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Abstract—This study explores the incorporation of time-

varying sign gain into a parallel iterative learning control (ILC) 

architecture, augmented by an expert system, to enhance the 

performance and stability of a robotic arm system. The 

methodology involves iteratively tuning the learning control 

gains using time-varying sign gain guided by an expert system. 

Stability analysis, encompassing asymptotic and monotonic 

convergence, demonstrates promising results across multiple 

joints, affirming the effectiveness of the proposed control 

architecture. In comparison with traditional PID control, fixed 

gain ILC, and ILC with adaptive learning in the expert system, 

the analysis focuses on stability, precision, and adaptability, 

using root mean square error (RMSE) as a key metric. The 

results show that ILC with adaptive learning from the expert 

system consistently reduces RMSE, even in the presence of 

learning transients. This adaptability effectively controls the 

learning transients, ensuring improved performance in 

subsequent iterations. In conclusion, the integration of time-

varying sign gain with expert system assistance in a parallel ILC 

architecture holds promise for advancing adaptive control in 

robotic systems. Positive outcomes in stability, precision, and 

adaptability suggest practical applications in real-world 

scenarios. This research provides valuable insights into the 

implementation of dynamic learning mechanisms for enhanced 

robotic system performance, laying the groundwork for future 

refinement in robotic manipulator control systems. 

Keywords—Robotic; PID Control; ILC; Dynamic Model. 

I. INTRODUCTION 

In the contemporary landscape, robotic manipulators play 

a crucial role in various industries and healthcare, 

undertaking tasks like welding, gluing, polishing, and 

neurorehabilitation. Ensuring high precision in repeated 

executions is paramount for the success of these applications. 

Traditionally, developers have tackled tracking errors by 

optimizing both mechanical and electrical hardware. 

However, there is a growing focus on alternative approaches, 

specifically on control algorithms, as a means to minimize 

costs. 

Creating a closed-loop control system typically involves 

the use of fundamental control design approaches such as 

proportional integral derivative (PID) control, fuzzy logic 

control (FLC), LQR, or others for the initial system design. 

The design of control systems using these approaches often 

follows a developmental pattern, for instance, PID controller 

design involves the application of techniques to enhance its 

capabilities, such as gain adjustments [1]-[10]. Additionally, 

fuzzy logic control (FLC) has become a popular choice [11], 

[12] for tuning PID gains. Furthermore, significant 

advancements have been made in control systems through the 

introduction and application of type-1 and interval Type-2 

fuzzy logic systems [13]-[26]. These advancements have 

practical applications in controlling various systems, 

including motors, electric carts, robotic systems, and the 

inverted pendulum. However, these design approaches may 

not effectively reduce the RMSE in the repetitive motion 

profiles. 

An ILC system is designed to reduce the RMSE in 

repetitive motions by tuning both closed and open-loop 

controls. It accomplishes this by generating control input 

signals to compensate for system errors in repetitive motion 

patterns. ILC takes an unconventional approach, improving 

the tracking accuracy without modifying the internal 

parameters. It dynamically adjusts the control input based on 

the observed errors and input signals from previous iterations. 

Practical implementations may face challenges with 

undesirable learning transients, which robust ILC can address 

[27]. Two main ILC configurations exist with be serial by 

control inputs outside the feedback system and parallel by 

control inputs inside the feedback system [27]–[34]. Serial 

architectures are common due to limited access to manipulate 

internal control inputs. 

Existing comparisons primarily focus on stability analysis 

[35]–[36], with limited emphasis on practical 

implementation. Stability proofs in the frequency domain 

raise concerns as they may overlook transient effects. Three 

robust ILC categories include Q-filter design, optimization-

based design, and robust learning gain design. Q-filters, 

designed using low-pass filters [37], eliminate high-

frequency disturbances [38]–[41]. Optimization-based 

designs, including norm-optimal ILC [43], offer a trade-off 

between tracking error and input updates [43]–[48]. Robust 

learning control matrices, designed for system robustness, 

may neglect high-frequency components, leading to non-zero 

tracking errors [51]–[53]. 

This study explores the combination of dual integral 

learners to capitalize on their individual strengths, inspired by 
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previous dual-loop ILC designs [54]–[59]. The dual 

combining concept, merging fast and slow learners, strikes a 

balance between tracking performance and system 

robustness, demonstrating effectiveness across various 

applications. 

Expert systems [60] are pivotal in the realm of robotics, 

serving as decision-support systems designed akin to human 

decision-making. They facilitate straightforward design and 

application in closed-loop control systems. Research efforts 

have yielded a variety of developments, including 

collaboration with different control systems such as expert 

PID intelligent control [61], neural network-based expert 

systems [62], and fuzzy expert systems [63]-[68]. These 

systems go beyond mere control functions, making 

substantial contributions to human decision-making across 

diverse domains. 

The continuous pursuit of achieving precise robotic 

movement with minimal error has been a central focus of 

research. Extensive investigations into the Seiko D-Tran 

RT3200 robotic manipulator [50], [53], [59], [69], [70] have 

paved the way for the development of ILC [40], [71], [72], 

and repetitive control systems (RC), aiming to minimize the 

RMSE within the system. This research specifically utilized 

the system equation of the Seiko D-Tran RT3200 robotic 

manipulator to formulate an effective control system. The 

system equation has been trended to design the ILC system 

by comparing the performance of serial ILC architectures and 

parallel ILC architecture [51]. The system's actual behavior 

and simulation results align in the same direction. In 

designing the test system, fixed gain values were assigned in 

formulating the learning control matrix, and time-varying 

sign gains were adjusted in the learning control matrix using 

fuzzy logic to approximate the gain values. However, there 

are drawbacks in terms of processing time and limited 

reduction in RMSE. Furthermore, the development of 

collaborative dual ILC designs [54] poses challenges in 

designing numerous gains, requiring advanced mathematical 

foundations for system design, making it difficult to 

implement ILC systems practically. Hence, there is a need to 

develop control systems that intelligently select gains in the 

time-varying sign gain format to enhance the initial ILC 

system performance. 

This study focuses on the design of a controller for robotic 

manipulator applications, utilizing ILC to mitigate errors in 

repetitive movements. An expert system is employed to 

generate a learning control matrix for ILC controllers. The 

effectiveness of the system is evaluated through tests 

involving smooth function-based movements, and a case 

study is conducted for a comprehensive performance 

assessment. The findings suggest that employing an expert 

system to create a learning control matrix for ILC controllers 

demonstrates the ability to reduce RMSE in robotic systems. 

The results align with the research objectives, highlighting 

the potential of applying expert systems in ILC controllers to 

enhance system performance in robotic manipulator 

applications and mitigate motion-related errors. 

II. RESEARCH METHOD 

     In this research, emphasis is placed on studying the ILC 

system, incorporating the use of expert systems to adjust the 

learning rate of the system. The control system traditionally 

employs a PID control system for applications in robotics, 

specifically for controlling the motion of robots in various 

mission scenarios. The system can be designed ILC with an 

overall conceptual framework as depicted in Fig. 1. 

 

Fig. 1. Flowchart of the overall system design 

Fig. 1 depicts a block diagram that illustrates the 

operational flowchart of a control system, outlining the 

procedural steps of the ILC system. The initial step involves 

defining the robot's motion pattern and establishing time 

values in a non-continuous time equation format. 

