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Abstract—Functional electrical stimulation (FES) is a 

medical device that delivers electrical pulses to the muscle, 

allowing patients with spinal cord injuries to perform activities 

such as walking, cycling, and grasping. It is critical for the FES 

to generate stimuli with the appropriate controller so that the 

desired movements can be precisely tracked. By considering the 

repetitive nature of the movements, the learning-based control 

algorithms are utilized for regulating the FES. Iterative learning 

control (ILC) and repetitive control (RC) are two learning 

algorithms that can be used to accomplish accurate repetitive 

motions. This study investigates a variety of ILC and RC designs 

with distinct learning functions; this constitutes our 

contribution to the field. The FES model of ankle angle, which 

is in a class of discrete-time linear systems is considered in this 

study. Two learning functions, i.e., proportional, and zero-phase 

learning functions, are simulated for the second-order FES 

model running at a sampling time of 0.1 s. The results indicate 

the superior performance of the ILC and RC in terms of 

convergence rate using the zero-phase learning function. ILC 

and RC with a zero-phase learning function can reach a zero 

root-mean-square error in two iterations if the model of the 

plant is correct. This is faster than proportional-based ILC and 

RC, which takes about 40 iterations. This indicates that the zero-

phase learning function requires two iterations to ensure that 

the patient's ankle angle precisely tracks the intended 

trajectory. However, the tracking performance is degraded for 

both control methods, especially when the model is subject to 

uncertainties. This specific problem can lead to future research 

directions. 

Keywords—Perfect Tracking; Repetitive Control; Iterative 

Learning Control; Learning Function; Functional Electrical 

Simulation. 

I. INTRODUCTION 

Tracking control problems have been found in many 

biomedical applications such as wearable lower-limb system 

[1], [2], magnetoactive soft continuum robots (MSCRs) [3], 
pneumatic artificial muscles [4], [5], [6], [7], mimic the intact 

human knee profile [8], simple magnetically actuated pivot 

walker [9]. Similarly, tracking control problems also 

appeared on robotic arm [10], multi-input multi-output 

(MIMO) drug infusion [11], grasping ability hands robot 

[12], leg hydraulic drive system (LHDS) [13], pneumatic soft 

robotic actuator [14], and functional electrical stimulation 

(FES) [15], [16]. Recently, tracking control of FES has 

gained much attention due to its benefits and challenges for 

regulating the movements of people with Spinal Cord Injury 

(SCI). SCI commonly happens because of the neural tissue 

defects that make partial or complete loss of sensory 

functions. Here, FES was generally used for helping people 

with SCI in order to improve their motor functions. 

Therefore, FES can assist people with SCI to do daily 

movements such as walking, standing, grasping, and cycling, 

which are iterative in nature. In principle, FES sends 

electrical pulses to the muscles. These electrical pulses 

trigger muscle contractions that exert a torque about the 

joints. The intensity, period and frequency of stimulation 

provided to the muscles can be modulated to control the joint 

angle. In simple terms, the joint angle (i.e. plant output) can 

be controlled by manipulating one of the following FES 

variables: (a) pulse width, (b) pulse amplitude, or (c) 

stimulation frequency to achieve accurate iterative motions. 

FES can be controlled using one of two general control 

structures: open-loop or closed-loop. Open-loop FES 

becomes a common system that uses a feedforward 

mechanism, which has a disadvantage. Continuous user input 

is compulsory for this open-loop FES; therefore, the user 

must maintain complete focus while operating the FES 

device [15].  

In vice versa, a closed-loop FES system uses a feedback 

mechanism to correct the actual joint angle. Thus, a closed-

loop demands less user interaction compared to the open-loop 

FES system. Some research works related on the design of 

closed-loop FES systems can be found in [17]–[23]. A 

distributed cooperative control utilizing an adaptive higher-

order sliding mode (AHOSM) control method was developed 

in [17] to simultaneously control of torque and cadence 

during FES-cycling. A closed-loop FES controller for 

compensating time-varying, nonlinear, uncertain dynamics 

and the unknown time-varying muscle delay 

(electromechanical delay) was proposed [18]. The work [19] 
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developed a closed-loop FES-based control solution for gait 

rehabilitation based on a finite state machine (FSM) model. 

A control strategy combining  robust sliding-mode and 

adaptive admittance control schemes was designed for 

controlling the rider's muscles and the cycle's motor in order 

to maintain comfort and safety [20]. The work [21] developed 

a Lyapunov-based velocity tracking control of recumbent 

trike with FES. A model predictive control for tracking 

human limb angle with FES and an electric motor assist was 

investigated in [22]. To reduce the amount of required control 

signal, the authors [23] employed an integral concurrent 

learning (ICL) controller during motorized and FES-induced 

biceps curls. The work [24] designed a bilateral control 

technique of shoulder and elbow joints using FES between 

human and 3 DoF robot. 

