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Abstract—This work proposes an efficient and safe single-layer 

Nonlinear Model Predictive Control (NMPC) system based on 

LiDAR to solve the problem of autonomous navigation in 

cluttered environments with previously unidentified static and 

dynamic obstacles. Initially, LiDAR sensor data is collected. 

Then, the Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) algorithm, is used to cluster the (Lidar) points 

that belong to each obstacle together. Moreover, a Minimum 

Euclidean Distance (MED) between the robot and each obstacle 

with the aid of a safety margin is utilized to implement safety-

critical obstacles avoidance. After that, to impose avoidance 

constraints with feasibility guarantees and without 

compromising stability, a NMPC framework for set-point 

stabilization is taken into consideration with a design strategy 

based on terminal inequality and equality constraints. Finally, a 

case study with an omnidirectional wheeled mobile robot 

(OWMR) is presented to assess the proposed NMPC 

formulation for set-point stabilization. Furthermore, the 

efficacy of the proposed system is tested by experiments in 

simulated real-world scenarios using a robot simulator named 

CoppeliaSim in combination with MATLAB which utilizes the 

CasADi Toolbox. The proposed control framework shows a 

positive performance in a narrow-cluttered environment with 

unknown obstacles. 

Keywords— NMPC; DBSCAN; Set-point Stabilization; 

Obstacle Avoidance 

I. INTRODUCTION 

From a personal and professional perspective, the 

technological advancement seen in the previous several 

decades has changed how individuals reshaped their 

everyday routines. Manufacturing robots, autonomous 

automobiles, underwater vehicles, home and warehouse 

autonomous robots, Unmanned Aerial Vehicles (UAVs), and 

many more sophisticated robotics systems and autonomous 

vehicles are all included in the technological development. 

Yet, as these systems spread, new technological problems 

appear, shedding more light on the difficulties in developing 

secure and dependable intelligent motion systems that can 

cooperate with people and complicated environments. In 

addition to the unique tasks that each system is intended for, 

dynamic control problems and path planning are critical 

when autonomous navigation is being considered. 

Applications for autonomous navigational systems include 

manufacturing [1], precision agriculture [2], cinematographic 

filming [3], mining [4], underwater and space exploration [5, 

6], and pipeline inspection [7]. 

It is difficult to maintain autonomy in such a dynamic, and 

unstructured environment. The following presents the most 

challenging areas: i) reliable obstacle detection and 

forecasting in an unstructured environment, ii) examination 

of obstacles' uncertainty and parametric representation, and 

iii) algorithm of motion planning for dynamic obstacle 

trajectories in real-time. Planning and control problems are 

frequently dealt separately in the literature using multi-layer 

schemes [8-13]. If the connection between the layers is not 

handled properly in certain circumstances, the total output 

might show performance degradation. Control systems in 

particular frequently assume that the intended reference is 

attainable, though this hypothesis may not be accurate if the 

reference is specified in spite of the system's inherent 

dynamics limitations and operational constraints. Thus, it is 

crucial to research methods that take control and planning 

problems into account in a single, colligated scheme. 

Among the studies that address these problems at single-

layer, those that focus on optimum control are particularly 

intriguing since they allow for the definition of path planning 

by utilizing the design of the optimization problem through 

its cost function and constraints [14, 15]. From the standpoint 

of the control algorithm, Model Predictive Control (MPC) 

techniques in particular can provide convergence guarantees 

and online stability while solving the path planning problem 

[16]. The majority of research in the literature suggests 

single-layer algorithms while taking into account that MPC 

creates extra constraints for obstacle avoidance to solve the 

problem [17, 18]. Model predictive control (MPC) has 

become more popular in the control community as a result of 

its explicit handling of restricted control problems. Over a 

predefined prediction horizon, MPC determines a future 

control sequence while reducing an objective function where 

a set of system state and control action constraints are 

achieved. Different versions of MPC, such as linear MPC and 

NMPC, have been employed to address the aforementioned 

objectives of control for mobile robots. [19–21] provide 

research that employed linear MPC; in these investigations, 

MPC has only been utilized to accomplish the objective of 

path or trajectory tracking. The nonlinear model of motion is 

employed by NMPC, which has been utilized for regulation 

problems [22, 23]; tracking problems [24, 25], and both [26, 

31]. Although stability of a finite horizon MPC is not trivially 

guaranteed [32, 33], it has been demonstrated that stability 

may be ensured by employing a terminal state equality 

constraint [34-36]. 

