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Abstract—In Indonesia, the significant role of perishable 

products in food wastage has placed the country fourth globally 

in household food waste. Managing inventory for such products, 

with their short shelf life and stringent safety standards, 

emphasizes the need for efficient lot sizing planning. This study 

introduces a novel Dynamic Lot-Sizing (DLS) model, addressing 

perishable products and inventory constraints across multiple 

products, periods, and varying demands. The model aims to 

optimize production quantity and binary production, 

minimizing overall system costs. Employing a Genetic 

Algorithm (GA), this research solves the DLS model under 

constrained and unconstrained inventory capacities. Real-case 

data from a bread manufacturing company validates the model, 

while sensitivity analysis examines perishability's impact on the 

solution and model performance. The DLS-GA model not only 

reduces system costs but also effectively considers product 

perishability, offering optimal production plans. 

Keywords—Dynamic Lot-sizing; Perishable Product; Genetic 

Algorithm; Production Decisions; Total System Costs. 

I. INTRODUCTION 

Perishable products, including bread, vegetables, fruit, 

meat, seafood, and dairy, are an essential and widespread part 

of our daily lives, contributing to high sales in supermarkets 

and grocery stores. In Indonesia, the problems associated 

with perishable products are one of the factors that contribute 

to a significant amount of food waste and food loss. 

According to Tiseo [1], Indonesia ranks fourth worldwide for 

household food waste. The annual economic loss caused by 

food loss and waste in Indonesia is between IDR 213 and 551 

trillion. This represents 4-5% of the country's Gross Domestic 

Product (GDP) [2]. As a country with significant barriers to 

food security, minimizing food waste and losses is important. 

Close collaboration among suppliers, manufacturers, 

distributors, and retailers is required to address these issues 

[3]–[9]. 

Bread and other perishable goods have limited shelf lives 

[10]–[12]. If mishandled, this could lead to wastage [11]. In 

addition, the inventory management of bread products varies 

over time and is affected by critical factors that limit their 

ability to store large quantities of bread products. These 

limiting factors are generally related to the perishable nature 

of bread, which has limited shelf life and storage 

requirements that must meet strict quality and food safety 

standards. Therefore, lot sizing planning is essential for 

managing bread inventory to consider the limitations of the 

existing inventory. 

The concept of inventory lot sizing is critical in this 

context because it allows companies to determine the optimal 

number of orders or production lots based on dynamic 

demand, thereby reducing the risk of excess inventory that 

can be discarded [13], [14]. By implementing this approach 

and adjusting for fluctuations in demand, companies can 

improve their operational efficiency and reduce the waste 

associated with expired products. 

To minimize food waste and the loss of perishable 

products, lot size planning must consider the perishable rate, 

return rate, and inventory constraints. Manufacturers can plan 

production accurately by considering the time it takes to 

order, produce, and transport a product, ensuring that the 

product reaches the market or consumer on time and under 

optimal conditions [15]. This prevents products from 

reaching the end of their shelf life before reaching consumers. 

Determining the optimal lot size for perishable products, 

such as food and medicine, requires careful consideration of 

the perishable rate, which is influenced by the expiration date 

[16]–[20]. These products have a limited shelf life, 

necessitating careful calculation of the quantity to be 

produced and stored in a single lot to minimize waste from 

expired goods before they can be sold [21]–[24]. Researchers 

have rarely included the impact of perishability from 

consumers' perspectives in their model [25]. Freshness is one 

of the key factors affecting consumer purchase decisions 

[18]. This approach improves inventory management 

efficiency, reduces food waste, and maintains product 

quality, while minimizing food loss. 

Various mathematical models have been developed to 

determine the most cost-effective solution with the goal of 

minimizing overall costs. Nahmias [26] incorporated 

constraints and assumptions, such as demand rates, 
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production lead times, and shortage costs, which are 

frequently incorporated into these models, along with the 

product's fixed expiration date. However, uncertainties that 

occur in the real world make solving the lot sizing 

optimization problem more difficult [27]. 

Several researchers have investigated expiration dates 

within the inventory model framework. Feng et al. [18] 

created an inventory model to maximize profits by 

considering demand as a multivariate function that depends 

on unit price, displayed stock, product freshness, and 

expiration date. The authors' primary goal was to determine 

the optimal selling prices, replenishment cycle times, and 

final stock levels to maximize the overall profit. Acevedo-

Ojeda et al. [23] introduced mixed-integer programming 

formulations and sensitivity analysis to address multi-level 

classical lot-sizing problems. They emphasized the 

integration of perishability and raw material deterioration. 

Furthermore, Sazvar et al. [28] proposed an innovative 

mathematical framework for an optimal ordering problem 

across multiple periods and products by considering 

expiration dates within a first-expired-first-out (FEFO) 

system. Sundararajan et al. [29] proposed EOQ model with 

and without backlogging by considering expiration date 

under shortage. They proposed a mixed-integer nonlinear 

inventory model and sensitivity analysis. 

Additionally, considering return rates enables 

manufacturers to predict the likelihood of products being 

returned from the market owing to defects, rejections, or lack 

of sales [30]. Return rates can vary widely based on product 

type, ranging from 3-4% for dairy items and 8% or higher for 

delicate fresh produce [26]. Variations in both the quantity 

and quality of returned products play a critical role in 

effectively managing closed-loop supply chains effectively 

[31]. Incorporating return rates into lot-sizing strategies 

allows companies to avoid overproduction, ultimately 

reducing food waste. These policies enable companies to 

manage their returns, while maintaining efficient operations. 

Moreover, incorporating return rates into lot-sizing 

strategies allows companies to avoid overproduction, 

ultimately reducing food waste. These policies enable 

companies to manage their returns, while maintaining 

efficient operations. For example, Aazami and Saidi-

Mehrabad [32] proposed return, discount, and credit period 

policies to optimize the production and distribution planning 

of packed vegetables across a three-level supply chain 

consisting of factories, distribution centers, and retailers. 

Additionally, Yang et al. [33] developed a dynamic ordering 

system with integrated cash and product flows for fresh food 

retailers by utilizing a heuristic algorithm to incorporate 

return rates. Koken et al. [34] investigated a Dynamic Lot 

Sizing (DLS) problem involving product returns and 

remanufacturing in a hybrid manufacturing system that 

produces manufactured, remanufactured, and hybrid products 

to meet separate demands. Furthermore, Parsopoulus et al. 

[35] proposed a metaheuristic optimization approach called 

Differential Evolution (DE) to address the DLS problem with 

product returns and remanufacturing. The simplicity of 

implementing DE and its effectiveness in solving integer 

optimization problems make it a promising approach for 

tackling lot sizing problems of this type. 

In addition to considering the return rate, inventory 

constraints should also be considered when determining the 

optimal lot sizing [36]–[39]. A limited storage capacity can 

restrict the maximum inventory level and increase the risk of 

stock-out. Therefore, inventory constraints must be 

incorporated into the perishable lot-sizing model. 

Al-e-hashem [40] proposed a novel mixed integer 

programming model to minimize total costs with subject to 

warehouse capacity. These costs include procurement, 

inventory holding, ordering, backordering, and expiration 

costs. Other recent research publications on the maximum 

lifetime span were conducted by Kaya and Bayer [41]. They 

proposed a stochastic dynamic programming model to decide 

when and how much inventory should be ordered and how 

these products should be priced, considering their freshness 

over time. The results show that, under certain parameter 

settings, dynamic pricing can lead to significant savings over 

static pricing. In addition, dynamic pricing leads to longer 

replenishment cycles than static pricing, although similar 

quantities are ordered for each replenishment. 

To the best of our knowledge, no previous research has 

combined three parameters, namely perishable rate, return 

rate, and inventory constraint, from the case of lot size on 

perishable products. Therefore, this study proposes a novel 

DLS model that considers the perishable rate, inventory 

constraint, and return rate under multiple products and 

dynamic demand. The objective of this study is to minimize 

the total system cost, including surveying, raw material, 

inventory, return, perishable, and setup costs by using 

Genetic Algorithm (GA) approach to find optimal or near-

optimal solution including production quantity and binary 

production. 

The primary contributions of this study are summarized 

as follows. 

1. This research develops a DLS model that takes into 

account the perishability rate and return rate in multi-

product and dynamic demand scenarios. The model is 

designed to address two cases: one with inventory 

constraints and the other without inventory constraints. 

The model is solved using GA. 

2. Through a sensitivity analysis, this study investigates the 

effects of the return rate and perishability rate on lot sizing 

decisions and total system costs. 

II. MATHEMATICAL FORMULATION 

This section explores the challenge of determining the 

optimal production quantity and binary production for 

inventory management with multiple products and periods 

while considering perishable products over time. To address 

this issue, a mathematical lot-sizing model is developed. 

