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Abstract—In this work, precision and recall measures are 

used to assess the performance of YOLOv7 and YOLOv8 

models in identifying pulmonary carcinoma on a distinct 

collection of 700 photos. The necessity of early disease detection 

is increasing, thus choosing a reliable object detection model is 

essential. The goal of the research is to determine which model 

works best for this purpose, taking into account the unique 

difficulties that pulmonary cancer presents. The work makes a 

contribution to the field by showcasing the improvements made 

to YOLOv8 and underlining how well it detects both benign and 

malignant. YOLOv7 and YOLOv8 were used to independently 

train custom models using the pulmonary carcinoma dataset. 

The models' performance was measured using precision, recall, 

and mean average precision measures, which allowed for a 

comprehensive comparison examination. When it came to 

precision (58.2%), recall (61.2%), and mean average precision 

at both the 0.5:0.95 (33.3%) and 0.5 (53.3%) criteria, YOLOv8 

outperformed YOLOv7. The 3.0% accuracy gain highlights 

YOLOv8's improved capabilities, especially in identifying small 

objects. YOLOv8's enhanced accuracy can be attributed to the 

optimisation of the detection process through its anchor-free 

design. According to this study, YOLOv8 is a more reliable 

model for pulmonary carcinoma identification than YOLOv7. 

The results indicate that YOLOv8 is the better option because 

of its higher recall, precision, and enhanced capacity to detect 

smaller objects—all of which are critical for early illness 

detection in medical imaging. 

Keywords—YOLOv7; YOLOv8; Object Detection; Computer 

Vision; Pulmonary Carcinoma Detection; Medical Image 

Analysis. 

I. INTRODUCTION  

The shape and color of objects used as the basis for 

recognition by traditional image detection algorithms [1]. 

Due to a lack of appropriate resilience and error detection, 

these sophisticated algorithms have some application 

restrictions [2]. Due to their ability to get beyond the 

drawbacks of conventional image identification algorithms 

and efficiently extract object attributes from complicated 

images, deep-learning-based object recognition algorithms 

have gained popularity in current research and applications. 

Accuracy, speed, and environmental variance are 

traditional object detection algorithms [3]. There are several 

approaches to object detection [4], and they can broadly be 

categorized into 2 main types: one-stage detectors and two-

stage detectors. Most object detection techniques may be 

separated into one of two types: the initial method based on 

candidate areas, are Faster RCNN (region-based 

convolutional neural network) and Fast RCNN.  

1. Two-Stage Algorithm: 

• Faster R-CNN: Building on Faster R-CNN, Fast R-CNN 

integrates the region proposal network (RPN) into the 

detection pipeline, faster inference and allowing for end-

to-end training [5] , [6]. 

• Fast R-CNN: An improvement upon Fast R-CNN, R-

CNN uses the entire image for feature extraction and 

introduces a region of interest (RoI) pooling layer to 

efficiently classify object proposals [7] , [8]. 

• R-CNN (Regions with Convolutional Neural Networks): 

R-CNN was one of the pioneering approaches that uses a 

two-stage process. It involves generating region proposals 

using a selective search algorithm and then classifying 

these proposed regions using a convolutional neural 

network (CNN) [9].  

2. One-Stage Algorithm[10]: 

• YOLO (You Only Look Once): YOLO is a one-stage 

detector[11] that divides the input image into a grid and 

predicts bounding boxes and class probabilities directly 

from this grid [12]. Mean average precision (mAP), a 

scaled-down version called Fast YOLO beats existing 

real-time detectors while processing data at an incredible 

155 frames per second [13]. 

• SSD (Single Shot Multibox Detector): Similar to YOLO, 

SSD is a one-stage detector that generates multiple 

bounding box predictions at different scales and aspect 

ratios in a single pass through the network [14]. 

• EfficientDet: This is an efficient and scalable object 

detection model that balances accuracy and 

computational efficiency. It uses a compound scaling 

method to optimize model parameters for different 

resolutions [15].  