The above closed-loop FES systems can be classified as 

non-predictive control systems. The above-mentioned non-

predictive control systems such as sliding mode control 

(SMC) and adaptive control can be classified as robust 

control approaches aiming to handle model uncertainties and 

to compensate for some disturbances. Based on the studies in 

[25]–[29], the performances of such as SMC and adaptive 

control-based schemes are inferior for tracking/rejection 

periodic signal compared to predictive-based control 

methods. This is due to the above controlled systems do not 

have capability to learn from the previous error and use it to 

refine the current control signal. Another possible control 

approach that can be used for the above purpose (e.g., 

swinging the ankle repeatedly) is learning control algorithms. 

Learning control is a control strategy capable of learning 

from the previous error to refine the current control signal to 

improve the controlled system's performance. In this case, 

learning control is relevant and advantageous for achieving 

high accuracy tracking for the systems doing repetitive 

motions. The learning algorithm here refers to two control 

schemes: Iterative Learning Control (ILC) and Repetitive 

Control (RC). Both ILC and RC have been used in many 

industrial applications due to their performance to achieve 

high accuracy tracking. 

This article evaluates the tracking capabilities of ILC and 

RC, which are both employed to regulate FES for stimulating 

ankle joint to follow iterative trajectory. Multiple ILC and RC 

controller designs are simulated for the FES model of ankle 

angle, which is in the class of discrete-time linear systems. 

The tracking performance of the presented control techniques 

are analyzed and discussed. The contributions of this work 

are then listed as follows: 

● The tracking performance of both ILC and RC is assessed 

for controlling FES. This is important since FES has 

repetitive behavior, while ILC and RC are known to work 

best for systems doing repetitive motions. 

● Two distinct learning functions, namely, proportional, 

and zero-phase learning functions are examined for both 

ILC and RC closed-loop systems to show the 

convergence rate for reaching a zero-tracking error. 

● Additionally, the tracking performance of ILC and RC is 

also assessed in the case that the FES system is subject to 

model inaccuracies. 

The rest of this work is organized as follows: Section 2 

discusses the Method covering FES model, problem 

formulation, ILC and RC designs. Problem formulation is 

necessary to emphasize the class of plant model and some 

assumptions used throughout this research work. Section 3 

presents the simulation results and discussion, and Section 4 

concludes this work. 

II. METHOD 

A. FES Model and Control Variables 

In this study, FES is an object to be controlled. FES is a 

device that uses electrodes attached to the skin to transmit a 

series of electrical pulses to neurons. Because of receiving 

electrical pulses, muscle contractions are generated. The 

stimulation pulse is a biphasic square-wave pulse train with a 

frequency of 20 −  40 Hz, an amplitude of 0 −  120 mA, 

and a pulse duration of 0 −  300 µs [15]. The use of this 

biphasic waveform makes the induced charge transferred into 

the tissue, will be immediately transferred out of the tissue. 

FES system can produce titanic contractions by stimulating 

the motor at a frequency 20 − 40 Hz. The intensity and 

frequency of electrical stimulation affect the tension 

produced in electrically activated muscle. Thus, the joint 

angle or torque can be controlled by varying one of the 

following variables: (a) pulse amplitude, (b) pulse duration, 

or (c) stimulation frequency.  

Let consider a discrete-time linear time invariant (LTI) 

system representing the FES model as follows:  

𝑦(𝑘) = 𝑃(𝑧)𝑢(𝑘), (1) 

where 𝑢(𝑘) ∈ ℝ is a control input (pulse width), 𝑦(𝑘) ∈ ℝ is 

a plant output (ankle joint angle), and 𝑃(𝑧) is a plant (FES) 

model. 

The plant model 𝑃(𝑧) is formulated by: 

𝑃(𝑧) = 𝑧−𝑚
𝑏0 + 𝑏1𝑧

−1 + ⋯+ 𝑏𝑝−𝑚𝑧−𝑝+𝑚

1 + 𝑎0𝑧−1 + ⋯+ 𝑎𝑝𝑧−𝑝
, (2) 

where 𝑝 and 𝑚 are an order and the relative degree of the 

plant respectively, 𝑏0, 𝑏1, ⋯ , 𝑏𝑝−𝑚 are plant numerator’s 

coefficients, 𝑎0, 𝑎1, ⋯ , 𝑎𝑝 are plant denominator’s 

coefficients.  

The plant model (2) is assumed to be a stable minimum 

phase plant with an order 𝑝 and relative degree 𝑚. The LTI 

system (1) has an equivalent state-space form as follows: 

𝑥(𝑘 + 1)  =  𝐴𝑥(𝑘) +  𝐵𝑢(𝑘) 

𝑦(𝑘) = Cx(𝑘), 
(3) 

where x(𝑘) ∈ ℝ𝑝 is a discrete-time state vector, A is 𝑝 × 𝑝 

system matrix, B is 𝑝 ×  1 input matrix, and C is 1 ×  𝑝 

output matrix. The matrices A, B, and C are constructed 

based on the coefficients in (2), and given as (4). 
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A = [

−𝑎0 −𝑎1 ⋯ −𝑎𝑝

1 0 0 0
0 1 0 0
0 0 1 0

],B = [

1
0
0
0

] , C = [

𝑏0

⋮
𝑏𝑝−𝑚

0

]

𝑇

  (4) 

Consider that the trajectory to be tracked or the reference 

𝑦𝑅(𝑘), is a repetitive signal with known period 𝑇𝑟, and 

assume that the plant model (2) is accurately known, then our 

control objective is to generate control input 𝑢(𝑘) in (1) such 

that the plant output 𝑦(𝑘) perfectly follow the reference 

𝑦𝑅(𝑘), and such that the tracking error 𝑒(𝑘), 𝑒(𝑘) = 𝑦𝑅(𝑘) −
𝑦(𝑘), asymptotically converges to zero. To achieve the above 

objective, we consider two control approaches, namely 

Iterative Learning Control (ILC) and Repetitive Control (RC) 

designs as detailed in next subsections. 