Before developing the model, the following notations and 

assumptions are used: 

A. Notations and Assumptions 

The following notation was used: 

Index Set 

𝑡 : Number of periods, 𝑡 =  1, 2, 3, … , 𝑇. 
𝑝 : Number of products, 𝑝 =  1, 2, 3, … , 𝑃. 
𝑖 : Number of ingredients used for making the 
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bread, 𝑖= 1, 2, 3, …, 𝐼.  

Parameter 

𝐷𝑡,𝑝 : Demand for product type 𝑝 in period 𝑡. 

𝐴𝑡,𝑝 
: The costs associated with surveying the 

demand of product type 𝑝 in period 𝑡. 

𝑆𝑡 
: The cost associated with setting up the 

production process in period 𝑡. 

𝑀𝑡,𝑝 
: The costs associated with total material used 

for making the bread of product type 𝑝 in 

period 𝑡. 

𝐾𝑖 

: The cost of each ingredient, 𝑖, used to make 

bread for every 25 kg sack of flour for all 

products, 𝑃. 

𝑊𝑝 
: The weight of the dough is 60 grams for each 

kind of bread product 𝑝. 

𝐻𝑡,𝑝 
: The costs associated with storing the boxes 

or crate for product type 𝑝 in period 𝑡.s 

𝐼𝑡,𝑝 
: The inventory balance for product type 𝑝 at 

the end of period 𝑡. 

𝐶 𝑝 : Inventory level constraint for product type 𝑝. 

𝐵𝐼𝑡,𝑝 
: Number of boxes or crates containing 

product type 𝑝 at the end of period 𝑡 

𝐵𝑡,𝑝 
: The number of bags of flour (per bag 

contains 25 kg) to make bread for product 𝑝 

in period 𝑡. 

𝐶𝐵𝑝 
: The capacity of a box or crate to contain a 

specific product 𝑝. 

𝑅𝐶𝑡,𝑝 : Return cost for product type 𝑝 in period 𝑡. 

𝑅 
: Number of products returned based on the 

previous set of periods 𝑇, ∑ 𝑅t−i
𝑇
𝑖=1  

𝐸𝑡,𝑝  

: The expected product returns resulting from 

expiration for product type 𝑝 during time 

period 𝑡. 

𝐽𝑝  

: Estimated duration to store products until 

they can be shipped to the next period (in 

hours).  

𝐿𝑝 
: Estimated duration for the product to expire 

(days).  

𝐺𝑝 : The perishable rate during inventory.  

𝑋𝑝 : Deterioration rate of quality. 

𝑂𝑡,𝑝 
: Original purchasing cost from manufacturer 

to retailer for product type 𝑝 in period 𝑡. 

𝑃𝐼𝑡,𝑝 
: The costs associated with perishability due 

to storing the excessive product type 𝑝 in 

period 𝑡. 

Independent Variables 

𝑄𝑡,𝑝 : Production quantity for product type 𝑝 in 

period 𝑡. 
𝑌𝑡,𝑝 : 1, if there is a number of products produced 

for product type 𝑝 in period 𝑡, 0, otherwise. 

Dependent Variables (binary variables) 

𝑍𝑡,𝑝 : 1 if there are inventory products of product 

type 𝑝 at the end of period 𝑡, 0, otherwise.  

𝑉𝑡  : A binary variable is used to indicate 

production activity, where 1 represents 

positive production of any product type 

during a given time period, and 0 represents 

no production activity across all product 

types in a given time period. 

𝑇𝐶  : Total system costs. 

Owing to the complexities of the model, the following 

assumptions were made. 

a. The demand for products is known to be dynamic during 

the planning period. 

b. Shortages are not allowed; demand must be satisfied. 

c. No quantity discounts were made. 

d. The processing costs for manufacturing the products are 

fixed over the planning period, except for the return costs, 

which depend on the fluctuating return rate. 

e. No transportation costs are assumed for returning 

defective/unsold products. 

f. If there are products in the inventory in a certain period, 

they will be used first in the next period.  

g. No costs are incurred specifically for each excess unit of 

bread product in the box or crate inventory. The overall 

inventory cost of bread in boxes or crates is allocated 

equally to all bread units in the inventory regardless of 

whether there are redundant units. 

B. Problem Description 

A bakery manufacturing company produces a range of 

perishable products, as illustrated in Fig. 1. In practice, the 

manufacturer conducts order demand surveys from retailers 

three days before the shipment of ordered products. This 

allows the production planning team to incorporate the latest 

retailer demand information into decisions on how much of 

each type of bakery product is produced. 

The results of the demand survey three days prior to 

shipment provide sufficiently accurate data and still leave 

enough preparation time to carry out the manufacturing, 

packaging, and shipping processes of the bakery products in 

the specified period.  

By surveying the retailer's order demand for different 

types of bread, the company can adjust its production to meet 

these needs three days before shipping the products. 

However, several factors should be considered when 

producing multiple bread products: (a) Perishability: 

Manufacturers need to consider the perishability of bread 

products and plan production accordingly to minimize 

spoilage due to expiration; and (b) Returns: Manufacturers 

may receive returns of bakery products due to expiry or other 

reasons. 

These returns need to be managed carefully to avoid 

wastage. (c) Inventory: Manufacturers need to maintain an 

adequate inventory of bakery products to meet customer 

demand without overstocking, as excess inventory can lead 

to product spoilage. In this case, once the bread product 

leaves the company, the bread expires in four days. 

To ensure the careful planning and optimization of 

production decisions for multiple perishable bread products, 

this study proposes a DLS model. This model effectively 

determined the optimal production quantities for each bread 

type, considering the perishable nature of the products.  
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Fig. 1. The manufacturer and retailers production inventory lot sizing system

Furthermore, the model incorporates binary production 

decisions, allowing the manufacturer to determine whether to 

produce a particular bread type during each period. This 

flexibility enables the manufacturer to adapt production 

schedules based on real-time demand patterns and inventory 

levels, thereby minimizing the risk of overproduction and 

spoilage. 

The proposed DLS model provides a comprehensive 

decision-making model for manufacturers of perishable 

bread products, enabling them to optimize production, 

minimize costs, and reduce waste. Based on Fig. 1, the 

described system is transformed into quantifiable variables, 

parameters, and cost performance to establish the lot-sizing 

model. Solving this model requires determining the optimal 

production quantity and binary production decisions. To 

achieve this, the manufacturer must survey sales and return 

data from retailers, which is a crucial step when considering 

dynamic demand fluctuations and the risk of product 

expiration before they can be sold. Additionally, 

manufacturers need to factor in storage capacity constraints 

when managing inventories for these limited shelf-life 

products. The key parameters considered in the DLS model 

for perishable products include dynamic demand, setup costs, 

inventory costs, survey costs, return costs, and perishability 

costs. Perishability costs arise from product storage over 

specific periods. Therefore, developing a DLS model for 

perishable products is essential to determine production 

quantities and binary production that minimize the total 

system costs while adhering to constraints, even without 

inventory capacity constraints. 

C. Mathematical Model 

This study presents a DLS model for optimizing the 

production planning of various perishable food products over 

a limited planning horizon. This integrated approach 

incorporates the critical constraints related to product returns, 

perishability, and limited inventory capacity across product 

types. These dynamic factors significantly influence tactical 

decisions (production quantities and binary production) 

aimed at meeting demand while minimizing the total system 
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costs. The mathematical expressions for these costs are as 

follows. 

Min 𝑇𝐶 = ∑ ∑ 𝐴𝑡,𝑝𝑌𝑡,𝑝 + 𝐻𝑡,𝑝𝑍𝑡,𝑝𝐵𝐼𝑡,𝑝

𝑃

𝑝=1

𝑇

𝑡=1

+ 𝑌𝑡,𝑝𝑀𝑡,𝑝 + 𝑅𝐶𝑡,𝑝𝐸𝑡,𝑝

+ 𝑃𝐼𝑡,𝑝𝑍𝑡,𝑝𝐼𝑡,𝑝 + ∑ 𝑆𝑡𝑉𝑡

𝑇

𝑡=1

 

(1) 

Subject to:  

𝐼𝑡,𝑝 = 𝑄𝑡,𝑝 + 𝐼𝑡−1,𝑝 − 𝐷𝑡,𝑝 
∀𝑡∈ 𝑇, 

∀𝑝∈ 𝑃. 
(2) 

𝐼𝑡,𝑝 ≤ 𝐶 𝑝 ∀𝑡∈ 𝑇 (3) 

𝑍𝑡,𝑝 = {
1,

0,

if 𝐼𝑡,𝑝 > 0

Otherwise
 

∀𝑡∈ 𝑇, 

∀𝑝∈ 𝑃 
(4) 

𝐵𝐼𝑡,𝑝 =
𝐼𝑡,𝑝

𝐶𝐵𝑝

 
∀𝑡∈ 𝑇, 

∀𝑝∈ 𝑃 
(5) 

𝑀𝑡,𝑝 = 𝐵𝑡,𝑝 ∑ 𝐾𝑖

𝐼

𝑖=1

 
∀𝑡∈ 𝑇, 

∀𝑝∈ 𝑃 
(6) 

