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Abstract—PID controllers can regulate and stabilize processes
in response to changes and disturbances. This paper provides a
comprehensive review of PID controller tuning methods for in-
dustrial applications, emphasizing intelligent and nature-inspired
algorithms. Techniques such as Fuzzy Logic (FL), Artificial Neural
Networks (ANN), and Adaptive Neuro Fuzzy Inference System
(ANFIS) are explored. Additionally, nature-inspired algorithms,
including evolutionary algorithms like Genetic Algorithms (GA),
Particle Swarm Optimization (PSO), Differential Evolution (DE),
Ant Colony Optimization (ACO), Simulated Annealing (SA),
Artificial Bee Colony (ABC), Firefly Algorithm (FA), Cuckoo
Search (CS), Harmony Search (HS), and Grey Wolf Optimization
(GWO), are examined. While conventional PID tuning methods are
valuable, the evolving landscape of control engineering has led to
the exploration of intelligent and nature-inspired algorithms to fur-
ther enhance PID controller performance in specific applications.
The study conducts a thorough analysis of these tuning methods,
evaluating their effectiveness in industrial applications through
a comprehensive literature review. The primary aim is to offer
empirical evidence on the efficacy of various algorithms in PID
tuning. This work presents a comparative analysis of algorithmic
performance and their real-world applications, contributing to a
comprehensive understanding of the discussed tuning methods.
Findings aim to uncover the strengths and weaknesses of diverse
PID tuning methods in industrial contexts, guiding practitioners
and researchers. This paper is a sincere effort to address the lack
of specific quantitative comparisons in existing literature, bridging
the gap in empirical evidence and serving as a valuable reference
for optimizing intelligent and nature-inspired algorithms-based
PID controllers in various industrial applications.
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I. INTRODUCTION

The primary objective of this paper is to provide a com-
prehensive and critical review of state-of-the-art intelligent and

nature-inspired algorithms employed for tuning PID controllers
in industrial applications. Through an in-depth exploration of
various algorithms, including intelligent FLC, ANN, ANFIS,
and nature-inspired approaches GA, PSO, DE, ACO, SA, ABC,
FA, CS, HS, GWO, etc. This review aims at effectiveness,
comparative analysis, trends in the application, challenges and
limitations, and future directions of these algorithms. The
chemical, petrochemical, oil refineries, distilleries, and man-
ufacturing industries need automation and process control for
stable operation and production under safe conditions. In the
field of control engineering, Proportional-Integral-Derivative
(PID) control is an essential method. It is crucial to control
systems and maintain the desired outcomes. PID controller has
three basic control actions proportional, integral, and derivative
hence the name is PID. These are also used in composite forms
like PI, PD, and PID for process control. It has an easy-to-
implement structure that makes it suitable for robust control
applications [10].

A. Background and importance of PID controllers in control
systems

In 1940, PID became the standard controller in industrial
process control systems [10]. In process control systems nearly,
95 percent of the control loops use PI controllers. There are
two forms of PID parallel and series. In mechatronics, PID is
commonly used to regulate a wide range of systems, including
motors, robots, drones, and more. It can improve the reliability,
accuracy, and functionality of the control system by adjusting
the output following the system error. The proportional, inte-
gral, and derivative gains all have optimal values that must be
determined. Equation (1) represents the PID algorithm and Fig.
1 shows a block diagram of the PID controller. In a resistance
network system, the output is directly proportional to the error
input signal is a proportional action in that keeping the Kp
constant coefficient. In a low-pass filter system output is directly
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proportional to the integral of the error input signal is an integral
action in which Ki is an integral constant. In a high pass filter
system output is directly proportional to the derivative of the
error input signal is a derivative action in which Kd is the
derivative constant. Combining all three actions obtained the
PID controller [10].

u(t) = Kp.e(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
(1)

Where Kp is the proportional gain, Ki = (Kp/Ti) is the integral

Fig. 1. PID controller.

gain and Kd = (Kp. Td) is the derivative gain. These parameters
are to be tuned. The time response parameters of any system
such as rise time (Tr), settling time (Ts), peak time (Tp), peak
overshoot (Mp), and steady-state error (ess) are affected by
system dynamics. PID must be correctly tuned to determine the
control system’s good response. The Kp is used to minimize
‘Tr’, the Ki is used to eliminate ‘ess’, and the Kd is used
to reduce the ‘Mp’ and ‘Ts’ of the control system. Equation
(2) shows the transfer function of the PID controller which
is derived from equation (1) simply by taking the Laplace
transform of it. The transfer function model is used to define
the PID controller in MATLAB.

C(s) = Kp+
Ki

s
+Kd.s (2)

The controller whether performing correctly or not makes use
of certain performance criteria (performance indexes) such as
Integral Square Error (ISE), Integral Absolute Error (IAE),
Integral Time Square Error (ITSE), Integral Time Absolute
Error (ITAE), etc [11]. These are used for minimizing an
integral error criterion in the control system. Adjust the PID
parameters to minimize the selected performance index. For
ISE and IAE, tuning primarily involves adjusting the integral
gain (Ki), and for ITSE and ITAE, tuning may involve adjusting
both proportional (Kp) and integral (Ki) gains to balance overall
error reduction and faster error reduction over time [10].

ISE =

∫ ∞

0

e2(t)dt (3)

IAE =

∫ ∞

0

|e(t)|dt (4)

ITSE =

∫ ∞

0

te2(t)dt (5)

ITAE =

∫ ∞

0

t|e(t)|dt (6)

B. Classification of PID controller tuning methods

Ideally, it is expected to obtain fast responses and good sta-
bility of any control system. But practically these two things are
not possible to achieve simultaneously. Because for achieving
a faster response of the system there is obtained worse stability
and for achieving better stability obtained slower response of
the system. So, any control system can maintain acceptable
stability and medium fastness of response. Therefore, accurately
tuning PID is an essential task. The process of finding the
controller parameters that result in the desired output is known
as tuning. The classification of various PID controller tuning
algorithms or techniques is shown in Fig. 2. These methods
are broadly divided into conventional, intelligent, and nature-
inspired [11],[13],[29]. The advantages of conventional meth-
ods are that it is simple, systematic, and widely applicable.
However, drawbacks are that they may result in aggressive or
oscillatory responses, they may not account for the system’s
non-linearities or uncertainties, and they may require testing
the system near instability. Intelligent and nature-inspired PID
tuning methods offer improved adaptability, efficiency, and
robustness in handling complex and dynamic systems. The
capabilities of intelligent and nature-inspired algorithms make
them particularly well-suited for applications where traditional
methods may fall short. Some algorithms and PID controller
tuning methods will be discussed in this review.

The contributions of this paper are as follows:

• The various types of techniques to tune the PID controller,
which are broadly classified as conventional, intelligent,
and nature-inspired techniques are mentioned in this paper.

• For selected conventional methods challenges are summa-
rized and the importance of intelligent and nature-inspired
algorithms is described for PID tuning.

• Special intelligent and nature-inspired algorithms to tune
the PID controller with specific systems have been in-
cluded in the literature survey.

• A comparative analysis of the selected algorithms was car-
ried out across many criteria, including accuracy, stability,
efficiency, and parameter sensitivity. The analysis aimed
to identify the primary features of each algorithm.

• Highlighted the difficulties with the algorithms and the
potential of the entire topic of nature-inspired algorithms,
which can serve as a platform for future research.
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Fig. 2. Classification of PID tuning methods.

Structure of this Paper:
In this paper, after the brief introduction; Section II covers
some conventional tuning methods of PID with limitations and
advanced control schemes with examples; Section III discusses
intelligent techniques for PID tuning considering examples;
Section IV provides details on the principles of some PID
controller tuning methods using nature-inspired algorithms;
Section V focuses on the comparison in terms of complexity,
convergence speed, robustness, adaptability, and performance
improvement of these algorithms; The few real-world applica-
tions of intelligent and nature-inspired algorithms based PID are
mentioned in Section VI from various literature survey; Discuss
challenges and limitations of algorithms in Section VII; In
Section VIII discuss future directions and research opportunities
on nature-inspired algorithms and finally conclude this paper in
Section IX.

II. CONVENTIONAL PID TUNING METHODS

This section discusses some conventional methods and their
limitations. The methods employed for Ziegler-Nichols and
Cohen-Coon controller tuning are the most often used conven-
tional methods. When there is not a mathematical model of the
system available, such methods can be useful.

A. Time and Frequency Domain Approach

The design of the PID controller is possible in the time
domain [14]. In this method consider a closed-loop system

(G(sd)) at s = sd (dominant pole) with controller (Gc(sd) =
Kp + Ki/sd + sd.Kd) and unity feedback. Tr, Ts, Tp, Mp,
and ess time domain specifications consider for PID design.
From these specifications find ζ (damping ratio) and ωn, and
dominant pole pairs sd = −ζωn ± jω

√
1− ζ2

Kp =
−sin(β + ϕ)

|G(sd))| sinβ
− 2Ki.cosβ

|sd|
(7)

Kd =
sin(1800 − ϕ)

|G(sd)| |sd| sinϕ
+

ki

|sd|2
(8)

where β = ∠sd and ϕ = ∠G(sd). For the PI controller,
substitute Kd=0 in equation (8), then find Ki, Kp. For the PD
controller, substitute Ki=0 in equation (8), then find Kd, Kp.