B. ILC Design 

Iterative Learning Control (ILC) is a widely recognized 

control approach that is commonly used for systems that 

perform similar tasks repeatedly. An ILC algorithm was 

introduced by Arimoto [30], and it was used for controlling 

robots doing repetitive movements. ILC has been applied in 

many control applications such as high-speed trains [31]–

[33], hydraulic cushion [34], walking piezo actuators (WPA) 

[35], fault estimation (FE) [36], twin-roll strip casting [37], 

crane system [38], electron linear accelerator [39], tank gun 

control system [40], monocrystalline batch process [41],  

nano-positioning stage [42], fractional-order multi-agent 

systems (FOMASs) [43], robotic manipulator [44], [45], [46], 

robotic path learning [47], magnetically levitated (maglev) 

planar motor [48], model uncertainties [49], autonomous 

farming vehicle [50], unmanned vehicle [51], additive 

manufacturing system [52], and marine hydrokinetic energy 

system [53]. A general ILC system has an architecture as 

shown in Fig. 1. An ILC is based on the idea that by learning 

from past iterations, the performance of a system that 

performs the same task several times can be improved. Note 

that the previous iteration values of both the tracking error 𝑒𝑗 

and control signal 𝑢𝑗 are stored in memory. 

The ILC runs by producing and executing the control 

input per iteration (also known as 

trial/batch/repetition/period), where each iteration consists of 

a finite number of samples (sequences). Let assume that each 

iteration is uniform having fixed period of  𝑇𝑟 . Then, the 

number of sequences 𝑁 is also constant given by 𝑁 = 𝑇𝑟 𝑇⁄ , 

where 𝑇 is sampling period. Consider we have 𝑁 − 

sequences per iteration, then we can write control input 𝑢(𝑘), 

 

 Fig. 1. A generic discrete-time ILC system architecture 

plant output 𝑦(𝑘), and the reference signal 𝑦𝑅(𝑘) of the ILC 

system as follow: 

𝑈𝑗 = [𝑢𝑗(0), 𝑢𝑗(1),⋯ , 𝑢𝑗(𝑁 − 1)]
𝑇
, 𝑈𝑗 ∈ ℝ𝑁 (5) 

𝑌𝑗 = [𝑦𝑗(𝑚), 𝑦𝑗(1),⋯ , 𝑦𝑗(𝑁 − 1 + 𝑚)]
𝑇
, 𝑌𝑗 ∈ ℝ𝑁 (6) 

𝑌𝑅𝑗 = [𝑦𝑟𝑗(𝑚), 𝑦𝑟𝑗(1),⋯ , 𝑦𝑟𝑗(𝑁 − 1 + 𝑚)]
𝑇
, 𝑌𝑅𝑗

∈ ℝ𝑁 
(7) 

where {0,1,2,3,⋯ ,𝑁 − 1} are step indices for control input, 

{𝑚,𝑚 + 1,⋯ ,𝑁 + 𝑚} step indices for both plant output and 

reference signal, and 𝑗 = 1,2,3,⋯ ,∞ is the iteration number. 

A general iterative learning control law combines the 

previous iteration values of both 𝑈𝑗 and 𝐸𝑗. The control law 

of ILC is shown below 

𝑈𝑗 = 𝑈𝑗−1 + 𝐿𝐸𝑗−1, (8) 

where 𝑈𝑗  is control signal sequences at current iteration 𝑗, 

𝑈𝑗−1 is control signal sequences at previous iteration 𝑗 − 1, 𝐿 

is the learning matrix, and 𝐸𝑗−1is tracking error sequences at 

previous iteration 𝑗 − 1. The tracking error 𝐸𝑗−1 is 

formulated as follows: 

𝐸𝑗−1 = 𝑌𝑅 − 𝑌𝑗−1. (9) 

Given the control law (8), the plant output sequences at 

iteration j is obtained from 

𝑌𝑗 = 𝐻𝑈𝑗, (10) 

where 𝐻 is matrix of rank 𝑁 whose elements are Markov 

parameters of the plant model (2). 

𝐻 = [

ℎ𝑚 0 0 0
ℎ𝑚−1 ℎ𝑚 0 0

⋮ ⋯ ℎ𝑚 0
ℎ𝑚+𝑁−1 ⋯ ℎ𝑚+1 ℎ𝑚

]. (11) 

 For a given state-space (3), the Markov parameter ℎ𝑚 can 

be obtained from 

ℎ𝑚 = CA𝑚−1B, (12) 

where matrices A, B, C state-space matrices given in (4) and 

assumed to be known. Here, a scalar 𝑚 represents the relative 

degree of plant and is given in (2). Hence, ILC system runs 

by generating control signal sequences 𝑈𝑗  (8), then feeding 𝑈𝑗 

to the plant model (2) to obtain the output sequences 𝑌𝑗 (10). 