𝐵𝑡,𝑝 =
𝑄𝑡,𝑝𝑊𝑝

2.4
 

∀𝑡∈ 𝑇, 

∀𝑝∈ 𝑃 
(7) 

𝐸𝑡,𝑝 =
𝑅

∑ 𝐷𝑡,𝑝
𝑇
𝑡=1

𝐷𝑡,𝑝 
∀𝑡∈ 𝑇, 

∀𝑝∈ 𝑃 
(8) 

𝑋𝑝 =
100%

𝐿𝑝
 ∀𝑝∈ 𝑃 (9) 

𝐺𝑝 = 100% − (
𝑋𝑝𝐽𝑝

24
) ∀𝑝∈ 𝑃 (10) 

𝑃𝐼𝑡,𝑝 = (100% − 𝐺𝑝)𝑂𝑡,𝑝  

∀𝑡∈ 𝑇, 

∀𝑝∈ 𝑃 
(11) 

𝑌𝑡,𝑝 ∈  {0,1} ∀𝑡∈ 𝑇, (12) 

𝑉𝑡 = {
1,

0,

if ∑ ∑ 𝑌𝑡,𝑝
𝑇
𝑡=1

𝑃
𝑝=1 > 0

Otherwise
 

∀𝑡∈ 𝑇, 

∀𝑝∈ 𝑃 
(13) 

𝑄𝑡,𝑝, 𝐼𝑡,𝑝  ≥ 0  
∀𝑡∈ 𝑇, 

∀𝑝∈ 𝑃. 
(14) 

The objective functions defined in Eq. (1) minimizes the 

total system costs, which include expenses related to 

surveying, inventory, materials, returns, perishability, and 

setup Constraint (2) derives the inventory balance for each 

bread product in a given period, whereas constraint (3) 

imposes an upper bound on inventory by restricting the levels 

to less than or equal to the designated capacity for each 

product and period. It should be noted that constraint (3) will 

be applied to a certain condition for this model. Constraint (4) 

was set such that no shortage occurred in this model. 

Eq. (5) calculates the number of boxes or crates 

containing the product type 𝑝 at the end of the period 𝑡 by 

considering the inventory balance and capacity of the boxes. 

In this case, the inventory is calculated based on the number 

of boxes, because the boxes will take up storage space on the 

production floor. Eq. (6) formulates the costs associated with 

the total material used for making bread of product type 𝑝 in 

period 𝑡. This was done by considering the number of flour 

bags, as calculated in Eq. (7) and the total cost of each 

ingredient. Moreover, the constraint in Eq. (8) expresses the 

estimated product return rate owing to expiration. 

The formulations in Eqs. (9), (10), and (11) define the 

perishable costs of storing a product over a given period. In 

addition, the constraints in Eq. (12) describes the binary 

production variable, where a value of 1 indicates that the 

production of one product type 𝑝 in period 𝑡 has occurred and 

a value of 0 indicates that no production has occurred. Unlike 

Eq. (12), Eq. (13) sets a binary variable that indicates overall 

production activity, where a value of 1 represents positive 

production of any product type within a given time period, 

whereas a value of 0 represents no production activity across 

all product types within the same time period. Finally, 

constraint (12) ensures that the production quantity and 

inventory level are non-negative.  

III. SOLUTION APPROACH-BASED GENETIC ALGORITHM 

Metaheuristic algorithms have been widely utilized for 

tackling complex global optimization problems across 

diverse domains in engineering and science [42]. Common 

metaheuristic techniques described in the literature include 

GAs [43], particle swarm optimization [44], firefly 

optimization [45], and more [46]–[48]. Among these, the GA 

has emerged as a popular intelligent search method owing to 

its straightforward implementation logic and robust capacity 

for exploring high-dimensional search spaces to find globally 

optimal solutions [49], [50], [59], [51]–[58]. By mimicking 

the natural selection processes, GAs can efficiently navigate 

complex search spaces and identify competitive solutions.  

GAs have been widely recognized as powerful 

optimization tools for solving lot sizing problems due to their 

robustness and ability to handle complex problems [60]–[62]. 

GAs are heuristic search algorithms that have shown 

effectiveness in adaptation and optimization problems [63]. 

They are capable of providing rich expressions of solutions 

for various problems and are particularly suitable for tuning 

parameters and array optimization [64]. The adaptability and 

wide accommodation of genetic algorithms make them well-

suited for addressing optimization problems, including lot 

sizing problems [65]–[71]. 

One of the key strengths of GA is their ability to avoid 

premature convergence and filter local optimal solutions, 

thus leading to more accurate and reliable models [72]. This 

is particularly important in the context of lot sizing problems, 

where finding the global optimum is crucial for efficient 

production planning and goods flow control [73]. 

Additionally, GAs have been applied to solve single-item lot 

sizing problems with immediate lost sales in profit 

maximization models, demonstrating their versatility in 

addressing different variations of lot sizing problems [74]. 

Furthermore, GAs have been utilized in various industrial 

applications, such as in the mining industry for solving 
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optimization problems [75]. They have also been employed 

in the optimization of milling tools to maximize cutting depth 

for chatter-free machining, showcasing their effectiveness in 

addressing practical manufacturing challenges [76]. 

In summary, genetic algorithms offer a robust and 

adaptable approach to solving lot sizing problems, providing 

rich solution expressions, avoiding premature convergence, 

and demonstrating versatility across different industrial 

applications. 

Therefore, this study employs a GA approach to identify 

the optimal production quantities and binary production that 

minimizes the total system costs. 

The general workflow involves key steps, including the 

initialization of a population of chromosome solutions, 

evaluation of fitness based on an objective function, 

selection, crossovers, mutations, and repetition over 

generations to converge on optimal or near-optimal solutions 

tailored to the problem at hand. When tuned appropriately, 

the GA provides an adaptive optimization technique suitable 

for production lot-sizing problems. 

A. Initial Population 

The GA in this study begins with initialization of the 

population (𝑃𝑜𝑃), which consists of chromosomes that 

represent potential solutions to the optimization problem. 

Each chromosome is defined by a structured representation 

that includes both the production quantity and the binary 

production status of a given product (referred to as "product 

𝑝") during a given time period (referred to as "period 𝑡"). The 

details of this structured chromosomal representation are 

shown in Fig. 2. Specifically, the population was initialized 

by randomly generating a set of chromosomes, each 

consisting of production quantity and binary production for 

four products over seven discrete periods (7-days). This 

initialized population provides a starting point for algorithm's 

exploration. The subsequent steps of GA involve the 

evolution of the population through selection, crossover, and 

mutation operators. This iterative process in GA facilitates 

ongoing chromosome improvement, iteratively refining the 

optimal production strategy to solve inventory management 

problems across different products and time periods. 

B. Evaluation 

A key component of GA is the evaluation of the fitness of 

each chromosome in the population. The fitness value is 

calculated using the objective function given in Eq. (1) guides 

the GA towards a more optimal solution. However, some 

chromosomes generated during initialization or evolution 

may be infeasible given the model constraints specified in Eq. 

(4), which is defined as no shortages allowed for the product 

type 𝑝 in period 𝑡. The literature discusses various methods, 

such as penalty policies, for handling infeasible solutions 

[77]. Therefore, in this study, only feasible solutions were 

generated to solve the model. In this case, infeasible 

chromosomes were discarded. To accomplish this, the fitness 

evaluation incorporates a penalty policy in the objective 

function to account for constraint (4), which is calculated as 

(15). 

𝑃𝑡,𝑝
𝑠 = {

1000000,

0,

if 𝐼𝑡,𝑝 < 0

Otherwise
 

(15) 

where 𝑃𝑡,𝑝
𝑠  is a penalty function given by the violating 

constraint in Eq. (4) for each product 𝑝 in period 𝑡, and is 

applied to the fitness function, which can be formulated as 

(16). 

𝐹1 = 𝑇𝐶 + ∑ ∑ 𝑃𝑡,𝑝
𝑠

𝑃

𝑝=1

𝑇

𝑡=1

 (16) 

Therefore, the fitness function in Eq. (16) is used to 

generate a feasible solution that can minimize the total system 

cost while allowing no shortages for all specific periods. This 

is considered a hard constraint, which refers to a constraint 

that must be strictly satisfied for a feasible solution. 

In addition, this study also considers the case of excessive 

inventory resulting from improper production planning. To 

address this problem, the fitness function in Eqs. (16) 

incorporates a new penalty function that discourages bread 

production from exceeding a predetermined limit as (17). 

𝑃𝑡,𝑝
𝑒 = {

1000000,

0,

if 𝐼𝑡,𝑝 ≥ 𝐶 𝑝

Otherwise
 

(17) 

where 𝑃𝑡,𝑝
𝑒 is a penalty applied when the end-inventory per 

product type 𝑝 in period 𝑡 exceeds the specified capacity 𝐶 𝑝. 

