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Abstract—Sperm analysis is an initial step in the 

examination conducted to identify infertility cases in humans. 

One aspect of sperm analysis involves observing the movement 

of spermatozoa and determining whether it is normal or 

abnormal. Normal spermatozoa movement is characterized by 

progressive motion at an average speed of 20 µm/second, while 

abnormal movement includes slow or non-motile spermatozoa. 

Traditional methods can be employed to assess the normality or 

abnormality of sperm movement, but they have drawbacks such 

as time-consuming procedures and diverse results depending on 

the expertise of the examiner. On the other hand, utilizing 

Computer-Assisted Sperm Analysis (CASA) equipment 

provides consistent results, albeit at a relatively high cost. 

Therefore, this research proposes an alternative method for 

determining sperm movement abnormalities using the Gaussian 

Mixture Model (GMM) for background subtraction and a 

matching-based algorithm to track and analyze the formed 

trajectories, distinguishing between normal and abnormal 

sperm movement. Human spermatozoa in real-time are used, 

and their movements are recorded in video format using a 

bright field microscope. The testing results for determining 

sperm movement abnormalities based on the GMM method and 

matching-based algorithm were successful, particularly in 

videos recorded at 50 fps recording speed, 20 minutes of 

liquefaction time, and 40x microscope lens magnification. This 

condition exhibited the highest average accuracy, with a 

tracking accuracy of 77.3% and an average accuracy for 

determining sperm motility abnormalities of 87.7%. Therefore, 

the combined tracking of sperm movement based on the GMM 

method and matching-based algorithm can be utilized to 

identify abnormalities in the movement of human spermatozoa. 

Keywords—Spermatozoa, Motility, GMM, Matching Base, 

Abnormality. 

I. INTRODUCTION 

Sperm analysis is performed to determine the number and 

quality of spermatozoa contained in semen [1][2], which is 

the first step in determining fertility [3][4]. This examination 

can help determine whether there is a problem with the sperm 

production system or sperm quality [5], which is the main 

factor in determining fertility [6]. This fertility level 

determines the ability to obtain offspring [7]. One of the ways 

that can be used to analyze sperm is by looking at the 

movement of spermatozoa in semen [8][9][10]. This way is 

commonly done by manually testing with visual microscopy 

using a microscope [11][12]. Microscopy [13] has a fairly 

high subjective value, that there is necessity to have an 

experienced examiner with expertise and skills in assessing 

spermatozoa movement to be able to obtain accurate test 

results [14]. This manual analysis has several obstacles 

including experts in the analysis process having varying 

abilities, so there is a possibility of differences in reading 

results [15]. To be able to know the results of this manual 

examination takes quite a long time. In addition to the manual 

method, currently, there is also a sperm analysis using a 

computer [16].  The product used is CASA (Computer-Aided 

Sperm Analysis) or sperm analyzer [17]. With CASA [18], 

microscopic photographs of semen are taken, as well as 

analyzing the number, movement, and morphology of sperm 

in the semen [19]. Despite its capabilities, commercial CASA 

products are too expensive and rudimentary [20]. 

Microscopic examination in sperm analysis includes 

morphological analysis that is based on size, involving head 

length, head width, mid-piece, and tail length [21][22]. 

However, the size of spermatozoa is not an absolute 

requirement for determining normal and abnormal 

spermatozoa [23][24]. Another characteristic of good sperm 

is its ability to move quickly and accurately toward the egg to 

carry out the fertilization process, generally swimming at the 

speed of 2.5 cm every 15 minutes [25]. On the other hand, 

poor-quality sperm have slow movement or move 

inaccurately which results in failing to reach or penetrate the 

egg, thus they cannot carry out the fertilization process [26]. 

Therefore, the determination of the level of liveliness of 

sperm can be seen from two features [27][28], which are the 

speed of movement and the pattern of movement. To get 

these two features, spermatozoa motility analysis is 

conducted, which includes motility tracking such as 

movement, speed, and trajectory of spermatozoa [29]. 

Spermatozoa motility tracking produces position information 

[30] using algorithms that require high-performance 

computer. The spermatozoa are called abnormal if it met the 

requirements of normal morphology but abnormal motility, 
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and vice versa [32]. Therefore, there is a need for a system 

capable of analyzing and classifying normal and abnormal 

human spermatozoa based on motility morphology and 

analyze spermatozoa movement patterns [33][34].  

Several studies have conducted research on sperm 

analysis, both in the form of morphological analysis and 

motility analysis of sperm movement, one of which is 

research conducted by Prabaharan and Raghunathan (2021), 

which uses a machine learning approach, especially deep 

convolutional neural networks (CNN), to perform 

classification, detection, and segmentation processes. This 

method also utilizes morphological approaches to represent 

images [35]. In the proposed method, deep convolutional 

neural networks are used to detect infertility disorders in men. 

Image morphology process is applied using an improved 

Otsu threshold method for sperm image segmentation, which 

helps to detect abnormal regions using convolutional layers 

[35]. The database is sourced from a human sperm image 

analysis dataset. Overall, this study optimized image 

representation, image segmentation, and abnormality 

detection with results in accuracy, detection rate, and 

computation time. The method achieved an accuracy result of 

98.99% in detecting abnormalities effectively and reduced 

the computation time to 4 minutes and 15 seconds. This 

research was conducted using MATLAB with the 2018a 

version adaptation [35]. As this research aims to categorize 

human sperm as normal and abnormal based on images and 

not videos, it is not able to detect sperm motility movement 

although the computation time can be reduced.  

Research conducted by Ilhan et al. (2021), discusses a 

new alternative in sperm counting using smartphones, 

replacing visual assessment techniques in sperm 

concentration analysis [36]. The first stage in infertility 

diagnosis, the sperm count, involves two main evaluation 

techniques: Computer Aided Sperm Analysis (CASA) and 

Visual Assessment (VA) [36]. VA involves observation of 

sperm in the counting chamber, which makes the diagnosis 

highly dependent on individual expertise and experience. In 

contrast, CASA uses computer-based techniques but is more 

expensive and requires complex parameter settings. In this 

study, a new method that utilizes smartphones and computers 

for sperm counting analysis was proposed [36]. A 

smartphone is used to take pictures similar to the VA 

technique, and the sample video is then transferred to a 

computer. On the computer side, Computerized Sperm 

Counting Software (CSCS) was developed consisting of four 

modules: Data Acquisition and Organization, Region of 

Interest (ROI) Detection, Mobile Sperm Detection, and 

Counting. Data capture via smartphone provides a more 

economical design than the CASA system [36]. ROI 

extraction uses a combination of line detection and 

segmentation methods. Background and Foreground are 

extracted to detect mobile sperm and stationary sperm. Active 

contours are applied to improve the segmentation of 

stationary sperm, and the detected sperm is counted using 

pixel-based blob analysis. The experimental results show that 

this smartphone-based sperm concentration analysis can be 

applied in the laboratory due to its modularity, functionality, 

accuracy, and lower cost compared to CASA and VA 

analysis, but requires longer time. 