Robots must be able to recognize surrounding obstacles 

quickly and effectively in order to perform safety-critical 

navigation in dynamic situations. These can be achieved by 

the developments in sensor technology. Mobile robots, for 
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instance, may look ahead a specific distance using LIDAR, 

Radar, and cameras, delivering information about the terrain 

and other traffic data [37]. Based on visual data from 

cameras, several approaches for object detection and tracking 

are utilized [38-42]. Nevertheless, in poor lighting and 

weather, this strategy does not work effectively. A different 

technique uses point cloud data; [43] developed a system for 

dynamic environment perception based on a LiDAR sensor. 

In this method the dynamic obstacles are enclosed with 

minimum bounding ellipses, and a stable dynamic obstacle 

avoidance is achieved. However, in cluttered environments, 

when there is a short distance between two or more obstacles, 

the ellipsoids or other shapes can overlap with each other and 

then, prevent the robot from navigating between these 

obstacles especially, when the path is narrow. This may result 

in the loss of recursive feasibility, in the way of avoiding 

obstacles that demand a large detour from the initial path. In 

this work, obstacles are clustered by the Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) 

algorithm [44] after collecting the LiDAR sensor data, and 

the minimum Euclidean distance between the robot and each 

obstacle is calculated. The proposed algorithm performs well 

in a narrow-cluttered environment with unknown static and 

dynamic obstacles. 

Numerous techniques, including artificial potential fields 

[45], collision-free flight corridor [43] [46], DWA (Dynamic 

Window Approach) [47], gradient maps [48], social forces 

[49], and pre-computed motion primitives library [50] [51], 

can be used to avoid collisions in static and dynamic 

environments. These techniques, however, are ineffective in 

contexts with more complicated or fast-moving obstacles. 

The proposed strategy is based on MPC, which has been 

increasingly popular recently [52-54]. [43] presented a 

planning strategy in dynamic, unstructured environments 

based on Model Predictive Contouring Control (MPCC). 

Nevertheless, this algorithm only effectively avoids 

pedestrians, making it challenging to successfully avoid more 

complicated obstacles. In order to assure safety, [55] 

suggested a model predictive control architecture, and [56] 

examined its viability and safety by employing discrete time 

Dynamic Control Barrier Function (D-CBF) limitations in a 

receding horizon manner. This algorithm, however, struggles 

in a narrow-cluttered environment.  

This paper proposes a NMPC algorithm with obstacle 

avoidance capabilities for a set-point stabilization motion 

system. The DBSCAN algorithm is adopted for clustering the 

dynamic and static obstacles after collecting the LiDAR 

sensor information. The environmental obstacles are induced 

as additional constraints, which are represented in this work 

as having minimum distance forms. Numerical findings are 

provided taking into account the set-point stabilization 

methodology used for an OWMR with holonomic constraints 

to support the suggested control strategy. A simulation is 

executed using the CoppeliaSim robot simulator in 

conjunction with MATLAB R2023a, which utilizes the 

CasADi Toolbox [57] with the Interior Point OPTimizer 

(IPOPT) solver [58], to evaluate the performance of the 

proposed method.  

 

Fig. 1 OWMR Kinematic. 

This work's contributions may be summed up as follows: 

● New set-point stabilization control framework to 

establish collision-free trajectory in static and 

dynamic environments with previously unknown 

obstacles. 