The new fitness function 𝐹2 for solving the model under the 

inventory constraint is expressed as (18). 

𝐹2 = 𝑇𝐶 + ∑ ∑ 𝑃𝑡,𝑝
𝑠

𝑃

𝑝=1

𝑇

𝑡=1

+ ∑ ∑ 𝑃𝑡,𝑝
𝑒

𝑃

𝑝=1

𝑇

𝑡=1

 (18) 

where Eq. (18) is considered a fitness function that combines 

the soft constraint. This soft constraint refers to a constraint 

that can be violated or satisfied to some degree, unlike the 

hard constraint that must be strictly satisfied. 

 

 

Fig. 2. Example of chromosome for production quantity and binary production 
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C. Crossover 

The crossover phase, which is an integral part of the GA, 

involves mating selected chromosome pairs to produce 

offspring solutions. To perform crossover, a pair of parent 

chromosomes is randomly selected from the current 

population with a crossover probability, 𝑃𝑐. Several crossover 

operators exist in the literature, including single-point, two-

point, multi-point, and uniform crossover operators [30], 

[38]. This study implements a two-cut point crossover, which 

operates by randomly selecting two crossover points. The 

parent chromosomes are split at these points and the segments 

after the crossover point are exchanged, recombining the 

genes to form two new offspring chromosomes. Fig. 3 

illustrates this single-point crossover process on sample 

parent chromosomes representing production quantity 

vectors with seven periods for a given product; the newly 

generated offspring chromosomes are then evaluated and 

inserted into the population, replacing fewer fit individuals. 

This crossover phase enables beneficial genetic material to be 

mixed and passed on to future generations, driving the 

population towards more optimal solutions. 

 

Fig. 3. The representation of two-cut point crossover 

D. Mutation 

The mutation operator is an important component of the 

GA as it helps prevent premature convergence and maintains 

diversity within the population. Mutation introduces genetic 

diversity by randomly altering the values of the elements 

within a selected chromosome based on mutation probability 

𝑃𝑚. This mutation rate, 𝑃𝑚, refers to the probability that any 

given chromosome in the population will be mutated. This 

study implemented mutations through a combination of jump 

and creep mutations. According to Miner et al. [79], jump 

mutation involves randomly changing one or more genes to 

entirely new values, allowing for a more drastic search space 

exploration. Creep mutations incrementally alter genes by a 

small amount, enabling minor refinement. Each gene was 

assigned a separate mutation probability for jump and creep 

mutations, denoting the likelihood that the gene will undergo 

that type of mutation. By occasionally introducing random 

modifications through this dual-mutation approach, new 

genetic material can be introduced over generations, allowing 

escape from local optima and continued exploration. An 

example illustrating the mutation process using the jump and 

creep method on a sample chromosome is shown in Fig. 4. 

 

Fig. 4. The representation of mutation process 

E. Selection 

The chromosome selection step for the next generation 

plays a key role in guiding the GA towards the optimal 

solution. Several selection methods are commonly used in 

GA, including elitist strategy, tournament selection, and 

roulette wheel selection. In this study, roulette-wheel 

selection was implemented, in which chromosomes were 

selected based on their fitness proportion. Subsequently, a 

random spin of the weighted wheel is used to select the 

chromosomes. This allows diverse genetic material to persist, 

while still giving preference to more fit individuals. 

Chromosomes with higher fitness, such as lower total system 

costs in a cost minimization problem, are assigned a larger 

slice of the roulette wheel and, therefore, have a higher 

chance of being selected. However, chromosomes with lower 

fitness still have a chance of being selected because they 

occupy a smaller fraction of the wheel rather than being 

entirely excluded. A representation of the selection process 

using the roulette wheel method is shown in Fig. 5. 

 

Fig. 5. The best fitness selection using roulette wheel method 

F. Stopping Criteria 

The termination stage is an important component of the 

GA method. Specific stopping criteria must be established to 

determine when a satisfactory solution has been reached. 

Common stopping conditions described in the literature 

include reaching a certain number of generations (𝐺𝑛), 

reaching a threshold fitness value, or observing improvement 

over the iteration period [80]. This study used a fixed number 

of generations as the stopping criterion and concluded that the 

GA had elapsed after 800 generations. 
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IV. EXPERIMENTAL RESULTS 

This section presents a formal analysis of the primary 

experiments conducted on DLS, utilizing a case study from a 

bread industry company. This study encompasses dynamic 

demand for four distinct product types across seven discrete 

periods (one week), as shown in Table I. 

TABLE I.  DEMAND OF BREAD PRODUCT 

Period 1 2 3 4 5 6 7 

Product- 1 2417 3900 4100 2750 3420 4779 3318 

Product- 2 1554 1950 2270 1550 1480 2025 1425 

Product- 3 250 400 300 350 350 450 300 

Product- 4 1626 1318 1200 1882 1567 1963 934 

 

Moreover, detailed problem parameters were used to test 

and validate the proposed model, as presented in Table II. 

Note that Table II only discusses the base value for each 

product; however, these values remain the same throughout 

the period. 

TABLE II.  DATA PARAMETER 

Parameters Product-1 Product-2 Product-3 Product-4 

At,p (IDR) 75000 50000 100000 75000 

Ht,p (IDR) 132000 144000 168000 86400 

Ki (IDR) 574530 574530 574530 574530 

St (IDR) 2969000 2969000 2969000 2969000 

RCt,p (IDR) 1320 1440 1680 2400 

R (units) 545 387 248 212 

Wp (grams) 60 60 60 60 

C p (units) 200 200 200 108 

CBp (units) 100 100 100 36 

Lp (days) 4 4 4 4 

Jp (hours) 24 24 24 24 

Ot,p  (IDR) 2200 2400 2800 4000 

 

To conduct an empirical analysis, the proposed DLS 

model was implemented using spreadsheet modelling 

(Microsoft Excel) integrated with the XL optimizer ® add-in 

for GA optimization. The Excel-based model was executed 

on a personal computer with an Intel(R) Core (TM) i3-

1115G4 central processing unit clocked at 3.0 GHz with 8 

GB of random-access memory. This configuration allowed 

for efficient computational experiments to assess the 

performance of the dynamic optimization model under 

different parameter settings and demand scenarios. The use 

of a spreadsheet and GA provides a flexible and accessible 

platform for representing the lot-sizing problem, as shown in 

Fig. 6. 

This study proposes an experimental methodology that 

employs a GA to optimize the DLS model for perishable 

products with and without inventory constraints. To enhance 

the production planning performance and provide a thorough 

analysis, the research first examined a wide range of GA 

parameter combinations, including population 𝑃𝑜𝑃 sizes 

ranging from 80 to 180 in increments of 20, crossover rates 

𝑃𝑐 from 0.7 to 0.95 in increments of 0.05, mutation rates 𝑃𝑚 

from 0.01 to 0.05 in increments of 0.01, and generation 𝐺𝑛 

limits of 800. The specific GA parameter values are listed in 

Table III. By adjusting the parameter settings of the GA, it is 

possible to thoroughly assess the algorithm's ability to 

generate optimal lot-sizing decisions. The experimental 

design offers fresh perspectives on the optimal GA 

configuration to address actual production planning 

challenges. 

TABLE III.  TESTED GA PARAMETER COMBINATION 

Combination 𝑷𝒐𝑷 𝑷𝒄 𝑷𝒎 𝑮𝒏 

1 80 0.75 0.02 800 

2 100 0.80 0.05 800 

3 120 0.95 0.01 800 

4 140 0.7 0.03 800 

5 160 0.85 0.04 800 

6 180 0.9 0.025 800 

 

In this study, GAs is employed to enhance the efficacy of 

a dynamic perishable inventory lot-sizing model that features 

two distinct inventory scenarios: unconstrained and 

constrained. The GA parameters, including a population size 

of 160, crossover probability of 0.85, mutation probability of 

0.04, and 750 generations, were meticulously chosen after 

conducting extensive testing of various combinations, as 

shown in Table III. Five separate trials were executed for 

each set of parameters, examining the fitness function's 

performance and consistency of convergence across trials. 

The combination of 𝑃𝑜𝑃 = 160, 𝑃𝑐 = 0.85, 𝑃𝑚 = 0.04, and 𝐺𝑛 

= 800, as displayed in the fifth row of Table III, demonstrated 

the lowest average best fitness value and the lowest fitness 

standard deviation across runs. This suggests that the 

convergence properties are superior and reliable. 