Research by Chen, et al. (2022) discussed the evaluation 

of sperm activity using feature point detection networks in 

deep learning. Sperm motility is considered a key indicator 

for measuring semen quality [37]. The Computer Aided 

Sperm Analysis (CASA) method uses sperm images and 

image processing algorithms, to detect and track the position 

of sperm targets to assess their activity. A deep learning-

based target detection algorithm is used in this study, to 

overcome the limitations of traditional algorithms in 

detecting sperm targets in small and dense images. The 

method involves a deep learning-based feature point 

detection network, target tracking using SORT, and sperm 

viability assessment through sperm trajectory analysis. 

Experimental results show that the proposed method is 

effective in analyzing sperm activity with an average 

detection speed of 65 fps and detection accuracy of 92% [37]. 

The conclusion of this study is that the proposed method can 

improve the accuracy and speed of sperm target detection and 

provide better tracking results for sperm activity analysis. 

In their paper, research conducted by Alameri, et al. 

(2021) proposed a modified GMM algorithm to optimize the 

detection and tracking process of multi-sperm spermatozoa 

[38]. The proposed method consists of two stages: the first 

stage focuses on accurate sperm detection, while the second 

stage involves sperm tracking and velocity measurement. 

Motility results were evaluated on 10 sperm samples, and the 

performance of the proposed method was compared with 

several other methods [38]. When tested on 10 sperm motility 

videos, consisting of, 4 samples tested were classified as 

normal and the other 6 were considered abnormal. The 

method used in the study achieved accuracy, sensitivity, and 

specificity of 92.3%, 96.3%, and 72.4%, respectively [38]. 

An obstacle encountered in this study was when two sperm 

move and collide in a line and the system must distinguish 

whether it is one sperm or multiple sperm. This problem is 

solved by optimized feature extraction. In addition, this study 

used Euclidean distance and similarity method in calculating 

sperm trajectory analysis, feature histogram, and background 

information so that the extracted object information will 

improve the accuracy of the proposed system. However, the 

limitation of this study is its inapplicability to real-time 

scenario when two sperm move and collide in a line. 

Although it has been explained that optimized feature 

extraction can help, it is not explained in detail how this 

technique overcomes such situations. 

Javadi and Seyed's (2019) research is about Sperm 

Morphology Analysis (SMA) for infertility diagnosis in male 

sperm. In his research using deep learning algorithms to 

detect sperm morphological abnormalities, using images of 

human sperm cells, which includes the development of the 

MHSMA dataset as a standard benchmark, consisting of 

1,540 sperm images from 235 infertility patients [39]. After 

applying data augmentation and data imbalance handling, it 

then uses deep neural networks to detect morphological 

deformities in different parts of the sperm [39]. The test 

results showed high accuracy, especially in the detection of 

acrosome, head, and vacuum deformities. The algorithm used 

is more accurate than other methods in acrosome and vacuum 

deformity detection. In addition, the method can work fast, 

even on a common laptop [39]. The conclusion of this study 
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is that this deep learning method is effective for selecting the 

best sperm in ICSI procedures, focusing on the prominence 

of acrosome, head, and vacuum features in sperm images. 

However, this research is not yet applicable in real-time to 

perform sperm analysis. Thus, it can be focused on improving 

the accuracy of the algorithm by using transfer learning and 

more complex deep learning models. 

Research conducted by Somasundaram (2021) is about 

sperm analysis to evaluate clinical examination infertility. 

This procedure includes the analysis and classification of 

normal and abnormal sperm, as well as the selection and 

tracking of healthy sperm in a sample [40]. This study 

proposes the Faster Region Convolutional Neural Network 

Method (FRCNN) and Elliptical Scanning Algorithm (ESA) 

to classify human sperm and the Tail to Head Movement 

algorithm (THMA) for motility analysis and tracking. This 

proposed method aims to improve the accuracy of computer-

aided sperm analysis (CASA). The method used provides 

better results compared to existing methods, with an accuracy 

of 97.37%. Sperm detection and identification of sperm 

motility in groups were performed with a minimum execution 

time of 1.12 seconds [40]. From the overall research results, 

the performance of the proposed model can be implemented 

in infertility centers to detect healthy sperm in semen. 

However, this study is only image-based, so it does not 

address the requirements for sperm movement. 

Another research related to tracking conducted by Zhu et 

al. [41] proposes an algorithm for automatic segmentation, 

detection, and tracking of nonspecific sperm aggregates. To 

achieve sperm head segmentation, multi-scale edge and new 

energy functional are designed using the level set method 

[41]. At the same time, the method can calculate sperm 

concentration and motility in real time while tracking sperm. 

In this study, the sperm tracking stage improves the weight 

condition and quantization standard of the trust flow based on 

the graph theory method and simplifies the sperm tracking to 

the point matching between two frames to solve the failure 

problem of matching adjacent frames with a small space 

distance. The method used achieved accurate segmentation of 

non-specific sperm aggregation regions, compared with the 

level set LBF (Local Binary Fitting) and SBGFR (Selective 

Binary and Gaussian Filtering Regularized) methods [41]. 

However, this study will be difficult to apply in real-time, due 

to its high computation time. 

Another study related to motion detection is done by 

Hidayatullah et al. [42], Mean average precision (mAP), 

confusion matrix, precision, recall, and F1-score are used to 

measure accuracy.  This research compares the proposed 

method with you only look once (YOLO) v3 and YOLOv4.  

The end results earn 94.11 mAP on the test dataset, an F1-

score of 0.93, and a processing speed of 51.9 fps.  In 

comparison with YOLOv4, the proposed method is 2.18 × 

faster on testing, and 2.9 × faster on training with a small 

dataset [42], while achieving comparative detection accuracy 

[42]. Although the study achieved good performance 

(including showing high speed) on the test dataset used, the 

sustainability and generalizability of the Deep Sperm model 

may need to be tested on more diverse datasets (larger 

datasets) and has not been tested on real-time situations in the 

field. 

