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Abstract—This research explores the application of neural 

networks in managing grid- photovoltaic (PV) systems. this 

paper aims to improve the performance and reliability of PV 

systems using artificial intelligence capabilities, specifically 

neural networks. The main emphasis of this system is to 

control active and reactive power and to track the maximum 

power point (MPPT). This study introduces an intelligent 

control technique for fuel cell distributed generation (DG) grid 

connection inverters. The algorithm allows for the 

management of both active and reactive power for the unit. 

The algorithm provides local reactive power compensation, 

making it economically viable. The controller modeling and 

performance validation are conducted using 

MATLAB/Simulink and Sim power system blocks, 

demonstrating its capacity for enhancing power factor. This 

makes fuel cell technology a clean, highly controllable, and 

economically viable option for DG systems. The system 

maximizes the energy extraction of PV panels and maintains 

them at their ideal PowerPoint across various environmental 

conditions. It also raises the voltage from 260 volts to 350 volts.  

Simulations and practical evaluations validate the proposed 

control system. The obtained results indicate that the total 

harmonic distortion (THD) of the grid current under operating 

conditions was less than 1.86%. This demonstrates significant 

improvements in the efficiency and reliability of PV systems. 

The neural network controller shows remarkable flexibility 

and the ability to quickly adapt to fluctuations in load and 

radiation, which contributes to developing a more sustainable 

and stable energy network. 

Keywords—PV; Neural Networks; Maximum Power Point 

Tracking (MPPT); Grid Active Power Control; Reactive Power 

Control. 

I. INTRODUCTION 

The variability in power supply might result in 

instability within the electrical grid, requiring the 

implementation of sophisticated measures to guarantee a 

consistent and dependable delivery of electricity [1]. 

Individuals possess a high level of proficiency in effectively 

handling substantial volumes of data, acquiring knowledge 

from intricate patterns, and implementing anticipatory 

modifications in real time [2][3][4][5]. Neural networks 

have demonstrated efficacy in the modulation of inverter 

outputs, a critical process for the conversion of direct 

current generated by solar panels into alternating current 

(AC) compatible with the electrical grid. According to [6], 

intelligent systems have the capability to adjust the 

equilibrium between active and reactive power, hence 

improving the power quality and overall efficiency of the 

energy conversion process. The capacity of neural networks 

to engage in ongoing learning from external and adjust their 

management techniques is crucial in effectively regulating 

the intermittent characteristics of solar power generation 

[7][8][9]. In reference [10], a study conducted in (2015) 

which aimed to achieve maximum efficiency MPPT of the 

input source indicates that a low-cost controller, based on a 

single chip, can adjust the output voltage of a solar cell 

array based on an intelligent control method using a fuzzy 

logic controller implemented on a DC-DC converter device. 

in reference [11], a study of using the artificial neural 

network (ANN) as a technology to improve efficiency was 

established. This paper outlined several benefits of ANN, 

including the ability to train offline, perform nonlinear 

mapping, respond quickly, operate reliably, need less 

computational effort, and provide compact solutions for 

multivariate issues. However, there is limited research on 

ANN techniques used in MPPT.  

The efficiency of the MPPT in the input source must be 

tracked. A low-cost controller, based on a single chip, can 

adjust the output voltage of a solar cell array. In reference 

[12], a paper proposes an intelligent control method using a 

fuzzy logic controller implemented on a DC-DC converter 

device. It is important to note that fuzzy logic controllers 

have certain disadvantages such as limited accuracy, 

difficulty in design and control, lack of interpretability, and 

difficulty in dealing with complex systems [13][14][15]. 

In references [16][17][18][19][20][21] some studies 

have been conducted by using ANN as a technology to 

improve efficiency. This research has noted several 

advantages of ANN, including offline training, nonlinear 

mapping, fast response time, reliable operation, reduced 

computational effort, and efficient solutions for multivariate 

issues. However, there is limited research on ANN 

techniques used in MPPT.  

In reference [22], a study proposes a new classification 

based on the controller structure and input variables, as well 

as a detailed comparison of these techniques. An intelligent 

controller using ANN was used for active and reactive 

power controllers in grid-connected PV power generation 

systems. In this study, the authors proposed a two-part 

system with inverters and control algorithms, ensuring 

optimal power and synchronization of the sinusoidal current 

output with the grid voltage. The simulation results 

confirmed the validity of the efficiency control, ensuring a 
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good response to changes in active and reactive power. 