 The variable 𝐿 in (8) is learning matrix originated from 

learning function 𝐿(𝑧). The ILC design can be seen as the 

selection of the learning function 𝐿(𝑧), where 𝐿(𝑧) is given 

by the following impulse response (13). 
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𝐿(𝑧) = ⋯+ 𝑙−1𝑧
1 + 𝑙0 + 𝑙−1𝑧

−1 + ⋯ (13) 

 The learning matrix 𝐿 can be constructed based on (13) to 

form a Toeplitz matrix as follows: 

𝐿 =

[
 
 
 
 

𝑙0 𝑙−1 ⋯ 𝑙−(𝑁−1)

𝑙1 𝑙0 ⋯ 𝑙−(𝑁−2)

⋮ 𝑙1 ⋱ ⋮
𝑙−(𝑁−1) ⋯ 𝑙1 𝑙0 ]

 
 
 
 

. (14) 

 The choice of the 𝐿 matrix can be thought of as the ILC 

design problem. Learning matrix 𝐿 in (14) can be designed in 

several forms e.g. [54]: 

1. The matrix 𝐿 forms a diagonal matrix, which is 

called as Type A learning function. This learning function is 

also referred to proportional learning function that is equated 

by: 

𝐿𝑝 = [

𝛾 0 0 0
0 𝛾 0 0
⋮ 0 ⋱ 0
0 … 0 𝛾

] , 𝐿𝑝 ∈ ℝ𝑁×𝑁 , (15) 

where 𝛾 corresponds to the proportional learning gain. This 

learning function may be regarded as the most basic design 

in ILC due to the fact that it solely selects the proportional 

gain 𝛾 without necessitating the utilization of the plant model. 

2. The matrix 𝐿 forms a symmetrical band diagonal 

matrix, which is later named as Type B learning function.  

This learning function is then denoted as a zero-phase 

learning function, and formulated by: 

𝐿𝑧𝑝 =

[
 
 
 
 
 
 
1 𝑏𝑚⁄ 0 0 0 ⋯ 0

𝑎0 𝑏𝑚⁄ 1 𝑏𝑚⁄ 0 0 ⋯ 0

⋮ 𝑎0 𝑏𝑚⁄ 1 𝑏𝑚⁄ 0 0 ⋮

𝑎𝑝 𝑏𝑚⁄ ⋮ ⋱ ⋱ ⋱ 0

0 ⋱ ⋮ 𝑎0 𝑏𝑚⁄ 1 𝑏𝑚⁄ 0

0 0 𝑎𝑝 𝑏𝑚⁄ ⋯ 𝑎0 𝑏𝑚⁄ 1 𝑏𝑚⁄ ]
 
 
 
 
 
 

,  (16) 

𝑚 < 𝑁, 𝐿𝑧𝑝 ∈ ℝ𝑁×𝑁  

 The learning matrix 𝐿 must be chosen carefully when 

designing an ILC control system. The learning matrix 𝐿 

determines the boundedness of the input and output signals. 

It also determines the tracking error's transient response and 

the convergence rate.  An ILC system with control law (8) is 

asymptotically stable if only if [55].  

𝜌(𝐼 − 𝐿𝐻) < 1 (17) 

where 𝐼 is identity matrix, and 𝜌(𝐼 − 𝐿𝐻)is the spectral radius 

of matrix (𝐼 − 𝐿𝐻), which is equivalent to 

𝜌(𝐼 − 𝐿𝐻) = 𝑚𝑎𝑥 {|𝜆1|, |𝜆2|, ⋯ , |𝜆𝑁|} . (18) 

Note that 𝐿 is equivalent to 𝐿𝑝 and 𝐿𝑧𝑝 depend on which 

learning function is used. The notation 𝜆 refers to the 

eigenvalue of matrix (𝐼 − 𝐿𝐻). The nature of ILC design is 

choosing 𝐿 which minimizes (19). ILC design problem is 

generally about the selection of learning matrix 𝐿 such the 

condition (13) is satisfied, and such that a faster convergence 

rate and zero-tracking error are achievable. Here, root-mean-

square error (RMSE) is utilized to assess the tracking 

accuracy performance.  The RMSE is formulated by 

𝑅𝑀𝑆𝐸𝑗 = √1

𝑁
∑ (𝑦𝑟𝑗(𝑘) − 𝑦𝑗(𝑘))

2

,𝑁
𝑘=1   (19) 

where 𝑅𝑀𝑆𝐸𝑗 corresponds to the root mean-squared error at 

iteration 𝑗. The root mean-squared error (RMSE) is used in 

the evaluation because it offers an error measure in the same 

unit as the objective variable, which facilitates easy 

comparisons and interpretations. Furthermore, larger errors 

are penalized significantly by RMSE compared to mean-

squared error (MSE). 