• RetinaNet: RetinaNet introduces the focal loss to address 

the class imbalance problem in one-stage detectors, 

resulting in improved performance, especially for 

detecting rare objects [16]. 

These methods produce the class probability and object 

location coordinate values directly, yielding the final 

detection outcome after only one inspection [17], [18], [19], 

[20]. The YOLO algorithm is applicable to a variety of 

computer vision (CV) tasks, including those involving 

hospitals, autonomous vehicles, drones, the military, wildlife, 
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and others [21]. To identify which YOLO algorithm performs 

better than the others. According to past studies, In terms of 

speed and accuracy, Compared with some newer versions, 

YOLOv8 outperforms YOLOv3 [22], YOLOv4, YOLOv5, 

YOLOv6 and YOLOv7 [23], [24], [25]; additionally, it is 

necessary to determine whether YOLOv8 surpasses 

YOLOv7. This study evaluated YOLOv7 and YOLOv8. 

This paper ordered as Section 2 represents the YOLO 

background; Section 3 reviews of literature. Section 4 

methodology. Section 5 discuss about results, and at last, 

Section 6 we conclude paper. 

II. BACKGROUND OF YOLO 

YOLO is a unique method for detecting objects. YOLO 

permits real-time speeds and end-to-end training while 

keeping a high average level of precision. The method creates 

S×S grid from the provided image. A grid cell is identified an 

object if its center within the cell. Expected confidence scores 

and B-bounding boxes for those boxes will be present for 

each grid cell.  If there is no object present in that cell, the 

confidence ratings should be 0. If not, the intersection over 

union (IOU) between the projected box and the five 

predictions—x, y, w, h, and confidence—that make up each 

bounding box should be used as the confidence score. The 

center of the box with respect to the grid cell's boundaries is 

represented by the (x, y) coordinates. W and H stand for the 

expected width and height in entire image. The confidence 

prediction represents the IOU between the actual box and the 

predicted box. The network design based on the GoogLeNet 

image categorization model. In the network, 24 convolutional 

layers come before 2 completely coupled layers. Instead of 

using GoogleNet's inception modules, 3×3 convolutional 

layers and 1x1 reduction layers are integrated. Fig. 1 shows 

the YOLO evolution [13].  In Fig. 1, it shows the different 

versions of YOLO and when it was introduced. 

A. YOLO Versions improvements 

Each unique iteration of YOLO provides more beneficial 

upgrades and enhancements. Compared with some newer 

versions, Table I provides a summary of the conclusions 

drawn from YOLO versions.  

B. YOLOv7 Model 

Focus on Efficiency: YOLOv7 prioritizes reduced model 

complexity and increased inference speed while maintaining 

good accuracy [27]. Scholarly literature references 

YOLOv7's basic position within the YOLO series [28]. It 

achieves this through:  

• Slimmed-down backbone network: Utilizes EfficientNet, 

which combines depthwise convolutions and squeeze-

and-excitation modules for efficient feature extraction 

[29]. 

• Simplified head structure: Employs a single-stage 

detection framework with a single head for both 

classification and regression, reducing computational 

overhead [18]. 

• Improved training methods: Introduces Focal Loss and 

CIoU Loss for better bounding box prediction and 

handling of hard examples [16], [30]. 

• Enhanced Focus on Small Objects: Implements 

techniques to improve small object detection:  

• Multi-scale training: Trains the model on images resized 

to different scales, improving feature learning for objects 

of various sizes [31]. 

• Anchor-free prediction: Eliminates pre-defined anchors, 

allowing the model to dynamically predict bounding 

boxes of any size, better suited for small objects [32]. 