From several research above, the recorded semen vid data 

used still did not utilize the necessary sampling rate of 50 fps 

(frame per second). As an active motility of sperm can reach 

5 times the size of its head, researcher would need a sampling 

rate that corresponds to the 50 fps of the video data used to 

be able to represent sperm motility more accurately. Thus, 

this study proposes a new approach (a series of procedures) 

for tracking and determining abnormalities of spermatozoa-

based cell motility based on matching-based algorithm, as 

well as making a complete integrated system beginning from 

data recording to analysis. Tracking and abnormality 

determination of sperm motility using the matching-based 

algorithm was applied to several video types with different 

frames per second (fps), different spermatozoa liquefactions, 

and different microscope lens zooms [43]. In addition, this 

research compared tracking results and speed of execution 

time by using matching-based algorithm using the Kernelized 

Correlation Filters method [44]. 

This research has objectives and contributions to create 

an application for determining the abnormality of 

spermatozoa movement or sperm motility, which is 

considered normal at an average speed of 20 pM/sec [45]. 

This application is based on the Gaussian Mixture Model 

(GMM) to perform background subtraction [46] and 

matching-based algorithms to generate spermatozoa paths 

and analyze their motility health [47]. It also integrates the 

process of recording, tracking, generating trajectories, and 

determining the abnormality of spermatozoa movement. 

The discussion of this research paper is organized into 

four sections. The first section is to discuss previous research, 

so that a contribution can be made to this research. Section 

two examines the system design and research methods used. 

Section three explains the results of the experiments carried 

out. Finally, the fourth section concludes the results and 

briefly provides further suggestions for the improvement of 

this paper. With this research, it is expected that the use of the 

Gaussian Mixture Model (GMM) method and matching-

based algorithms can be used to determine the abnormality of 

spermatozoa movement and calculate the number of sperm, 

as well as run according to the desired conditions and in real 

time. 

II. THE RESEARCH METHOD 

The system design of spermatozoa double tracking 

application based on matching-based algorithm made in this 

study is shown in Fig. 1. The stages in this study are: data 

acquisition, spermatozoa tacking, path generation, and 

abnormality determination. 

Spermatozoa tracking was performed on video inputs 

containing several human semen samples. Every 

spermatozoa that moves in the input video was tracked. The 

results of tracking were motility paths from each spermatozoa 

in the videos. Tracking was performed to determine the 

normal motility of each spermatozoa in the videos. To 

facilitate the observation, each path was given a different 

colour. The trajectory images formed from the tracking can 
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be used to analyze the normalcy of spermatozoa motility in 

the input video. 

 

Fig. 1. Block diagram of determining spermatozoa movement abnormalities 

based on gaussian mixture model and matching-based algorithm 

A. Data Acquisition 

The data used in this study was human semen video 

obtained from sperm donor conducted at Politeknik 

Kesehatan Surabaya. Video recording was performed using a 

Flea3 Point (Gray-type 3S3S2C-CS) Point camera, placed 

over an ocular lens on a microscope and connected to a 

computer using a USB 3.0 cable. In this study, the recording 

speeds used were 30 and 50 fps. If a higher recording speed 

were used, the performance of the computer used for 

recording would not be able to compete with the frame rate 

of the video, resulting in occasional consecutive unrecorded 

frames. The result would be a skipping video image, in which 

the movement of spermatozoa would seem very fast or 

jumpy. In addition to using two types of video recording 

frame rates, the sample was left in the open for about 10 and 

20 minutes at room temperature before being examined [48]. 

This was necessary because at the time the sperm fluid was 

removed, dilution was necessary to ensure the spermatozoa 

observed were not too concentrated, could move more 

actively, and be clearly differentiated. The sperms were 

removed from the container using a pipette and were put into 

an object glass arranged so that the inside of the container was 

extracted. Real video data was retrieved using a bright led 

microscope located at the Integrated Laboratory of Health 

Poly-technic K Surabaya, and the camera used was of Point 

Gray brand, FL3-U3-13S2C-CS type. The microscope used 

to observe the movement of spermatozoa was a light 

microscope with 40x magnification and 100x magnification, 

so that the movement of the spermatozoa can be clearly 

observed and recorded using the flea3 camera. An illustration 

of this process can be seen in Fig. 2. 

 

Fig. 2. Real-time spermatozoa video data collection process 

B. Sperm Tracking 

The second stage in this study is sperm tracking, which 

aims to obtain the coordinate position of each motile sperm 

in the input videos. This sperm tracking is accomplished 

using the matching-based method and represents the most 

important step in this research because most of the process is 

done at this stage [49]. The processes used to track 

spermatozoa in the input video were Gaussian Blur, 

Background Subtraction, Spermatozoa Localization, 

Morphological filtering, Gap Filling, position search and 

storage, and tracking using the matching-based algorithm. 

Fig. 3 illustrates the processes employed to perform 

spermatozoa tracking in the input video. 

 

Fig. 3. Spermatozoa tracing flow 

1) Gaussian Blur. Gaussian smoothing or Gaussian 

blurring is a 2D convolution operation used to give a blur 

effect to the image with the aim of removing noise [50][51]. 

Smoothing is done by shifting the window (kernel) 

throughout the pixels in the image, calculating the value and 

each pixel based on the kernel value and the overlapping 

original image pixel value [52]. In this study the kernel used 

is 13×13, the larger the kernel, the blurrier the resulting image 

looks. 

2) Background Subtraction: The background subtraction 

process performed on the videos aims to separate sperm as 

the foreground in a video from other objects (background) 

[53][54]. The method used is the Gaussian Mixture Model 

(GMM), which is able to handle complex and changing 

backgrounds compared to other methods. By using a 

Gaussian distribution, GMM can adapt to light variations and 

background changes that may occur in video footage. An 

overview of the application of this GMM method is that each 

X pixel data in the coordinates (𝑥, 𝑦) in a video frame is 

modelled into a Gaussian distribution calculated on the basis 

of the colour vector values of R (Red), G (Green), and B 

(Blue) [55][56][57]. At the beginning of modelling into the 

Gaussian distribution, the data of the means and pixel variants 

of the coordinates need to be initialized in order to form a 

Gaussian distribution. After forming a Gaussian distribution, 

the weight of the Gaussian distribution is formed. This weight 

value is updated every time new input is included. This 

update of weight value results in the formation of some 

Gaussian background distribution models [58]. The data 

value of each pixel is then matched to the background model 

based on its Gaussian probability. In matching these pixel 

values, there are two possibilities. First, if there is a value that 

matches the value of the existing Gaussian model, then the 

corresponding Gaussian models are sorted by their weight 

values and the smallest value is selected, which represents the 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 107 

 

I Gede Susrama Mas Diyasa, Abnormality Determination of Spermatozoa Motility Using Gaussian Mixture Model and 

Matching-based Algorithm 

background, while the other values are considered as the 

foreground. Then, the subsequent matching would first 

update the mean, standard deviation, and weight. The second 

possibility is that if there is no pixel value matching the value 

of the Gaussian model, then this pixel is considered as the 

foreground and the value with the lowest probability is set up 

for a new distribution value. The newly formed distribution 

has the same mean value as the pixel value, a high variance 

value, and a low weight value [59]. The Gaussian Mixture 

Model (GMM) method is chosen because it has several 

characteristics, such as searching for moving objects, which 

are moving pixels in this case, and modelling with a normal 

distribution or also called Gaussian distribution [60]. As long 

as there is a pixel movement of the location (𝑥, 𝑦) in the 

frame to framen+1, then pixels can be detected as a moving 

object because the probability value is different, and the more 

pixels move, the higher the variant value becomes [61]. 