However, the use of the neural controller only on the MPPT 

and not on both parts of the solar system. Elbaset, Adel A. 

Ali, Hamdi Abd‐El Sattar, Montaser Khaled, and Mahmoud 

(2016) [23] conducted a conventional Perturbation and 

Observation (P&O) algorithm modified with a constant 

loading technique to recognize power changes and make 

correct decisions on a large-scale due to its simplicity and 

low cost. The algorithm was simulated using a solar PV 

module and validated experimentally. However, it suffers 

from instability during rapid climate changes and oscillates 

around the MPPT in a steady state [24]. M. Nour Ali [25] 

discusses an increase in the efficiency of grid-connected PV 

systems. 

An important component for improving the performance 

of artificial augmentation in creating a superior MPPT 

control system is the optimization of the ANN design. This 

optimization aims to maximize the power output of the grid-

connected PV system. In the majority of ANN-based 

MPPTs discussed in the literature [26-35], solar radiation 

and temperature have been utilized as inputs. However, this 

research proposes other inputs that successfully enhance the 

performance of the ANN as an MPPT system. Chandran, 

A.S., and P. Lenin [36] propose an enhancement that utilizes 

genetic algorithm (GA) optimization to determine the 

optimal design of the ANN topology. This includes 

determining the number of neurons in the hidden layer, 

selecting the appropriate learning algorithm, and choosing 

the suitable activation function for each neuron. The 

simulation results are showcased and compared to illustrate 

the exceptional performance of the MPPT-optimized ANN 

design. The integration of renewable energy resources 

improves voltage stability and reduces harmonics. Provides 

stability to the network. Traditional compensation methods 

are no longer suitable, so local reactive and harmonic 

compensation is needed.  

AI (heuristic) methods can distribute computing and 

communications tasks between control devices, enhancing 

power quality in low-voltage distribution networks [37-45]. 

Abderrahmane, E., (2020) [46], Developed a neural network 

model to analyze the effects of varying temperature and 

radiation levels in different environmental circumstances. 

The simulation demonstrates that the neural network 

approach exhibits rapid responsiveness, meaning it takes 

less time to achieve the MPP. Additionally, it showcases 

good efficiency and reduced oscillation as compared to 

conventional methods. This algorithm is also effective for 

two-stage systems under all conditions [47]. The ANN-

based approach used in this research offers the benefit of 

eliminating the need to calculate the intricate mathematical 

relationship between output power, irradiance of the solar 

PV system, and temperature of the solar PV system [48].  

The proposed ANN-based the MPPT system is capable 

of rapidly and accurately identifying the MPPT in response 

to variations in environmental variables. The controller is 

trained using a backpropagation method based on the 

Levenberg-Marquardt algorithm. It guarantees the most 

efficient extraction of power in various environmental 

situations, reduces the presence of harmonics, and maintains 

steady output signals during temporary conditions.  

II. METHODOLOGY  

The circuit under consideration has two stages, namely a 

DC/DC boost converter and a DC/AC inverter. In order to 

maximize the efficiency of converting solar energy from PV 

units, a DC/DC boost converter is employed to improve the 

ratio between output power and installation cost. 

This converter exhibits minimal input current ripple and 

possesses a high-power tracking capability. Several 

techniques have been devised to control the duty cycle of 

the converter for MPPT. However, most of these systems 

lack precise convergence analysis, leading to only 

approximate MPPT. ANN techniques provide superior 

convergence for MPPT. It efficiently monitors energy 

points, hence improving the system's efficacy by 

maximizing efficiency and accuracy [49]. 

The current is then transferred to the DC/AC inverter 

unit, which converts the current from DC to AC, in addition 

to controlling active and reactive power, and this is 

controlled by neural networks. Furthermore, it is crucial for 

DC/AC inverter unity system to generate power of superior 

quality while maintaining a reasonable cost [50]. By 

employing high-frequency switching using PWM (Pulse 

Width Modulation) technology in semiconductor chips, it is 

feasible to attain a high-power factor and reduce harmonic 

distortion. Modelling PV cells and the process of optimizing 

power output [51]. Fig. 1. shows the structure of the 

adaptive energy management algorithm with PQ. 