Subsequently, the time step 'k' is recorded, with the highest 

value being stored in the variable 'N'. Following this, the 

appropriate PID gain values are determined to the control the 

system, encompassing the specification of learning control 

matrix values for the ILC control system. Lastly, the number 

of learning iterations 'j' for the ILC control system is specified, 

and the highest value is stored in the variable 'M'. 

     In the section titled “Using iterative learning control for 

robot learning execution”, both the PID control system and 

the ILC control system collaborate to coordinate the system's 

movement and minimize errors in each iteration. The 

overarching objective is to attain the lowest possible error 
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values in each iteration of the ILC system. Fig. 2 offers an 

expanded perspective on “Using iterative learning control for 

robot learning execution”, illustrating the standard system 

operation in Fig.  2 (a) and showcasing the enhanced system 

with additional adjustments in Fig. 2 (b). 
          

  
(a) (b) 

Fig. 2. Control system process 

Fig. 2 explains the control process of the “Using iterative 

learning control for robot learning execution” box. In this 

section, the focus is on Fig. 2 (a), illustrating the original 

design of the ILC system. This involves setting the initial 

values of the system, consistently initiating the system at a 

designated point. 

Following this, the system's motion is controlled by 

utilizing the estimated values of the PID and ILC control 

systems fed into the robot system. At the end of each 

movement cycle, motion data is collected for system analysis. 

The estimation of control input values for the ILC control 

system initiates a new process until the specified cycles are 

completed, concluding the operation of the ILC control 

system for system improvement. 

Fig. 2 (b) depicts the system's enhancement by 

incorporating an expert system to refine the selection of the 

learning control matrix for ILC. It receives the values obtained 

from the system's operation in the previous iteration and sets 

the learning control matrix values for ILC at each time step. 

These values are then applied to the system's operation in the 

subsequent cycle. 

III. ROBOTIC MANIPULATOR 

In the realm of industrial applications, robotic 

manipulators find widespread use in diverse operations, 

including welding, assembly, and painting. Various types of 

industrial robots cater to these tasks, encompassing scara 

robots, cartesian robots, cylindrical robots, spherical robots, 

and delta robots. A representative robotic manipulator is 

illustrated here. Specifically, an illustrative application 

featuring the Seiko D-Tran RT3200 robotic manipulator, 

categorized as a cylindrical robot, will be showcased. 

A. Robotic Manipulator Seiko D-Tran RT3200 

The study employed a Seiko D-Tran RT3200 robot 

controller, featuring a Cartesian robot arm with four joints 

facilitating movement along the X-axis (joint R), rotation 

within the X-Y plane (joints T and A), and elevation or 

descent along the Z-axis (joint Z). To regulate the rotation of 

the four motors, a control unit was devised using a cRIO-9075 

and programmed using LabVIEW. The configuration of the 

control unit is depicted in both Fig. 3 and Fig. 4. 

 

Fig. 3. Block diagram of the overall system 

Seiko D-Tran RT3200 

Controller BoxLabVIEW  

Fig. 4. Seiko D-Tran RT3200 and device for controller 

B. Dynamic Model of the Robotic Manipulator System 

The Seiko D-Tran RT3200 robot employed in this 

investigation, as depicted in Fig. 3 and Fig. 4, is defined by a 

system equation in discrete time, featuring a sampling rate of 

0.055 seconds. Numerous explorations have been conducted 

regarding the regulation of this robotic system, as 

demonstrated by the scholarly contributions of P. 

Chotikunnan et al. [59], [70], [73], [74]. These scholarly 

efforts present a model for the system equation, identified as 

(1), incorporating the coefficients explicated in Table I. The 

data within the table corresponds to the variables associated 

with the manipulator arm. 

𝑃(𝑧) =
𝛾1𝑧

𝑧2 + 𝛽1𝑧 + 𝛽0

 (1) 

TABLE I. PARAMETERSS USED IN THE OPEN-LOOP SYSTEM 

Joint 𝜸𝟏 𝜷𝟏 𝜷𝟎 

Joint R 0. 0333 -1. 6871 0. 6884 

Joint T 0. 0162 -1. 7077 0. 7111 

Joint Z 0. 0140 -1. 7519 0. 7526 
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IV. PARALLEL ILC ARCHITECTURE 

The parallel ILC architecture design [53] encompasses the 

development of an ILC control system that concurrently 

introduces the control input signal into the system alongside 

the existing control system. This architecture is compatible 

with any control system and is essentially termed feedback 

control, as depicted in Fig. 5. The figure offers a summary of 

the functioning of the parallel ILC outlined in this study. 

 

Fig. 5. Block diagram of Parallel ILC architecture 

      In Fig. 6, the section that removes the ILC control system 

is presented to illustrate the original structure in this study. A 

PID control system has been designed to transform it into a 

feedback controller system. In this study, a discrete-time PID 

controller system is designed, as depicted in (2), representing 

the estimated control input for the system. 

 

Fig. 6. Block diagram of feedback controller 

𝑢𝑗
𝐶(𝑘) = 𝐾𝑝𝑒𝑗(𝑘) + 𝐾𝑖 ∑ 𝑒𝑗(𝑘)

𝑘

𝑘−𝑁

+ 𝐾𝑑 (𝑒𝑗(𝑘) − 𝑒𝑗(𝑘 − 1)) (2) 

where, the control inputs, 𝑢𝑗
𝐶, in this study, consist of the 

proportional gain (𝐾𝑝), integral gain (𝐾𝑖), and derivative gain 

(𝐾𝑑). 

In this investigation, a PID controller was formulated to 

govern the motor system in joints R, T, and Z, employing 

CHR tuning to minimize overshooting. The system design 

was explored in the works of P. Chotikunnan and R. 

Chotikunnan [70]. The parameters utilized in the system are 

detailed in Table II. 

TABLE II. P GAIN VALUES OF JOINT R 

Joint Joint R Joint T Joint Z 

P controller 4. 25 8. 00 6. 70 

 

The utilization of ILC [75]-[80] aims to eradicate tracking 

errors by assimilating insights from historical data. Presuming 

that a control system consistently generates the same tracking 

error when executing identical commands, it becomes 

apparent that the error and control input signals from previous 

iterations need to learn and adapt, generating a more suitable 

control input signal to minimize the tracking errors in the 

current execution. 

In a broader context, the learning control law of ILC can 

be articulated as follows 

𝑢𝑗+1(𝑘) = 𝑄(𝑢𝑗(𝑘) + 𝐿𝑒𝑗(k + 1)) (3) 

where 𝐿 denotes a learning control matrix, and 𝑄 represents a 

low-pass filter designed to prevent amplification of the 

learning control input. Given that the closed-loop system 

incurs a one-time-step delay, the control input 𝑢(𝑘) endeavors 

to nullify the error 𝑒(𝑘 + 1). In order to eliminate 𝑒𝑗(𝑘), 𝑘 ∈

[1, 𝑁],  the array of control inputs for iteration 𝑗 is expressed 

as 𝑢𝑗 = [𝑢𝑗(0) 𝑢𝑗(1) …   𝑢𝑗(𝑁 − 1)]
𝑇
. 