Compared to the other GA settings evaluated in Table III, 

the chosen parameter set balances sufficient population 

diversity through crossover and mutation mechanisms with 

sufficient generations that allow for convergence. A 

population size of 160 ensured that sufficient unique 

solutions were evaluated for each generation. Meanwhile, 

crossover probability allows for efficient recombination 

between competitive solutions. In addition, a low mutation 

rate introduces variations without compromising the integrity 

of the solution. Over 800 generations, configuring the GA 

search operator at this level seems to encourage exploration 

and exploitation that reveal quality optima. The effectiveness 

of these optimized GA parameters was subsequently assessed 

by applying them to a lot-sizing model with both 

unconstrained and constrained inventory capacity. The 

outcomes of incorporating the GA into the two 

aforementioned model scenarios are detailed below, 

showcasing how these optimized parameters influence the 

performance of the models under unconstrained and 

constrained inventory capacity. 
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Fig. 6. A representation of spreadsheet DLS model simulation 

A. Scenario 1: Unconstrained inventory capacity  

The production planning policy optimized by the GA 

using a population size of 160, crossover probability of 0.85, 

mutation probability of 0.04, and run for 800 generations to 

simulate the perishable product DLS model under 

unconstrained inventory conditions is presented in Table IV, 

assuming that the constraint in Eq. (3) was not considered in 

testing this model. 

TABLE IV.  RESULT OF FIVE-RUN GA IN OPTIMIZING DLS MODEL WITH 

UNCONSTRAINED INVENTORY CAPACITY 

No. Test Total system cost (IDR) 

1 74355170 

2 77187120 

3 77363320 

4 74625650 

5 72363750 

Average 75179002 

 

This scenario demonstrates the effects of removing the 

inventory-level constraint, enabling the evaluation of the GA-

optimized plan's ability to minimize costs, managing returns 

from expired products, and managing the impact of 

perishable products on inventory levels over a longer and 

variable holding period. 

The purpose of Table IV is to present the total system cost 

after conducting five trials using GA optimization with the 

selected parameters. Initially, the fitness function is a 

combination of the initial system cost and a penalty function 

aimed at preventing inventory shortages and maintaining 

operational feasibility. The removal of the penalty function is 

very important due to the GA's exceptional ability to find 

feasible solutions. Therefore, Table IV displays only the total 

system cost, excluding the penalty. In particular, the results 

in Table IV showing the lowest cost of IDR 72,363,750 in 

Test 5 with an average cost of IDR 75,179,002 are positive 

results, demonstrating the effectiveness of the GA in reducing 

costs. The continuous decrease in cost highlights the GA's 

proficiency in navigating the solution landscape and 

converging toward a more optimal and cost-effective solution 

by the fifth test. Fig. 7 illustrates the iterative search process 

of the GA showing convergence from generation to 

generation to find the best performing solution shown in the 

fifth trial. 
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Total Egg costs Total Egg costs Total Egg costs Total Egg costs

Total Bread Improver costs Total Bread Improver costs Total Bread Improver costs Total Bread Improver costs
Total Salt costs Total Salt costs Total Salt costs Total Salt costs

Total sugar costs Total sugar costs Total sugar costs Total sugar costs
Total IF100 costs Total IF100 costs Total IF100 costs Total IF100 costs

Total Margarin costs Total Margarin costs Total Margarin costs Total Margarin costs
Total milk powder costs Total milk powder costs Total milk powder costs Total milk powder costs

Additional mix material costs Additional mix material costs Additional mix material costs Additional mix material costs
Total butter costs Total butter costs Total butter costs Total butter costs

Yeast (400 gr for 25 kg flour) 100gr@10800 Yeast (400 gr for 25 kg flour) 100gr@10800 Yeast (400 gr for 25 kg flour) 100gr@10800 Yeast (400 gr for 25 kg flour) 100gr@10800
Egg 20 @1700 Egg 20 @1700 Egg 20 @1700 Egg 20 @1700

Bread Improver 90 gr, 10 gr@1000 Bread Improver 90 gr, 10 gr@1000 Bread Improver 90 gr, 10 gr@1000 Bread Improver 90 gr, 10 gr@1000
Salt 450 gr @ 9500 Salt 450 gr @ 9500 Salt 450 gr @ 9500 Salt 450 gr @ 9500

Sugar (4 kg for 25 kg flour) @15000 Sugar (4 kg for 25 kg flour) @15000 Sugar (4 kg for 25 kg flour) @15000 Sugar (4 kg for 25 kg flour) @15000
IF100 Indofermex 40 gr, 1 gr@77 IF100 Indofermex 40 gr, 1 gr@77 IF100 Indofermex 40 gr, 1 gr@77 IF100 Indofermex 40 gr, 1 gr@77

Margarin Simas 3 kg= 25 kg flour @21000 Margarin Simas 3 kg= 25 kg flour @21000 Margarin Simas 3 kg= 25 kg flour @21000 Margarin Simas 3 kg= 25 kg flour @21000
Milk powder (300 gr for 25 kg flour ) 100gr@11250 Milk powder (300 gr for 25 kg flour ) 100gr@11250 Milk powder (300 gr for 25 kg flour ) 100gr@11250 Milk powder (300 gr for 25 kg flour ) 100gr@11250

Additional mix material Additional mix material Additional mix material Additional mix material 
Butter (300 gr for 25 kg flour) 100 gr @4000 Butter (300 gr for 25 kg flour) 100 gr @4000 Butter (300 gr for 25 kg flour) 100 gr @4000 Butter (300 gr for 25 kg flour) 100 gr @4000

Material flour costs per bag Material flour costs per bag Material flour costs per bag Material flour costs per bag
Total material flour costs Total material flour costs Total material flour costs Total material flour costs

Total Flour (kg) Total Flour (kg) Total Flour (kg) Total Flour (kg)
Number of required flour (bag) Number of required flour (bag) Number of required flour (bag) Number of required flour (bag)

Dough per piece (kg) Dough per piece (kg) Dough per piece (kg) Dough per piece (kg) 
Total Weight Dough (Kg) Total Weight Dough (Kg) Total Weight Dough (Kg) Total Weight Dough (Kg)

Production Quantity 2 Production Quantity 2 Production Quantity 2 Production Quantity 2

Production Period Production Period Production Period Production Period 
Binary Production Binary Production Binary Production Binary Production 

Production operations Production operations Production operations Production operations

Total of Required Boxes for Demand Total of Required Boxes for Demand Total of Required Boxes for Demand Total of Required Boxes for Demand
Number of boxes in End-Inventory Number of boxes in End-Inventory Number of boxes in End-Inventory Number of boxes in End-Inventory
Inventory constraint Inventory constraint Inventory constraint Inventory constraint 
Inventory Excess (must be 0) Inventory Excess (must be 0) Inventory Excess (must be 0) Inventory Excess (must be 0)

Return Rate Return Rate
Exp. Ret. Unit Exp. Ret. Unit

Perishable costs for inventory Perishable costs for inventory

Period (Days) Period (Days) Period (Days)

Perishable rate Perishable rate Perishable rate
Perishable costs/product Perishable costs/product Perishable costs/product

Perishable costs for inventory

Box Constraint capacity for product 1 (unit) Box Constraint capacity for product 1 (unit) Box Constraint capacity for product 1 (unit) Box Constraint capacity for product 1 (unit)

Return activity Return activity Return activity Return activity

Deterioration rate of quality (%/days) Deterioration rate of quality (%/days) Deterioration rate of quality (%/days) Deterioration rate of quality (%/days)

Exp. Duration (Days) Exp. Duration (Days) Exp. Duration (Days) Exp. Duration (Days)
Exp. Duration (Hours) Exp. Duration (Hours) Exp. Duration (Hours) Exp. Duration (Hours)

Profit (Rp) Profit (Rp) Profit (Rp) Profit (Rp)
Approx. Loss sales (Rp) Approx. Loss sales (Rp) Approx. Loss sales (Rp) Approx. Loss sales (Rp)

Expected Profit (%) Expected Profit (%) Expected Profit (%) Expected Profit (%)

Product (Unit) Product (Unit) Product (Unit) Product (Unit)
Return Product (Unit) Return Product (Unit) Return Product (Unit) Return Product (Unit)

Graph Inv.