The design of the PID controller is possible in the fre-
quency domain [14]. In this method consider a closed-loop
system (G(jωgc)) at ω = ωgc (gain crossover frequency)
with controller (Gc(jωgc) = Kp + Ki/ωgc + ωgc.Kd) and
unity feedback. Phase Margin (PM), Gain crossover frequency
(ωgc), Gain Margin (GM), and Phase crossover frequency
(ωpc) specifications are used for PID design. These are found
by using methods such as Bode, Polar, Nyquist, etc. For
controller design, any two specifications are sufficient such
as GM and PM, ωgc and PM, or ωpc and GM. In literature
several approaches are given, here use ωgc and PM along
with steady-state error specification for PID. PM is determined
from the open loop transfer function of the system. PM =
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1800 +∠GOL(jωgc), PM = 1800 +∠G(jωgc) +∠Gc(jωgc),
PM = 1800 + ϕ+ θ.

Kp =
cosθ

|G(jωgc)|
(9)

Kd =
sinθ

|G(jωgc)|ωgc
+

Ki

ωgc2
(10)

Determine Ki from steady-state error and then find Kp, Kd
using equations (9) and (10). For the PI controller, substitute
Kd=0 and then find Kp and Ki. For the PD controller, substitute
Ki=0 and then find Kp and Kd. The values of gain and phase
margins decided the stability of the system. If both GM and PM
are positive (ωgc < ωpc), then the system is stable. If both GM
and PM are negative (ωgc > ωpc), then the system is unstable.
If both GM and PM are zero (ωgc = ωpc), then the system
is just stable. However, these methods are time-consuming and
tedious.

B. Trial and Error Method

In the trial and error tuning method, first, keep integral and
derivative values at a minimum, and the proportional gain is
adjusted until a desired output is obtained. For example, in a
temperature control system, adjust approximately Kp = 2-10,
Ti = 2-10 min, and Td = 0-5 min due to the slow response of
temperature sensors to temperature changes.

C. Ziegler-Nichols (ZN)

ZN is the most popular and commonly used tuning technique.
It was designed by Ziegler-Nichols in 1942 [10]. This method
involves determining the proportional gain at which the output
of the system becomes oscillatory to a step input to determine
the parameters of the PID controller. The oscillation frequency
is known as the ultimate frequency, and this gain is known
as the ultimate gain. The ZN method provides two sets of
formulas, one for the closed loop response and another for the
open loop response, to calculate the PID gains [15],[21]. In the
first ZN method, Fig. 3, the system time constant ‘τ ’ and delay
‘L’ are measured from the S-shaped process reaction curve of
the system which is obtained from step response. By using these
parameters, find the Kp, Ti, and Td from Table I. In the second
ZN method calculate ultimate gain (Ku) and period (Pu) for
finding the new Kp, Ti, and Td. In this method maintain the
Ti at ∞ and the Td at 0 and adjust the value of Kp till the
consistent oscillations are obtained. Then measure Kp=Ku and
the distance between two successive oscillations (Pu). Finally,
calculate Kp, Ti, and Td from Table II. It is a simple, scientific
approach, and a widely use technique. The ZN method gives
better results than the Cohen-Coon method.

Fig. 3. S-shaped step input response curve.

TABLE I. ZIEGLER-NICHOLS OPEN-LOOP TUNING PARAMETER

Controller Type Kp Ti = Kp / Ki Td = Kd / Kp

P τ / L ∞ 0

PI 0.9 (τ / L) L / 0.3 0

PID 1.2 (τ / L) 2 L 0.5 L

D. Cohen-Coon (CC)

This method is typically used for open-loop systems [15].
When the processing delay is significant about the open loop
time constant, the controller tuning adjusts for the sluggish,
steady-state response provided by the ZN technique. The con-
troller does not instantly react to the disturbance, hence the
CC approach is only applicable to systems with first-order lag
and time delay. The CC technique requires more information
from the steady-state response than the ZN method does.
This includes the moment at which the input step begins,
the response reaches half of its maximum value, the response

TABLE II. ZIEGLER-NICHOLS CLOSED-LOOP TUNING PARAMETER

Controller Type Kp Ti = Kp / Ki Td = Kd / Kp

P 0.5 Ku - 0

PI 0.45 Ku Pu / 1.2 0

PID 0.6 Ku Pu / 2 Pu / 8
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reaches 63.2 percent, the time constant, the dead time constant,
and the delay measured.

E. Tyreus-Luyben (TL)

The same procedure applies for calculating the critical gain
and period as per the ZN method in the TL tuning method [21].
In comparison to the ZN method, the TL method produces
greater control loop stability through modifications to the
controller parameter formulas. The formulas suggested for the
PID controller Kp=0.45Ku, Ti=2.2Ku, and Td=Pu/6.3. The TL
method performs better with low values for process dead time
because it is more careful than the ZN method. However, if
there is a significant amount of dead time, the performance
decreases. When tuning the controller, it takes into account the
maximum gain Ku and the peak frequency Pu.

F. Internal Model Control (IMC)

Robustness was a consideration in the development of this
technique [15]. chemical engineering applications are not suit-
able for the significant controller gain and short integral time
provided by the ZN open loop and CC approaches. The IMC
approach is associated with closed-loop control and is devoid
of oscillatory or overshooting behavior.

G. Challenges in Conventional PID Tuning and the Need for
Automated Methods

Tuning the parameters of PID controllers to get the correct
response is one of the most difficult tasks. The system responds
properly once the operator adjusts the parameters.

• The frequency response tuning method may be more
difficult, time-consuming, and mathematically demanding
compared to other methods, and it may not be feasible for
all systems that are challenging to excite or measure at
various frequencies [14].

• By trial and error tuning method, the PID parameters are
adjusted manually. This process can take a long time and
requires an operator knowledgeable about system dynam-
ics. The manual tuning method is suitable for systems
that are easy to manipulate and that do not have complex
dynamics. These methods never give optimal PID tuning
parameter values when set point changes due to process
disturbances.

• The ZN tuning requires primary knowledge of the process
plant model and gives a very poor response if the process is
dead-time dominant. Also, it gives a very low robustness,
which can lead to loop instability because it tunes the
loop for a quarter-amplitude-damping response, which
oscillates and overshoots a lot. A tuning rule for quarter-
amplitude damping recommends a controller gain of 0.9.
The overshoot is challenging in processes like temperature
control in the manufacture of plastic gloves. Due to
overshoot of temperature, a lot of material will get wastage

which cannot be recovered. So, in such applications avoid
to use of the ZN method [15].

• The main design requirement for the CC tuning approach
is disturbance rejection. However, it is limited to first-
order models that involve significant process delays. It is
an offline method and approximation values for controller
gain, integral, and derivative time may be not accurate for
different systems [15].

• The IMC approaches for first-order dead time systems are
highly complex.

Table III (referring to several references) summarizes the
comparison between conventional PID tuning methods in terms
of strengths and weaknesses with their applicability, accuracy,
and robustness.

H. Need of Intelligent and Nature-Inspired PID Tuning Meth-
ods

The different literature review has shown that the perfor-
mance of systems was improved by using intelligent and nature-
inspired algorithms. According to the various literature surveys,
conventional methods are not suitable for tuning the PID con-
trollers for higher order processes for achieving better response
of the system. Thus, intelligent techniques along with nature-
inspired algorithms are used for tuning a PID controller. Many
researchers have proved that intelligent and nature-inspired
methods provide better performance of systems as compared
with conventional methods. Thus, to continue forward with
more in-depth research work, a literature review in this field
is required. As per some literature reviews, a few of them
are also called intelligent algorithms. In this review, intelligent
and nature-inspired algorithms are differentiated as per their
structure and working.

For example, Hendril Satrian Purnama et.al [3] proved that
the ZN-PID controller is not efficient in the speed control of
DC motors. By using the ZN method, the result obtained like
the transient characteristics such as rise time and settling time
is slow, steady state and maximum overshoot is high affecting
the speed control of the motor. On the other hand, by using
GA, PSO, and fuzzy logic transient characteristics are improved
and the speed control of the motor is also improved. It shows
intelligent and nature-inspired techniques were excellent and
robust techniques to solve the problem and limitations in the
conventional PID controller.

Meenakshi Sharma et.al [8] developed a controller for a
process like flow, temperature, pressure, and level utilizing GA,
ANN, PSO, and fuzzy logic and found that traditional PID
controller tuning is a tedious procedure. Because it is manual, it
takes a very long time. Therefore, intelligent and nature-inspired
algorithms are applied to increase the PID controller speed.