With its amazing features, YOLOv7 is a real-time object 

detector. It has better accuracy of all real-time object 

detectors with 30 FPS, with a 56.8% mAP, and outperforms 

all object detectors in the range of 5 to 160 FPS. YOLOv7 

has expanded efficient layer aggregation networks (E-

ELAN). The optimal structure of the model and its original 

attributes both preserved using the suggested compound 

scaling strategy [13]. 

 

Fig. 1. YOLO evolution [26] 
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TABLE I.  SUMMARY OF YOLO 

S.No 
YOLO 

Versions 
Enhancements References 

1. YOLOv1 
The issues with boundary box creation and class identification are combined and resolved by a single-shot 

detector 
[13] 

2. YOLOv2 
higher-quality detection, Batch normalization,  and the use of anchor boxes have all seen iterative 

improvements. 
[18] 

3. YOLOv3 Bounding box prediction with the addition of objectness score, connections to the backbone network layers [18], [34] 

4. YOLOv4 Enhanced feature aggregations, and mish activation [35], [36] 

5. YOLOv5 
Cross-Stage Partial Network (CSPNet) for architecture and the PANet for its neck, auto-anchoring, and 

residual structure 
[23], [37], 
[38], [39] 

6. YOLOv6 Backbone and neck designs are Rep-PAN Neck and EfficientRep Backbone. [20] 

7. YOLOv7 E-ELAN, a trainable bag of freebies, utilizes 35% [40] 

8. YOLOv8 Use task alignment learning and an anchor-free approach to align classification and regression tasks 
[41], [42], 

[43], [44] 

C. YOLOv8 Model 

• The latest version is the YOLOv8 algorithm [33], which 

was open-sourced by Ultralytics in January 2023. 

• Further Speed and Accuracy Gains: Builds upon 

YOLOv7's efficiency while pushing the boundaries of 

accuracy and speed:  

• Anchor-free architecture: Similar to YOLOv7, eliminates 

anchors for dynamic box prediction, but with a novel Path 

Aggregation Network (PAN) for improved feature 

propagation and context understanding [45]. 

• Multi-scale prediction: Enhances YOLOv7's approach by 

employing multiple prediction heads at different scales, 

leading to better multi-scale object detection [15]. 

• Improved backbone network: Introduces a custom 

YOLOv8 backbone with densely connected convolutions 

for richer feature extraction and higher accuracy [46]. 

Lightweight YOLOv8m chosen for this paper. The 

YOLOv8 method gave rise to the lightweight parameter 

structure known as YOLOv8m. It consists of a backbone 

network, neck network, and prediction output head. 

Convolutional operations used for backbone network to 

extract properties on various scales from RGB (Red, Green, 

and Blue) color images. The neck network's job is to combine 

the features that the backbone network has extracted. To 

combine low-level characteristics into higher-level 

representations, feature pyramid structures, or FPNs, are 

usually used. Three sets of detection detectors of varied sizes 

are used to pick and detect the image contents [41], [42], [47]. 

The head layer is in charge of predicting the target category. 

Unlike traditional object detection methods that use 

multiple stages, YOLO performs detection in a single pass. It 

divides the input image into a grid and predicts bounding 

boxes and class probabilities for each grid cell. 

1. Grid-Based Approach: 

YOLO divides the input image into a grid of cells. Each 

cell is responsible for predicting bounding boxes and class 

probabilities. The grid allows the algorithm to efficiently 

capture objects at different locations and scales within the 

image. The bounding boxes and class predictions are made      

directly at the grid cell level, making YOLO fast and 

effective.  Fig. 2 represents the YOLO Architecture and how 

much conventional layer has been used.

 

Fig. 2. YOLO architecture [13]
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1) Bounding Boxes: 

Bounding boxes are rectangular regions that outline the 

location of detected objects [48]. YOLO predicts bounding 

boxes for each object present in the image. Each bounding 

box is defined by its coordinates (x, y) of the top-left corner, 

width (w), and height (h) [13], [35] 

2) Confidence Scores: 

Confidence scores indicate the algorithm's confidence 

that a bounding box contains an object and that the predicted 

class is correct. YOLO assigns a confidence score to each 

bounding box prediction, reflecting the likelihood that the 

box contains an object. High confidence scores suggest 

accurate predictions [49], [50]. 

