70 72.00 -
R (%) 75.00 98.15 93.52 100.00 92.59 74.20 86.40 84.80 93.90 86.40 71.20 63.60 71.20 66.20 -

Acc (%) 38.71 83.87 90.32 93.55 80.65 - - - - - - - - - -
3 P (%) 22.46 66.67 80.00 71.43 67.25 88.20 61.30 62.40 53.80 41.00 85.20 77.70 76.40 85.80 -

R (%) 38.71 83.87 90.32 93.55 80.65 75.90 82.30 77.00 80.60 89.80 79.80 78.70 81.50 72.20 -
Acc (%) 5.26 89.47 89.47 89.47 84.21 - - - - - - - - - -

4 P (%) 2.36 83.33 54.55 75.00 70.00 81.50 48.60 37.60 38.00 26.80 72.50 54.50 71.90 75.30 -
R (%) 5.26 89.47 89.47 89.47 84.21 58.10 33.50 19.40 51.60 35.50 59.50 51.60 58.10 58.90 -

Acc (%) 8.05 83.91 83.91 85.06 77.01 - - - - - - - - - -
5 P (%) 4.56 50.00 52.46 55.67 52.90 90.00 98.70 0.00 15.40 11.50 66.50 26.60 69.90 39.00 -

R (%) 8.05 83.91 83.91 85.06 77.01 68.40 10.50 0.00 36.80 15.80 52.20 47.40 52.60 53.80 -
Acc (%) 93.94 90.91 87.88 96.97 96.97 - - - - - - - - - -

6 P (%) 78.23 70.00 75.00 90.60 71.43 79.10 39.10 51.70 54.10 47.00 89.40 68.70 71.20 77.60 -
R (%) 93.94 90.91 87.88 96.97 96.97 60.90 63.20 74.70 80.50 81.60 69.00 64.40 68.00 59.80 -

Acc (%) 73.33 80.00 93.33 100.00 86.67 - - - - - - - - - -
7 P (%) 62.45 75.00 78.25 92.50 68.70 86.80 27.90 23.80 21.00 17.70 68.80 45.70 78.00 58.90 -

R (%) 73.33 80.00 93.33 100.00 86.67 66.70 48.50 54.50 81.80 66.70 63.30 56.20 57.60 57.60 -
Acc (%) 2.56 52.40 62.40 71.29 65.34 - - - - - - - - - -

8 P (%) 1.59 32.70 45.70 52.80 49.80 81.90 39.10 33.20 26.90 23.10 51.80 22.50 36.30 43.20 -
R (%) 2.56 52.40 62.40 71.29 65.34 46.70 20.00 26.70 13.30 30.10 60.00 46.70 46.70 46.70 -

Acc (%) 47.14 84.08 87.41 92.04 85.43 - - - - - - - - - -
Average P (%) 31.16 70.49 67.52 74.81 68.39 82.91 51.98 38.63 37.66 32.36 70.89 54.58 69.13 66.48 43.67

R (%) 47.14 84.08 87.41 92.04 85.43 65.11 52.56 51.45 64.13 60.74 65.85 59.60 63.33 59.74 77.97

the confidence score is 0.5, and is represented by a BB equals
BB with color IndianRed. This result is the result of the correct
classification of OTUM.

Based on the results in Table II-VI, there are many cases
of undetected OTUM. This proves that many OTUM have not
been detected and classified properly. This is very dangerous in
detecting and diagnosing OCAN. For example, a woman has
an OTUM but it is not detected through medical examination,
and this person will not receive early treatment for the tumor,
which will lead to the tumor becoming larger and metastasizing

to organs, and others in the body When detected, the disease
is in a late stage and very difficult to treat. This reduces
the patient’s chance of survival. In medical examination and
treatment, especially when detecting OTUM, it is often better
to accept ”a mistake than a miss”, thereby increasing the ability
to detect early and promptly treat OTUM.

Currently, there is a CNN model with very high accuracy
and recall results, nearly 100% for the problem of detecting
tumors on ovarian ultrasound images. However, the results of
classifying 8 types of OTUM in Tab. VI are very poor. This
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Fig. 26. Illustrate the confusion matrix normalized for detection and classification of 8
classes of OTUM of the OTU-2D using the fine-tuned YOLOv5 model.

Fig. 27. Illustrating the ground truth data and prediction of 8 classes of OTUM by
YOLOv5. The top is the ground truth data about the label and BB of the OTUM area,
the bottom is the prediction result of the label, confidence score, and BB of the OTUM.

happens because the YOLO and SSD networks mainly perform
well on the object detection problem but do not perform well
on the object classification problem. The process of object
classification here is to detect ovarian tumors labeled as one of
8 tumor types in the OTU-2D dataset. Therefore, in the future,

Fig. 28. Illustrating the ground truth data and prediction of OTUM by Mb1-SSD. The
left is the ground truth data about the label and BB of the OTUM area, the right is the
prediction result of the label, confidence score, and BB of the OTUM.

it is necessary to improve the problem of classifying tumors.
During the process of conducting this research, we realized
some challenges in building the following support system for
detecting and diagnosing OTUM. (1) the resolution of ovarian
ultrasound images is very low, such as in the USOVA3D dataset,
images are only about 120pixels in size; (2) the problem of
labeling tumor data is very difficult, as this problem often
requires expert work and consumes a lot of time; (3) confiden-
tiality issues and the difficulty of collecting ovarian ultrasound
images; (4) requirements for a hospital support system need
to be implemented on computers with low computing space,
especially running only on CPUs.

About the performance of YOLO and SSD. YOLO:
Renowned for high processing speed, and suitable for real-time
processing applications, SSD is also fast, but typically slower
than YOLO. About the accuracy, YOLO generally has good
accuracy, especially for larger objects and SSD achieves high
accuracy as well, but may be weaker than YOLO for smaller
objects. About handling small objects: YOLO may struggle
with detecting small objects, but SSD usually performs better
in detecting small objects. By handling overlapping objects:
YOLO may have issues with overlapping objects as it primarily
relies on grid cells for predictions. SSD is Better at han-
dling overlapping objects by using multiple default bounding
boxes for predictions. By generalization and training capability:
YOLO exhibits good generalization and is easily trainable on
large datasets. SSD also has high generalization capabilities and
can be trained on various types of data.

V. CONCLUSIONS AND FUTURE WORKS

One-stage CNNs have shown outstanding ability in solving
computer vision problems. Although they have normal accu-
racy, their speed is many times faster than two-stage CNNs.
To meet the requirements of building a system to help detect
and diagnose OTUM on ovarian ultrasound images, we tested a
series of CNNs from the YOLO and SSD families for the prob-
lem of detecting and classifying OTUM on ultrasound images
of two typical ovarian ultrasound image databases: OTU and
USOVA3D. The results were evaluated in terms of precision,
accuracy, and recall, with the issue of detecting OTUM (with or
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without OTUM on ovarian ultrasound images), the results were
very high (the highest is Acc = 98.9%, P = 98.58%, R =
98.8% of Mb1-SSD on the USOVA3D 2D f r1 80 20 set,
highest is Acc = 97.87%, P = 97.16%, R = 97.87% of Mb2-
SSD-Lite on the USOVA3D 2D f r2 80 20 set). However,
with the problem of tumor classification (8 OTUM classes
on the OTU dataset), the results are low (highest is only
Acc = 92.04, 74.81%, R = 92.81 and YOLO and SSD results
are both less than 85%). In the future, we will continue to
research to extract good features for classifying OTUM.
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