The control scheme uses intelligent and nature-inspired algo-
rithms for finding the optimized setting of PID shown in Fig.
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TABLE III. STRENGTHS AND WEAKNESSES OF CONVENTIONAL PID TUNING METHODS

Criterion Frequency Domain Ziegler-Nichols Trial and Error Tyreus-Luyben Internal Model
Control

Strengths Systematic approach Quick and straight-
forward method

Flexibility for tuning
various systems

Suitable for well-
understood dynamics
processes

Incorporates model-
based approach for
improved tuning

Provides insights
into stability and
performance margins

Suitable for identify-
ing initial tuning pa-
rameters

Practical for manual
tuning in real-world
applications

Balances robustness
and performance

Enables better han-
dling of process dy-
namics

Weaknesses Requires detailed
knowledge of system
dynamics

Tends to be conser-
vative, which may
result in over-tuning

Time-consuming and
may not converge to
optimal values

Limited applicability
to certain system
types

Limited applicability
to highly nonlinear
systems

May not be suit-
able for systems with
rapidly changing dy-
namics

Limited robustness
for systems with
uncertainties

Highly dependent on
operator expertise
and intuition

Success depends on
the accuracy of the
selected model

May require more ef-
fort for complex pro-
cess models

Applicability Well-suited for sys-
tems with known and
stable dynamics

Basic and suitable
for simple systems

Versatile for various
systems and applica-
tions

Best suited for pro-
cesses with relatively
well-understood dy-
namics

Suitable for a wide
range of processes
with known models

Ease of Im-
plementation

Requires access to
the system’s transfer
function

Simple and quick to
implement

Straightforward but
time-consuming

Moderate complex-
ity due to model
identification

Moderate complex-
ity but may require a
good process model

Accuracy in
Tuning

Offers accurate tun-
ing when the system
model is accurate

Provides a starting
point, but fine-tuning
may be necessary

May result in subop-
timal tuning without
iteration

Accurate if the pro-
cess dynamics match
the assumed model

Accurate if the
model accurately
reflects the process

Suitability for
Different Sys-
tems

Suitable for systems
with well-defined
and stable dynamics

Limited to stable and
linear systems

Versatile, applicable
to various system
types

More suitable for
processes with
known dynamics

Applicable to var-
ious systems with
known models

Robustness Robust when the
system model
accurately represents
the dynamics

Limited robustness,
may not generalize
well

Robust if the tuning
process converges to
optimal values

Robust to uncertain-
ties if the model ac-
curately reflects the
process

Robust to model un-
certainties and varia-
tions

4 [25]. The first step in this approach is to use performance
indices like ISE, IAE, ITSE, and ITAE to minimize the system
error signal. Then this minimum error value is considered as the
objective function in optimization algorithms. These algorithms
find optimized values of the PID controller. Finally, run the
system again with optimized values on MATLAB software
observe the process or system response, and compare the results
obtained from various algorithms.

III. INTELLIGENT ALGORITHMS FOR PID TUNING

The intelligent technique without modeling the plant takes
into account unknown elements, which may be nonlinear and/or
time-varying. By using these techniques, the controller design
is called an intelligent PID controller. The intelligent techniques
are FLC, ANN, ANFIS, etc. The basic operator of intelligent

Fig. 4. Intelligent or Nature Inspired PID controller.

control is a multiscale structure, which is achieved by atten-
tional concentration, generalization, and systematic investiga-
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tion of states of a problem domain. Some basic aspects of the
selected algorithm were provided in this review. The details
of the implementation or development of selected algorithms
for PID design for a particular system were not presented. An
explanation of intelligent techniques considering the example
of a continuously stirred tank reactor (CSTR) [16] is given.

A. Fuzzy Logic Control (FLC)

The system performs better with the fuzzy PID controller
because it automatically modifies Kp, Ki, and Kd. It gives
good performance in set point and load disturbance change,
which is not achievable with conventional PID controllers. The
fuzzy logic architecture or process is shown in Fig. 5. The rule
base is a component used for storing the set of rules given
by the experts. The fuzzification module converts the crisp
value which is measured by sensors to fuzzy values [31]. All
information is processed to the inference engine module. It finds
the matching degree between the current fuzzy input and the
rules. After that system determines which rule is to be added
according to the given input field. When all rules are applied,
then they are combined to develop the control actions. The
defuzzification module converts the fuzzy value into a crisp
value. Various techniques are used to do this, but select the
best one for reducing the errors. A fuzzy logic system utilizes
expert knowledge to convert a verbal control strategy into an
automatic control strategy.

Fig. 5. Process of a Fuzzy Logic.

For example, consider the second-order system of concentra-
tion control of CSTR [16]. It is non-minimal (inverse response)
with the right half of plane zero shown in equation (11). Fig.
6. shows the block diagram of a fuzzy PID. The structure
of a fuzzy-PID controller is two inputs (’e’ and ’∆e’) and
three outputs (Kp, Ki, Kd). The ZN approach was used to
calibrate the PID controller to determine the input and output
membership functions range. For both inputs, some verbal
variable levels are assigned as zero (Z), negative big (NB),
negative small (NM), and positive big (PB), positive small (PS).

G(s) =
−1.1170s+ 3.1472

s2 + 4.6429s+ 5.3821
(11)

The rule base for the fuzzy controller of the CSTR model
is shown in Table IV [16]. The output of the fuzzy set from
the ’e’ and ’∆e’ is used to tune the PID parameters with

Fig. 6. Block diagram of Fuzzy PID controller.

appropriate values. The output fuzzy sets of this process are
obtained according to equations (12),(13),(14). Finally, imple-
ment Simulink block set for fuzzy PID controller for CSTR
process and obtained step response.

Kp
′
=

Kp−Kpmin

Kpmax−Kpmin
(12)

Ki
′
=

Ki−Kimin

Kimax−Kimin
(13)

Kd
′
=

Kd−Kdmin

Kdmax−Kdmin
(14)

TABLE IV. RULE BASE FOR FUZZY CONTROLLER

∆ e

e
NB NM Z PM PB

NB NB NB NM NM Z

NM NB NM NM Z PM

Z NM NM Z PM PM

PM NM Z PM PM PB

PB Z PM PM PB PB

B. Artificial Neural Network (ANN)

ANN model consists of artificial neurons that process data
from input to output. Training and testing data through the Input
layer, Hidden layer, and Output layer made by various nodes.
The Input layer initializes input variables with weight variables.
The function of the Hidden layer is a linear transformation.
The function of the Output layer is prediction compared with
the actual result and the difference is called loss. It minimizes
using the back-propagation or supervised delta learning method
by using weight manipulation. The PID controller’s gain is de-
termined by the neuron weights. The neural network’s weights
have been designed to achieve the system’s desired outcome.
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Fig. 7 shows the block diagram of the ANN PID controller.
It is a single-neuron structure. x1, x2, x3 nothing but error
multiply with w1, w2, w3 and these weights will act as PID
gains. The proportional error x1, the integral error x2, and
the derivative error x3 are obtained according to equations
(15),(16),(17). By using equation (18) neuron output is ob-
tained.

x1 = e(k)− e(k − 1) (15)

x2 = e(k) (16)

x3 = e(k)− 2e(k − 1)− e(k − 2) (17)

u(k) = u(k − 1) + k

3∑
i=1

wi(k)xi(k) (18)

The following are the steps for using ANN to tune the PID
controller:
Step 1: To select the weights’ random values.
Step 2: To determine the error difference between the output
and reference input.
Step 3: Using the error signal, the supervised delta learning
technique determines the PID controller’s gains.
Step 4: The output of the single neuron is multiplied by gain
’k’ to achieve the optimal closed-loop response.
Step 5: The revised weights will act as the Kp, Ki, and Kd.

The weights are updated by using equations (19),(20),(21) as
per the supervised delta learning algorithm. Where, ηp, ηI and
ηD are the proportional, integral, and derivative learning speeds.

w1(k) = w1(k − 1) + ηP (k − 1)u(k − 1) (19)

w2(k) = w2(k − 1) + ηI(k − 1)u(k − 1) (20)

w3(k) = w3(k − 1) + ηD(k − 1)u(k − 1) (21)

C. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a new form of neural network that merges fuzzy
logic (FL) and neural network (NN) design [16],[30]. In fuzzy
logic manually build the rule base but in this method rule base
will be modified as per the system using ANN. Using an input-
output collection method, it builds a fuzzy inference system
(FIS). The input and output data set was obtained via a PID
controller that was adjusted through conventional methods. The
ANFIS model structure consists of three hidden layers and a
feed-forward, two input, and one output structure. The error
back-propagation algorithm is used to construct the ANFIS
membership functions. The ’e’ and ’∆e’ are the inputs while
the Kp, Ki, and Kd are the outputs of the ANFIS controller.
Then the system (CSTR) is implemented by using the ANFIS
editor in MATLAB [16].

IV. NATURE-INSPIRED ALGORITHMS FOR PID TUNING

”Nature-inspired algorithms” refers to a type of algorithms
that are inspired by physical and chemical systems, biological
systems, and swarm intelligence, among other natural phenom-
ena. GA, PSO, DE, ACO, SA, ABC, FA, CS, HS, GWO, etc.
are the nature-inspired algorithms used for PID tuning. For
example, K. Anbumani et.al designed GWO-PID and PSO-PID
for a heat exchanger process. They compare the performance
of GWO and PSO algorithms and results Tr, Ts, Mp, and Tp
are compared and found that GWO-PID performs better than
PSO-PID for heat exchangers [73].