However, this GMM method also has some disadvantages. If 

the learning rate (𝛼) is high, then noise is also detected as a 

moving object; and if the learning rate (𝛼) is low, objects that 

should be selected as moving objects become undetectable, 

or the foreground is considered as background [62]. 

Therefore, while the Gaussian Mixture Model Method is 

suitable for detecting the movement of objects that have 

random velocities or random accelerations, GMM results 

should still be altered. 

3) Spermatozoa localization is a stage to find areas that 

are suspected of being spermatozoa. In looking for areas that 

are suspected to be sperm, the method used is to look for 

contours [63][64]. Contour is a condition caused by changes 

in intensity in neighbouring pixels. Because of this intensity 

change, the edge of the object in the video can be detected 

[65]. With the detection of the edge of each object in the 

video, it can be used to distinguish objects with different 

colours. The colour difference obtained is used to distinguish 

objects that are considered as sperm, characterized by white 

areas, and objects that are considered as background, 

characterized by black areas. 

4) Morphological Filtering. The contour obtained from 

the results of the previous stage still contains some small 

white areas that are not needed in the tracking process, 

because these areas are not spermatozoa [66]. These small 

areas from the contour search are noise detected as motion 

from the background subtraction results. This noise must be 

removed by applying Morphological Filtering. To be able to 

eliminate unwanted objects with objects suspected of 

spermatozoa using morphological filtering, the method is to 

segment or separate the unwanted area from the desired area 

based on the area of the area [67]. Morphological Filtering is 

done by providing a boundary value between sperm and noise 

[68]. Areas whose values are below the threshold value are 

considered noise and removed, while areas whose size is 

more than or equal to the threshold value are retained or not 

removed. 

5) Gap Filling is performed to unite objects that are close 

together or in one area, using the closing process. Closing is 

an image morphology operation performed through a dilation 

operation followed by an erosion operation. Dilation is a 

morphological operation to make the image size thicker while 

erosion makes the image size thinner. The purpose of this 

closing process is to connect disconnected objects and close 

small holes in objects. This is to ensure that when tracing is 

done, an accurate number of sperm cells is obtained. 

6) Finding and Storing the Position of Detected Sperm. 

Based on the areas that have been obtained as areas that are 

considered sperm, the position of each of these areas in the 

(𝑥, 𝑦) coordinates is searched. This is done by using 

moments. Moments can describe an object in terms of area, 

position, orientation, and other defined parameters. The basic 

equation of the moment of an object is defined as equation 

(1). 

𝑚𝑖𝑗 = ∑ ∑ 𝑥𝑖𝑦𝑗𝑎𝑥𝑦𝑦𝑥   (1) 

With: 𝑖, 𝑗 = Order of the moment, 𝑥, 𝑦 = Point coordinates, 

𝑎𝑥𝑦  = Point intensity.  

Zero-order and first-order moments are defined by 

equation (2). 

𝑚00 = ∑ ∑ 𝑎𝑥𝑦𝑦𝑥   (2) 

𝑚10 = ∑ ∑ 𝑥𝑎𝑥𝑦𝑦𝑥    

𝑚01 = ∑ ∑ 𝑦𝑎𝑥𝑦𝑦𝑥    

In binary images where 𝑎𝑥𝑦  will be 0 or 1, the zero-order 

moment (𝑚00) is equal to the area of the object. The center 

of the area or mass (centroid) is a good parameter to express 

the location of the object. The center of this area is used to 

determine the position of the detected sperm in (𝑥, 𝑦). The 

center of the area of the object is defined by equation (3). 

𝑥′ =
𝑚10

𝑚00
 and 𝑦′ =

𝑚01

𝑚00
 (3) 

With (𝑥′, 𝑦 ,) being the coordinate center of the object 

[69][70][71]. The x and y coordinate positions obtained are 

made the center point of this circle and from this center point 

a circle is then drawn to mark the area of detected 

spermatozoa in each input video frame. The coordinate 

positions of the areas considered as spermatozoa are then 

stored in a file to be used in determining the passage of sperm 

from one frame to the next based on the proximity of the 

position of each sperm. Each frame is stored in one text file, 

then the coordinates in the next frame are stored in another 

text file. The goal is to make it easier to determine the path 

travelled by sperm from one frame to the next. 

7) Matching-Based Algorithm: Matching-based is an 

algorithm for finding relationships between frames based on 

the greatest similarity value [72] [73], and the Matching-

Based Algorithm can be adapted to use various similarity 

metrics compared to other methods, such as correlation or 

specific matching patterns, depending on the characteristics 

of the sperm movement to be identified. This provides 

flexibility in customizing the algorithm to the needs of the 

study. Suppose that on frame 𝐴 there are several points, 

namely 𝑋𝐴 = {𝑋𝐴, 𝑖 = 1, … , 𝑁𝐴} while frame 𝐵 has several 

points, namely 𝑋𝐵 = {𝑋𝐵 , 𝑖 = 2, … , 𝑁𝐵}. The purpose of this 

algorithm is to nd the 𝑡 between the points in 𝑋𝐴 with points 

in 𝑋𝐵. The variables 𝑖 and 𝑛
𝑗,𝑖

 the equation show the number 

of points in each frame, whose values range from 1 to 𝑁. 
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These relationships can be modelled into a complete bipartite 

graph 𝐺 = (𝑈: 𝑉: 𝐸) where 𝑈 = 𝑋𝐴 
1 , 𝑋𝐴 

2 , … , 𝑋𝐴 
𝑘 , 𝑉 =

𝑋𝐵 
1 , 𝑋𝐵 

2 , … , 𝑋𝐵 
𝑘 , and 𝐸  being possible matches between each 

pair of sperm in frames 𝐴 and 𝐴𝐵 An illustration of complete 

bipartite graph can be seen in Fig. 4 [74]. 