Data Data Data Data

Original Price (Rp) Original Price (Rp) Original Price (Rp) Original Price (Rp)

6 6 6 6
7 7 7 7

4 4 4 4
5 5 5 5

2 2 2 2
3 3 3 3

0 0 0 0
1 1 1 1

Period Period Period Period

Penalty Binary Inv. (Shortage) Penalty Binary Inv. (Shortage) Penalty Binary Inv. (Shortage) Penalty Binary Inv. (Shortage)
Inv. (Capacitated) Inv. (Capacitated) Inv. (Capacitated) Inv. (Capacitated)

Initial GA

Product-1 Product-2 Product-3 Product-4
Period (Days) Period (Days) Period (Days) Period (Days)

Production Lot (GA-1) Production Lot (GA-1) Production Lot (GA-1) Production Lot (GA-1)
Min Min Min Min

Total Demand Total Demand

Max Max Max Max

Data Demand and Inventory Data Demand and Inventory Data Demand and Inventory Data Demand and Inventory

Total DemandTotal Demand

Perishable costs for inventory

Penalty Excess
Penalty Costs (Shortages) Penalty Costs (Shortages)

Penalty Excess
Penalty Costs (Shortages)
Penalty Excess

Penalty Costs (Shortages)
Penalty Excess

In Inventory (Hours) In Inventory (Hours) In Inventory (Hours) In Inventory (Hours)

Period (Days)
Ord. Costs Ord. Costs Ord. Costs Ord. Costs

Perishable rate
Perishable costs/product

Inv. Costs Inv. Costs Inv. Costs Inv. Costs

Production Quantity 2

Initial Inventory
End-Inventory End-Inventory End-Inventory End-Inventory

Production Quantity 2
Order Reciept

Binary Order/Production Binary Order/Production 

Order Reciept
Production Quantity 2

Order Reciept
Production Quantity 2

Binary Order/Production 

Planned Order Released (Day) Planned Order Released (Day) Planned Order Released (Day) Planned Order Released (Day)

Binary Order/Production 

Initial Inventory Initial Inventory Initial Inventory

Order Reciept

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7

In
ve

n
to

ry
 G

ra
p

h

Period

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7

In
ve

n
to

ry
 G

ra
p

h

Period

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7

In
ve

n
to

ry
 G

ra
p

h

Period

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 3 4 5 6 7

In
ve

n
to

ry
 G

ra
p

h

Period

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

N
u

m
b

e
r 

o
f 

b
o

xe
s

Period

0

2

4

6

8

10

12

1 2 3 4 5 6 7

N
u

m
b

e
r 

o
f 

b
o

xe
s

Period

0

1

2

3

4

5

1 2 3 4 5 6 7

N
u

m
b

e
r 

o
f 

b
o

xe
s

Period

0

2

4

6

8

10

12

1 2 3 4 5 6 7

N
u

m
b

e
r 

o
f 

b
o

xe
s

Period



Journal of Robotics and Control (JRC) ISSN: 2715-5072 887 

 

Raden Achmad Chairdino Leuveano, Balancing Inventory Management: Genetic Algorithm Optimization for A Novel 

Dynamic Lot Sizing Model in Perishable Product Manufacturing 

 

Fig. 7. The search process of GA (test-5) in finding the optimal solution for the DLS model with an unconstrained inventory capacity

B. Scenario 2: Constrained inventory capacity 

The implementation of a GA with customized parameters, 

including a population size of 160, mutation probability of 

0.04, crossover probability of 0.85, and generation limit of 

800, has proven to be an effective method for finding near-

optimal solutions for a perishable product DLS model that 

considers inventory constraints. The results of the model 

tests, as presented in Table V, demonstrate the effectiveness 

of the GA in analyzing the effects of inventory constraints on 

total system costs. In this scenario, it is assumed that the 

constraint in Eq. (3) was considered in model testing.  

TABLE V.  RESULT OF FIVE-RUN GA IN OPTIMIZING DLS MODEL WITH 

CONSTRAINED INVENTORY CAPACITY 

No. Test 
Fitness 

function 

Penalty for 

excessive inventory 

Real system 

costs (IDR) 

1 89405980 15000000 74405980 

2 90390410 11000000 79390410 

3 88739760 13000000 75739760 

4 85282590 11000000 74282590 

5 86473250 11000000 75473250 

Average 88058398 - 75858398 

Table V presents the results of five tests designed to 

minimize the total cost in a system that employs a fitness 

function that combines the overall system cost with a penalty 

function, with the aim of addressing inventory shortages and 

inventory holding limitations. Throughout the tests, an 

evident upward trend in the fitness function value emerged, 

indicating continuous improvements in system optimization. 

Notably, Test 4 achieved the lowest real system cost of IDR 

74282590, whereas Test 2 recorded the highest cost of IDR 

79,390,410, consistent with the trend of the fitness function. 

The average fitness function of IDR 88,058,398 reflects 

satisfactory overall system performance. 

Penalty excess is not a representation of an absolute value, 

but rather a relative indicator that reflects how often and how 

much the constraints in the lot sizing model are violated. For 

example, the best result in test 4 with a penalty excess of 

11,000,000 shows that there were only violations in 11 out of 

a total of 28 periods against the inventory capacity constraints 

of the four defined products. However, when looking at the 

results in Table IV that consider penalty excess, specifically 

at the lowest cost value in Test 5 with a penalty excess of 

14,000,000, there are 14 out of a total of 28 periods that have 

violations of the constraint. The fact that the penalty excess 

value in Test 4 (Table V) is lower than the DLS model 

without constraints indicates that in the context of inventory 

constraints, greater effort is made to minimize the number 

and intensity of constraint violations, confirming the 

effectiveness of the GA approach with constraint setting in 

inventory management. 

The GA demonstrated its efficiency in discovering 

feasible solutions that progressively eliminated the penalty 

for shortages and reduced the penalty for excessive 

inventories. Most importantly, the penalty for excessive 

inventory operates as a soft constraint; the less the constraint 

is breached, the more feasible the system becomes. However, 

the total system cost remains calculated independently of any 

penalties, emphasizing the GA's primary focus on 

minimizing operational expenses. Fig. 8 illustrates the 

iterative convergence of the GA towards the optimal solution, 

navigating the balance between inventory constraints and 

cost minimization within the system. 

C. Comparison for two scenarios 

Fig. 9 presents a comparison between two models in DLS 

that consider both unlimited and limited inventory capacity. 

The table details several cost components associated with 

each model, including survey costs, inventory costs, return 

costs, perishable inventory costs, material costs, and setup 

costs. The significant differences in these cost components 

give an idea of the effect of the inventory capacity setting on 

the overall cost within the scope of inventory management in 

the DLS model. Fig. 9 shows that there is a considerable 

difference between the DLS model with constrained and 

unconstrained inventory capacity in terms of the mentioned 

cost components. From this, it can be seen that the model with 

constrained inventory capacity tends to show a significant 

increase in inventory compared to the unconstrained model. 

This increase may reflect the more careful management of 

inventory allocation when capacity is limited, which is likely 

to incur additional costs in inventory management. 
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Fig. 8. The search process of GA (test-4) in finding the optimal solution for the DLS model with a constrained inventory capacity

 

Fig. 9. Result of comparing DLS model for unconstrained and constrained inventory capacity 

Limitations in bread production, such as those in the DLS 

model that place restrictions on inventory capacity, can lead 

to unique dynamics in total system costs. For example, in Fig. 

9, inventory costs tend to vary significantly. In a model with 

inventory constraints, inventory costs may be higher because 

production constraints force the manufacturer to store more 

finished goods in inventory. Because the inventory constraint 

is a soft constraint, in some periods production is increased to 

produce more bread. Although violations occurred in certain 

periods, the number of violations did not exceed the number 

of violations that occurred in the DLS model without 

inventory constraints. This may be due to the fact that the 

production constraints cannot efficiently match supply with 

demand, forcing the company to hold more inventory and 

ultimately increasing inventory costs. 

Managing perishable goods in a constrained scenario is 

also more challenging. Perishable costs, indicating losses due 

to deterioration or spoilage of goods before they are sold, may 

also be more significant in a constrained model. Production 

limitations can make it harder to maintain fresh stock, leading 

to a higher number of unsaleable items. 

However, certain cost components remain constant 

between the two models. For instance, material costs and 

setup costs may show the same value because the essential 

characteristics of these costs do not directly depend on the 

amount of production. Material costs, which are associated 

with the raw materials used, may remain stable because 

limited production does not significantly change the need for 

certain raw materials.  

Moreover, setup costs associated with production setup 

may not fluctuate significantly, as the relationship between 

production preparation and output is not always proportional. 

However, in this study, the emphasis is more on the presence 

of production in any given period. This indicates that whether 

the number of products produced is limited or abundant, the 

costs incurred in setting up the production line, organizing 

equipment, or configuring the workspace have a tendency to 

stabilize. An interesting aspect is that the effort, time, and 

resources allocated to the preparation phase are not 

necessarily determined by the amount of output exclusively 

but rather relate more to the need to start the production 

process in each predefined period. This difference in cost 

patterns explains the interesting dynamics of preparation 

costs, where their stability is not determined by the size of 

production, but rather depends on activating the production 

process rather than the scale of the product produced. 
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Understanding how production limitations affect cost 

components provides valuable insights for planning efficient 

production strategies. This emphasizes the importance of 

considering not only direct operational costs, but also 

understanding how production constraints can directly 

impact other costs, particularly those related to inventory and 

perishables management. 

The comparison between the DLS model with and 

without constrained inventory capacity reveals differences in 

production decisions, such as production quantity and binary 

results, which ultimately affect the final inventory per period 

and total system costs as shown in Fig. 10 and Fig. 11. Such 

figures show the impact of production quantity and binary 

production on the process of survey, production, and 

inventory. The DLS model optimized using GA in the context 

of unconstrained inventory capacity is able to provide 

significant system cost reduction. With the ability of the GA 

to comprehensively explore the solution space, the resulting 

production decisions tend to be more efficient. This enables 

better adjustment to market needs and demand without being 

burdened by inventory constraints. The impact on inventory, 

especially in the unconstrained context, is that the right 

amount of inventory can be held, providing greater flexibility 

in the face of demand fluctuations.  