● It proposes a safe method for the detection of 

obstacles based on minimum Euclidean distance 

rather than enclosing the obstacles with a circle or 

minimum bounding ellipse. 

● The proposed control framework can handle a large 

number of obstacles at the same time rapidly and 

efficiently. 

● The effectiveness and real-time performance of the 

obstacles avoidance algorithm are tested in 

experiments similar to real-world scenarios using the 

CoppeliaSim robot simulator. 

The rest of this paper is structured as follows: The 

kinematic model of the OWMR is described in Sect. 2. The 

NMPC framework for obstacle avoidance is presented in 

Sect. 3, numerical results are provided in Sect. 4 to support 

the suggested control strategy, and the study is concluded in 

Sect. 5. 

II. KINEMATIC MODEL OF OWMR 

The body frame (𝑋b, 𝑌b) and the global frame (𝑋g, 𝑌g) are 

the coordinate frames utilized in the modeling of the OWMR 

as illustrated in Fig. 1. The body frame is attached to the 

origin of the moving robot while the global frame is 

assigned to the fixed ground. 𝜃 is the angle that indicates the 

robot's orientation in the world frame. Every wheel is spaced 

equally by (𝐿g) to the center of mass of the OWMR (𝑅). An 

OWMR kinematic model without slipping can be obtained as 

follows [59]: 

𝐱̇ = [

𝑥̇
𝑦̇

𝜃̇

] = 𝑅𝑇(𝜃) 𝐮 (1) 

here 𝐱 =  [𝑥 𝑦 𝜃]𝑇 ∈  ℝ3 represents the state vector in  the 

global frame and 𝐮 =  [𝑣𝑥 𝑣𝑦 𝜔]𝑇 ∈  ℝ3 denotes the 

input vector that characterizes the  robot velocities vector 
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measured in the body frame whereas 𝑣𝑥 , 𝑣𝑦 and 𝜔 symbolize 

robot translational and rotational  velocities respectively. 

𝑅(𝜃) denotes the orthonormal rotation matrix that transforms 

between the robot's coordinate system and the global 

coordinate system and can be written as: 

𝑅(𝜃) = [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] (2) 

By substituting (2) in (1): 

𝐱̇ = [

𝑥̇
𝑦̇

𝜃̇

] =  [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] [

𝑣𝑥

𝑣𝑦

𝜔
] (3) 

The system (3) is controllable as it has its accessibility 

rank condition globally satisfied, and is in the control-affine 

form (4). 

𝐱̇ = [

𝑥̇
𝑦̇

𝜃̇

] =  [
cos 𝜃
sin 𝜃

0
] 𝑣𝑥 + [

− sin 𝜃
cos 𝜃

0
] 𝑣𝑦 + [

0
0
1

] 𝜔 (4) 

Taking the wheel velocities into  consideration and with 

respect to the robot body  coordinates, the lower level 

kinematic model can be defined as: 

𝑡ℎ𝑒 𝛟̇ =
1

𝑟
[

√3 2⁄ −1 2⁄ 𝐿g

0 1 𝐿g

−√3 2⁄ −1 2⁄ 𝐿g

] [
𝑣𝑥

𝑣𝑦

𝜔
] (5) 

where the 𝛟̇ =  [𝜙̇1 𝜙̇2 𝜙̇3]𝑇 ∈  ℝ3 represents the vector 

of wheels angular velocities, and 𝑟 denotes the radius of each 

wheel of the robot. The maximum wheel velocity is 

constrained by 𝜙̇𝑚, namely ∀𝑖 ∶ 𝜙̇𝑖 ≤  𝜙̇𝑚,  where the 

subscript ( 𝑖 = 1, 2, 3) represents the 𝑖𝑡ℎ wheel velocity since 

the motor's voltage and current are magnitudes restricted.  

As shown in Fig. 1, a reference robot is defined to 

demonstrate the objective of the control algorithm which is 

the stabilization of an OWMR to a permissible equilibrium. 