A. Genetic Algorithms (GA)

It is a search method based on selection and natural genetics
[17]. In 1975, John Holland developed it. It is based on natural
selection, genetics, and mutation. A number is encoded by
GA into a binary string known as chromosomes and encoding
includes binary, natural number, real number, matrix, tree, and
quantum. To carry out the crossover and mutation processes,
the parents are determined from a collection of binary strings
based on the value of the evaluation function, also known as
the fitness function. It starts with a population of strings and
generates a successive population of strings. Simple GA copy
and swap strings. The population is in a set of strings. The
new chromosomes mean members of the population created
after each generation, thus this algorithm is called a genetic
algorithm. The individual strings are copied as per the values
their objective function is the function of reproduction step.
Selection of the fittest candidates from the population is through
the reproduction process. After that new chromosomes and
genes are for the next generation by using a crossover process.
The mutation operator in GA is used to obtain better results
and string position. In chromosomes, some genes are altered
by the mutation process.

The following steps are used for the development of a GA-
PID for the CSTR process [16].
Step 1: Describe the plant model.
Step 2: Determine the objective function that needs to be
minimized by initializing the PID parameters Kp, Ki, and Kd.
Step 3: Find the values for particle best (pbest) and global best
(gbest).
Step 4: Use the mutation process to compute the new popula-
tion.
Step 5: Get updated gbest1 and pbest1 values.
Step 6: Compare the values of pbest and pbest1.
Step 7: Compare the values of gbest and gbest1.
Step 8: Continue from Step 2 until the optimal value is reached.
Step 9: Find the step response for the closed-loop system and
get the updated values for the PID parameters Kp, Ki, and Kd.

The advantages of the GA technique are efficient and ef-
fective, one population solution is used for obtaining a new
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Fig. 7. ANN structure.

population, its concept is very simple to understand, it uses per-
formance index data, not derivatives, it supports multi-objective
optimization, and is stochastic, and it is a useful technique in a
combined discrete and continuous system. The disadvantages
of this technique are its implementation is difficult and is
expensive and time-consuming technique. The applications of
GA-based PID in industry such that speed control of DC motor
[3], level control of tank [8][32], CSTR process control [16],
servo processes control [23], Autonomous vehicle control [50]
like many more.

B. Particle Swarm Optimization (PSO)

The first PSO was created in 1995 by Kennedy and Eberhart
[26],[27]. PSO imitates the movement of particles or a flock
of birds in a search space. This algorithm is used for solving
problems of nonlinear systems and gives optimized solutions
[28]. It searches for optimal values by updating generations.
In this method, the swarm is nothing but a population and
the particle is a member of the population [1]. It starts with
a random initial population and moves randomly in selected
directions. Each particle travels under the searching space
and remembers the best previous positions of itself and its
neighbors. Evaluate fitness values by fitness function and it is
used in algorithms for optimization. Optimization means the
optimum point where conditions are best and most favorable.
It is used to find the best among different possible solutions.

PSO Initialization steps are as follows:
Step 1: A group of randomly distributed particles initializes the
PSO algorithm (each particle represents a solution).
Step 2: Each particle updates generation (iteration) in search of
the optimum value.
Step 3: Every particle is updated by in each iteration.

• First Best one is the best solution (Fitness)
• Second Best is tracked by particle swarm optimizer.
• After finding the two Best values, the particle updates its

velocity and position.
• Position by:

xt+1
i = xti + vti (22)

• Velocity by:

vk+1
i = wvki +c1r1(xBest

t
i−xti)+c2r2(gBest

t
i−xti) (23)

Where, xBest= best particle position, w= inertia weight, c1, c2 =
two positive constants=2, r1, r2= two random parameters within
(0,1), gBest= best group position.

Objective functions are used to maximize or minimize values
that are trying to optimize. Each particle has velocities. The
main process for creating the PSO algorithm is to randomly
initialize each particle’s parameters, population, position, and
velocity before calculating the fitness value. Set the new value
as gBest if the fitness value is above the best fitness value,
gBest. Determine the position and velocity of each particle,
estimate fitness, and determine the most recent best value gBest.
Update time t = t + 1; gBest and the fitness value are the
outputs; continue until the condition is met [26],[27]. The best
value from each trial is taken into consideration to stabilize the
process, and the ideal tuning technique is performed ten times
on its own. Therefore, a more optimal selection of PID settings
reduces the performance index and improves system response.

The applications of the PSO-PID controller for CSTR tem-
perature control [18]. This PSO has tuned the gains much
more optimally, thus improving system performance. The rise
time of 0.599 msec and the settling time of 1.12 msec were
obtained with no overshoot for CSTR and as compared with
GA significant improvement in performance, PSO-PID in seed
control of BLDC motor [1], [3], [28], Coupled Tank System
control [22], servo process control [23], etc. In their research, N.
Divya and A. Nirmalkumar [65] reviewed a few soft computing
techniques for fine-tuning PID controller parameters.

C. Differential Evolution (DE)

In 1995, Rainer Storn and Kenneth Price proposed the DE
algorithm [76]. It is a stochastic optimization algorithm with
a population base. It has three operations like GA such as
mutation, crossover, and selection. In GA, two sub-individuals
are produced by crossing two parent individuals; on the other
hand in DE, new individuals are produced by varying the
various vectors of multiple individuals. Additionally, in DE, the
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individual is updated only when the new individual surpasses
the old one, whereas, in GA, the offspring individual replaces
the parent individually with a given probability. This algorithm
is iterative evolves and improves the population, converging to a
set of optimal PID parameters. Through inter-group rivalry and
cooperation, DE conducts an optimization search. A population
theory-based global search approach is being used. Using real
number coding, variation operation based on difference, and a
one-to-one competitive survival strategy, reduces the complex-
ity of the genetic operation. It also possesses a considerable
degree of memory. It can adapt its search technique in real time
to the search environment and exhibits excellent robustness and
powerful global search capabilities. The differential evolution
algorithm’s key benefits include fewer unknown parameters,
difficulty falling into local optimization, and quick convergence
[103].

During mutation operation each individual xi(t) can found
as per equation (24),

vi,j(t) = xr1,j(t) + F (xr2,j(t)− xr3,j(t)) (24)

where xr1(t), xr2(t) and xr3(t) are three individuals selected
randomly from the whole population, r1 ̸= r2 ̸= r3 ̸= i and
F ∈ [0, 2] is the mutation factor. The crossover individual
ui(t) = (ui,1(t), ui,2(t), ..., ui,D(t)) can be generated by the
mutation individual vi(t) and its parent individual xi(t), as
described in Equations (25), (26),

ui,j = vi,j(t), ifrand ≤ CR, orj = jrand (25)

ui,j = xi,j(t), ifrand ≥ CR, andj ̸= jrand (26)

where rand is a random number in the range [0, 1], CR is the
crossover factor and it is a constant in the range [0, 1]; jrand
is an integer selected randomly from the range [1, D]. During
the selection procedure, the DE algorithm adopts the “greedy”
strategy; the next-generation individual is selected between
parent individual xi(t) and the crossover individual ui(t),
which has the better fitness value, as described in equations
(27), (28).

xi = xi(t), iff(xi(t))is better thanf(ui(t)) (27)

xi = ui(t), otherwise (28)

DE Initialization steps are,
Step 1: Set DE optimization parameters such as population size,
crossover constant, mutation constant, number of generations,
and number of variables (for PID=3), Set upper and lower
bounds for PID variables.
Step 2: Evaluate the fitness of each vector by randomly initial-
izing all the vector populations within the specified upper and
lower boundaries.
Step 3: Until the generation process is complete, optimization
will continue. The first individual fitness value from the current
population is designated as the objective vector. The target

vector is crossed and mutated with the trial vector, which is
generated by selecting 3 values at random from the current
population. The trial vector’s fitness value can be calculated by
sending each trial vector to the PID controller independently.
Step 4: Verifying the boundary constraint.
Step 5: By comparing each target vector’s fitness value to that
of the trial vector, the selection is carried out for each target
vector. For the next generation, the vector with the lower fitness
value is selected.
Step 6: Repeat steps 3-5 until the new population is completed.
Step 7: Repeat step 6 until the end of generation. The optimiza-
tion process is completed. The global minimum fitness value
is achieved and these are the optimum parameters of the PID
controller.

D. Ant Colony Optimization (ACO)

Marco Dorigo developed this technique in 1992 [2][11][51].
Ants can easily communicate with each other using
Pheromones. Pheromones are chemical signals used by ants for
communication in the environment and ants release pheromones
in danger (to alert other ants for help). ACO algorithm is
inspired by the social behavior of real ants. This technique is
used to find optimal paths. With the help of pheromone signals,
ants can easily find the shortest path. ACO algorithm initializes
its parameters, and solution construction and positions each
and in the starting node, each ant will select the next node
by applying the state transition rule, repeat until the ant builds
the best solution, then compute the fitness value, update best
solution, apply offline pheromone update, display the best
result.