In the next subsection, we present other learning-based 

control algorithms regarded as RC. The command to be 

executed in the RC system is a periodic function of time, and 

the system does not return to its initial state. Changes in 

control actions made near the completion of one period can 

influence the error at the beginning of the following period, 

and transients on RC can spread to the next repetition. As a 

result, the real stability boundary of ILC and RC differs 

significantly. 

C. RC Design 

 Another control method for perfect tracking of repetitive 

trajectory is called Repetitive Control (RC). Recently, RC has 

been used for leg exoskeleton control [56], 1-DOF 

Lagrangian system [57], industrial wide-format printing [58], 

contouring control of micro-stereolithography [59], 

magnetically suspended rotor system [60], [61], [62], control 

of linear actuator [63], functional electrical stimulation [64], 

[65], grid-connected inverters [66], [67], [68], [69], [70], 

nanometer-order contouring [71], dynamical galvanometer-

based raster scanning [72], atomic force microscopy (AFM) 

scanner [73], mechanical ventilation [74], permanent magnet 

synchronous motor (PMSM) [75]–[77], servo motor [78], 

plug-in electric vehicle (PEV) charger [79], piezoelectric 

nano positioning stage [80], hydraulic press system [81], 

robotic manipulator [82], [83], and electric spring [84]. The 

RC is based on the idea of internal model principle by Francis 

and Wonham [85] stated that by incorporating model of 

reference/disturbance then perfect reference tracking or 

disturbance rejection can be achieved. The general RC 

system has a structure as shown in Fig. 2. 

 RC uses N-steps time-delay with positive feedback. 

Learning function 𝐿(𝑧) is also employed as part of RC 

system. This learning function behaves as compensator 

which determines the system stability, transient behavior, and 

convergence rate of the tracking error. 

 

 Fig. 2. A generic discrete-time RC system architecture 
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 The general RC shown in Fig. 2 has the following transfer 

function: 

U(z)

𝐸(𝑧)
=

z−N

1 − z−N
𝐿(𝑧), (20) 

where 𝑁 = 𝑇𝑟/𝑇 ∈ ℕ, 𝑁 being the number of samples per 

iteration, 𝑇𝑟 being the length of iteration (e.g., period of the 

reference signal), 𝑇 being the sampling period, and 𝑁 is an 

integer value. Note that we also assume that 𝑁 is also fixed 

per iteration, meaning that the length of iteration 𝑇𝑟 is also 

constant. This becomes a basic assumption in the design of 

RC. 

 Equation (20) can be rewritten to RC control law as 

follows: 

𝑈(𝑘) = 𝑢(𝑘 − 𝑁) + 𝐿(𝑧)𝑒(𝑘 − 𝑁). (21) 

 We can notice that RC control law has a similar structure 

to ILCs where they require past values of both control signal 

and tracking error. The differences are that RC is executed 

per sample and the system initial conditions are not reset-ed 

when the next iteration is started. 

 RC system with control law (21) and plant model (2) is 

asymptotically stable, if the following conditions are fulfilled 

[86],[87]: 

1. The plant model (2) is stable. 

2. The learning function 𝐿(𝑧) satisfies 

‖1 − 𝐿(𝑧)𝑃(𝑧)‖∞ < 1, (22) 

where notation ‖. ‖∞ refers to the infinity norm. 

Note that in the presence of model uncertainties ∆(𝑧), which 

is bounded by ‖∆(𝑧)‖∞ < 𝛿, then 𝐿(𝑧) is required to meet:  

  ‖1 − 𝐿(𝑧)𝑃(𝑧)[1 + ∆(𝑧)]‖∞ < 1, (23) 

which is also equivalent to  

|1 − 𝐿(𝑧)𝑃(𝑧)[1 + ∆(𝑧)]| < 1, ∀ z = 𝑒𝑗𝜔. (24) 

Here, the notation |𝑋(𝑧)| denotes the magnitude of the 

transfer function 𝑋(𝑧) at 0 < 𝜔 < 𝜋
𝑇⁄ . The model 

uncertainties ∆(𝑧) makes the left-hand side of (23) and (24) 

becoming larger implying that the asymptotic convergence 

can be slower but remains stable and bounded as long as the 

value is smaller than 1. 

 Therefore, the RC design challenge can also be viewed as 

the selection of 𝐿(𝑧). The learning function 𝐿(𝑧) determines 

the RC system's transient response and the stability of the 

closed-loop system. A popular zero-phase learning function 

has been proposed in [87]. For stable minimum phase plant, 

the learning function is simply the inverse of 𝑃(𝑧) in (2), 

𝐿(𝑧)  =  1/𝑃(𝑧), as its inverse will have stable poles. Some 

other learning function designs can also be found in [86], 

[88]. Phase lead-based learning function has been proposed 

in [88]. Meanwhile, the work [86] introduces IIR filter-based 

learning functions. The design of learning function 𝐿(𝑧) 

depends on several factors such as (a) the accurate plant 

model is known or not, (b) the plant model is minimum or 

non-minimum phase, (c) the input delay and relative degree 

of plant model.  