 

Fig. 1. The architecture of the adaptive energy management algorithm 

incorporating PQ  

The aim of this paper is to obtain an integrated approach 

to improve energy management and control in PV systems 

by integrating MPPT techniques with neural network-based 

algorithms. The primary objective includes studying 

existing MPPT methods, designing neural network based 

MPPT control algorithms, integrating them into a power 

management system, and exploring their effectiveness in 

controlling both active and reactive power. In addition, 

control strategies based on DC/AC inverter neural networks 

have been developed to ensure efficient power conversion 

and management. Performance evaluation is performed 

under various operating conditions to verify the robustness 

and efficiency of the proposed approach.  

We used neural network control on the two-stage system 

in solar systems to be an integrated system in terms of 

extracting energy from solar panels and managing energy in 

the grid.  

By incorporating complex, nonlinear load scenarios, the 

research seeks to extend the conventional boundaries of 

study, offering insights not just on theoretical or ideal 
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conditions but also on practical, real-world scenarios 

indicative of contemporary power systems in two folds: to 

validate the efficiency of neural networks in enhancing 

power extraction from PV systems and to evaluate their 

effectiveness in ensuring power quality and reliability when 

connected to a grid with nonlinear loads. Every stage, from 

the neural network design and training to the simulation of 

the entire system. The simulation circuit has been conducted 

by MATLAB Simulink [52]. 

A. Modeling of the PV System 

 Solar energy is produced through the conversion of 

sunlight into electrical energy by PV cells. The phenomenon 

that describes this occurrence is known as the PV effect. 

When light interacts with a PV cell, it supplies enough 

energy to release electrons, which are negatively charged 

subatomic particles. The conversion of these electrons into a 

voltage, known as the photovoltage, occurs due to the cell's 

inherent potential barrier. This voltage can then be 

harnessed to generate a current in a circuit. [52]. Fig. 2 

illustrates the PV operation principle [53]. 

 

Fig. 2. The PV operation principle 

A PV cell is a semiconductor junction formed by 

combining p-type and n-type semiconductors, often silicon. 

Photons are the constituent particles of solar radiation. A 

photon is defined by its wavelength (𝜆) and energy (𝐸) [54]: 

𝐸 = ℎ
𝑐

𝜆
 (1) 

where, 𝐸 is photon energy [J], ℎ is the Plank's constant 

(6,626 ∗ 10−34 [J.s]), 𝑐 is the speed of light (299 792 458 

[m/s]), 𝜆 is Wavelength of photon [m]. 

The equations that represent the current-voltage (I-V) 

characteristics are as follows [55] 

𝐼 = 𝐼𝑃ℎ − 𝐼𝑑  𝑅̅𝑑

𝑣𝑑  (2) 

𝑉𝑑 = 𝐼𝑅𝑠 + 𝑉 (3) 

𝐼𝑑 = 𝐼0 [𝑒𝑥𝑝 (
𝑞𝑉𝑑

𝐴𝐾𝑇
) − 1] (4) 

𝐼𝑝ℎ = [𝐼𝑠𝑐 + 𝐾𝑙(𝑇 − 𝑇𝑟)]𝜆 (5) 

The reverse saturation current at the reference 

temperature 𝑇𝑟 [58] A is denoted as I0, while the diode ideal 

factor is represented by A. The Boltzmann constant, denoted 

as 𝐾, is equal to 1.38×10-23 J/K [56]. On the other hand, the 

electron charge, represented by 𝑞, is equivalent to 1.6×10-19 

Coulombs.  

𝐼 = 𝐼𝑝ℎ − 𝐼0 [exp (
𝑉 + 𝐼𝑅𝑠

𝛼𝑉𝑇

) − 1] −
𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ

 (6) 

By substituting the given values into Equation (6), one 

obtains Equation (7). 

𝐼𝑠𝑐 = 𝐼𝑝ℎ − 𝐼0 [exp (
𝐼𝑠𝑐𝑅𝑠

𝛼𝑉𝑇

) − 1] −
𝐼𝑠𝑐𝑅𝑠

𝑅𝑠ℎ

 (7) 

Experimental investigations demonstrate that under the 

short circuit condition, the magnitude of the second term on 

the right-hand side of the aforementioned equation is 

inconsequential in comparison to the magnitudes of the 

other two terms; thus, it is possible to eliminate this term. 