This reference robot is subjected to the same constraints as 

system (1), and possesses a reference state vector 𝐱𝒓 =
 [𝑥𝑟 𝑦𝑟 𝜃𝑟]𝑇 ∈  ℝ3 and a reference control vector 𝐮𝒓 =
 [𝑣𝑥𝑟 𝑣𝑦𝑟 𝜔𝑟]𝑇 ∈  ℝ3. Therefore, the kinematic motion 

model can be represented as follow: 

𝐱̇𝒓 = [

𝑥̇𝑟

𝑦̇𝑟

𝜃̇𝑟

] =  [
cos 𝜃𝑟 − sin 𝜃𝑟 0
sin 𝜃𝑟 cos 𝜃𝑟 0

0 0 1

] [

𝑣𝑥𝑟

𝑣𝑦𝑟

𝜔𝑟

] (6) 

The reference control vector 𝐮𝒓 has zero values for both 

angular and linear velocities, and the reference state vector 𝐱𝒓 

has a constant value corresponding to the desired target pose 

for the point stabilization problem. The primary goal of the 

control algorithm at this point can be specified as 

simultaneous robot stabilization while providing safe 

navigation. The controller ought to also take into 

consideration the map boundaries, previously unknown 

obstacles, and the robot geometry. Furthermore, to design a 

practical controller, the robots’ inputs saturation margins 

must be considered. The designed NMPC architecture shown 

below addresses the aforementioned difficulties and 

problems. 

III. NONLINEAR MODEL PREDICTIVE CONTROL 

NMPC is considered to be one of the most reliable 

optimal control techniques and it is utilized in this work due 

to its ability to easily deal with the system constraints and 

take future prediction into the controller design in regard to 

nonlinear system defined through the following differential 

equation: 

𝐱̇ (𝑡) = 𝑓(𝐱(𝑡), 𝐮(𝑡)), 𝐱(0) =  𝐱0 (7) 

where 𝑓 ∶  ℝ3  × ℝ3  →  ℝ3 is the nonlinear mapping 

created by the robot model (7). 

The objective of the controller is to determine an 

admissible control input 𝐮∗(𝑡) that will lead system (7) to 

drive toward the equilibrium point described by: 

𝐱𝑒(𝑡) =  𝐱𝑟(𝑡) −  𝐱(𝑡) =  0 

𝐮𝑒(𝑡)  =  𝐮𝑟(𝑡)  −  𝐮(𝑡)  =  0 

(8) 

The aim of the control technique is to produce a minimum 

weighted cost function (𝐽) over a prediction horizon (𝑇) as 

described in (9) [60]: 

𝐽(𝑡, 𝐱𝑒(𝑡) , 𝐮𝑒(𝑡) ) =   𝑃(𝐱𝑒(𝑡 + 𝑇) ) +

                                            ∫ ℓ(
𝑡+𝑇

𝑡
𝜏, 𝐱𝑒(𝜏), 𝐮𝑒(𝜏) ) 𝑑𝜏  

(9) 

Here, ℓ(𝜏, 𝐱𝑒(𝜏), 𝐮𝑒(𝜏) )  is the running cost function that 

is integrated over 𝑇 that is obtained from: 

ℓ(𝜏, 𝐱𝑒(𝜏), 𝐮𝑒(𝜏) ) = 𝐱𝑒
𝑇(𝜏)𝑄𝐱𝑒(𝜏) +

                                           𝐮𝑒
𝑇(𝜏)𝑅𝐮𝑒(𝜏)  

(10) 

The terminal state penalty 𝑃(𝐱𝑒(𝑡 + 𝑇) ), assessed at the 

last step of the optimization horizon is presented as: 

𝑃(𝐱𝑒(𝑡 + 𝑇) ) =
1

2
 𝐱𝑒

𝑇(𝜏)𝐹𝐱𝑒(𝜏) (11) 