In this context, determining production quantity and 

binary production becomes very important. When faced with 

inventory constraints in DLS, a thoughtful production 

strategy is necessary. Due to limited inventory capacity, 

production decisions must account for the balance between 

market demand and available inventory. Concurrently, it is 

crucial to ensure product availability meets demand without 

causing excessive inventory accumulation. 

The binary production is a crucial factor in inventory 

management within the given constraints. It determines 

whether products are produced each period, and not 

producing can impact the availability of the product, 

potentially resulting in loss of market share or dissatisfied 

customers. Therefore, in DLS with inventory constraints, the 

decision to produce in binary form is not solely concerned 

with production efficiency, but also with achieving the 

appropriate balance between product availability and 

inventory availability. This underscores the significance of 

conducting thorough analyses to achieve an ideal balance 

between market demand, inventory capacity, and production 

costs. 

As shown in Fig. 10 and Fig. 11, both DLS models with 

and without inventory capacity constraints have the same 

business process from sales survey to delivery of bread 

products to retailers. Sales surveys are conducted three days 

before bread production begins. Whether the model has 

inventory constraints or not, the information from this survey 

is crucial to determine the orders received by retailers. This 

data becomes the basis for determining the amount of 

production required and when production is carried out to 

fulfill demand. After the sales survey, 2 days before, the 

bread production process begins. The number and time of 

production is predetermined and lasts for 7 periods, 

equivalent to 1 week. In both models, there are two important 

aspects to be considered: quantitative production quantities 

and binary production settings (1=production and 

0=otherwise). This aims to address the perishable problem of 

bread products that only have a shelf life of 4 days after 

leaving the factory. Production should match the demand 

identified from the sales survey while taking into 

consideration the product's durability limitation. While a 

binary production setup is important to ensure bread is 

produced according to type, reducing potential production 

wastage and improving overall efficiency. 

On the day before delivery, the packaging process is 

carried out in both models. This stage is crucial because the 

bread that has been produced must be prepared for delivery 

to retailers. This process requires special attention to product 

quality, proper packaging, and logistical arrangements to 

ensure that the bread arrives at retailers in the best possible 

condition in accordance with established quality standards. 

This is where inventory management and logistics 

coordination become crucial to ensure the bread reaches the 

end consumer with optimal quality. 

D. Sensitivity Analysis of the DLS Model  

Sensitivity analysis is an important approach in systems 

analysis that aims to measure how sensitive system results or 

performance are to changes in one or more parameters. 

Specifically in the context of DLS models without inventory 

capacity constraints, sensitivity analysis will be a powerful 

tool to evaluate the extent to which system performance is 

affected by variations in certain parameters. The focus on 

crucial parameters such as return rate and perishable rate, 

which are closely related to expiration date, is an important 

foundation for making the right decisions regarding inventory 

management and production decisions. 

In performing sensitivity analysis on the DLS model 

without inventory constraints, the return rate and perishable 

rate parameters are the main focus. By changing the values of 

these parameters by ±25% on their baseline values, this 

analysis aims to understand the extent to which changes in 

return rate and perishable rate. Note that, the return rate is the 

function of actual return data, meanwhile perishable rate is 

the function of the expiration days. Therefore, changes in 

parameter values that affect the return rate and perishable rate 

are shown in TABLE VI. 

TABLE VI.  CHANGING OF RETURN AND PERISHABLE PARAMETER DATA 

Changes 
Parameter Values 

Data return per 

product 𝒑 (units) 
Expire days for perishable 

rate per product 𝒑 
+50% 954; 678; 434; 371 7; 7; 7; 7 
+25% 681; 484; 310; 265 5; 5; 5; 5; 5 

0 545; 387; 248; 212 4; 4; 4; 4 
-25% 409; 290; 186; 159 3; 3; 3; 3 
-50% 273; 194; 124; 106 2; 2; 2; 2 

 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 890 

 

Raden Achmad Chairdino Leuveano, Balancing Inventory Management: Genetic Algorithm Optimization for A Novel 

Dynamic Lot Sizing Model in Perishable Product Manufacturing 

  
(a) Product 1 (b) Product 2 

  
(c) Product 3 (d) Product 4 

Fig. 10. The impact of the production decision under four products for the DLS model with unconstrained inventory capacity extend to the management of 

process business in bread making, encompassing both production volume and binary production decisions 

 

  
(a) Product 1 (b) Product 2 

  
(c) Product 3 (d) Product 4 

Fig. 11. The impact of the production decision under four products for the DLS model with constrained inventory capacity extend to the management of 

process business in bread making, encompassing both production volume and binary production decisions 
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The results of the sensitivity analysis on the return rate 

and perishable rate in the DLS model without inventory 

constraints are shown in Table VII and Table VIII. The 

results of this analysis indicate that changes in return rate and 

perishable rate can have substantial implications on the total 

system costs and provide important information for decision 

makers in devising inventory management strategies that are 

more adaptive and responsive to market dynamics. 

Table VII shows that the return rate is an important 

parameter to consider when designing a DLS with a 

perishable product. By understanding the impact of return 

rate on production quantity, binary production, and total 

system costs, managers can make better decisions about how 

to manage their inventory.  

The impact of return rate on production quantity is 

nonlinear. This means that the change in production quantity 

is not proportional to the change in return rate. For example, 

a 25% increase in return rate does not result in a 25% decrease 

in production quantity. However, in practical application, the 

return rate proves to be a crucial factor that influences the 

production quantity as the return rate increases, the 

production quantity decreases. This is because a higher return 

rate means that more products are being returned, which 

reduces the need to produce as many new products.  

Moreover, the impact of the return rate on binary 

production is also nonlinear. However, the impact is not as 

strong as the impact on production quantity. Similarly, binary 

production, the practice of producing in larger batches, 

demonstrated a sensitivity to return rate fluctuations. With 

increasing return rates, binary production declined, reflecting 

the reduced demand for new products and the efficiency 

gained from producing in larger quantities. 

Lastly, the impact of the return rate on total system costs 

is relatively linear. This means that the change in total system 

costs is approximately proportional to the change in return 

rate. Total system costs, encompassing all expenses 

associated with production, inventory management, and 

return handling, exhibited a moderate sensitivity to return rate 

variations. As return rates increased, total system costs also 

rose, reflecting the additional costs incurred in processing 

returned products. 

Delving into the sensitivity of DLS models for perishable 

products, this study explores the impact of varying expiration 

day (due date) parameters on production quantity, binary 

production, and total system costs as shown in Table VIII. 

The expiration day, representing the time beyond which 

products cannot be sold or consumed, is a crucial factor in 

perishable product inventory management. Therefore, the 

perishability rate is the function of the expiration day of the 

bread product. The analysis systematically altered the 

expiration day by increments and decrements of 25% from its 

baseline value, effectively simulating different perishability 

rates. 

The impact of expiration day on production quantity and 

binary production is nonlinear. This means that the change in 

production quantity is not proportional to the change in 

expiration day. On the one hand, what usually happens in 

practice fulfills the following logic: as the expiration day 

increases, the production quantity decreases. This is because 

a longer expiration day means that products have more time 

to be sold, so there is less need to produce as many new 

products. Moreover, expiration day has a moderate impact on 

binary production. As the expiration day increases, the binary 

production decreases. This is because a longer expiration day 

means that there is less demand for new products, so it is more 

efficient to produce in larger batches.  

Meanwhile, expiration day has a moderate impact on total 

system costs. As the expiration day increases, the total system 

costs increase slightly. This is because a longer expiration day 

means that there are more products in the system at any given 

time, which increases the cost of holding inventory. 

Overall, analyzing the impact of rate of return and damage 

rate on production quantity, binary production, and total 

system cost is a complex task due to the nonlinear and 

dynamic nature of these variables. Therefore, it is challenging 

to predict the exact impact of changing these parameters. The 

interaction between the rate of return, damage rate, and 

production parameters creates a system with many feedback 

loops and complicated relationships. Analyzing the impact of 

the rate of return and perishable rate poses challenges due to 

various factors. 

a. Nonlinearity of Demand and Production: Product 

demand does not always correspond to supply, and the 

production process often entails fixed costs and batch 

processing. These nonlinearities create complexities in 

predicting the effects of alterations in the rate of return 

and perishable rate on the total cost and production 

quantity. 

b. Dynamic Nature of Perishability: Perishable products 

have a limited shelf life, leading to a decrease in value 

over time. This dynamic nature adds complexity to the 

analysis and production decisions should consider the risk 

of spoilage and associated costs. 

c. The interaction between return rate and perishability: 

Return rates and perishable rates are not independent 

variables; they can influence each other. For instance, an 

increased return rate could result in more perishable 

losses due to the extra handling required for returned 

items. This aspect further complicates the analysis. 

d. Search Behavior of Optimization Algorithms: To tackle 

complex optimization problems like dynamic lot sizing, 

optimization algorithms like GA are commonly utilized. 