3) Intersection Over Union (IOU): 

IOU is a metric used to evaluate the accuracy of bounding 

box predictions. It measures the overlap between the 

predicted bounding box and the ground truth bounding box 

[51]. The IOU is calculated as the area of intersection divided 

by the area of union. Higher IOU values indicate better 

alignment between predicted and actual bounding boxes [52]. 

These architectural differences highlight the trade-offs 

between speed, accuracy, and versatility. YOLOv7 prioritizes 

real-time performance with lower model complexity, while 

YOLOv8 focuses on pushing the boundaries of accuracy and 

multi-scale object detection with a slightly more complex 

architecture. 

The choice between YOLOv7 and YOLOv8 depends on 

your specific application needs. If real-time performance is 

paramount, YOLOv7 might be the better choice. However, if 

high accuracy and superior performance on objects of various 

sizes are crucial, YOLOv8 could be the preferred option. Fig. 

3 represents the scaling model that the concatenation-based 

model has been used and how it has been scaled for the width 

and depth of the images. 

 

 

 

Fig. 3. Scaling models based on concatenation. From (a) through (b), we observe that when depth scaling applied. This will cause the input width of the next 

transmission layer to increase. We therefore propose (c), which stipulates that while performing model scaling on concatenation-based models

III. REVIEW OF LITERATURE 

This research presents a comparative analysis of 

YOLOv7 and YOLOv8 object detection algorithms. Aim is 

to identify the performance of these algorithms in terms of 

speed, efficiency, and accuracy. The methodology employed 

involves the use of benchmark datasets and metrics to 

measure the algorithms' performance. The results obtained 

from the study provide strengths and weaknesses of each 

algorithm, the selection of most appropriate algorithm for 

specific object detection task [53]. Every model version is 

denoted by a unique color, and markers show the range of 

sizes from nano to extra [54]. The structural diagram of the 

YOLOv8 model shown in Fig. 4.  

The results of this investigation demonstrate the YOLOv7 

algorithm's promise as a dependable method for real-time car 

safety belt recognition. The algorithm's capability precisely 

identify safety belt usage in cars can have a big impact on 

improving traffic safety measures. Additionally, because of 

how well it processes real-time data, it may integrated into 

current surveillance systems or smart transportation systems 

[55]. 

We propose an effective approach for detecting pavement 

distress using an enhanced version of the YOLOv7 algorithm. 

Our method advantages the capabilities of deep learning 

accurately identify various types of pavement damage, such 

as cracks, potholes, and patches. By incorporating 

improvements to the YOLOv7 architecture, we achieve 

enhanced detection performance, ensuring high accuracy and 

efficiency. This approach offers significant advantages in 

terms of real-time detection, enabling prompt maintenance 

and repair actions to be taken. The technique makes a 

significant contribution to the field of pavement distress 

identification and offers an effective tool for managing 

infrastructure [56]. 

The identification of endosperm cracks in soaked maize 

has made possible through the utilization of μCT technology 

in conjunction with R-YOLOv7-tiny. This advanced 

technology enables the detection and analysis of these cracks 

with high precision and accuracy. Researchers and experts 

a) Concatenation-
based model b) Scaled-up 

Concatenation-

based model 
c) Compound Scaled-up depth and width for Concatenation-based 

model 
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may evaluate the quality and integrity of maize samples 

effectively by using this novel method, assuring optimal grain 

output and reducing potential losses. The detection of 

endosperm cracks in soaked maize made possible by the 

combination of CT technology and R-YOLOv7-tiny, offering 

a trustworthy and effective solution that improves 

agricultural practices and food security [57]. 