The 𝑄 , 𝑅  and 𝐹 represent the positive definite symmetric 

weight matrices while and 𝐱𝑒 and 𝐮𝑒 define the robot’s state 

and control vector errors respectively. At time (𝑡) to avoid 

obstacles in the environment, NMPC optimization problem 

can be formed as following: 

min
𝐮∗

  𝐽(𝑡, 𝐱𝑒(𝑡), 𝐮𝑒(𝑡) ) 

Subject to:     𝐱̇ (𝑡) = 𝑓(𝐱(𝑡), 𝐮(𝑡)) 

          𝐱(𝑡) ∈ 𝑋,   ( 𝜏 ∈ [ 𝑡, 𝑡 + 𝑇]) 

          𝐮(𝑡) ∈ 𝑈,   ( 𝜏 ∈ [ 𝑡, 𝑡 + 𝑇]) 

(12) 

At which the set 𝑋 ∈  ℝ3and the set 𝑈 ∈  ℝ3 identify the 

allowable state and control sets as determined by the 

upcoming sets of constraints. Firstly, the box constraints for 

the map boundaries and the OWMR input saturation limits 

that are provided by: 

𝑥𝑚𝑖𝑛  ≤  𝑥 ≤  𝑥𝑚𝑎𝑥   
𝑦𝑚𝑖𝑛  ≤  𝑦 ≤  𝑦𝑚𝑎𝑥   

𝑣𝑥 𝑚𝑖𝑛  ≤  𝑣𝑥  ≤  𝑣𝑥 𝑚𝑎𝑥 

𝑣𝑦 𝑚𝑖𝑛  ≤  𝑣𝑦  ≤  𝑣𝑦 𝑚𝑎𝑥   

𝜔𝑚𝑖𝑛  ≤  𝜔 ≤  𝜔𝑚𝑎𝑥  

(13) 

The map margins are indicated by the sets (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) 

and (𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥), and the robot input saturation limit 
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described by (𝑣𝑥 𝑚𝑖𝑛, 𝑣𝑥 𝑚𝑎𝑥), (𝑣𝑦 𝑚𝑖𝑛, 𝑣𝑦 𝑚𝑎𝑥) and (𝜔𝑚𝑖𝑛 , 

𝜔𝑚𝑎𝑥).  

Secondly, the following environmental constraint is taken 

into account to avoid dynamic and static obstacles: 

∀𝑘 ∶ 

√((𝑥 − 𝑥𝑜𝑏𝑠𝑘)2 +  (𝑦 − 𝑦𝑜𝑏𝑠𝑘)2  ≥ (𝑅𝑏 +  𝛽)  
( 41 ) 

where 𝑘 =  1, 2, … 𝑛, 𝑛 is a predetermined number of 

previously undefined obstacles that are clustered by the 

DBSCAN algorithm after collecting the LiDAR sensor 

information. 𝑥𝑜𝑏𝑠𝑘  , 𝑦𝑜𝑏𝑠𝑘  are the coordinates of the nearest 

point in the obstacle surface to the robot, 𝑅𝑏 is the radius of 

the robot that indicate its influence on the map, and 𝛽 is the 

safety margin that can be added to enhance the safe 

navigation of the motion system when inside the non-

obstructed space. 

It is important to note that no prior information of the 

number, size, or geographic distribution of obstacles is 

necessary. Nevertheless, certain online information 

about obstacles is anticipated using measurement or 

estimation for control reasons. 

Finding the most suitable terminal penalty and constraints 

is made possible by the stability theory provided in [22] as 

following: 

• A continuous cost function is assumed with 

ℓ(0,0) = 0 and ℓ(𝐱𝑒, 𝐮𝑒) > 0. 