Consequently, the equation is expressed as follows [57]: 

𝐼𝑝ℎ =
𝑅𝑠ℎ + 𝑅𝑠

𝑅𝑠ℎ

𝐼𝑠𝑐 , 𝑅𝑠ℎ "𝑅𝑠 so 𝐼𝑝ℎ

≅ 𝐼𝑠𝑐

 (8) 

The operational point for this particular example is 

represented by the coordinates (I, V) = (0, 𝑉𝑜𝑐). When this is 

inserted into (6), the following outcome is obtained [58]: 

0 = 𝐼𝑝ℎ − 𝐼0 [exp (
𝑉𝑜𝑐

𝛼𝑉𝑇

) − 1] −
𝑉𝑜𝑐

𝑅𝑠ℎ

 (9) 

Experimental experiments have once again demonstrated 

that the -1 in the second term on the right-hand side of the 

equation can be disregarded. Upon putting the derived 

expression for 𝐼𝑝ℎ into (10) [59], 

𝐼𝑝ℎ = 𝐼𝑝ℎ−𝑟𝑒𝑓 (
𝐺

𝐺𝑟𝑒𝑓

) (10) 

we arrive at the resultant expression for 𝐼0. 

𝐼0 =
𝐺𝐼𝑠𝑐,𝑇𝑟

−
𝑉𝑜𝑐

𝑅𝑠ℎ

𝐺𝑟𝑒𝑓exp (
𝑉𝑜𝑐

𝛼𝑉𝑇
)
 (11) 

The symbol "𝐼𝑝ℎ" represents the photocurrent produced 

by the current source in the corresponding circuit.  

The variables 𝐺𝑟𝑒𝑓  and 𝐺 represent the reference value 

of the irradiance and the irradiance on the cell/solar panel, 

respectively. The mathematical modeling of the boost 

converter starts by considering the storage parts, namely the 

capacitor and inductor. The voltage across the inductor is 

denoted by (12), while the current across the capacitor is 

represented by (13) [60]. 

𝑉𝐿 = 𝐿
𝑑𝐼𝐿

𝑑𝑡
 (12) 

𝐼𝑐 = 𝑐
𝑑𝑉𝑐

𝑑𝑡
 (13) 

Meanwhile, inductor 𝑉𝐿 for switching conditions of ON 

and OFF are shown in (14) and (15) respectively [61]. 

𝑉𝐿 = 𝑉𝑖𝑛 ∗ 𝑃𝑊𝑀 (14) 

𝑉𝐿 = (𝑉in − 𝑉out ) ∗ 𝑃𝑊𝑀 (15) 

The duty cycle, as indicated in (16), represents the ratio 

of the difference between 𝑉0 and 𝑉𝑖𝑛 to 𝑉0 [61]. 

𝑃𝑊𝑀 =
(𝑉𝑜 − 𝑉𝑖𝑛)

𝑉𝑜

𝑓𝑝𝑤𝑚
      −1 (16) 
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The current passing through can be calculated by 

performing an integration with respect to (18). 

𝐼𝐿 =
1

𝐿
∫ 𝑉𝐿𝑑𝑡 (17) 

The current through the capacitor is given by (18), where 

the current through the load resistor once has been obtained. 

𝐼𝐶 = 𝐼𝐿 − 𝐼𝑅  (18) 

In the ideal model, the boost converter's load voltage 

may be in Fig. 3 shows the Mathematical model Boost 

converter by using MATLAB/Simulink. 

 

Fig. 3. Mathematical model Boost converter MATLAB/Simulink 

B.  Neural Network 

The artificial neuron operates at the fundamental 

processor level. The input is established utilizing a weight. 

One output (a) is associated with each neuron and is 

accompanied by a transfer function (f). Specific neurons are 

also associated with bias (b), which is expressed as a 

fundamental scalar or a weight (W) with a solitary input 

value. The following diagram depicts the arrangement of an 

artificial neuron. The configuration of neurons with 

numerous inputs is depicted in Fig. 4, whereas Fig. 5 

illustrates the architecture of the neuron with R inputs. 

 

Fig. 4. The structure of the neuron with one input 

 

Fig. 5. The structure of the neuron with R inputs 

C. Simulation Neural Network in Inverter Control 

The conversion system depicted in Fig. 6 illustrates a 

widely employed conversion method utilized in the 

regulation of power electronics, particularly inverters. The 

process of conversion involves the transformation of three-

phase currents and voltages, originally represented in the 

conventional three-phase coordinates (ABC), into a stable 

two-dimensional reference frame (αβ0). Subsequently, these 

values are further transformed into a rotating reference 

frame (dq0). This rotating reference frame is utilized as 

input for the neural network responsible for controlling the 

inverter. 