The Parallel ILC architecture illustrates a block diagram 

depicting the transition from iterations 𝑗 to 𝑗 + 1. The learning 

mechanism follows the same concept as the serial structure, 

wherein it records the learning control input and the 

corresponding errors from the preceding iteration to adjust the 

learning control signal in the ongoing execution. However, in 

contrast to modifying the external command in the feedback 

control system, as seen in the serial structure, the internal 

control input 𝑢𝑗
𝑖𝑛𝑡 within the feedback loop is iteratively 

updated following (3). In simpler terms, 𝑢𝑗
𝑖𝑛𝑡 = 𝑢𝑗 in this 

configuration. It is essential to highlight that this 

accomplishment is feasible when the feedback control system 

is manipulable. 

As the control input is a summation of the learning control 

input and the output from the feedback controller, a 

generalization can be made by updating only the learning 

control input, similar to the approach in the structure outlined 

in (3). During the initial execution, the learning control input 

is initialized to zero, resulting in 𝑢0 = 𝑢0
𝐶 . Upon activation of 

the learning mechanism, the control input is subsequently 

updated according to 𝑢𝑗 = 𝑢𝑗
𝐿 + 𝑢𝑗

𝐶 , where 𝑢𝑗
𝐿 is derived from 

the update specified in (5). 

𝑢𝑗+1(𝑘) = ((𝑢𝑗
𝐿(𝑘) + 𝑢𝑗

𝐶(𝑘)) + 𝐿𝑒𝑗(k + 1)) (4) 

𝑢𝑗+1
𝑖𝑛𝑡 (𝑘) = (𝑢𝑗

𝑖𝑛𝑡(𝑘) + 𝐿𝑒𝑗(k + 1)) (5) 

 

Fig. 7. Block diagram of the parallel ILC architecture 
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A. Stability Analysis of Parallel ILC Architecture 

The error employed within the feedback control loop 

corresponds to the one utilized in the learning mechanism, 

incremented by a single time step. 

𝑒𝑗+1 = (𝐼 + ℙ𝑜ℂ)−1(𝐼 − 𝑃𝑜𝐿 + ℙ𝑜ℂ) 𝑒𝑗 (6) 

where 𝐼 denotes an identity matrix with dimensions equivalent 

to 𝑃0, ℙ𝑜 signifies the plant with a delay of two-time steps, 

and ℂ represents the feedback controller. 

Asymptotic convergence, the parallel ILC system is 

asymptotically stable for any initial iteration error, denoted as 

𝑒0, if 

𝜌((𝐼 + ℙ𝑜ℂ)−1(𝐼 − 𝑃𝑜𝐿 + ℙ𝑜ℂ) )  < 1 (7) 

Since the matrix (𝐼 + ℙ𝑜ℂ)−1(𝐼 − 𝑃𝑜𝐿 + ℙ𝑜ℂ)  for the 

parallel structure is equivalent to the matrix (𝐼 − 𝑃𝐿) in the 

parallel structure. 

Monotonic convergence, the error norm for the parallel 

ILC system, decays monotonically if 

max
𝑖

𝜎𝑖((𝐼 + ℙ𝑜ℂ)−1(𝐼 − 𝑃𝑜𝐿 + ℙ𝑜ℂ)) < 1 (8) 

essentially the same as that by substituting (𝐼 + ℙ𝑜ℂ)−1(𝐼 −
𝑃𝑜𝐿 + ℙ𝑜ℂ) to (𝐼 − 𝑃𝐿). 

V. ADAPTIVE PARALLEL ITERATIVE LEARNING CONTROL 

WITH A TIME-VARYING SIGN GAIN APPROACH 

EMPOWERED BY EXPERT SYSTEM 

An expert system is a computer program that utilizes 

artificial intelligence (AI) to replicate human judgments using 

specialized knowledge. It is crafted to tackle problems 

through if-then rules and encompasses a knowledge base, 

inference tools, and user interface. In this research instance, 

the expert system fine-tunes the adjustable gain on the 

learning control matrix of the ILC controller. The expert 

system's design for the adjusted gain of the learning control 

matrix is illustrated in Fig. 8 and Fig. 9, presenting the 

pseudocode for the time-varying sign gain optimization with 

the expert system, where 𝑙𝑘𝑘  serves as the output for adjusting 

the learning control matrix of the ILC controller. 

 

Fig. 8. Parallel structure block diagram of an ILC with the expert system 

if      |∑ (𝐺𝑘𝑖𝑒𝑗(𝑘))𝑘
𝑘−𝑁 | > 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙_𝑒𝑟𝑟𝑜𝑟_𝑐𝑘 

 then   𝑙𝑘𝑘 = 0  
else  

 then   𝑙𝑘𝑘 = 𝐺𝑎𝑖𝑛_𝐼𝐿𝐶 
end 

Fig. 9. Pseudo code of the expert system for ILC controller 

where 𝐺𝑘𝑖 represents the gain of integral, and 

𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙_𝑒𝑟𝑟𝑜𝑟_𝑐𝑘 assigned a value of limit summation of 

error. 

Each block diagram reveals the addition of an extra box, 

highlighted in orange, to the structure. This box represents a 

gain adjustment mechanism facilitated by the expert system to 

iteratively fine-tune the learning control gains 𝑙11, … , 𝑙𝑁𝑁 

within the learning control matrix in (9). 

𝐿 =  [
𝑙11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑙𝑁𝑁

] (9) 

From Fig. 8 and Fig. 9, it can be observed that the 

operation of the pseudo code of the expert system for the ILC 

controller involves adjusting the values of 𝐿 when completing 

one cycle of operation. It sequentially updates the values from 

𝑙11 to 𝑙𝑁𝑁 according to the number of time steps designed in 

the system's motion path. The maximum number of time steps 

('N') is determined to utilize the learning control matrix values 

in the next iteration. 

VI. SIMULATION RESULTS 

In designing the simulation system, the testing of the 

simulated motion of the Seiko D-Tran RT3200 robot arm was 

conducted using the system in (1) and the parameter values 

from Table II. The testing of the simulation system was 

divided into four parts, including 1. Stability analysis 

verification, 2. Motion of the original ILC system, 3. Motion 

of the ILC system with the expert system, and 4. Summary of 

overall results of the simulation system testing. 

Simulation tests were performed to evaluate the simulated 

robotic arm control system's performance. Stability was 

ensured using the PID controller system, and the precision of 

motion was improved with the ILC control system. 

Parameters for the simulations, including the maximum 

allowable values as outlined in Table III, were defined in the 

research. The subsequent sections analyze and present the 

results of the system simulation. 

TABLE III. MAXIMUM OF LEARNING CONTROL GAINS 

Learning control gains value Joint R Joint T Joint Z 

learning control gains using 4 4 3 

𝐺𝑘𝑖 0.055 0.055 0.055 

𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙_𝑒𝑟𝑟𝑜𝑟_𝑐𝑘 0.001 0.001 0.001 

maximum of learning control gain 30.0300 61.7284 71.4286 

 

Table III outlines the variables with specified conditions 

for simulating the system. “Learning control gain using” sets 

the initial values for the learning control matrix in the ILC 

system. “𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙_𝑒𝑟𝑟𝑜𝑟_𝑐𝑘” represents the sum of error 

values, a user-defined parameter for system testing. 