Fig. 4 illustrates the 𝑥 points, which are points in both 

frames. The black lines indicate the relationships, while the 

red lines show the greatest similarities obtained. 

 

Fig. 4. Complete bipartite graph 

8) Tracking using Matching-Based Algorithm: Matching-

based is an algorithm to find the greatest similarity from 

several points based on the greatest similarity values of the 

points being searched. The point is the coordinate (𝑥, 𝑦) that 

had been obtained in the previous process [75][76]. The 

greatest similarity between two points was determined based 

on the magnitude of distance. The points considered as the 

suspected sperm movement from one frame to the next were 

points in the ROI (Region of Interest) of the point sought. The 

uses of ROI rely heavily on the depth and additional 

information provided on the scene geometry [77] or 

microscope scope to identify areas where sperm can be found. 

For example, the 3 frames as in Fig. 5. 

 

Fig. 5. The frames show the displacement of the spermatozoa in (a) Frame a, 

(b) Frame b, (c) Frame c, (d) Relationship of a and b, (e) Last point 1, (f) 

Relationship of point 1 and c (g) Last point 2 

From each sperm detected in frame a of Fig. 5(a), the 

relationship indicating the possibility of movement to frame 

b was sought. Based on the ROI of each sperm in frame a, 

sperm 1 and sperm 3 had a possibility of movement in frame 

b. Possible movements from frame a to b were S1a to S2b and 

S3a to S3b, whereas S2a has no pairs in frame b. Each of these 

formed relationships was stored as the paths through which 

each spermatozoa travelled was detected and the last position 

of any established relationship was used as a reference to 

compare to the next frame. The last position formed from 

frame a to b is shown in Fig. 5(e). The last point 1 was 

compared with frame c, resulting in the relationship depicted 

in Fig. 5(f), and the last point formed is shown in Fig. 5(g). 

Meanwhile, consider the path obtained in Fig. 6(a). 

Because from frame a to frame c there are four sperm 

detected, then four paths were formed with each sperm 

having a position motility relationship from frame a to c. 

 

Fig. 6. (a) An overview of system design and (b) multiple possibilities in one 

ROI 

If there is no preceding point in the path or the point with 

the more possibilities is the first one, then the next point 

chosen is the one with the distance that has the greatest 

similarity or the one that has the smallest displacement, such 

as Fig. 7(a). On the other hand, if the path has a previous 

point, then the average gradient from the previous points that 

exist is considered. This average value is compared with the 

gradient value of each point in the sperm ROI that is sought 

for movement and the gradient with the greatest similarity is 

selected. The illustration can be seen in Fig. 7(b). 

C. Path Generation 

In the path generation of each spermatozoon detected in 

the videos, there are two stages. The first stage is to smoothen 

the path through which each spermatozoon is detected, and 

the second stage is to generate the path of each detected 

spermatozoa. 

 

Fig. 7. Determination of the possibility of sperm motility based on distance 

and gradient 

1) Mean Smoothing: Mean smoothing is a technique in 

image processing that belongs to the category of spatial 

filtering, by calculating the average value of the surrounding 

pixels. Mean Smoothing is applied in a 1-dimensional array, 
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to smooth a line [78]. Mean Smoothing [79] is applied in a 1-

dimensional array to smooth a line. The formula for 

calculating the average value is defined by equation (4). 

�̅� =  
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=2   (4) 

Where, �̅� = Average value (Mean), 𝑛 = Total Data, 𝑋𝑖 = 𝑖-th 

value, 𝑖 = Initial Value. 

2) Smoothing the Path of Every Spermatozoa Detected: To 

get observable path results, smoothing is required for points 

in the text file from the following step. If not smoothened, the 

generated path image results would look coarse and 

contorted. The way to smooth the path line is by using the 1-

dimensional mean smoothing method. The equation for 

performing mean smoothing is the same as equation (1). 

Mean smoothing refines the line by finding the average of the 

dotted values stored in the text file of previous stages [80]. 

The average searched is not from all points in the line because 

if it is from all the points searched, only a single point value 

will be obtained. Meanwhile, drawing a line requires at least 

two points. In calculating the average, the number of points 

that the average value is sought needs to be considered. If the 

number of points averaged is too few, then the resulting path 

will look not much different from the initial path. On the other 

hand, if the result is too many, then the resulting path 

becomes very different from the initial path. In this study, the 

average sought is from every 15 coordinate points. 

3) Path Generation for Each Detected Spermatozoa: The 

path through which each spermatozoa is detected in the video 

is drawn based on the points in the resulting le from the 

previous stage [81][82]. The line is made from points based 

on x and y coordinates in the mean smoothing results. The 

first coordinate in the line becomes the starting point of the 

drawing, which is then connected to the next point, and so on 

until the path passed by the spermatozoa in the video is 

drawn. 

D. Determination of Spermatozoa Motility Abnormality 

One way to determine whether or not a spermatozoa is 

normal is to look at the pathway of the spermatozoa. If the 

spermatozoa move in a straight or directed path, then the 

spermatozoa are classified as normal spermatozoa. 

Meanwhile, if the path travelled by the spermatozoa is full of 

turns and spins or circular movements, then the spermatozoa 

are not normal. Therefore, this system must be able to 

distinguish between straight lines and circular or irregular 

lines. 

In the program, in order to distinguish whether the path 

through which a spermatozoa travels is a normal or abnormal, 

the method used is to find the perpendicular distance of each 

coordinate in the path to a straight line and with that value 

then Root Mean Square Error value (RMSE) is determined 

[83]. RMSE is the average value of the sum of the squared 

errors [84]. If the RMSE value is low, then the variation of 

the values generated by a forecast model or in this case the 

spermatozoa path analyzed approximates the variation of its 

observational value or the straight-line value of 𝑎𝑥′ + 𝑏𝑦′ +
𝑐 = 0 [85]. An illustration of the relationship between the 

points in the path with the points in the regression line can be 

seen in Fig. 8. 

 

Fig. 8. Flow chart displaying the determination of the normality of 

spermatozoa motility 

To obtain a straight line as a comparative to the path 

through which abnormality is searched, the common straight-

line equations are generally used, such as equation (5) to (8). 

𝐴𝑥′ + 𝐵𝑦′ + 𝐶 = 0  (5) 

Where: x′= Position of the point on the 𝑥-axis in a straight 

line, 𝑦′ = The position of the point on the 𝑦-axis in a straight 

line, 𝐴= Coefficient 𝑥,  𝐵 = Coefficient 𝑦 and 𝐶 = Constanta. 