 In this work, two types of learning functions offering less 

design complexities are considered, namely: proportional 

learning function 𝐿𝑝(𝑧) and zero-phase learning function 

𝐿𝑧𝑝(𝑧). The learning function 𝐿𝑝(𝑧) formulated by 

𝐿(𝑧) = 𝛾𝑧𝑚, (25) 

where 𝛾 is a proportional gain and 𝑚 is a relative degree of 

plant model given in (2). This learning function can be 

considered a straightforward design in the RC-controlled 

system. This is the case because the method only chooses the 

proportional gain 𝛾 and integer 𝑚, disregarding detail 

knowledge regarding the plant model. It is important to note 

that the gain 𝛾 can be adjusted to allow for a faster 

convergence rate of the tracking error. However, in order to 

maintain stability, the left-hand side value of (22) must 

remain less than one, as specified by the stability condition 

(22). 

This study also employs the zero-phase learning function, 

in addition to the proportional-based learning function. The 

zero-phase learning function 𝐿𝑧𝑝(𝑧) has the following 

expression: 

𝐿𝑧𝑝(𝑧) = 𝑃−1(𝑧), (26) 

where  𝑃−1(𝑧) denotes the inverse model of (2). The term 

zero-phase implies that 𝐿𝑧𝑝(𝑧) offers perfect phase 

compensation to the plant model 𝑃(𝑧). Thus,  

𝜃[𝐿𝑧𝑝(𝑧)𝑃(𝑧)](𝜔) = 0, 0 < 𝜔 < 𝜋
𝑇⁄ , (27) 

where 𝜃[𝐿𝑧𝑝(𝑧)𝑃(𝑧)](𝜔) corresponds to the phase of transfer 

function [𝐿𝑧𝑝(𝑧)𝑃(𝑧)] at frequency 𝜔.  

In the next section, we provide simulation results of 

learning algorithms applied to Functional Electrical 

Stimulation (FES) based on closed-loop system illustrated in 

Fig. 3. Here, we analyze two distinct varieties of learning 

functions, namely the zero-phase learning function (Type B) 

and the proportional learning function (Type A), using the 

simulation results. In light of the practical implementations, 

the computational complexities associated with the control 

algorithms should not be an issue. This can be explained by 

Fig. 1 and Fig. 2, which show that ILC and RC are basically 

delayed-based control schemes. One-period delay/memory is 

utilized in the implementation of both ILC and RC, which is 

still practical in real-time implementation. 

 

 Fig. 3. Block diagram of closed-loop FES system with learning algorithms 
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In this work, we focus more on the analysis of the FES 

system comprising tracking accuracy, convergence rate, and 

the performance under model inaccuracies. We also use an 

assumption that measurement disturbances are not involved 

in this study. Then, a summary of the research methodology 

utilized in this study is provided in the flowchart depicted in 

Fig. 4. 

Lastly, it is worth noting that certain investigations with 

alternative control methods, such as PID and SMC, are 

omitted here since they have already been addressed in some 

works [89] and [90]. These comparisons highlight the 

superior performance of ILC and RC algorithms, particularly 

in terms of tracking iterative trajectory. However, given that 

the trajectory is non-periodic, such as a unit step, the 

performance of the ILC/RC is inferior compared to even a 

PID-based controller. 

 

 Fig. 4. A flowchart of the research methodology 

III. RESULTS AND DISCUSSION 

Let the following FES model is used in the simulation 

[91]. 

𝑦(𝑘) =
𝑏2𝑧

−2

1 + 𝑎0𝑧
−1 + 𝑎1𝑧

−2
𝑢(𝑘)  (28) 

where 𝑎0 = −0.8097, 𝑎1 = −0.0777, 𝑏2 = 0.6634. The 

stimulation intensity which is the pulse widths in tenths 

milliseconds becomes the control input 𝑢(𝑘). The plant 

output 𝑦(𝑘) is an ankle joint angle in degrees. Table I is given 

to list the parameters required in the design of ILC and RC 

algorithms. 

 

TABLE I.  LIST OF REQUIRED PARAMETERS 

Parameter Value 

Sampling time (𝑇) 0.02 s 

Period per iteration (𝑇𝑟) 1 s 

Number of samples per iteration (𝑁) 50 

Plant relative degree (𝑚) 2 

Plant parameters 𝑎0, 𝑎1, 𝑏2 (see 28) 

  

In the simulation, the desired trajectory is an ankle joint 

angle as shown in Fig. 5 [91]. It is shown that the desired 

ankle angle ranges from −15𝑜 to +2𝑜 for each iteration. 

Then, we aim to design ILC and RC algorithms such that the 

output 𝑦(𝑘) precisely follow the desired ankle angle.  

 The following subsection then presents the discussion of 

the ILC design setup, the simulation findings and analysis of 

the ILC-controlled FES system. 

 

 Fig. 5. Desired ankle joint angle per iteration 

A. ILC Design Setup, Results, and Analysis 

Based on (4), the state-space model of the given transfer 

function (28) has the following matrices: 

𝐴 = [
0.8097 0.0777

1 0
] , 𝐵 = [

1
0
],    

𝐶 = [0 0.6634], 𝐷 = 0   

(29) 

We begin with simplest design of ILC which is an ILC 

with proportional learning function 𝐿𝑝. The learning function 

𝐿𝑝 will be a diagonal matrix with diagonal values as 𝛾. 