“Maximum of learning control gains” is the highest value 

allowed for the learning control matrix in the stability analysis 

condition, determined by matrix 𝑃𝑜. 
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A. Stability Analysis Verification 

Stability analysis was performed to examine the values of 

asymptotic convergence and monotonic convergence, as 

presented in Table IV. It was observed that the values of 

asymptotic convergence for Joint R, Joint T, and Joint Z are 

less than 1, indicating that the ILC control system with the 

learning control gains from Table III can effectively stabilize 

the system. However, the presence of monotonic convergence 

values greater than 1 suggests the potential occurrence of 

learning transients in the system. These learning transients 

may be manageable in computer simulation systems but could 

pose challenges in real-world control scenarios if the 

development of the learning control matrix adjustment system 

is not sufficiently optimized. 

TABLE IV. STABILITY ANALYSIS 

Stability analysis Joint R Joint T Joint Z 

Asymptotic convergence 0.8833 0.9426 0.9616 

Monotonic convergence 1.0907 1.0380 1.0537 

B. Motion of The Original ILC System 

In the simulation of the robotic arm to motion of the 

original ILC system, the results are depicted in Fig. 10 to Fig. 

12. The topmost image in each axis illustrates the specified 

motion of the robotic arm in that axis. For the middle image, 

it displays the control input values obtained from the system 

estimation. The bottommost image represents the RMSE for 

each axis. The simulation was 9,600 iterations under the 

condition of 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙_𝑒𝑟𝑟𝑜𝑟_𝑐𝑘 set at 0.001 for all three 

axes, as detailed below. 

For joint R, As shown in Fig. 10, during the first iteration, 

the RMSE is observed to be 4.027 mm. With the ILC learning 

system, the RMSE consistently decreases until 5 iterations, 

reaching a value of 0.1681 mm. Subsequently, a learning 

transient occurs, with the highest value at 403 iterations is 

2.2708×1013 mm. before decreasing again, approaching zero 

around 1,504 iterations. The minimum RMSE over 9,600 

iterations is 1.8167×10-12 mm. 

 

Fig. 10. Results of original ILC system in Joint R 

Joint T, As shown in Fig. 11, during the first iteration, the 

RMSE is observed to be 0.5394 deg. With the ILC learning 

system, the RMSE consistently decreases until 8 iterations, 

reaching a value of 0.0279 deg. Subsequently, a learning 

transient occurs, with the highest value at 1,003 iterations is 

1.5854×1011 deg. before decreasing again, approaching zero 

around 2,901 iterations. The minimum RMSE over 9,600 

iterations is 3.7505×10-14 deg. 

 

Fig. 11. Results of original ILC system in Joint T 

For joint Z, As shown in Fig. 12, during the first iteration, 

the RMSE is observed to be 1.7695 mm. With the ILC 

learning system, the RMSE consistently decreases until 5 

iterations, reaching a value of 0.5909 mm. Subsequently, a 

learning transient occurs, with the highest value at 1,600 

iterations is 6.3173×1018 mm. before decreasing again, 

approaching zero around 1,504 iterations. The minimum 

RMSE over 9,600 iterations is 0.8469 mm. 

 

Fig. 12. Results of original ILC system in Joint Z 
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The trends for Joint R, Joint T, and Joint Z are consistent 

with control input signals for all three axes exceeding 100% 

of the system's capability. The robotic arm simulation 

experiences learning transients during ILC operation due to 

monotonic convergence values exceeding one. However, the 

asymptotic convergence values being less than 1 allowing the 

system to recover after learning transients occur. This suggests 

that signal improvement cannot effectively control the robotic 

system, making it impractical for real-world applications. 

C. Motion of The ILC System with The Expert System 

In the simulation of the robotic arm with ILC system with 

the expert system, the results are depicted in Fig. 13 to Fig. 15. 

The topmost image in each axis illustrates the specified 

motion of the robotic arm in that axis. For the middle image, 

it displays the control input values obtained from the system 

estimation. The bottommost image represents the RMSE for 

each axis. The simulation was 9,600 iterations under the 

condition of 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙_𝑒𝑟𝑟𝑜𝑟_𝑐𝑘 set at 0.001 for all three 

axes, as detailed below. 

Joint R, As shown in Fig. 10, during the first iteration, the 

RMSE is observed to be 4.027 mm. With the ILC learning 

system, the RMSE consistently decreases until 2,997 

iterations, reaching a value of 0.0609 mm. Subsequently, a 

learning transient occurs, with the highest value at 3,277 

iterations being 0.0257 mm. before decreasing again, 

approaching zero around 3,340 iterations. The minimum 

RMSE over 9,600 iterations is 1.5893×10-12 mm. 

Joint T, Fig. 11 illustrates that in the first iteration, the 

RMSE is 0.5395 deg. With the ILC learning system, the 

RMSE consistently decreases until 3,502 iterations, reaching 

a value of 0.0148 deg. A learning transient occurs, with the 

highest value at 4,606 iterations, before decreasing again and 

approaching zero around 5,000 iterations. The minimum 

RMSE over 9,600 iterations is 7.7899×10-15 deg. 

For joint Z, In the first iteration, as seen in Fig. 12, the 

RMSE is 1.7694 mm. With the ILC learning system, The 

RMSE decrease approaches zero around 7,835 iterations and 

the minimum RMSE over 9,600 iterations is 0.0035 mm. 

    

Fig. 13. Results of ILC system with the expert system in Joint R 

 

Fig. 14. Results of ILC system with the expert system in Joint T 

 

Fig. 15. Results of ILC system with the expert system in Joint Z 

The trends for Joint R, Joint T, and Joint Z are consistent, 

with control input signals for all three axes not exceeding 

100% of the system's capability. This suggests that the signal 

improvement is within the controllable limits of the system. 

The use of adaptive parallel iterative learning control with a 

time-varying sign gain approach, empowered by an expert 

system, effectively manages the occurrence of learning 

transients in the ILC system. Even when the monotonic 

convergence values exceed 1, the dynamic operation of the 

learning control matrix allows for stable control of the robotic 

system. 

D. Summary of Overall Results of The Simulation System 

Testing 

In the overall view of the ILC control system, it has the 

ability to reduce errors in motion, although designing to check 

the stability conditions of the ILC control system requires 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 79 

 

Phichitphon Chotikunnan, Adaptive Parallel Iterative Learning Control with A Time-Varying Sign Gain Approach 

Empowered by Expert System 

finding the system equations used for control first. Only then 

can formulas be derived to find the asymptotic convergence 

and monotonic convergence values. 

In testing the simulation of the system using the original 

ILC system, there are challenges in designing the learning 

control matrix to have both asymptotic convergence and 

monotonic convergence values less than 0. Setting the sign 

gain values in some systems may not be feasible at all. 

Therefore, it is evident that designing the system can be 

achieved by simply specifying that the asymptotic 

convergence values are less than 1, while the monotonic 

convergence values remain above one. However, to address 

this issue, a multi-gain system may need to be designed to set 

values so that both asymptotic convergence and monotonic 

convergence are less than 0. 