𝐴 = ((∑𝑥)(∑𝑦) − 𝑛(∑𝑥𝑦))  (6) 

𝐵 = (𝑛(∑𝑥2) − (∑𝑥)2)  (7) 

𝐷 = ((∑𝑥)(∑𝑥𝑦) + (∑𝑦)(∑ 𝑥2))  (8) 

Based on the A, B, and C values we can find a straight-

line equation in which there is a point of coordinate (𝑥 ,, 𝑦 ,) 

as a comparison with the coordinate points (𝑥, 𝑦) in the 

generated path. The path is considered normal if the line is 

close to a straight line. In other words, the perpendicular 

distance from each point (𝑥, 𝑦) in the path passed by 

spermatozoa to a straight line 𝑎𝑥′ + 𝑏𝑦′ + 𝑐 = 0 is small or 

the Root Mean Square Error (RMSE) value is close to 0. 

Meanwhile, the path will be considered abnormal if the 

perpendicular distance value of each point in the track to a 

straight-line 𝑎𝑥′ + 𝑏𝑦′ + 𝑐 = 0 is of great value or if the 

RMSE value calculated is also great. The equation for 

calculating the distance between the points in the path with 

the points in the comparable straight line is is defined by 

equation (9). 

𝑑 =
|𝐴𝑥−𝐵𝑥+𝐶|

√𝐴2+𝐵2
  (9) 

With equation (5), 𝑑1 is obtained from point (𝑥1, 𝑦1). 𝑑2from 

point (𝑥2, 𝑦2). 𝑑2 from point (x2, y2) and so on until dn from 

point (xn, yn) 𝑛 is the number of coordinates (𝑥, 𝑦) in the 

path of the spermatozoa analyzed for its motility 

abnormalities. From the obtained 𝑑1, 𝑑2, 𝑑3, … dn values, 

then the Root Mean Square Error (RMSE) value is calculated 

using equation (9). This RMSE value is used to determine 

whether or not a spermatozoa pathway is normal 

[86][87][88]. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ 𝑑  (10) 

Implementation into the program of the above equations 

to perform the process of determining the abnormality of the 

path travelled by each detected spermatozoa in the input 

video. The result of this stage is an image of the trajectory of 
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each spermatozoa detected in the video which in its 

implementation is depicted with different colours, each path 

traversed is given a description in the form of writing a 

normal or abnormal path. In addition, in the application there 

is also a result in the form of a description that shows the 

number of spermatozoa paths analysed, the number of normal 

paths and the number of abnormal paths. In the application, 

the process of determining this abnormality becomes one 

process with the creation of trajectories. From the drawn 

trajectory, the direction of movement is analysed to 

determine whether the movement in the trajectory is normal 

or abnormal.  

E. Manual Calculation of Spermatozoa Motility 

Abnormalities 

In the calculation stage of sperm movement 

abnormalities, the data used in this study are in the form of 

human semen videos obtained from several volunteers who 

have agreed to be analyzed. The sperm sample is allowed to 

stand for about 20-30 minutes at room temperature and then 

observed. This needs to be done because when the sperm 

fluid is released, it is still thick and needs dilution so that the 

observed spermatozoa are not too tight, move more actively, 

and can be clearly distinguished. In sperm research, a dilution 

time of 10 minutes and 20 minutes is used, to distinguish the 

liveliness of sperm movement when it is still thick and when 

it has started to melt. While video recording is done using a 

Flea3 type Point Grey camera (FL3-U3-13S2C-CS) which is 

placed above the eyepiece on the microscope and has the 

ability to record at speeds up to 120 fps (frames per second). 

However, this study only utilizes only 30 fps and 50 fps 

recording speeds due to limitations in the specifications of the 

computer used. If a higher recording speed is used, the 

performance of the computer used for recording cannot keep 

up with the frame rate of the video, so sometimes there are 

frames that are not recorded in a row. The result is a jerky 

video image where the movement of the spermatozoa looks 

very fast or like jumping around. The microscope used to 

observe the movement of spermatozoa is a light microscope 

with a magnification of 40 on the ocular lens and 100 on the 

objective lens, so that the movement of spermatozoa can be 

clearly observed and recorded with a flea camera3. The 

purpose of taking videos with different fps is to find videos 

with the lowest fps that can still be used to observe 

spermatozoa movement and analyze its movement. While the 

difference in semen dilution aims to get the number of 

spermatozoa cell populations that can still be traced to 

analyze their movements. Those exhibiting forward motion 

move straight and are considered to move well, whereas those 

indicating poor motion are zigzag, circle, and others. To 

calculate the number of sperm that move normally, first count 

the spermatozoa that do not move, then count those that move 

poorly, then those that move well, for example: those that do 

not move = 25%, those that move poorly = 50%, those that 

move well = 100% - 25% - 50% = 25%. The percentage of 

movement is simply written with a round number (generally 

a multiple of 5 for example: 10%, 15%, 20%). If the sperm 

that does not move > 50% then further examination is 

required to determine the viability of sperm (the number of 

living sperm) because even immobile spermatozoa may still 

be alive. 

III. EXPERIMENT AND RESULTS 

In this study, the test was performed using several videos 

of human cement recording using different frames per second 

(fps), time of cement liquefaction and magnification at 

microscope during video capture process, divided into 8 

conditions according to WHO (World Health Organization) 

standard [6], as in Table I. Based on Table I, will be presented 

in the form of Average Accuracy Error (%) and Average 

Accuracy of Sperm Abnormalities Determination (%). 

TABLE I.  TEST RESULTS OF SPERM DETECTION AND CALCULATION AND 

THE RESULTS OF THE VALIDATION PROCESS (PRECISION, RECALL, AND F-

MEASURE) 

Explanation of conditions 

Condition 

Sperm 

Recording 

Speed (fps) 

liquefaction 

Sperm 

(minutes) 

Magnification of 

the Microscope 

Lens (x) 

A 30 10 40 

B 30 10 100 

C 50 10 40 

D 50 10 100 

E 30 20 40 

F 30 20 100 

G 50 20 40 

H 50 20 100 

A. Sperm-tracking and Test Result 

Spermatozoa tracking aims to retrieve spermatozoa 

positions in each frame and maps the path through which each 

spermatozoa moves in the video. The spermatozoa tracking 

process consists of the following steps: 

1) Gaussian Smoothing: Gaussian smoothing or Gaussian 

blurring is a 2D convolution operation used to blur an image 

with the aim of eliminating noise. The smoothing process was 

performed by sliding the window (kernel) to all parts of the 

pixel in the image and calculating the value and counting each 

pixel based on the kernel value and the overlapping original 

image pixels. In this study, the kernel used was 13×13. The 

larger the kernel, the more blurred the resulting image will 

look like. Fig. 9 displays the result of Gaussian smoothing. 