The goal of the research study is to design an apple 

detection system for drones that makes use of the YOLOv7 

architecture and improved by a multi-head attention 

mechanism. This system's main goal is precisely gauge the 

depth of apples in an orchard. We effectively find and detect 

apples in real-time by utilising the YOLOv7 architecture. A 

multi-head attention mechanism also added to improve the 

system's ability to gauge the depth of the identified apples 

with accuracy. This novel strategy has enormous promise for 

streamlining the apple harvesting procedure and enhancing 

overall orchard management [58], [59]. BFD-YOLO is an 

enhanced detection technique that makes use of the YOLOv7 

framework to find building façade flaws. With the help of 

specialised algorithms and the strength of YOLOv7, this 

ground-breaking method accurately identifies and categorises 

numerous kinds of exterior building faults. BFD-YOLO 

provides a reliable and effective solution for fault 

identification in real-time by utilising the capabilities of deep 

learning and computer vision. Its connection with YOLOv7 

guarantees great accuracy and dependability, enabling quick 

detection of flaws and facilitating swift maintenance and 

repairs [60]. 

This study focuses on the efficient identification of 

steering markers in orchard management robots using an 

enhanced version of YOLOv7. The aim is to develop a rapid 

detection system that can accurately identify these markers, 

enabling effective navigation and operation of the robots in 

orchards. The improved YOLOv7 algorithm incorporates 

advanced techniques to enhance the detection accuracy and 

speed. The findings of this study contribute to the 

advancement of orchard management robotics, facilitating 

efficient and precise operations in agricultural settings [61]. 

The YOLO-CID is an enhanced version of the YOLOv7 

algorithm designed for the detection of X-ray contraband 

images. This algorithm utilizes advanced machine learning 

techniques to accurately identify and classify contraband 

items in X-ray images. The YOLO-CID algorithm has 

extensively tested and has demonstrated superior 

performance compared to other existing algorithms. Its high 

accuracy and speed make it an ideal solution for security 

applications in airports, seaports, and other high-security 

areas [62]. 

The detection and identification of tea leaf diseases using 

YOLOv7 (YOLO-T) is a cutting-edge approach. YOLO-T 

leverages advanced technology to accurately detect and 

classify diseases affecting tea leaves. By employing the 

YOLOv7 model, this method ensures high precision and 

efficiency in disease identification. The integration of 

YOLO-T into tea leaf disease detection systems enhances the 

overall performance and reliability of disease diagnosis. This 

innovative technique holds great potential for the tea 

industry, enabling prompt and accurate disease detection, 

leading to timely interventions and improved crop 

management [63].  

Enhance underwater target detection using an adapted 

YOLOv7 with modified architecture, specialized 

preprocessing for underwater images, and sensor integration 

for improved accuracy in challenging conditions [64]. The 

YOLOv7 algorithm has been enhanced to achieve improved 

accuracy in detecting bone marrow cells. This advancement 

in the algorithm's performance is a result of rigorous research 

and development efforts. By leveraging state-of-the-art 

techniques and methodologies, the updated YOLOv7 

algorithm demonstrates enhanced precision and recall rates, 

ensuring more reliable identification of bone marrow cells. 

This development holds significant potential for various 

medical applications, including disease diagnosis and 

treatment monitoring. The improved YOLOv7 algorithm 

serves as a valuable tool for medical professionals and 

researchers, enabling them to efficiently and effectively 

analyze bone marrow cell data, ultimately contributing to 

advancements in the field of healthcare [40]. 

 

Fig. 4. Structural diagram for YOLOv8 model [42]
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With the addition of attention mechanisms and dynamic 

convolutions, the enhanced YOLOv7 for small object 

detection method presents notable improvements. The model 

can concentrate on pertinent areas thanks to attention 

processes, which is especially useful for identifying little 

things that could be easily obscured by larger ones. 