For the ILC system with the expert system, which adjusts 

the learning control matrix, it can control the occurrence of 

learning transients in the ILC system. Although the 

asymptotic convergence values are less than 1 and the 

monotonic convergence values remain above 1, the design of 

the expert system can help the ILC system operate within the 

constraints of controlling the motion of the robotic system, 

using a sign gain approach. Therefore, this serves as a 

fundamental approach in designing the basic usage of the ILC 

control system for controlling future systems. 

VII. CONCLUSION 

This research delves into the exploration and development 

of a robotic control system by introducing the adaptive parallel 

iterative learning control technique, combined with time-

varying sign gain and an expert system. The objective is to 

elevate the performance and stability of the robotic system 

across diverse scenarios. The simulations outcomes showcase 

the system's capability to manage and enhance the operations 

of the robot, as substantiated by the analysis of RMSE, 

convergence values, and the adept handling of learning 

transients within the system. Comparative simulations with 

systems employing PID control and fixed gain ILC underscore 

the superiority of the proposed system in terms of stability, 

precision, and adaptability in dynamic learning environments. 

Moreover, the incorporation of an expert system in the 

learning control gain adjustment process significantly 

amplifies the system's efficiency in dealing with learning 

transients, thereby facilitating a more effective operation. By 

conducting simulations and analyses, this study proposes a 

path for developing a robotic control system that is both highly 

efficient and reliable. It lays the groundwork for pioneering 

innovations in robotic control for forthcoming applications.  

ACKNOWLEDGMENT  

The researcher would like to thank the Research Institute, 

Academic Services Center, and College of Biomedical 

Engineering, Rangsit University for the grant of research 

funding to the research team.  

REFERENCES 

[1] S. K. Mallempati, G. Satheesh, and S. Peddakotla, “Design of optimal 
PI controller for torque ripple minimization of SVPWM-DTC of 

BLDC motor,” International Journal of Power Electronics and Drive 

Systems, vol. 14, no. 1, p. 283, 2023, doi: 
https://doi.org/10.11591/ijpeds.v14.i1. 

[2] L. Fong, M. Islam, and M. Ahmad, “Optimized PID Controller of DC-
DC Buck Converter based on Archimedes Optimization Algorithm,” 

International Journal of Robotics and Control Systems, vol. 3, no. 4, 
pp. 658-672, 2023, doi: https://doi.org/10.31763/ijrcs.v3i4.1113.  

[3] R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar, “A 

review of PID control, tuning methods and applications,” International 

Journal of Dynamics and Control, vol. 9, no. 2, pp. 818-827, 2021, doi: 
https://doi.org/10.1007/s40435-020-00665-4. 

[4] E. Widya Suseno and A. Ma'arif, “Tuning of PID Controller 
Parameters with Genetic Algorithm Method on DC Motor,” 

International Journal of Robotics and Control Systems, vol. 1, no. 1, 
pp. 41-53, 2021, doi: https://doi.org/10.31763/ijrcs.v1i1.249. 

[5] D. Tran, N. Hoang, N. Loc, Q. Truong, and N. Nha, “A Fuzzy LQR 

PID Control for a Two-Legged Wheel Robot with Uncertainties and 

Variant Height,” Journal of Robotics and Control (JRC), vol. 4, no. 5, 
pp. 612–620, 2023, doi: https://doi.org/10.18196/jrc.v4i5.19448. 

[6] T. Y. Wu, Y. Z. Jiang, Y. Z. Su, and W. C. Yeh, “Using Simplified 
Swarm Optimization on Multiloop Fuzzy PID Controller Tuning 

Design for Flow and Temperature Control System, “ Applied Sciences, 

vol. 10, no. 23, p. 8472, 2020, doi: 

https://doi.org/10.3390/app10238472. 

[7] H. Budiarto, V. Triwidyaningrum, F. Umam, and A. Dafid, 

“Implementation of Automatic DC Motor Braking PID Control System 
on (Disc Brakes),” Journal of Robotics and Control (JRC), vol. 4, no. 
3, pp. 371-387, 2023, doi: https://doi.org/10.18196/jrc.v4i3.18505. 

[8] S. Jain and Y. V. Hote, “Design of FOPID Controller Using BBBC via 

ZN Tuning Approach: Simulation and Experimental Validation,” IETE 

Journal of Research, vol. 68, no. 5, pp. 3356-3370, 2022, doi: 
https://doi.org/10.1080/03772063.2020.1756937. 

[9] R. Chotikunnan, K. Roongprasert, P. Chotikunnan, P. Imura, M. 
Sangworasil, and A. Srisiriwat, “Robotic Arm Design and Control 

Using MATLAB/Simulink,” International Journal of Membrane 

Science and Technology, vol. 10, no. 3, pp. 2448-2459, 2023, doi: 
https://doi.org/10.15379/ijmst.v10i3.1974. 

[10] P. Warrier and P. Shah, “Design of an Optimal Fractional Complex 

Order PID Controller for Buck Converter,” Journal of Robotics and 
Control (JRC), vol. 4, no. 3, pp. 243-262, 2023, doi: 
https://doi.org/10.18196/jrc.v4i3.17446. 

[11] M. Elouni, H. Hamdi, B. Rabaoui, and N. Braiek, “Adaptive PID Fault-

Tolerant Tracking Controller for Takagi-Sugeno Fuzzy Systems with 

Actuator Faults: Application to Single-Link Flexible Joint Robot,” 
International Journal of Robotics and Control Systems, vol. 2, no. 3, 
pp. 523-546, 2022, doi: https://doi.org/10.31763/ijrcs.v2i3.762. 

[12] A. Elmogy, Y. Bouteraa, and W. Elawady, “An Adaptive Fuzzy Self-
Tuning Inverse Kinematics Approach for Robot Manipulators,” 

Journal of Control Engineering and Applied Informatics, vol. 22, no. 

4, pp. 43-51, 2020, doi: https://doi.org/10.1109/AIC-
MITCSA.2016.7759929 

[13] M. Kiew-ong-art, P. Chotikunnan, Y. Pititheeraphab, R. Chotikunnan, 
K. Roongprasert, and M. Sangworasil, “Comparative Performance of 

Mamdani and Sugeno Fuzzy Logic Control Systems in Governing the 

Motion of a Robotic Arm,” International Journal of Membrane Science 
and Technology, vol. 10, no. 2, pp. 3245-3258, 2023, doi: 
https://doi.org/10.15379/ijmst.v10i2.3100. 

[14] A. Shuraiji and S. Shneen, “Fuzzy Logic Control and PID Controller 

for Brushless Permanent Magnetic Direct Current Motor: A 

Comparative Study,” Journal of Robotics and Control (JRC), vol. 3, 

no. 6, pp. 762-768, 2022, doi: https://doi.org/10.18196/jrc.v3i6.15974. 

[15] H. Maghfiroh, M. Ahmad, A. Ramelan, and F. Adriyanto, “Fuzzy-PID 

in BLDC Motor Speed Control Using MATLAB/Simulink,” Journal 
of Robotics and Control (JRC), vol. 3, no. 1, pp. 8-13, 2021, doi: 
https://doi.org/10.18196/jrc.v3i1.10964. 