 

Fig. 6. The block for training 

The blocks denoted as [VA], [IA], and [WT] symbolize 

the inputs of voltage, current, and angular frequency to the 

system, respectively. Typically, the voltage and current are 

expressed in the form of three-phase AC. The symbol ωt 

represents the angular frequency of the system in this 

context. This angular frequency is crucial for converting to 

the rotating reference frame dq0. The variables [ID], [IQ], 

[VD], and [VQ] reflect the result of the Clark transform. 

The variables ID and IQ represent the direct and quadratic 

components of the current, respectively. Similarly, VD and 

VQ designate the direct and quadratic components of the 

voltage in the rotating reference frame. 

III. RESULTS AND DISCUSSION 

MPPT technology is a sophisticated way to ensure that 

solar panels perform at their optimum power output 

regardless of shifting sunshine conditions. When coupled 

with a boost converter employing neural networks, MPPT 

becomes even more efficient. By constantly evaluating 

patterns in voltage and current from the solar panel, the 

neural network learns and predicts the ideal operating 

voltage that accomplishes MPPT. 

Fig. 7 shows the voltage measurement of the PV system 

over time when inputting data representing fluctuating solar 

radiation intensity with weather conditions that transition 

from one state to another every 0.3 seconds while 

maintaining a constant temperature at 25 Co. The voltage 

reaches its operational level quickly and then remains 

relatively stable thereafter.  

 

Fig. 7. Transformation Block 
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This indicates that upon startup or when conditions 

change, the PV system quickly reaches the operating 

voltage. An initial rise is observed when the voltage exceeds 

a threshold, followed by a gradual return to a steady state. 

This is the usual behavior of an operating system that 

stabilizes once it reaches equilibrium. During its operation, 

the voltage shows tiny variations (ripples) with respect to its 

steady-state value. This phenomenon can be attributed to the 

variation in the amount of solar radiation received by PV 

cells, as well as the transition between states due to weather 

fluctuations and changes in the intensity of solar radiation. 

After the initial surge, the PV system maintains a constant 

voltage, which is an excellent indicator that the system is 

operating properly and is not susceptible to significant 

voltage drops. Disturbances in the system or radiation. 

When the voltage stabilizes at approximately 260 V, the 

maximum PV voltage is indicated. 

Fig. 8 shows how a PV system's current output changes 

over time. A sharp apex appears initially, signifying the 

flow of current during the startup phase. The current 

stabilizes with discernible ripples following this apogee; 

these ripples are caused by variations in solar radiation or 

system noise. Two times, at approximately 0.6 and 1.2 

seconds, the current decreases marginally, which could 

indicate that system adjustments have been modified. The 

current appears relatively stable on the whole, indicating 

that the PV system generates electricity continuously. Minor 

fluctuations in the current output are indicative of 

adjustments to the operating environment or the dynamics 

of the feedback control. 

 

Fig. 8. PV voltage (v) 

 

Fig. 9. PV current 

Fig. 9. represents the power output of a PV system over 

time, which settles into a constant output with minor 

fluctuations. It is worth noting that there is a change in the 

power value, where from the period 0 to 0.3, it is about 1750 

W; after 0.3 seconds, it is 850 W; after 0.6 seconds, it is 474 

W; after 0.9 seconds, it is 750 W, and then increases in 1.2 

seconds to the value 1500 W. These decreases are due to 

solar inputs representing changes in environmental 

conditions such as the passage of cloud cover over the PV 

panels or modifications in the system itself. Aside from 

momentary lapses, the PV system appears to provide 

consistent energy production. 

The voltage output of the boost converter, which is 

regulated by an MPPT neural network, is depicted in the 

graph in Fig. 10 Following conversion, the PV panel's initial 

voltage of 260V was maintained at approximately 350V. 

The data is supervised and trained using the Levenberg-

Marquardt method (Trainlm), renowned for its effective 

tracking capabilities. The MPPT algorithm is significant due 

to its rapid convergence speed, high tracking efficiency, and 

ability to withstand nonlinearity. The details of the training 

data are presented in Table I. Regression plots (RP) are a 

type of supervised learning method that specifically 

examines the correlation between input data and a target 

variable. These plots are frequently employed as a directive 

for ANN. Fig. 10 displays the outcomes of the algorithm 

that has been trained.  