Variable 𝛾 is a gain in which we can adjust its value. 

𝐿𝑝 = [

𝛾 0 ⋯ 0
0 𝛾 0 0
⋮ 0 ⋱ 0
0 ⋯ 0 𝛾

] , 𝐿𝑝 ∈ ℝ50𝑥50  (30) 

Let also choose small 𝛾 to start 𝛾 =  0.1. Applying 

control law (8) to the plant (28), we obtain simulation results 

as shown in Fig. 6 to Fig. 7. The evolution of plant output 

𝑦(𝑘) can be seen in Fig. 6, while the root-means-square errors 

(RMSEs) for different values of 𝛾 can be found in Fig. 7.  

We can see from Fig. 6 that the plant output is zero during 

the first iteration. This is due to zero control signal during the 
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first iteration. Fig. 6 also indicates that the plant output moves 

to follow the reference signal as the iteration increases. 

 

 Fig. 6. ILC tracking output evolution at iteration 𝑗 = 1; 5; 10; 20; 25 

The convergence rate of ILC system with gain 0.1 is very 

slow as indicated in Fig. 7. The RMS error reaches zero after 

about 90 iterations. Fig. 7 also indicates that increasing the 

gain of proportional learning function to a certain degree will 

faster the convergence rate. We simulate that increasing the 

gain larger than 0.3 ends up to unstable system. The unstable 

system means that when we apply 𝛾 > 0.3, the RMSE tends 

to diverge as the iteration increases. This implies that the 

stability condition given in (17) is violated. 

 

 Fig. 7. RMS error evolution of ILC at three different gains 

Now, we examine the performance of ILC system when a 

zero-phase learning matrix 𝐿𝑧𝑝 is employed. The following 

learning matrix is applied: 

𝐿𝑧𝑝 =

[
 
 
 
 

1.50 0 0 ⋯ 0
−1.22 1.50 0 ⋯ 0
−0.11 −1.22 ⋱ 0 ⋮

0 ⋱ ⋱ 1.50 0
0 0 −0.11 −1.22 1.50]

 
 
 
 

, 𝐿𝑧𝑝

∈ ℝ50𝑥50 

(31) 

Note that the above learning matrix is computed based on 

(16). Fig. 8 indicates that the plant output can perfectly follow 

the trajectory after one iteration.  

 

 

 Fig. 8. Plant output evolution of ILC with zero-phase learning function 

This can also be seen from Fig. 9, where the RMSE 

reached zero after one iteration. We can notice the differences 

in performance between ILC system with proportional 

learning function and ILC system with zero phase learning 

function. Now, we test the performance of ILC with zero 

phase learning function when there are model inaccuracies. 

Suppose 10 percent variations vary the plant parameters in 

(28). Then we get 𝑎0 = −0.7287, 𝑎2 = −0.0699, 𝑏2 =
0.5971. 

 

 Fig. 9. ILC RMS error with zero-phase learning function 

The tracking performance of ILC with zero-phase 

learning function under plant parameters variation is shown 

in Fig. 10 and Fig. 11. We notice that an inaccurate model 

results in slower convergence for ILC with zero-phase 

learning function. The slower convergence here means that 

the patient requires more time or longer iterations until his or 

her ankle joint can perfectly follow the desired trajectory. 

The ILC system with proportional learning function has a 

simpler design because it does not require complete plant 

model information. In this type of ILC system, the design 

objective is to select the gain for give faster convergence rate 

while keeping the system stable. According to [92], the gain 

γ should be chosen to satisfy the condition (32). The 

condition (32) shows that the choice of 𝛾 uses the information 

of input and matrices B and C, but it does not require the 

information of system matrix A. 
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 Fig. 10. Tracking performance of ILC under model inaccuracies plant 

output evolution with zero-phase learning function 

 

 Fig. 11. Tracking performance of ILC under model inaccuracies RMS 

error zero-phase learning function 

0 < 𝐶𝐵𝛾 < 2      (32) 

In other words, the design technique does not require all 

of the plant model's information (28). The ILC system with 

zero-phase learning function, on the other hand, necessitates 

an accurate plant model in the design. Furthermore, using an 

inaccurate plant model in the design of an ILC system with a 

zero-phase learning function leads to slower error 

convergence. Following the ILC design and results, the 

subsequent subsection proceeds with the RC design 

configuration and an analysis of the simulation results for the 

FES system that is controlled by the RC. 

B. RC Design Setup, Results, and Analysis 

In this part, we begin by examining the performance of 

RC with proportional lead learning function. The following 

RC control law is applied to the plant (28) 

𝑢(𝑘) = 𝑢(𝑘 − 50) + 𝛾𝑧𝑚𝑒(𝑘 − 50) (33) 

Variable 𝛾 is proportional gain, while 𝑚 is lead step picked 

from the relative degree of the plant (28). The tracking 

performance of RC system with learning function [0.1𝑧2] can 

be seen in Fig. 12 and Fig. 13. Fig. 12 shows the tracking 

output for the first 10 iterations. We notice zero tracking 

output during the first iteration, then the tracking output 

moves to follow the reference as the iteration increases. The 

RC’s RMSE at three different gains can be seen in Fig. 13. 