 

Fig. 9. Comparison of original frame (a) with Gaussian smoothing result (b) 

2) Background Subtraction: The background subtraction 

process aims to separate the sperms as the foreground in the 

video from other objects (background). The method used was 

Gaussian Mixture Model (GMM). An overview of the 

applicability of this GMM method is that each x pixel data in 

the coordinate (𝑥, 𝑦) in a video frame is modelled into a 

Gaussian distribution calculated based on the input of colour 

vectors R, G, B. One of the frames resulting from background 

subtraction can be seen in Fig. 10(a). 

3) Spermatozoa Localization: Spermatozoa localization is 

the stage to look for areas suspected as spermatozoa. In 
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searching for an area of suspected sperms, the process looks 

for contours. A contour is a condition caused by changes in 

intensity in neighboring pixels. Due to this intensity change, 

the edges of the object on the video can be detected. With 

edge detection, each object in this video can be used to 

distinguish objects with different colours. The differences of 

colour obtained were used to identify objects that were 

considered as sperms, denoted by the white area, from objects 

that were recognized as the background, indicated by the 

black area. 

4) Morphological Filtering: In the contour obtained from 

the previous stage, there were still some small white areas 

that were not needed in the tracking process, since these areas 

are not spermatozoa. Small areas resulting from contour 

search were noises detected as movements of the resulting 

background subtraction. This noise should be eliminated by 

applying morphological filtering. To be able to remove 

unwanted objects from suspected spermatozoa, 

morphological filtering was used. The trick is to segment or 

separate the undesirable area from the desired area based on 

the area spread. Morphological filtering was done by 

assigning a boundary value between sperm and noise. An area 

whose value is below the threshold value was considered to 

be noise and was removed, whereas an area whose size is 

greater than or equal to the threshold value was skipped or 

not removed. The results of this stage can be seen in Fig. 

10(b). 

5) Gap Filling: Gap Filling was performed to unify objects 

that are located adjacently or in one area using the closing 

process. Closing is an image morphology operation 

performed through dilation followed by erosion. Dilation is a 

morphological operation to make the image size thicker, 

while erosion is done to make the image size thinner. The 

purpose of this closing process is to connect the disconnected 

objects and close the small holes in the objects. This is done 

so that during tracking, the accurate number of sperm cells 

would be obtained. An illustration of gap filling results can 

be seen in Fig. 10(c). 

 

Fig. 10. Comparison of original frame the results of (a) background 

subtraction, (b) morphological filtering, (c) gap filling 

6) Finding and Storing Detected Sperm Positions: Based 

on areas that have been found as sperm suspects, the position 

of each of these areas was found in coordinates (𝑥, 𝑦). This 

was performed using moment. 

B. Path Generation Test Result 

The path generation for each spermatozoa detected in the 

video was conducted in two stages, namely smoothing the 

path through which each spermatozoa was detected and 

drawing the path of each detected spermatozoa. The path-

smoothing step was performed to get easily observable path 

image results. If not smoothed, the image results of the 

generated path would look coarse and contorted. The way to 

smooth the path line is by using the 1-dimensional mean 

smoothing method. Mean smoothing refines the line by 

finding the average of the dotted values stored in the text le 

of previous stages. After the path of movement was 

smoothed, then the path through which each spermatozoa was 

detected in the video was drawn based on the mean 

smoothing points. The line was made from points based on 𝑥 

and 𝑦 coordinates in the mean smoothing result. An 

illustration of line drawing results can be seen in Fig. 11(b), 

while Fig. 11(a). is the result of the path generation without 

smoothing. 

 

Fig. 11. Determination of sperm motility possibility based on distance and 

gradient (a) Distance calculation, (b) Gradient calculation 

C. Abnormality Determinations Test Result 

The accuracy value of path determination is calculated 

based on the number of paths correctly tracked by the actual 

path or the number of paths calculated manually. Here is the 

formula for finding tracking accuracy in percent (%): 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 − 𝑒𝑟𝑟𝑜𝑟) × 100  (11) 

Where: 

𝑒𝑟𝑟𝑜𝑟 =  
(𝑡𝑟𝑢𝑒𝑣𝑎𝑙𝑢𝑒−𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑣𝑎𝑙𝑢𝑒)

(𝑡𝑟𝑢𝑒𝑣𝑎𝑙𝑢𝑒)
  (12) 

The accuracy value of determining the abnormality here 

is the level of truth of the system in identifying the normal or 

abnormal path. The value is calculated based on values of 

True Positive (TP) indicating the correct path identified as the 

normal path, True Negative (TN) indicating the correct path 

identified as an abnormal path, False Positive (FP) indicating 

the wrong path identified as the normal path, and False 

Negative (TN) indicating the wrong path identified as an 

abnormal path. The equations for determining the accuracy 

rates are as defined by equation (13) [89]. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑡𝑟𝑢𝑒𝑣𝑎𝑙𝑢𝑒−𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔𝑣𝑎𝑙𝑢𝑒)

(𝑡𝑟𝑢𝑒𝑣𝑎𝑙𝑢𝑒)
  (13) 

Where P = TP + FN and N = FN + TN. 
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The following are the results of the tests in this study, 

which can be seen in Table II and Fig. 12. Table II is an 

example of traceability and determination of abnormalities 

for condition G and Fig. 12 is the result of average tracking 

accuracy and average results of determination of sperm 

motility abnormalities for all conditions. 

Video analysis at condition A involves Video with 

recording speed 30 fps, sperm liquefaction time 10 minutes 

and magnification of 40x lens microscope. Test result of 

average tracking and determination of abnormalities of 

spermatozoa movement on 6 input videos at condition A, 

shows the tracking result accuracy of 78.2% and the average 

result of the determination of sperm abnormality is 74.6%. 

For video analysis on conditions B, C, D, E, F and H, with 

the conditions of each (according to Table I), for the average 

accuracy of the results of tracking and the average result of 

accuracy determination of sperm motility abnormalities can 

be seen on Fig. 12. 