The ants are driven by a probability rule to choose their
solution to the problem. The probability rule between two nodes
i and j, depends on two factors [11]. From equation (29), the
factor ηij is the inverse of the cost function. The element τij ,
which is associated with pheromone and has an initial value of
τ0, is updated after each iteration and does not change while the
algorithm is being executed. The user can instruct the algorithm
to search in favor of the heuristic or the pheromone factor by
using the parameters α and β.

pij =
[τij ]

α[ηij ]
β∑

hϵs[τih]
α[ηih]β

(29)

The change in pheromone quantity in each path is given by
equation (30),

∆A
τij =


Lmin

LA if, i, jϵTA

0 otherwise
(30)

LA is the solution of the ant A and Lmin is the best solution
found so far. The pheromone for the next iteration is decided in
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equation (31). NA is the number of ants, ρ being the evaporation
rate, designed to allow the elimination of bad choices.

τij(t) = ρτij(t− 1) +
∑NA

A=1
∆A

τij (t) (31)

The limitation of this algorithm is that it uses a greater
number of parameters and the advantage is that using fewer
iterations provides the best solution [51]. ACO is used for
temperature and humidity control of rooms [5]. It is also used
for a level control system [32].

The ACO algorithm is as follows:
Step 1: Initialize ACO parameters
Step 2: Ant solution construction
Step 3: Position each and in the starting node. Step 4: Each ant
will select the next node by applying the state transition rule.
Step 5: Repeat until the ant builds the best solution, then
compute the fitness value.
Step 6: Update the best solution.
Step 7: Apply offline pheromone update.
Step 8: Display the best result.

E. Simulated Annealing (SA)

The idea for the simulated annealing technique came from
the annealing process used on metals, which involves heating
solid-state metal to a high temperature until it reaches a
random state after which it gradually cools to reach thermal
equilibrium, causing the atoms to arrange themselves in the
ideal crystal’s lowest energy state. Another name for this
lowest energy state is the ground state. The metal is gradually
cooled after being cautiously heated to this ground condition.
Here, there is a decrease in the average potential energy per
atom, which can be applied as a minimization technique.
The purpose of this procedure is to clean the crystal of
any defects. The material is allowed to cool more slowly
and allowing less-than-ideal solutions expands the search
space and increases the depth of the search for the optimal
result. A probability distribution controls the search’s depth,
and an acceptance probability determines whether a poorer
point is accepted by the algorithm. It is directly correlated
with temperature and is sometimes used to determine a new
search area in search of a better minimum. Stochastic/random,
unorganized, and nonlinear optimization issues can all be
solved with this approach. In 1953, Metropolis presented this
algorithm for the first time, and in 1983, Kirkpatrick developed
it [108]. It is based on the Boltzmann probability distribution
shown in equation (32), where K is the Boltzmann constant, T
is the temperature, and E is the energy, and the convergence
of the algorithm can be regulated by changing the T [103].

P (∆E) = e(−∆E/KT ) (32)

The distinguishing feature of SA over other approaches
is its ability to avoid getting stuck at local minima. With

different probabilities, the technique employs a random search
that allows modifications that increase and decrease the ob-
jective function. Using the similarity between the annealing
process—the cooling and freezing of metal into a minimum
energy crystalline structure—and the search for a global opti-
mum of a given function across a wide region. SA is a non-
specific probabilistic metaheuristic approach. SA is capable
of handling complex constraints, noisy and chaotic data, and
highly nonlinear models. Its adaptability and capacity to ap-
proach global optimality are its key advantages over other local
search techniques. The algorithm is highly versatile because it
doesn’t rely on any model limitations. This method works under
the assumption that annealing will go on until the temperature
drops to zero.

The SA algorithm evaluates the objective function after
starting with a set of initial Kp, Ki, and Kd. The search
space will be defined by the upper and lower bounds for each
parameter of the controller, where the SA searches for the best
fitness. The objective function is evaluated once more after the
PID controller parameters are changed to create a new set of
PID parameters.

F. Artificial Bee Colony (ABC)

Three types of bees are identified by ABC algorithm scouts,
observers, and employed foragers [19]. Karaboga introduced
the ABC algorithm. In most situations, a worker forager bonds
with a single food source and shares it with other bees; scouts
are in charge of finding new food sources, and by exchanging
information with worker foragers, onlookers can locate food
sources [103]. Here, Ld and Ud are the lower and upper
bounds in the ’d’ dimensional space, respectively, and rand
(0, 1) is the random integer uniformly distributed in the range
(0, 1). The location of the ’i’ individual on the ’t’ iteration
is xi(t), i.e. generated by equation (33). Professional foragers
utilize equation (34), in which the random number < i, j ≤
M, i ̸= j, φ is uniformly distributed in the interval (0, 1).
The dietary sources chosen by observers are determined by
Equations (35), and (36).

xi,d(t) = Ld + rand(0, 1) ∗ (Ud − Ld) (33)

vi,d(t+ 1) = xi,d(t) + φ(xi,d(t)− xj,d(t)) (34)

pi =
fiti∑N
i=1fiti

(35)

fiti =


1

1+f(i) , f(i) ≥ 0

1 + abs(f(i)), otherwise
(36)

The ABC algorithm eliminates a food source and updates the
scout with the associated employed forager if it cannot be
updated after limited times searches. The PID controllers Kp,
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Ki, and Kd are to be optimized parameters as honey sources
with a specific performance index as the objective function
to develop a new type of ABC-PID optimization method.
Finding a set of Kp, Ki, and Kd parameters that will allow a
system performance index to be as low as possible, a controlled
quantity to quickly reach the desired target, and an algorithm
with extremely low overshoot and short adjustment times are
the main challenges of the artificial bee colony algorithm.

G. Firefly Algorithm (FA)

The flickering patterns of fireflies are used as an inspiration
for FA. Each firefly moves towards brighter fireflies in search
of better solutions since their brightness reflects their fitness
value. FA assists in leading the search to areas of the parameter
space that show potential. PID controller gains are tuned during
the firefly algorithm’s optimization to ensure the best possible
control performance under typical operating conditions [22].
This algorithm was proposed by Yang Xin-She.

The three main processes are the firefly position update [103],
the firefly Luminance ’I’ update, and the firefly attraction degree
β computation. Let us assume that the maximum brightness is
I0, the maximum attraction degree is β0, the attraction factor is
γ, and the step factor is a step. Equations (37) and (38) define
luminance, and equation (39) defines the degree of attraction.

I = I0 ∗ exp(−γ ∗ ri,j) (37)

ri,j =

√√√√ D∑
k=1

(xi,k − xj,k)2 (38)

β(ri,j) = β0 ∗ exp(−γ ∗ r2i,j) (39)

xi(t+ 1) = xi(t) + β(ri,j) ∗ (xj(t)− xi(t) + step ∗ ϵi (40)

The ’i’ firefly’s position updating as it approaches the ’j’
firefly is described by equation (40). At iteration t, the positions
of the ’i’ and ’j’ fireflies are denoted by xi(t) and xj(t),
respectively. The uniformly distributed random number is ϵi.

The FA algorithm is trying to adjust the PID parameters
Kp, Ki, and Kd using the simulation and the algorithm. With
the objective function as its starting point, the FA algorithm
first generates an initial random population, defines parameters,
calculates luminous intensity and absorption, initializes the
location of fireflies, tunes attractive parameters i towards j
moves, calculates the new solutions, and updates luminous
intensity.

H. Cuckoo Search (CS)

In 2009, Xin-She Yang and Suash Deb developed the cuckoo
search algorithm. It is a population-based metaheuristic opti-
mization approach [103]. In the CS technique, a single egg is
laid by each cuckoo, which is dropped into a randomly chosen

nest. The host bird would identify the cuckoo-deposited egg
with a probability pa ∈ [0, 1]; that is, the percentage pa of ’M’
nests would be replaced by the new nests, given a fixed number
of probable host nests. Equation (41), in which α is the scaling
factor equivalent to one of step size, is used by the ’i’ individual
to update its host nest xi(t). The ⊗ entrywise multiplications
are represented by the product, and the Levy flight’s derivation
from the Levy distribution is indicated by Levy(λ).

xi(t+ 1) = xi(t) + α⊗ Levy(λ) (41)

Since real Levy distribution is challenging to achieve, the Levy
flight is typically calculated using equation (42), where u and
v follow the uniform distribution, u ∼ N(0, σ2), v ∼ N(0, 1),

σ =
(

Γ(1+β)sin(πβ/2)
βΓ(1+β)/2)2(β−1)/2

)1/β

, β = 1.5.

s =
u

|v|1/β
(42)

There is a chance that the host may find some cuckoo eggs
and reject them; this chance is pa. In case of a lost cuckoo egg,
it needs to find a new boarding place and update using equation
(43), where H is a Heaviside function, ϵ is a random number
taken from a uniform distribution, s is the step size, which is
defined as a random number within the interval of (0, 1), and
α is a scaling factor of step size.

xi(t+ 1) = xi(t) + αs⊗H(pa − ϵ)⊗ (xj(t)− xk(t)) (43)

The following are the design steps to get the best solution:
Step 1: Set the objective function, the maximum number of
iterations, and the population initialization.
Step 2: Create a new cuckoo with an arbitrary, and use the Levy
flying method to generate it. Then, find its new fitness for the
proposed objective function for the parameter tuning problem.
Step 3: From the population that was created at random, select
a nest and determine its objective function.
Step 4: If the fitness nest is reached, the new nest obtained with
the Levy flight replaces the host nest.
Step 5: Levy flight leads to the creation of new nests at new
sites, and some of the worst nests are abandoned.
Step 6: Determine each newly formed nest’s objective function
values.
Step 7: Update the current iteration’s best nest.
Step 8: The best nest obtained in the current iteration.
Step 9: Follow steps 2-8 until the end of the stopping criteria.
The ideal answer to the PID parameter is represented by the
best nest that was found at the end of the iteration.