[16] M. F. Masrom, N. M. A Ghani, and M. O. Tokhi, “Particle swarm 

optimization and spiral dynamic algorithm-based interval type-2 fuzzy 

logic control of triple-link inverted pendulum system: A comparative 
assessment,” Journal of Low Frequency Noise, Vibration and Active 

Control, vol. 40, no. 1, pp. 367-382, 2021, doi: 
https://doi.org/10.1177/1461348419873780. 

[17] A. A. bin Abdul Razak, A. N. K. bin Nasir, N. M. A. Ghani, S. 

Mohammad, M. F. M. Jusof, and N. A. M. Rizal, “Hybrid genetic 

manta ray foraging optimization and its application to interval type 2 
fuzzy logic control of an inverted pendulum system,” in IOP 

Conference Series: Materials Science and Engineering, vol. 917, no. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 80 

 

Phichitphon Chotikunnan, Adaptive Parallel Iterative Learning Control with A Time-Varying Sign Gain Approach 

Empowered by Expert System 

1, p. 012082, 2020, doi: https://doi.org/10.1088/1757-
899X/917/1/012082. 

[18] J. Shuping, X. Peng, H. Jie, and Y. Peng, “Dual-Loop Iterative 

Learning Control of Robot Manipulator for Human-Robot 
cooperation,” Journal of Physics: Conference Series, vol. 1846, no. 1, 
2021, doi: https://doi.org/10.1088/1742-6596/1846/1/012090. 

[19] I. Gandarilla, J. Montoya-Cháirez, V. Santibáñez, C. Aguilar-Avelar, 

and J. Moreno-Valenzuela, “Trajectory tracking control of a self-

balancing robot via adaptive neural networks,” Engineering Science 
and Technology, an International Journal, vol. 35, p. 101259, 2022, 
doi: https://doi.org/10.1016/j.jestch.2022.101259. 

[20] N. Chiem and L. Thang, “Synthesis of Hybrid Fuzzy Logic Law for 
Stable Control of Magnetic Levitation System,” Journal of Robotics 

and Control (JRC), vol. 4, no. 2, pp. 141-148, 2023, doi:  
https://doi.org/10.18196/jrc.v4i2.17537. 

[21] O. T. Altinoz and A. E. Yilmaz, “Investigation of the Optimal PID-

Like Fuzzy Logic Controller for Ball and Beam System with Improved 
Quantum Particle Swarm Optimization,” International Journal of 

Computational Intelligence and Applications, vol. 21, no. 04, p. 
2250025, 2022, doi: https://doi.org/10.1142/s1469026822500250. 

[22] X. Huang, A. L. Ralescu, H. Gao, and H. Huang, “A survey on the 

application of fuzzy systems for underactuated systems,” Proceedings 

of the Institution of Mechanical Engineers, Part I: Journal of Systems 
and Control Engineering, vol. 233, no. 3, pp. 217-244, 2019, doi: 
https://doi.org/10.1177/0959651818791027. 

[23] A. Bounemeur and M. Chemachema, “Adaptive Fuzzy Fault-Tolerant 

Control for a Class of Nonlinear Systems under Actuator Faults: 

Application to an Inverted Pendulum,” International Journal of 
Robotics and Control Systems, vol. 1, no. 2, pp. 102-115, 2021, doi: 
https://doi.org/10.31763/ijrcs.v1i2.306. 

[24] M. Kiew-ong-art et al., “Comparative Study of Takagi-Sugeno-Kang 

and Madani Algorithms in Type-1 and Interval Type-2 Fuzzy Control 

for Self-Balancing Wheelchairs,” International Journal of Robotics 
and Control Systems, vol. 3, no. 4, pp. 643-657, 2023, doi: 
https://doi.org/10.31763/ijrcs.v3i4.1154. 

[25] A. Baharuddin and M. Basri, “Self-Tuning PID Controller for 
Quadcopter using Fuzzy Logic,” International Journal of Robotics and 

Control Systems, vol. 3, no. 4, pp. 728-748, 2023, doi:  
https://doi.org/10.31763/ijrcs.v3i4.1127. 

[26] R. Chotikunnan, P. Chotikunnan, A. Ma'arif, N. Thongpance, Y. 

Pititheeraphab, and A. Srisiriwat, “Ball and Beam Control: Evaluating 
Type-1 and Interval Type-2 Fuzzy Techniques with Root Locus 

Optimization,” International Journal of Robotics and Control Systems, 

vol. 3, no. 2, pp. 286–303, 2023, doi: 
https://doi.org/10.31763/ijrcs.v3i2.997. 

[27] L. Biagiotti, L. Moriello, and C. Melchiorri, “Improving the accuracy 

of industrial robots via iterative reference trajectory modification,” 
IEEE Transactions on Control Systems Technology, vol. 28, no. 3, pp. 
831-843, 2019, doi: https://doi.org/10.1109/TCST.2019.2892929. 

[28] M. I. Fale, “Dr. Flynxz–A First Aid Mamdani-Sugeno-type fuzzy 

expert system for differential symptoms-based diagnosis,” Journal of 

King Saud University-Computer and Information Sciences, vol. 34, no. 
4, pp. 1138-1149, 2022, doi: 
https://doi.org/10.1016/j.jksuci.2020.04.016. 

[29] Y. Xie, X. Tang, W. Meng, B. Ye, B. Song, J. Tao, and S. Q. Xie, 

“Iterative data-driven fractional model reference control of industrial 

robot for repetitive precise speed tracking,” IEEE/ASME Transactions 

on Mechatronics, vol. 24, no. 3, pp. 1041-1053, 2019, doi: 
https://doi.org/10.1109/TMECH.2019.2906643. 

[30] G. Sebastian et al., “Input and output constraints in iterative learning 
control design for robotic manipulators,” Unmanned Systems, vol. 6, 

no. 3, pp. 197-208, 2018, doi: 
https://doi.org/10.1142/S2301385018400095. 

[31] C. Wang et al., “Nonparametric statistical learning control of robot 

manipulators for trajectory or contour tracking,” Robotics and 
Computer-Integrated Manufacturing, vol. 35, pp. 96-103, 2015. , doi: 
https://doi.org/10.1016/j.rcim.2015.03.002. 

[32] H. Ernesto and J. O. Pedro, “Iterative learning control with desired 
gravity compensation under saturation for a robotic machining 

manipulator,” Mathematical Problems in Engineering, vol. 2015, 
2015, doi: https://doi.org/10.1155/2015/187948. 

[33] Q. Zhu, F. Song, J. X. Xu, and Y. Liu, “An internal model based 
iterative learning control for wafer scanner systems,” IEEE/ASME 

Transactions on Mechatronics, vol. 24, no. 5, pp. 2073-2084, 2019, 
doi: https://doi.org/10.1109/TMECH.2019.2929565. 

[34] D. Wang, Y. Ye, and B. Zhang. Practical iterative learning control 

with frequency domain design and sampled data implementation. 

Springer Singapore, 2014, doi: https://doi.org/10.1007/978-981-4585-
60-6. 

[35] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative 
learning control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp. 
96-114, 2006, doi: https://doi.org/10.1109/MCS.2006.1636313. 

[36] J. A. Butterworth, L. Y. Pao, and D. Y. Abramovitch, “A comparison 
of ILC architectures for nanopositioners with applications to AFM 

raster tracking,” in Proceedings of the 2011 American Control 

Conference, pp. 2266-2271, 2011, doi: 
https://doi.org/10.1109/ACC.2011.5991164. 