However, GAs demonstrates nonlinear search behavior, 

which amplifies nonlinearity within the system and 

complicates the prediction of parameter change impacts. 

Ultimately, determining the effects of return rates and 

perishable rates proves challenging due to the combined 

influence of nonlinear dependencies, dynamic processes, and 

complex optimization behavior. Understanding these factors 

is crucial to developing a durable DLS model that can 

efficiently handle perishable inventory and enhance system 

performance. 
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TABLE VII.  THE EFFECT OF CHANGES IN RETURN RATE 

𝑝 𝑡 𝑄𝑡,𝑝 𝑌𝑡,𝑝 𝑝 𝑡 𝑄𝑡,𝑝 𝑌𝑡,𝑝 𝑝 𝑡 𝑄𝑡,𝑝 𝑌𝑡,𝑝 𝑝 𝑡 𝑄𝑡,𝑝 𝑌𝑡,𝑝 𝑝 𝑡 𝑄𝑡,𝑝 𝑌𝑡,𝑝 

1 

1 3125 1 

1 

1 2423 1 

1 

1 2941 1 

1 

1 3688 1 

1 

1 4063 1 

2 3617 1 2 4386 1 2 3858 1 2 2727 1 2 2258 1 

3 3699 1 3 3973 1 3 4225 1 3 4156 1 3 4250 1 

4 2879 1 4 3373 1 4 2757 1 4 3600 1 4 3500 1 

5 4520 1 5 3203 1 5 3145 1 5 4848 1 5 4251 1 

6 3707 1 6 4008 1 6 4440 1 6 2736 1 6 3125 1 

7 3137 1 7 3318 1 7 3500 1 7 2929 1 7 3501 1 

2 

1 1984 1 

2 

1 1750 1 

2 

1 1750 1 

2 

1 2231 1 

2 

1 1750 1 

2 1844 1 2 2125 1 2 2125 1 2 2032 1 2 2383 1 

3 1946 1 3 2125 1 3 2125 1 3 2367 1 3 1708 1 

4 1750 1 4 1394 1 4 1469 1 4 2268 1 4 1630 1 

5 1750 1 5 1543 1 5 1703 1 5 0 0 5 1333 1 

6 1563 1 6 1892 1 6 1657 1 6 1931 1 6 2125 1 

7 1422 1 7 1425 1 7 1425 1 7 1750 1 7 1750 1 

3 

1 500 1 

3 

1 750 1 

3 

1 360 1 

3 

1 250 1 

3 

1 650 1 

2 500 1 2 0 0 2 477 1 2 719 1 2 0 0 

3 0 0 3 215 1 3 785 1 3 0 0 3 313 1 

4 376 1 4 785 1 4 0 0 4 625 1 4 625 1 

5 750 1 5 0 0 5 778 1 5 125 1 5 813 1 

6 0 0 6 650 1 6 0 0 6 688 1 6 0 0 

7 274 1 7 0 0 7 0 0 7 0 0 7 0 0 

4 

1 1933 1 

4 

1 1627 1 

4 

1 1642 1 

4 

1 1955 1 

4 

1 1750 1 

2 1500 1 2 1317 1 2 1679 1 2 2000 1 2 1594 1 

3 832 1 3 1313 1 3 1522 1 3 1598 1 3 1563 1 

4 2000 1 4 1781 1 4 1183 1 4 1658 1 4 1119 1 

5 1632 1 5 1563 1 5 1567 1 5 1456 1 5 1567 1 

6 1659 1 6 1955 1 6 1963 1 6 1823 1 6 1969 1 

7 1000 1 7 1000 1 7 1000 1 7 0 0 7 1000 1 

𝑇𝐶 71942270 𝑇𝐶 68130780 𝑇𝐶 72363750 𝑇𝐶 91618820 𝑇𝐶 75688170 

TABLE VIII.  THE EFFECT OF CHANGES IN THE EXPIRATION DATE OF PERISHABILITY RATE 

𝑝 𝑡 𝑄𝑡,𝑝 𝑌𝑡,𝑝 𝑝 𝑡 𝑄𝑡,𝑝 𝑌𝑡,𝑝 𝑝 𝑡 𝑄𝑡,𝑝 𝑌𝑡,𝑝 𝑝 𝑡 𝑄𝑡,𝑝 𝑌𝑡,𝑝 𝑝 𝑡 𝑄𝑡,𝑝 𝑌𝑡,𝑝 

1 

1 3881 1 

1 

1 3524 1 

1 

1 2941 1 

1 

1 3149 1 

1 

1 4848 1 

2 3379 1 2 3269 1 2 3858 1 2 3641 1 2 2532 1 

3 4438 1 3 4250 1 3 4225 1 3 4098 1 3 5000 1 

4 4966 1 4 2877 1 4 2757 1 4 2281 1 4 4692 1 

5 0 0 5 3869 1 5 3145 1 5 4438 1 5 0 0 

6 4702 1 6 3577 1 6 4440 1 6 4719 1 6 4878 1 

7 3500 1 7 3318 1 7 3500 1 7 2375 1 7 2734 1 

2 

1 1672 1 

2 

1 2417 1 

2 

1 1750 1 

2 

1 1688 1 

2 

1 1557 1 

2 1869 1 2 2043 1 2 2125 1 2 2194 1 2 2220 1 

3 2233 1 3 2219 1 3 2125 1 3 1896 1 3 2328 1 

4 1750 1 4 2125 1 4 1469 1 4 2092 1 4 1256 1 

5 1938 1 5 0 0 5 1703 1 5 1305 1 5 2067 1 

6 1376 1 6 2031 1 6 1657 1 6 1750 1 6 1426 1 

7 1750 1 7 1422 1 7 1425 1 7 1329 1 7 1400 1 

3 

1 750 1 

3 

1 750 1 

3 

1 360 1 

3 

1 500 1 

3 

1 500 1 

2 0 0 2 0 0 2 477 1 2 500 1 2 563 1 

3 200 1 3 906 1 3 785 1 3 516 1 3 0 0 

4 688 1 4 0 0 4 0 0 4 884 1 4 563 1 

5 281 1 5 0 0 5 778 1 5 0 0 5 782 1 

6 484 1 6 750 1 6 0 0 6 0 0 6 0 0 

7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 

4 

1 1750 1 

4 

1 1750 1 

4 

1 1642 1 

4 

1 1750 1 

4 

1 1626 1 

2 1993 1 2 1428 1 2 1679 1 2 1813 1 2 1330 1 

3 1500 1 3 1672 1 3 1522 1 3 1875 1 3 1408 1 

4 1750 1 4 1994 1 4 1183 1 4 1406 1 4 1662 1 

5 625 1 5 1719 1 5 1567 1 5 1344 1 5 1598 1 

6 1938 1 6 993 1 6 1963 1 6 1430 1 6 1932 1 

7 1000 1 7 934 1 7 1000 1 7 872 1 7 1000 1 

𝑇𝐶 80769364,29 𝑇𝐶 82234372 𝑇𝐶 72363750 𝑇𝐶 85098660 𝑇𝐶 86544520 

 
Note : 𝑝 = Number of products, 𝑝 =  1, 2, 3, … , 𝑃. 

 𝑄𝑡,𝑝 = Production quantity for product type 𝑝 in period 𝑡. 

 𝑌𝑡,𝑝 = 1, if there is a number of products produced for product type 𝑝 in period 𝑡, 0, otherwise. 

 𝑇𝐶 = Total system costs. 
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V. CONCLUSION 

This research is an important step in improving DLS 

model that consider the perishable nature of products, a 

crucial aspect in inventory management. DLS, which is 

flexible in managing multiple products and multiple periods, 

provides a solid foundation in managing inventory in 

complex production environments. This paper proposes a 

model that is able to adapt to two different situations, namely 

unconstrained inventory and constrained inventory capacity, 

providing a solution that suits the specific needs of the 

company. 

This research highlights the vital role of GA in 

approximating the optimal solution to the DLS model, 

especially in managing production decisions such as 

production quantity and binary production. In both situations, 

the GA was able to produce efficient solutions, tailored to the 

company's needs, while significantly reducing the total 

system cost. The use of GA in testing the model with real data 

from a bread manufacturer is a crucial step in validating and 

improving the DLS model. GA, as a broad computational 

method, is able to thoroughly explore the solution space in 

optimization problems such as DLS. 

Sensitivity analysis of return rate and perishable rate 

provides an in-depth understanding of the impact of changing 

these key parameters on model performance and solution. 

The findings provide a solid foundation for decision makers 

in inventory management, enabling adaptation of optimal 

strategies in the face of fluctuations in key parameters. 

The adoption of carbon emission parameters in DLS 

reflects an important step towards green manufacturing. 

Future studies can explore the integration of environmental 

aspects into the DLS model by considering carbon impacts in 

the supply chain, making a major contribution to sustainable 

production decision-making. 
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