TABLE II.  RESULTS OF TRACKING AND DETERMINATION OF SPERMA 

MOTILITY ABNORMALITIES FOR 6 VIDEO INPUTS ON CONDITION G 

Sperm 

Video 

Track Result 

Tracked Expert Validation Error (%) Accuracy (%) 

1 76 85 10.6 89.4 

2 56 64 12.5 87.5 

3 32 36 11.1 88.9 

4 26 29 10.3 89.7 

5 89 98 9.2 90.8 

6 64 71 9.9 90.1 

average tracking accuracy 89.4 

 

Sperm 
Video 

Determination of abnormality 

TP FP TN FN Accuracy (%) 

1 76 2 1 4 90.6 

2 56 1 2 3 90.6 

3 32 4 1 3 84.6 

4 26 2 1 3 81.8 

5 89 2 2 4 91.9 

6 64 1 1 5 86.7 

average accuracy of sperm determination 

abnormalities 
87.7 

 

Video Analysis at G condition involves Video with 

recording speed 50 fps, sperm liquefaction time 20 minutes 

and magnification of 40x microscope lens. The result of the 

average tracking and determination of sperm motility 

abnormality is 89% and 87,7%, as per Table II. 

 
Fig. 12. Graph of test result accuracy of average and test results Average 

accuracy of determination of sperm motility abnormalities for 6 video input 

in all conditions 

In the tracking test, there are 2 videos with precision over 

90% accuracy value, i.e. on video 5 and video 6. In both the 

videos there are 98 moving spermatozoa and 89 tracked by 

using matching based algorithm. Tracking results on the other 

4 videos also gave pretty good results. The most significant 

error occurred in video 1, amounting to 89.4%. In video 1 of 

85 existing spermatozoa, there were nine spermatozoa that 

failed to trace. This means 76 other spermatozoa successfully 

traced. The average tracking result in 6 videos is quite good 

that is equal to 89.4%. For the results of the path 

determination in 6 input videos can be seen in Table II and 

the graph can be seen in Fig. 12. 

From the results of the determination of sperm motility 

abnormalities in Table II, it appears that the program runs 

quite well in determining the abnormalities of the path on 6 

videos. In Table II and graphs in Fig. 12, it is seen that the 

number of TP values has a high enough value. This shows 

that tracking that generates many normal paths is true if 

applied to a video under condition G. Although there are 

some errors in determining the normal path, the value is not 

so great. Another thing that shows this is the average value of 

great accuracy seen in Table II, which is 87.7%, although 

there is still an error in determining the abnormal paths seen 

at the FN value or the wrongly identified abnormal path 

value, the greatest value being 5 TN values or true abnormal 

path values are also identified only However, the average 

accuracy of tracking results is still relatively good, as there 

are not many abnormal paths in 6 input videos. 

D. Comparison with Other Methods 

In addition to program testing with input of some types of 

videos, the test is also done by comparing with commonly 

used tracking methods. The method used as a comparison in 

this study is Kernelized Correlation Filters (KCF) [90][91], 

which is one of the existing tracking methods in the OpenCV 

library. KCF is an extension of the existing tracking methods 

of Boosting and Multiple Instance Learning (MIL). 

Kernelized Correlation Filters refer to the presence of 

overlapping regions when using MIL trackers, the 

overlapping data indicates that the resulting data matrix is 

circulant, and the matrix can be diagonalized by Discrete 

Fourier Transform to reduce storage and computation. KFC 

uses a linear regression equation that is equivalent to the 

correlation filter used in some other trackers that have good 

speed. However, the regression kernel used is not like other 

kernel algorithms that have exactly the same complexity as 

the linear one. This makes tracking with KCF faster and more 

accurate at the same time [92][93]. 

Comparative testing with KCF method is observed from 

the results of tracking the number of spermatozoa in 10 input 

videos. The comparison is made to evaluate the performance 

of algorithms by contrasting the result of Matching Based 

(MB), the result of Kernelized Correlation Filters (KCF), and 

the manual calculation result (Fig. 12). In addition, Fig. 13 

shows the execution durations for the tracking process with 

MB, KCF, and the duration of the input video. The result of 

the comparison with KCF method is depicted in Fig. 12 and 

Fig. 13. 

From Fig. 13 and Fig. 14, it can be seen that the number 

of spermatozoa tracked by the results of the macthing-based 

algorithm is closer to the manual tracking results, compared 

to those of the KCF method. Likewise for the duration of 
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program execution. The duration of tracking with macthing-

based algorithm is much faster, even almost equal to the 

actual duration of the video, when compared to the KCF 

method. 

 

Fig. 13. Results of comparison of macthing based (MB) algorithm tracing 

with Kernelized Correlation Filters (KCF) 

 

Fig. 14. Results of comparison of macthing based (MB) algorithm tracing 

with Kernelized Correlation Filters (KCF) 

IV. CONCLUSION 

In this research, a series of procedures have been 

implemented to track and determine abnormalities in 

spermatozoa cell movement based on a matching-based 

algorithm, creating a complete integrated system from data 

recording to analysis. Tracking and determining 

abnormalities in sperm motion based on matching-based 

algorithms are applied to several types of videos with 

differences in frames per second and some videos with 

variations in liquefaction time and microscope lens 

magnification. 

From the results of the tracking test and the determination 

of sperm motility abnormalities under 8 different video 

conditions, video condition G with recording speed of 50 fps, 

liquefaction time of 20 minutes, and magnification of a 40x 

microscope lens, demonstrated the highest average accuracy. 

The highest tracking accuracy was 77.3%, and the average 

accuracy for determining sperm motility abnormalities was 

87.7%, compared to other video conditions. The lowest 

accuracy recorded was 77.3%, with the smallest average 

accuracy for sperm motility abnormalities determination at 

73.5%. 

Comparing the tracking results and execution speed, 

Gaussian Mixture Model and matching-based algorithms 

outperformed the Kernelized Correlation Filters method. 

However, there are errors in tracking spermatozoa using 

Gaussian Mixture Model and matching-based algorithms 

which are attributed to several factors, such as low video 

quality, making it difficult to distinguish objects considered 

as spermatozoa from the video background. This results in 

some spermatozoa going untracked due to their shape or 

colour resembling the background. 

This research only utilized pre-processing in the form of 

image enhancement with Gaussian blurring. For subsequent 

development, additional pre-processing steps can be 

considered to reduce noise in input videos. These pre-

processing steps could incorporate video brightness 

adjustment or histogram equalization before background 

subtraction. The Gaussian Mixture Model and matching-

based algorithms applied in this research are not yet optimal, 

with some factors remaining unresolved or causing errors in 

tracking and determining motion abnormalities. Future 

studies may explore alternative methods or optimize the 

matching-based algorithm to address these factors and 

improve the accuracy of tracking and determining 

abnormalities in motion.  
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