 

Fig. 10. Boost converter voltage 

Table I shows details of the function of fitting of ANN. 

Table II displays the recorded iterations and corresponding 

mean square error (MSE) data. The Mean Squared Error 

(MSE) quantifies the discrepancy between the observed 

output and the desired target values. The findings improve 

when the Mean Squared Error (MSE) value decreases. 

TABLE I. DETAILS OF THE FUNCTION OF FITTING OF ANN 

Algorithm Used Data Values 

Trainlm Training data 70% 

Trainlm Validation Data 15 

Trainlm Test Data 15 

Trainlm Layer Size 10 

TABLE II. THE TRAINING ALGORITHM 

 SAMPLES MSE R 

Training 105001 1.71780e-0 9.99961e-1 

Validation 22500 1.73009e-0 9.99960e-1 

Testing 22500 1.75659e-0 9.99959e-1 

 

Fig. 11 and Fig. 12 represent the simulation results of 

inverter voltage and inverter current respectively. 

Fig. 11 depicts the output voltage generated by the 

inverter in a single-phase grid-connected PV system 

controlled by a neural network. The measured voltage 

output exhibits a sinusoidal waveform, which suggests the 

transfer of AC electricity to the power grid. The system's 

maximum voltage of around 325 V indicates that it is 
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designed for use in a power grid with an RMS voltage of 

approximately 230 V. 

The waveform illustrated in Fig. 12 represents the 

characteristic AC produced by the inverter, exhibiting a 

sinusoidal pattern. Under the assumption that the inverter is 

working with a somewhat constant load, it can be observed 

that the current exhibits peaks that are directly correlated 

with the output voltage. 

 

Fig. 11. Inverter voltage 

 

Fig. 12. Inverter Current 

The waveform of the grid current after passing through 

the LCL filter, which is regulated by an inverter controlled 

by neural networks is illustrated in Fig. 13. This waveform 

exhibits sinusoidal characteristics, as is commonly observed 

in AC supplied to the electrical grid. 

Fig. 14 represents the waveforms of the inverter's output 

voltage and current within the time interval of 0.2 to 0.5 

seconds. 

 

Fig. 13. Grid Current 

 

Fig. 14. Neural Network injecting the reactive power in the grid 

The neural network that governs the inverter adjusts the 

phase angle between the voltage and current to regulate the 

reactive power, in accordance with the selected control 

strategy. This correction is necessary because the current is 

leading the voltage, and they are not in phase alignment. 

Phase shift is an intentional consequence that occurs when a 

neural network relies on the reactive power setpoints it gets. 

It is crucial to recognize that the existing power factor is 0.9 

because of the presence of a minuscule amount of non-

reactive power. Control effectiveness in neural networks can 

be evaluated by analyzing the temporal consistency of the 

phase shift. The network's ability to inject or absorb reactive 

power to achieve the desired control objectives is 

demonstrated by this consistency. 

IV. CONCLUSION 

The aim of this project is to develop, model, and assess a 

control mechanism based on neural networks to enhance the 

efficiency of a PV system connected to the power grid and 

interacting with non-linear loads. The neural networks are 

elaborately designed to accomplish MPPT and to maximize 

the active and reactive power transmitted to the grid. This 

steady voltage is proof that the neural network efficiently 

controls the inverter, keeping the voltage and current 

outputs within the specified ranges despite variations in 

solar light. After an initial period of peaks and valleys, the 

system's energy output quickly stabilized, demonstrating its 

capacity to rapidly adapt to changes in solar input, hence 

minimizing downtime and optimizing energy harvest. Since 

the neural network regulates the reactive power injection 

into the grid, efficiency, and compatibility are both 

preserved throughout the process. The efficacy of the neural 

network control technique is evidenced by the system's 

ability to promptly adapt to transient alterations and sustain 

uninterrupted operation in spite of these alterations. The 

capacity of neural networks to improve the dependability 

and performance of renewable energy systems is 

demonstrated by the consistency in inverter output over a 

wide range of operating situations. 

V. FUTURE WORK 

The study suggests checking scalability for bigger 

systems, improving deep learning for better prediction, 

using weather forecasts to make energy production more 

efficient, and looking into energy storage options to make 

production more consistent and collect extra energy. These 

research avenues could enhance fuel cell DG systems' 

performance and practical applicability. 
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