• Consider that the reference control signals are 

bounded, i.e., [𝑣𝑥𝑟 𝑣𝑦𝑟 𝜔𝑟]𝑇 <

 [𝑣𝑥𝑟𝑚𝑎𝑥 𝑣𝑦𝑟𝑚𝑎𝑥 𝜔𝑟𝑚𝑎𝑥]𝑇, and at time 𝑡 = 0, 

the open-loop optimization problem retains a 

definite solution. 

• 𝑃(∙)  is presumed to be differential and continuous 

function, and fulfilling 𝑃(𝟎) = 0, and 𝑃(𝐱𝑒) > 0 

for all 𝐱𝑒 ≠ 0. 

• A terminal-state controller 𝐮𝑒
L exists such that the 

following condition is satisfied: 

𝑃̇(𝐱𝑒) + ℓ(𝐱𝑒 , 𝐮𝑒) ≤ 0, ∀ 𝐱𝑒  ∈ Ω ( 51 ) 

where Ω represents the terminal-state region. Then, the 

closed-loop system is guaranteed to be asymptotically stable 

using the NMPC approach previously stated [22]. 

IV. SIMULATION AND RESULTS 

The simulation for the OWMR dynamics and the 

environment is implemented inside the CoppeliaSim robotic 

simulator. CoppeliaSim is a very powerful robotic simulator 

that supports rigid and soft bodies dynamics simulation. 

Moreover, it contains numerus built-in robot models, tools, 

sensors, and actuators that can be utilized to build a virtual 

environment with ability for real-time interaction. 

CoppeliaSim can be programmed with various programming 

languages such as Lua, MATLAB, C++, and Python which 

makes it ideal choice for robot simulations.  

In this simulation setup, it is assumed that OWMR knows 

its pose (𝑥, 𝑦, 𝜃) at each simulation step. Additionally, it is 

equipped with a laser rangefinder with a range of 3m and 

360° field of view to detect the obstacles around the OWMR.  

MATLAB is used for laser rangefinder data processing 

and NMPC implementation. The connection between  

Fig. 2 OWMR performed trajectory for the first scenario. 

CoppielliaSim and MATLAB is done using remote APIs. 

MATLAB receives raw data from the laser range finder and  

uses the DBSCAN algorithm to cluster the data points that 

belong to each obstacle together. The output of the DBSCAN 

algorithm are sets of points where each one represents an 

obstacle in the scene. The minimum distance between each 

set of points and the center of the OWMR is then calculated. 

Furthermore, the CasADi toolbox inside MATLAB is used to 

perform both the system states integration, and optimal 

control computation. The NMPC is implemented in the 

CasADi toolbox, where both the system model (7), and the 

optimal control problem are defined. By using the multiple 

shooting method and IPOPT solver for nonlinear 

programming problems, the optimum control issue is 

resolved, and states integration is accomplished. The 

convergence criterion of IPOPT is kept at 10−8 and the 

maximum number of iterations was set to 2000. More 

information about CasADi toolbox for MATLAB is available 

in [52]. Runge-Kutta 4th (RK4) order method is employed for 

states integration. On a core i7 personal computer with 16 GB 

RAM and a 2.59 GHz CPU, all simulations were run. 

The controller saturation limitations and the map margins 

have been chosen as follows: 

−0.5 ≤  𝑣𝑥  ≤  0.5 (𝑚/𝑠)  
−0.5 ≤  𝑣𝑦  ≤  0.5 (𝑚/𝑠)  

−0.8 ≤  𝜔 ≤  0.8 (𝑟𝑎𝑑/𝑠)  
−2.5 ≤  𝑥 ≤  2.5 (𝑚)  
−2.5 ≤  𝑦 ≤  2.5 (𝑚)  

The radius of the robot in (14) is chosen as 𝑅𝑏 = 0.1 (𝑚), 

and robot wheels radii in (5) is the are selected as 𝑟 =
0.02 (𝑚). The weight matrices appear in (10 & 11) are 

selected as: 

𝑄 = 𝐹 = [
10 0 0
0 10 0
0 0 10

] , and 𝑅 = [
0.1 0 0
0 0.1 0
0 0 0.1

] 

The prediction horizon parameters are determined as 

follows: the total number of horizon steps N = 5 (steps) and 

the time step ∆𝑇 = 0.2 (seconds), resulting in a prediction 

horizon length of T = 1 (second). 