[37] M. Tomizuka, “Zero phase error tracking algorithm for digital control,” 
J. Dyn. Sys., Meas., Control., vol. 109, no. 1, pp. 65-68, 1987. 

[38] A. Hock and A. P. Schoellig, “Distributed iterative learning control for 

multi-agent systems,” Autonomous Robots, vol. 43, no. 8, pp. 1989-

2010, 2019, doi: https://doi.org/10.1007/s10514-019-09845-4. 

[39] D. Saputra, A. Ma'arif, H. Maghfiroh, P. Chotikunnan, and S. 
Rahmadhia, “Design and Application of PLC-based Speed Control for 

DC Motor Using PID with Identification System and MATLAB 

Tuner,” Int. J. Robotics and Control Systems, vol. 3, no. 2, pp. 233-
244, 2023, doi: https://doi.org/10.31763/ijrcs.v3i2.775. 

[40] D. A. Bristow, A. Alleyne, and M. Tharayil, “A time-varying q-filter 
design for iterative learning control,” in 2007 American Control 

Conference, pp. 5503-5508, 2007, doi: 
https://doi.org/10.1109/ACC.2007.4282553. 

[41] Z. Feng, J. Ling, M. Ming, and X. H. Xiao, “High-bandwidth and 

flexible tracking control for precision motion with application to a 

piezo nanopositioner,” Review of Scientific Instruments, vol. 88, no. 8, 
2017, doi: https://doi.org/10.1063/1.4998303. 

[42] C. Y. Lin, L. Sun, and M. Tomizuka, “Matrix factorization for design 
of Q-filter in iterative learning control,” in 2015 54th IEEE Conference 

on Decision and Control (CDC), pp. 6076-6082, 2015, doi: : 
https://doi.org/10.1109/CDC.2015.7403175. 

[43] Z. Kuang, L. Sun, H. Gao, and M. Tomizuka, “Practical Fractional-

Order Variable-Gain Supertwisting Control With Application to Wafer 

Stages of Photolithography Systems,” IEEE/ASME Transactions on 
Mechatronics, vol. 27, no. 1, pp. 214-224, 2021, doi: 
https://doi.org/10.1109/TMECH.2021.3060731. 

[44] M. Volckaert, M. Diehl, and J. Swevers, “Generalization of norm 

optimal ILC for nonlinear systems with constraints,” Mechanical 

Systems and Signal Processing, vol. 39, no. 2, pp. 280-296, 2013, doi: 
https://doi.org/10.1016/j.ymssp.2013.03.009. 

[45] M. Zhu, L. Ye, and X. Ma, “Estimation-based quadratic iterative 
learning control for trajectory tracking of robotic manipulator with 

uncertain parameters,” IEEE Access, vol. 8, 2020, doi: 
https://doi.org/10.1109/ACCESS.2020.2977687. 

[46] S. V. Johansen, M. R. Jensen, B. Chu, J. D. Bendtsen, J. Mogensen, 

and E. Rogers, “Broiler FCR optimization using norm optimal terminal 

iterative learning control,” IEEE Transactions on Control Systems 
Technology, vol. 29, no. 2, pp. 580-592, 2019, doi: 
https://doi.org/10.1109/TCST.2019.2954300. 

[47] D. Allahverdy, A. Fakharian, and M. B. Menhaj, “Application of PID 

and Norm Optimal Iterative Learning Control to Swash Mass 

Helicopter,” in 2021 7th International Conference on Control, 
Instrumentation and Automation (ICCIA), pp. 1-6, 2021, doi: 
https://doi.org/10.1109/ICCIA52082.2021.9403592. 

[48] V. K. Jonnalagadda and V. K. Elumalai, “Norm Optimal Iterative 
Learning Control for Non-Repetitive Trajectory Tracking of Servo 

System,” IEEE Transactions on Control Systems Technology, vol. 14, 

no. 3, pp. 153-161, 2021, doi: 
https://doi.org/10.15866/ireaco.v14i3.20692. 

[49] B. Panomruttanarug and R. W. Longman, “Converting repetitive 
control into stable learning control by iterative adjustment of initial 

state,” Advances in the Astronautical Sciences, vol. 124, pp. 667-686, 
2006. 

[50] B. Panomruttanarug, “Position control of robotic manipulator using 

repetitive control based on inverse frequency response design,” 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 81 

 

Phichitphon Chotikunnan, Adaptive Parallel Iterative Learning Control with A Time-Varying Sign Gain Approach 

Empowered by Expert System 

International Journal of Control, Automation and Systems, vol. 18, no. 
11, pp. 2830-2841, 2020, doi: https://doi.org/10.1007/s12555-019-

0518-2. 

[51] M. Zheng, C. Wang, L. Sun, and M. Tomizuka, “Design of arbitrary-
order robust iterative learning control based on robust control theory,” 

Mechatronics, vol. 47, pp. 67-76, 2017, doi: 
https://doi.org/10.1016/j.mechatronics.2017.08.009. 

[52] B. Panomruttanarug, R. W. Longman, and M. Q. Phan, “Multiple 

model robustification of iterative learning and repetitive control laws 
including design from frequency response data,” Advances in the 
Astronautical Sciences, vol. 134, no. 1, pp. 2259-2278, 2009. 

[53] P. Chotikunnan and B. Panomruttanarug, “Practical design of a time-
varying iterative learning control law using fuzzy logic,” Journal of 

Intelligent & Fuzzy Systems, vol. 43, no. 3, pp. 2419-2434, 2022, doi: 
https://doi.org/10.3233/JIFS-213082. 

[54] M. Thor and P. Manoonpong, “Error-based learning mechanism for 

fast online adaptation in robot motor control,” IEEE Transactions on 
Neural Networks and Learning Systems, vol. 31, no. 6, pp. 2042-2051, 
2019, doi: https://doi.org/10.1109/TNNLS.2019.2927737. 

[55] M. Li, T. Chen, R. Cheng, K. Yang, Y. Zhu, and C. Mao, “Dual-loop 

iterative learning control with application to an ultraprecision wafer 

stage,” IEEE Transactions on Industrial Electronics, vol. 69, no. 11, 

pp. 11590-11599, 2021, doi: 
https://doi.org/10.1109/TIE.2021.3120481. 

[56] J. Shi, “Structure Analysis of General Type-2 Fuzzy Controller and Its 
Application,” International Journal of Fuzzy System Applications 

(IJFSA), vol. 12, no. 1, pp. 1–20, 2023, doi: 
https://doi.org/10.4018/ijfsa.319813. 

[57] W. He, T. Meng, S. Zhang, J. K. Liu, G. Li, and C. Sun, “Dual-loop 

adaptive iterative learning control for a Timoshenko beam with output 
constraint and input backlash,” IEEE Transactions on Systems, Man, 

and Cybernetics: Systems, vol. 49, no. 5, pp. 1027-1038, 2017, doi: 
https://doi.org/10.1109/TSMC.2017.2692529. 