I. Harmony Search (HS)

The improvised nature of music is the inspiration for the
Harmony Search optimization method. Each member of a band
modifies their pitch to create a beautiful harmony. All of the
choice variables continuously adjust their values during the
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global optimization process to help the objective function reach
global optimization [93]. The HS method provides several
outstanding benefits, including simple implementation, fewer
configurable parameters, and speedy convergence. In 2001,
Z. W. Geem, J. H. Kim, and G. Loganathan developed the
Harmony Search algorithm [94],[95].

The harmony memory (HM) of this algorithm is sized by the
harmony memory size (HMS) parameter, and the ideal harmony
vectors are kept there during optimization [103]. A new har-
mony vector such as x

′

i(t) = (x
′

1(t), x
′

2(t), x
′

3(t), ......x
′

D(t))
was generated from the HM based on randomization, pitch
adjustments, and memory considerations. Using the harmony
memory considering rate (HMCR) option, which ranges from
0 to 1, it chooses a new value. According to equation (44) if a
randomly generated number r1 is less than or equal to HMCR,
then x

′

i(t), the definition space of the ’i’ dimensional variable,
would be updated from HM. Next, a value at random would be
chosen from x

′

i(t). We analyze each component x
′

i(t) to see if
pitch adjustment is necessary. The pitch adjusting rate (PAR),
which determines the rate of adjustment for the pitch selected
from the HM, is a parameter used in the method.

x
′

i(t) =


xji (t) j ∈ (1, 2, ......HMS)r1 ≤ HMCR

x
′

i(t) ∈ xi else

(44)
Each component x

′

i(t) from equation (45) is analyzed to dis-
cover if pitch adjustment is necessary. One of the factors in the
approach is the pitch adjusting rate (PAR), which establishes the
rate of adjustment for the pitch chosen from the HM. α = BW *
u(-1, 1), where u(-1, 1) is a uniform distribution between -1 and
1, and BW is an arbitrary distance bandwidth for continuous
design variable, are represented by the numbers r2 and α.

x
′

i(t) =


x

′

i(t) + α r2 ≤ PAR

x
′

i(t) otherwise

(45)

The HS algorithm is developed using the following steps:
Step 1: Set up the HS Memory (HM). A certain number
of randomly generated solutions to the optimization problems
under consideration make up the initial HM.
Step 2: Get the HM to improvise a novel solution. Based on
the HM considering the rate, each component is obtained.
Step 3: Make HM updates. Step 2 revised solution is evaluated.
It will take the position of the least fit member in the HM if
its results are better. If not, it gets eliminated.
Step 4: Continue from Steps 2-3 until a predetermined termi-
nation criterion—such as the maximum number of iterations is
reached.

Like swarm intelligence and GA algorithms, the HS tech-
nique uses a random search strategy [95]. It doesn’t require

any primary knowledge, such as how the objective function
gradients work. However, it just uses one search memory to
evolve, unlike those population-based methods. As a result, the
HS approach stands out for its computational simplicity. The
PID controller settings are best combined using the harmony
search algorithm and its variations, where each harmony is
made up of the three gains.

J. Grey Wolf Optimization (GWO)

GWO was proposed by Mirjaliali Mohammad and Lewis
in 2014. This algorithm was developed by grey wolf hunting
and social hierarchy technique [7]. The grey wolves lived in
organized packs. The size of one pack is 5-12 and 4 various
ranks of wolves in a pack. The leader of the pack is the alpha
wolf it may be a male or a female and other members of the
pack follow to alphas. The alpha wolves in the pack make
decisions on sleeping places, time to wake up, hunting, etc. The
beta wolf is the second level of the Grey wolf hierarchy. The
beta wolf helps in the work of the alpha wolf. The beta wolf
gives feedback to the alpha wolf. The delta wolf is the third
level of the Grey wolf hierarchy. It dominates lower-ranking
omega wolves. They provide food to the whole pack. The
omega wolf plays a scapegoat role in the pack means a victim
who is blamed for the mistakes or faults of others. They
are the last wolves allowed to eat. The grey wolf pack faces
internal problems and fighting if the omega wolf is not in the
pack. Grey wolves hunt in several ways: by tracking, pursuing,
and approaching their prey; by encircling and harassing them
until they stop moving; and, lastly, by attacking them. The
following is the GWO algorithm’s mathematical model:

Step 1: Alpha is the best solution. Beta and Delta are
the second and third-best solutions, respectively. Omega comes
after these three wolves.
Step 2: Encircling behavior is modeled as:

−→
D = |

−→
C
−→
Xp−

−→
X (t)| (46)

−→
X (t+ 1) = |

−→
Xp(t)−

−→
A
−→
D | (47)

Where, t = current iterations,
−→
Xp = Position of the Prey,

−→
X

= Position of Grey wolf,
−→
A ,

−→
C = Coefficient vectors,

−→
A =

2−→a −→
r1 - −→a , and

−→
C = 2

−→
r2,

−→
r1,

−→
r2 = Random vectors ranges

(0,1) Component −→a linearly decrease from 2 to 0 throughout
iterations.

• By changing the values of A and C, several locations
around the optimal search agents can be reached to the
current position.

• r1, r2 allows the wolf to reach any position between 2
particular points.

Step 3: Grey wolf Hunting:

• Grey wolves target the weak or older ones.
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• Rather than take the chance of attacking a large animal
that is eager to fight, wolves may decide to try alternative
prey.

• Alpha directs the Hunting procedure.
• It is thought that Delta, Alpha, and Beta are more knowl-

edgeable about where the prey is (optimal solution).
• As Alpha, Beta, and Delta’s positions change, so will the

positions of other wolves.
−→
Dα = |C1

−→
Xα−

−→
X (t)|, and

−→
X1 = |

−→
Xα−A1

−→
Dα| (48)

−→
Dβ = |C2

−→
Xβ −

−→
X (t)|, and

−→
X2 = |

−→
Xβ −A2

−→
Dβ| (49)

−→
Dδ = |C3

−→
Xδ −

−→
X (t)|, and

−→
X3 = |

−→
Xδ −A3

−→
Dδ| (50)

• The Grey Wolf position is updated as:

−→
X (t+ 1) =

(
−→
X1 +

−→
X2 +

−→
X3)

3
(51)

Step 4: Wolves complete the hunting process by attacking their
prey when it stops moving.

• This is represented by a decrease in −→a from 2 to 0 during
the iterations.

• As −→a decrease,
−→
A also decreases.

• |A| < 1 Makes the wolf charge in the direction of its prey.
• |A| > 1 Find a better prey by diverting from the current

one.
• C Random value intervals (0,2) comprise vectors.
• C aids in adding weight to the prey which limits the

wolves’ ability to locate it.
• If C > 1: Emphasize.
• If C < 2: De-emphasize or reduce importance.

GWO parameters are the number of search agents or pop-
ulation, dimension, maximum interaction, lower bounds, and
upper bounds are required to be set. The objective function is
employed to lower error and illustrates how the PID controller
improves system performance.

V. COMPARATIVE ANALYSIS OF ALGORITHMS

In comparison with conventional algorithms, intelligent and
nature-inspired algorithms have several benefits. They can ef-
fectively handle uncertainties, efficiently search a large search
space, and adjust to shifting operational conditions. According
to the needs of the control system, they can also be customized
to meet particular performance objectives, such as minimiz-
ing transient characteristics such as settling time, overshoot,
or steady-state error. Successful PID tuning still depends on
choosing the best algorithm for a given control problem and
making sure it is configured correctly. When implementing
these algorithms in real-time control applications, it is crucial
to take computational complexity and implementation consid-
erations into account.

For example, the simulation results are shown in Table V
[102] of the first order plus dead time model. It shows a
comparison of some conventional methods in the time response
form and confirms that the implemented Fuzzy-PID with a
simple design approach and smaller rule base can provide better
performance than ZN-PID, CC-PID, TL-PID, and IMC-PID.
It can be observed that the least Tr of 2.32 sec is achieved
using the CC tuning formula. However, this method was not
recommended as it gave the largest Ts and Mp. Though the
reduced Ts of 8.25 sec is reported in IMC but resulted overshoot
of 2.24 percent which is larger than fuzzy and TL methods.
Almost zero percent overshoot was obtained by fuzzy and TL
but huge rise time and settling time by TL as compared to other
tuning methods which were not acceptable.