To show the performance of the proposed collision 

avoidance scheme, two simulation scenarios are considered. 

In both scenarios, the robot is required to go to the target pose 

of 𝐱𝑟 = (1.5𝑚, 1.5𝑚, 0°), and the map margins are 

highlighted with a black edged box. 

The first scenario is shown in Fig. 2 where there are only 

static obstacles in the scene, the robot starts from the initial 
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configuration specified by 𝐱 = (−0.6𝑚, −2𝑚, 0°). As can be 

seen from Fig. 2, there is a narrow passage of 0.475m width. 

The OWMR successfully passes through the passage and 

then encounters a cuboid-shaped obstacle when exiting the 

passage which it bypasses and reaches the goal pose. 

Fig. 3 illustrates the state vector 𝐱 components of the 

OWMR for static obstacles avoidance scenario under the 

proposed controller. Along the simulation time, the proposed 

controller exhibits a smooth transition of the robot’s states. 

Moreover, the states demonstrate a rapid convergence to their 

reference values. Fig. 4 shows the control actions applied to 

the OWMR for not moving obstacles avoidance case. As can 

be deduced from this figure, the proposed controller shows a 

smooth control action, and did not exceed their saturation 

limits. 

 Fig. 3 OWMR state vector 𝐱 components for the first scenario. 

Fig. 4 OWMR controls vector 𝐮 components for the first scenario. 

The second scenario is more challenging and includes 

moving obstacles in addition to the static ones as presented in 

Fig. 5. In this scenario, the robot starts from the initial 

configuration specified by 𝐱 = (−0.6𝑚, −1.7𝑚, 0°), and 

there are three moving obstacles which are colored in cyan, 

red, and blue. There are two static obstacles colored in pink 

close to the target position, green disk. As shown in Fig. 5, 

the OWMR encounters the cyan obstacle at first and avoids it 

successfully. After that, it faces the red cuboid and bypasses  

Fig. 5 OWMR performed trajectory for the second scenario. 

it, and then avoids the blue obstacle. Finally, it passes 

between the static obstacles and reaches the target pose. To 

ensure dynamic obstacle avoidance, the following condition 

is imposed: the speed of the obstacle should be less than the 

speed of the robot. 

Fig 6 shows the OWMR state vector 

[𝑥 𝑦 𝜃]𝑇 components under the proposed controller for 

moving obstacles avoidance case.  The proposed controller 

shows a smooth change in the robot’s states over the course 

of the simulation. Additionally, the states demonstrate a 

quick convergence to their reference values. Fig. 7  depicts the 

OWMR’s control action for dynamic obstacles avoidance 

scenario. As can be seen from the figure, the proposed 

controller did not exceed its saturation limitations and 

exhibited a smooth control action. 

V. CONCLUSION 

In this paper, a NMPC framework was used to stabilize 

OWMR to a specific target while avoiding obstacles in a 

cluttered environment. The DBSCAN algorithm was 

implemented for clustering the dynamic and static obstacles 

after collecting the information from the LiDAR sensor. The 

environmental obstacles were considered as further 

constraints, which are denoted in this work as having 

minimum distance forms. A simulation was performed using 

MATLAB that utilizes the CasADi Toolbox with IPOPT 

solver, in conjunction with the CoppeliaSim robot simulator. 

Two scenarios were considered based on whether the obstacle 

was stationary or moving. During numerical simulations of 

robot stabilization in environments with static and dynamic 

obstacles, the proposed controller algorithm has 

demonstrated superior performance in real time.  

The future work of this research includes the practical 

implementation of the proposed control framework on a real 

OWMR in addition to the stability analysis of the proposed 

controller. 
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