[58] Q. Zhu and J. X. Xu, “Dual IM‐based ILC scheme for linear discrete‐

time systems with iteration‐varying reference,” IET Control Theory 

and Applications, vol. 12, no. 1, pp. 129-139, 2018, doi: 
https://doi.org/10.1049/iet-cta.2017.0592. 

[59] P. Chotikunnan, B. Panomruttanarug, and P. Manoonpong, “Dual 

design iterative learning controller for robotic manipulator 

application,” Journal of Control Engineering and Applied Informatics, 
vol. 24, no. 3, pp. 76-85, 2022. 

[60] A. K. Singholi and D. Agarwal, “Review of Expert System and its 

Application in Robotics,” in Intelligent Communication, Control and 

Devices: Proceedings of ICICCD 2017, pp. 1253-1265, 2018, doi: 
https://doi.org/10.1007/978-981-10-5903-2_131. 

[61] S. S. Saab, D. Shen, M. Orabi, D. Kors, and R. H. Jaafar, “Iterative 
learning control: Practical implementation and automation,” IEEE 

Transactions on Industrial Electronics, vol. 69, no. 2, pp. 1858-1866, 
2021, doi: https://doi.org/10.1109/TIE.2021.3063866. 

[62] Z. Jing, “Application and Study of Expert PID Intelligent Control,” 

IOP Conference Series: Materials Science and Engineering, vol. 563, 
no. 4, p. 042084, 2019, doi: https://doi.org/10.1088/1757-
899X/563/4/042084. 

[63] A. Anand, E. Mamatha, C.S. Reddy, and M. Prabha, “Design of neural 
network based expert system for automated lime kiln system,” Journal 

Européen des Systèmes Automatisés, vol. 52, no. 4, pp. 369-376, 2019, 
doi: https://doi.org/10.18280/jesa.520406. 

[64] M. Tavana and V. Hajipour, “A practical review and taxonomy of 

fuzzy expert systems: methods and applications,” Benchmarking: An 
International Journal, vol. 27, no. 1, pp. 81-136, 2020, doi: 
https://doi.org/ 10.1108/bij-04-2019-0178. 

[65] D. Huang et al., “Current-cycle iterative learning control for high-
precision position tracking of piezoelectric actuator system via active 

disturbance rejection control for hysteresis compensation,” IEEE 

Transactions on Industrial Electronics, vol. 67, no. 10, pp. 8680-8690, 
2019, doi: https://doi.org/10.1109/TIE.2019.2946554. 

[66] S. Thaker and V. Nagori, “Analysis of fuzzification process in fuzzy 

expert system,” in Procedia Computer Science, vol. 132, pp. 1308-
1316, 2018, https://doi.org/10.1016/j.procs.2018.05.047. 

[67] N. Amann, D. H. Owens, and E. Rogers, “Iterative learning control 
using optimal feedback and feedforward actions,” International 

Journal of Control, vol. 65, no. 2, pp. 277-293, 1996, doi: 
https://doi.org/10.1080/00207179608921697. 

[68] K. H .D. Tang, S. Z. M. Dawal, and E. U. Olugu, “Integrating fuzzy 

expert system and scoring system for safety performance evaluation of 

offshore oil and gas platforms in Malaysia,” Journal of Loss Prevention 
in the Process Industries, vol. 56, pp. 32-45, 2018, doi: 
https://doi.org/10.1016/j.jlp.2018.08.005. 

[69] B. Panomruttanarug, R. W. Longman, and M. Q. Phan, “Steady state 

frequency response design of finite time iterative learning control,” The 

Journal of the Astronautical Sciences, vol. 67, no. 2, pp. 571-594, 
2020, Doi:10. 1007/s40295-019-00198-9. 

[70] P. Chotikunnan and R. Chotikunnan, “Dual design PID controller for 

robotic manipulator application,” Journal of Robotics and Control 

(JRC), vol. 4, no. 1, pp. 23-34, 2023. doi: 10.18196/jrc.v4i1.16990. 

[71] C. Guo, L. Zhong, J. Zhao, G. Gao, and Y. Huang, “First-order and 
high-order repetitive control for single-phase grid-connected inverter,” 
Complexity, vol. 2020, 2020. doi: 10. 1155/2020/1094386. 

[72] X. Wang and J. Wang, “Iterative learning control for one-sided 

lipschitz nonlinear singular conformable differential equations,” 

International Journal of Robust and Nonlinear Control, vol. 30, no. 17, 
pp. 7791-7805, 2020. doi: 10. 1002/rnc. 5191. 

[73] P. Chotikunnan, and Y. Pititheeraphab, “Adaptive P Control and 

Adaptive Fuzzy Logic Controller with Expert System Implementation 
for Robotic Manipulator Application,” Journal of Robotics and 

Control (JRC), vol. 4, no. 2, pp. 217-226, 2023, doi: 
https://doi.org/10.18196/jrc.v4i2.17757. 

[74] P. Chotikunnan, R. Chotikunnan, A. Nirapai, A. Wongkamhang, P. 

Imura, and M. Sangworasil, “Optimizing Membership Function 
Tuning for Fuzzy Control of Robotic Manipulators Using PID-Driven 

Data Techniques,” Journal of Robotics and Control (JRC), vol. 4, no. 
2, pp. 128-140, 2023, doi: https://doi.org/10.18196/jrc.v4i2.18108. 

[75] Y. Chen, W. Jiang, and T. Charalambous, “Machine learning based 

iterative learning control for non‐repetitive time‐varying systems,” 

International Journal of Robust and Nonlinear Control, vol. 33, no. 7, 
pp. 4098-4116, 2023, doi: https://doi.org/10.1002/rnc.6272. 

[76] Y. Yu, C. Zhang, W. Cao, X. Huang, X. Zhang, and M. Zhou, “Neural 
network based iterative learning control for magnetic shape memory 

alloy actuator with iteration-dependent uncertainties,” Mechanical 

Systems and Signal Processing, vol. 187, p. 109950, 2023, doi: 
https://doi.org/10.1016/j.ymssp.2022.109950. 

[77] Z. Kou and J. Sun, “Test-based model-free adaptive iterative learning 
control with strong robustness,” International Journal of Systems 

Science, vol. 54, no. 6, pp. 1213-1228, 2023, doi: 
https://doi.org/10.1080/00207721.2023.2169057. 

[78] Z. Afkhami, D. J. Hoelzle, and K. Barton, “Robust higher-order spatial 

iterative learning control for additive manufacturing systems,” IEEE 

Transactions on Control Systems Technology, vol. 31, no. 4, pp. 1692-
1707, 2023, doi: https://doi.org/10.1109/TCST.2023.3243397. 

[79] C. M. Verrelli and P. Tomei, “Adaptive learning control for nonlinear 

systems: A single learning estimation scheme is enough,” Automatica, 

vol. 149, p. 110833, 2023, doi: 
https://doi.org/10.1016/j.automatica.2022.110833. 

[80] S. Kerrouche, A. Djerioui, S. Zeghlache, A. Houari, A. Saim, H. Rezk, 

and M. F. Benkhoris, “Integral backstepping-ILC controller for 

suppressing circulating currents in parallel-connected photovoltaic 
inverters,” Simulation Modelling Practice and Theory, vol. 123, p. 
102706, 2023, doi: https://doi.org/10.1016/j.simpat.2022.102706. 

 