TABLE V. FIRST ORDER PLUS DEAD TIME MODEL

Method Mp Ts Tr

ZN 18 33.32 18

CC 28 25.48 2.32

TL 0.0693 193.78 81.32

IMC 2.24 8.25 3.027

Fuzzy PID 0 10.31 5.68

The closed-loop step response of the CSTR model is obtained
from ZN-PID, FLC, ANN-PID, ANFIS-PID, and GA-PID and
measures rise time, settling time, overshoot, undershoot, and
steady-state error[16]. The comparison of controllers is shown
in Table VI. It is observed that the poor performance is given by
ZN-PID over intelligent PID except less rise time. The linear
approximation used in the ZN technique may result in less-
than-ideal performance in the CSTR process with nonlinear
dynamics, which would mean insufficient adjustments. The
performance of ANN-PID is better as compared to others except
undershoot and overshoot. Still, there is scope for improvement
of this system.

TABLE VI. COMPARISON OF INTELLIGENT PID CONTROLLER FOR CSTR

Parameters ZN Fuzzy ANN ANFIS GA

Rise Time 1.789 1.865 2.98 2.578 4.84

Settling Time 3.745 5.624 6.85 3.425 7.12

Overshoot 20.05 17.95 10.47 1.0149 0

Undershoot 44.46 39.98 2.948 21.2 7.2923

Steady-state error 0 0 0 0 0
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TABLE VII. COMPARISON OF INTELLIGENT AND NATURE-INSPIRED ALGORITHMS

Algorithms Complexity Convergence
Speed

Robustness Adaptability Performance
Improvement

Less effective in

FL Moderate Variable Robust to uncer-
tainty

Limited adapta-
tion

Improved in
some cases

Systems with highly dynamic and
rapidly changing dynamics

ANN High to
Moderate

Moderate to
Fast

Sensitive to noise Adaptable Enhanced in
many cases

Systems with limited data, inter-
pretability requirements

ANFIS Moderate to
High

Moderate to
Fast

Robust to uncer-
tainties

Adaptable Enhanced in
many cases

Systems with limited data, inter-
pretability requirements

GA High Variable Robust to local op-
tima

Global
exploration

Effective in
many cases

Real-time applications, highly dy-
namic environments

PSO Moderate to
High

Fast Susceptible to local
optima

Global
exploration

Effective in
many cases

Systems with stringent safety con-
straints, highly nonlinear dynamics

DE Moderate to
High

Fast Robust to local op-
tima

Global
exploration

Effective in
many cases

Systems with stringent safety con-
straints, highly nonlinear dynamics

ACO High Moderate to
Slow

Robust to local op-
tima

Global
exploration

Effective in
many cases

Real-time applications, large-scale
problems

SA Moderate to
High

Slow to
Moderate

Ability to escape
local optima

Adaptable Effective in
some cases

Real-time applications, systems re-
quiring rapid adaptation

ABC Moderate to
High

Moderate to
Fast

Limited
exploration
capability

Global
exploration

Effective in
some cases

Systems with complex and irregu-
lar solution spaces

FA Moderate to
High

Fast Limited
exploration
capability

Adaptable Effective in
some cases

Highly dynamic environments, sys-
tems with rapid changes

CS Moderate Fast Limited
exploration
capability

Adaptable Effective in
some cases

Systems with strict performance re-
quirements

HS Moderate to
High

Moderate to
Slow

Global search ca-
pability

Adaptable Effective in
some cases

Rapidly changing solution spaces

GWO Moderate Fast Limited
exploration
capability

Adaptable Effective in
some cases

Multimodal landscapes with
widely separated optima

Table VII provides a comparative overview of various intelli-
gent and nature-inspired algorithms in terms of different criteria
relevant to industrial control applications. It’s important to note
that the data in the table is general and collected by referring to
various references. The effectiveness of each algorithm depends
on the specific characteristics and requirements of the control
system in question.

The computational complexity can vary based on algorithmic
parameters, problem-specific characteristics, and the specific
implementation details. While these categorizations provide a
general perspective, the actual performance may depend on the
specific application and problem being addressed.

The convergence speed represents how fast the algorithm
converges to a solution. The convergence speed depends on
various factors, including algorithm parameters, problem com-
plexity, and the nature of the optimization landscape. Some al-
gorithms may exhibit different convergence speeds for different
problem types or characteristics.

The robustness reflects the algorithm’s ability to handle
uncertainties and disturbances. The robustness of an algorithm
is often influenced by the nature of the problem, the quality of
the optimization landscape, and the algorithm’s adaptability to
variations in parameters.
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The adaptability shows how well the algorithm adapts to
varying operating conditions. Adaptability is context-dependent
and can vary based on the specific problem, optimization
landscape, and algorithm parameters. High adaptability does
not necessarily mean superior performance in all scenarios, as
trade-offs with other factors, such as convergence speed and
solution quality, may exist.

The performance improvement provides an overall assess-
ment of how much the algorithm improves the PID controller’s
performance. The level of improvement depends on the specific
characteristics of the optimization problem, including its dimen-
sionality, complexity, and the nature of the fitness landscape.
Additionally, research and advancements in optimization tech-
niques continue to evolve, leading to further improvements in
PID tuning using intelligent and nature-inspired methods [103].

VI. REAL-WORLD APPLICATIONS

High nonlinear constraint optimization issues make up the
majority of real-world applications. Some of the earlier created
conventional optimization strategies fail to tackle those real-
life challenges, and the majority of answers are found by
applying intelligent and nature-inspired algorithm methods.
Because nature-inspired algorithms are typically simple and
adaptable, researchers worldwide have long been attracted by
the creation of some advanced intelligent algorithms and their
utility in effectively handling a wide variety of challenging
engineering issues. Some applications from different literature
reviews are mentioned as follows.

The various conventional, intelligent, and nature-inspired tun-
ing methods of PID controllers are presented in a survey paper
on a review of PID control, tuning methods, and applications
[10]. It shows growth in PID controller year by year. Intelligent
tuning techniques facility available with PID controller gives
more attention to applications of PID controller for process
control systems from the industrial users.

In a comparative analysis of tuning a PID controller using in-
telligent methods [16], the results obtained by ANFIS achieved
good performance of the system in settling time and overshoot
because ANN gives a moderate performance of the system. But
ANN reduces the overshoot and undershoot in comparison with
the ZN method. The choice of control approach depends on
the specific characteristics of the CSTR process, including its
nonlinearity, uncertainty, and dynamic nature. ANFIS’s success
in settling time and overshooting can be attributed to its ability
to integrate fuzzy logic for uncertainty handling and neural
networks for adaptive learning. ANN, while also capable of
handling nonlinearity and learning from data, may not capture
uncertainty as explicitly as ANFIS. The ZN method, on linear
stability analysis, may not be as effective in adapting to the
nonlinear and uncertain dynamics of the CSTR process.

Design optimized PID for speed control of brushless DC
motor using PSO [1]. The rotor position in the DC motor is

determined by changing back emf. The time response specifica-
tions of the system such as delay time, rise time, settling time,
peak time, peak overshoot, and steady-state error measured
from results obtained by PSO and compared with conventional
methods. The improved results obtained through PSO in case
of sudden change in loads and reference speed. PSO produces
better and more robust performance, in motor speed control.

Artificial intelligence techniques such as FLC, GA, and PSO
are applied for DC motor speed control [3]. Compared their
performance to each other and with conventional PID for motor
speed control. The unexpected maximum overshoot and slow
speed are reduced by intelligent techniques than conventional
techniques. Intelligent techniques are good and fast and solve
the problems associated with conventional PID. PSO-PID is a
very good technique for DC motor speed control purposes. PSO
is often considered a very good technique for DC motor speed
control purposes compared to FLC and GA due to its specific
strengths in optimization tasks and system tuning.

The PID controller is designed using both intelligent and
conventional methods [4]. The sensor data is utilized to de-
termine the system’s control objectives. Data from the sensors
measured during the controlled process is used to intelligently
adjust the control system’s parameters as compared with the
conventional method for PID design. Using GA, the system
parameters are calculated based on a differential equation. For
effective process control, use a fuzzy expert system to design
a controller. To adjust the PID and higher-order systems that
these modules controlled, the ultimate intelligent controller was
implemented.

Ant colony optimization (ACO) and symbiotic organism
search (SOS) algorithms were developed for PID tuning for
temperature and relative humidity control of rooms and ob-
tained a response. SOS is a natural philosophy inspired by the
behavior of reactions between organisms living in nature. The
SOS algorithm has two control parameters ecosize represents
the number of organisms and maximum function evaluation
represents the maximum number of iterations. As per time
response specifications it shows that in temperature control,
the ACO responds quickly to a change in a set point because
the ACO algorithm is less affected by poor initial conditions
whereas the SOS performs better in relative humidity man-
agement. However, the conventional methods are slow. ACO
responsiveness and adaptability suit the dynamic nature of
temperature control, while SOS’s ability to handle multimodal-
ity makes it effective for relative humidity management. The
limitations of conventional methods in terms of convergence
speed and adaptability further emphasize the need for advanced
optimization techniques in complex control scenarios.