As we increase the gain from 0.1 to 0.2, the convergence rate 

gets faster, and the RMSE asymptotically decreases. This 

indicates that the tracking output requires fewer iterations to 

precisely follow the intended trajectory at gain 0.2 compared 

to gain 0.1.  At gain 0.3, we see that the convergence rate is 

not improving compared to the gain 0.2. Moreover, the 

RMSE does not smoothly decrease. This behavior does not 

guarantee the long-term stability at this gain value. 

 

 Fig. 12. RC plant output evolution with learning function 𝐿(𝑧)  =  0.1𝑧2 

 

 Fig. 13. RMSE of RC system with proportional learning function at three 

different gains 

We also examine the performance of RC when zero-phase 

learning function is used. The following RC control law is 

applied: 

𝑢(𝑘) = 𝑢(𝑘 − 50) + 𝐿𝑧𝑝(𝑧)𝑒(𝑘 − 50), (34) 

where 𝐿𝑧𝑝(𝑧) is given as 

𝐿𝑧𝑝(𝑧) = 1.507𝑧2 − 1.220𝑧 − 0.117 . (35) 

The tracking performance of RC system with zero-phase 

learning function can be seen in Fig. 14 to Fig. 17. Fig. 14 

shows that the RC output perfectly follows the desired 

trajectory after one iteration, while Fig. 15 shows RMSE 

confirming that the tracking error of the zero-phase learning 

function significantly out-performed the proportional 

learning function in the term the convergence rate. This 

behavior indicates that two iterations are necessary for the 

patient's ankle joint to precisely track the intended trajectory. 

The performance of RC with zero phase learning function is 

also tested for model inaccuracies.  



Journal of Robotics and Control (JRC) ISSN: 2715-5072 213 

 

Edi Kurniawan, A Performance Evaluation of Repetitive and Iterative Learning Algorithms for Periodic Tracking Control of 

Functional Electrical Stimulation System 

 

 Fig. 14. RC plant output evolution with zero-phase learning function 

 

 Fig. 15. RC RMSE with zero-phase learning function 

 

 Fig. 16. Tracking performance of RC under model inaccuracies plant 

output evolution with zero-phase learning function 

 

 Fig. 17. Tracking performance of RC under model inaccuracies RMS error 

with zero-phase learning function 

The results are shown in Fig. 16 and Fig. 17, where we can 

see similar results to ILC’s.  These confirm that the zero-

phase learning function’s performance depends on how 

accurate the plant model is known. To cope with this issue, 

RC could be employed in tandem with other control schemes 

such as observer-based, robust, and adaptive control 

approaches. 

Based on the results shown in Fig. 6 to Fig. 17, it can be 

concluded that accurate tracking shown by a zero-tracking 

error is realizable for both ILC and RC methods given that 

the trajectory is iterative. It can also be noted that the zero-

phase learning function provides faster convergence 

compared to the proportional learning function. However, the 

proportional learning function is simpler in design as it does 

not need a complete plant model. Finally, it is also noticeable 

that the model inaccuracies affect the convergence rate of the 

controlled system. 

IV. CONCLUSION 

This article has presented a simulation study of repetitive 

control (RC) and iterative learning control (ILC) for 

controlling FES with iterative trajectory. The important 

results are that an accurate tracking given by a zero-tracking 

error are realizable for both ILC and RC methods. Several 

ILC and RC designs for two different learning functions, 

namely proportional and zero-phase learning functions, are 

given. The proportional learning function has simpler design 

as it does not need the plant model. This is further supported 

by the formula of the learning function, which requires only 

the gain value. The concern is about tuning the gain to give 

faster convergence rate, while ensuring long-term stability. 

While increasing the proportional gain can accelerate 

convergence, doing so to an excessive degree can lead to 

system instability. The precise plant model is a prerequisite 

for the zero-phase learning function, which can be further 

clarified using the formula for the learning function. Given 

the accurate plant model, the convergence of zero-phase 

learning systems can be guaranteed within 2 iterations. This 

suggests that two iterations are necessary for the zero-phase 

learning function to guarantee that the ankle angle of the 

patient precisely follows the desired trajectory. However, the 

convergence rate of zero-phase learning systems is decreased 

when the plant model is accurate. Both ILC and RC systems 

work properly when the plant model is accurately known, and 

the trajectory period is perfectly constant.   

In practical applications, the trajectory period may be 

uncertain, or the period may slightly change for each 

iteration. In addition, the plant model can be partially known 

or completely unknown. These conditions can make the 

tracking performance degrade. Therefore, ILC and RC 

designs for classes of unknown plant model with uncertain 

reference period are very challenging which can become 

potential future research works. ILC and RC can be utilized 

in conjunction with other control schemes, such as observer-

based, robust, and adaptive control schemes, to address these 

research challenges. In conclusion, the study indicates that 

there is hardly a noticeable performance difference between 

ILC and RC systems. This indicates that both ILC and RC 

have significant potential as control methods for FES, 
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particularly when the control goal is for tracking iterative 

trajectories. 
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