Developed a new hybrid PSO and GA method controlled
by fuzzy logic [6]. This paper focused on the optimization
problem of the PSO algorithm and it was solved by developing
a hybrid algorithm. In PSO particle is modified from its current
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position to its best position and it is found throughout the
swarm. But PSO has less search efficiency. So improving
it with a hybrid algorithm means PSO combines with other
algorithms. For example, PSO and GA combined in two ways,
GA population was used to start PSO, or PSO swarm was
used as the initial population of GA. The impact of hybrid
PSO-GA in the searching process is determined by the in-
fluence factor which is automatically selected using a fuzzy
system. This hybrid algorithm tested for well-known unimodal
and multimodal benchmark functions. The results obtained for
benchmark functions demonstrate are better than the analyzed
algorithm [6].

Design an intelligent controller for the level control of water
tanks [8] by using GA and PSO algorithms. The control system
performance is improved in terms of tr, ts, steady state, and
Mp by using a PSO/GA PID controller as compared with
conventional methods due to its intelligent structure. PSO and
GA provide advantages in optimizing PID parameters for water
tank level control due to their global optimization capabili-
ties, adaptability to system changes, and efficient exploration-
exploitation trade-off. These characteristics make them well-
suited for addressing the complexities and nonlinearities often
present in water tank systems.

To determine the input and output scaling factors for the
interval fuzzy PID controller, many algorithms are applied to
the servo system, including GA, CS, PSO, DE, Bee colony,
and combined PSO and DE algorithms [23]. The servo track-
ing selects these elements. Reduce the performance index to
choose the best scaling factor values. Measurement noise, set
point tracking, and load disturbances are used to compare
the performances. The hybrid method yields optimal values,
which are then used by interval fuzzy PID to achieve increased
performance.

Designed fuzzy PID for a standard second-order system
and compared the transient characteristics of the system with
conventional methods like ZN and relay auto-tune and obtained
better results with fuzzy PID than conventional one [31].
Fuzzy logic is an effective tool for integrating intelligence
because it can express progressive knowledge in a way that is
consistent with human thought processes. Neural networks are
powerful intelligent tools. Artificial neural networks are better
at handling fast-paced scenarios like real-time communication
and autonomous vehicle operation because they can quickly
analyze and deconstruct complicated data patterns.

In a survey paper on tuning of PID controllers for indus-
trial processes using soft computing techniques Divya and
Nirmal Kumar [65] examined several methods of soft com-
puting for fine-tuning PID controller settings. Five soft com-
puting techniques—Neural Networks, EP, GA, PSO, and ACO
methods—were examined in the review. The survey provided
flowcharts and basic highlights of a few chosen algorithms.
The implementation details of a few chosen algorithms were

withheld.
GWO-PID controller is used for controlling the ball hoop

system [7]. In this method, consider many intelligent swarm
methods and apply them to control the ball hoop system. But
in these methods’ the leader does not control the entire period.
This problem is solved by using the GWO algorithm. The
objective functions are minimized with the help of the GWO
for obtaining the optimal parameters of PID for controlling
the ball hoop system. The results obtained are compared to
each other. The comparison shows that the GWO method
gives a better solution than other techniques for the ball hoop
system. The peak overshoot and settling time are less for all
of the objective functions by the GWO algorithm as compared
with other techniques due to its less computational complexity,
simplicity in nature, and easy programming, etc.

VII. CHALLENGES AND LIMITATIONS

The limitations of fuzzy systems are completely dependent
on human knowledge and expertise. Also, it requires regular
updates to the rules of a fuzzy logic control system. The high
value of overshoot and undershoot was obtained in the CSTR
process step response [16]. When a high number of elements
are subjected to mutation, the size of the search space increases
exponentially, indicating that genetic algorithms do not scale
well with complexity. Because of this, applying the method to
issues like constructing PID is quite challenging.

There are some challenges in using ANNs for PID tuning
in dynamical systems such as selecting the right ANN design,
activation function, learning algorithm, and error function, as
well as the requirement for an adequate and representative
amount of data to train the ANN [37].

However, because complicated issues include a greater num-
ber of decision variables, the main limitation of PSO algorithms
is their significant processing time. The number of steps inside
also increases the computational complexity throughout the
optimization process [6]. The solution is a hybrid controller.

In the optimal tuning of PID for the DC motor via simulated
annealing, it is necessary to properly set the cooling schedule
in the SA algorithm. A local optimum may be reached by the
method if it is too rapid; a significant convergence time may
be experienced if it is too slow. To find an appropriate solution,
particularly for complicated situations, a lot of iterations may
be required [86].

The ABC algorithm for the second order system suffers from
low population variety, great equation-searching ability but poor
developing capacity, and slow global convergence due to poor
solution quality and local optimally [88]. Therefore, the global
crossover mechanism is added to the domain search of the
improved artificial bee colony algorithm (IABC) to improve
its direction and prevent premature convergence of the roulette
mechanism. Additionally, the population’s diversity is increased
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and the global search function is enhanced through chaotic
avoiding search.

The limitations of the typical FA are high computational
time complexity and slow convergence speed, among others
for servo processes. The primary cause is that the FA uses
a fully attracted model, which causes each firefly to move
around while it flies [22]. The slow convergence rate, poor local
searching capabilities, and low solving accuracy are some of the
limitations of the GWO algorithm that will affect on control of
the ball hoop system [7].

Overall, tuning PID controllers using intelligent and nature-
inspired algorithms has proven to be a valuable and promising
approach, enabling engineers and researchers to enhance control
system performance in diverse and challenging applications. It’s
crucial to remember that the effectiveness of these algorithms
can change based on the particular control system and its
specifications. To inspire more research and give readers and
researchers insight into a variety of nature-inspired algorithms,
the issues of stability of nature-inspired algorithms, the theoret-
ical framework of parameter tuning and control, the solutions
of large-scale real-life applications, and the advancements made
in handling non-deterministic nature problems are addressed.

Also, advances in PID tuning using smart and nature-inspired
techniques are made possible by ongoing research and advance-
ments in optimization methodologies. Considering the achieve-
ments of modern nature-inspired algorithms, several significant
problems remain unsolved. Although the fundamentals of how
heuristic algorithms work are widely established, the reasons
behind their operation are only partially understood. After some
interesting earlier attempts, it is unfortunately challenging to
mathematically explain why these algorithms are so successful.
These are unsolved research problems.

The optimization method’s drawbacks include the possibility
of requiring more computing resources, the possibility of being
dependent on the objective function and algorithm of choice,
and the risk of running into local optima or convergence
challenges.

VIII. FUTURE DIRECTIONS AND RESEARCH
OPPORTUNITIES

It is yet uncertain how much research has been done on the
basic theories, mathematical foundations, and tools for nature-
inspired algorithms in the field of technology. For example,
to investigate further algorithms in control, GA, PSO, and DE
must conduct additional studies. This review paper is an effort
to document the development in the field of PID tuning for the
novice reader and the future of PID.

Furthermore, as all algorithms work in black-box mode,
researchers are always coming up with what they call unique
algorithms and claiming that their optimizers find greater value
than others. Due to the insufficient and inadequate theoreti-

cal exploration of algorithms inspired by nature, it might be
challenging to discern the distinct features of many algorithms
due to their striking similarity. This motivates researchers to
compare and analyze nature-inspired algorithms theoretically
and experimentally.

In complicated situations, the algorithms that take inspira-
tion from nature are not as effective in handling continuous
optimization challenges. As a result, fitness evaluations could
include noise, be tedious and imprecise, and occasionally have
unpredictable fitness functions.

Every algorithm has some restrictions, thus combining the
current method with another is necessary to increase its per-
formance. The changes must be made to several recently
proposed algorithms to meet dynamic optimization problems. It
is necessary to adjust the settings of algorithms when addressing
optimization problems.

Existing applications, like PID control systems, have focused
on designing algorithms using nature-inspired algorithms. Many
of these applications either apply algorithms directly or are
unable to justify their design in terms of particular issues.

IX. CONCLUSION

The past three decades have witnessed a significant
rise in the utilization of diverse nature-inspired algorithms
for PID controller tuning in industrial applications. This
paper provides a concise overview and a unified formal
definition that encompasses conventional, intelligent, and
nature-inspired approaches. Despite the vast literature on
tuning PID controllers for industrial applications, our focus
is narrowed to specific methods and applications. Through
meticulous evaluation of their industrial performance, we
identify key methodological elements aimed at enhancing
efficacy. Despite the widespread adoption of various PID
tuning methods, our analysis reveals a critical knowledge gap,
emphasizing the necessity for adaptive algorithmic solutions to
address dynamic optimization problems. The growing interest
in intelligent PID and nature-inspired algorithms underscores
the urgency of overcoming limitations inherent in conventional
PID methods. This research serves as a comprehensive guide
for practitioners and researchers selecting tailored algorithms,
with a specific focus on adaptability and dynamic optimization
in the evolving industrial landscape. Looking ahead, the
continual evolution of PID control, particularly through nature-
inspired algorithms, remains a significant research area. This
paper lays the groundwork for further exploration, propelling
advancements in PID tuning methodologies. By addressing
current gaps and challenges, our findings pave the way for
future research, ensuring ongoing relevance and innovation in
this ever-evolving field.
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