Adaptively adjusting their receptive fields, dynamic 

convolutions, on the other hand, enable the model to better 

capture tiny traits and fine details that are essential for small 

item recognition. The combination of attention and dynamic 

convolution improves the model's detection accuracy and 

robustness overall, improving its capacity to recognise small 

things. This is a significant development in the field of object 

identification algorithms [65]. 

A comprehensive investigation was conducted on the 

topic of traffic sign detection, focusing on the utilization of 

an enhanced version of the YOLOv8 algorithm. The 

objective of this research was to enhance the accuracy and 

efficiency of traffic sign detection systems. The study 

involved extensive experimentation and analysis, resulting in 

the development of an improved YOLOv8 model specifically 

tailored for traffic sign detection. The proposed model 

exhibited superior performance in terms of detection 

accuracy and computational efficiency when compared to 

existing methods. These findings contribute to the 

advancement of traffic sign detection technology, with 

potential applications in various domains such as autonomous 

driving and intelligent transportation systems [47]. 

The present study introduces a novel tomato detection 

algorithm, which combines feature enhancement and 

attention mechanisms, based on the lightweight YOLOv8 

architecture. The proposed algorithm aims to improve the 

accuracy and efficiency of tomato detection in agricultural 

applications. The feature enhancement module is designed to 

enhance the discriminative power of the feature maps, while 

the attention module is utilized to selectively focus on the 

most informative regions of the input image. Experimental 

results demonstrate that the proposed algorithm outperforms 

state-of-the-art methods in terms of detection accuracy and 

computational efficiency, making it a promising solution for 

real-world tomato detection tasks [42]. 

YOLOv8-Tiny is a low power and lightweight object 

detection network made especially for devices with 

constrained resources. To meet the needs of devices with 

limited resources, a network known as YOLOv8-Tiny has 

been created, offering a low-power and lightweight object 

detection solution. YOLOv8-Tiny is a low-power and 

lightweight network that specialises in object identification 

and is made especially for devices with constrained resources 

[44]. 

Presenting a groundbreaking proposal for lung nodule 

detection, this research endeavors to advance the state of the 

art by introducing a novel hybrid deep learning model based 

on YOLOv8 (You Only Look Once version 8). In this 

innovative approach, the YOLOv8 architecture is enhanced 

and tailored to the intricacies of medical image analysis, 

particularly in the context of identifying lung nodules. The 

proposed model combines the efficiency of YOLOv8's object 

detection capabilities with specialized adaptations and 

optimizations designed for accurate and efficient detection of 

pulmonary nodules in medical imaging datasets. This hybrid 

deep learning model aims to significantly contribute to the 

field of early lung cancer diagnosis, offering a robust and 

high-performance solution for automated detection and 

localization of nodules in chest radiographs or CT scans [43]. 

With a special emphasis on YOLOv7 and YOLOv8, the 

literature review offers a thorough summary of the state of 

the art in object detection algorithms for the detection of lung 

cancer. Even if previous research in this area has advanced 

significantly, there are still important information gaps and 

uncertainties that demand more study. The rationale behind 

the comparative analysis of YOLOv7 and YOLOv8 is the 

imperative to bridge these knowledge gaps and augment our 

comprehension of their corresponding advantages and 

drawbacks within the framework of lung cancer 

identification. The goal of this comparison analysis is to 

provide insightful information that will help direct future 

studies and developments in the creation of more precise and 

successful pulmonary carcinoma detection systems. 

IV. METHODOLOGY 

Here I have used modified bilateral filter to preprocess the 

image to reduce the noise of a Computed Tomography (CT) 

images. 

A. Modified Bilateral Filter 

The Modified bilateral filter calculates the pixel value by 

two weight functions: range kernel gr and spatial kernel gs. 

The Modified bilateral filter represents a gaussian[66]. The 

modified bilateral-filter, on the other hand, preserves edges 

by taking into account intensity variations[67]. 

𝑔𝑟 (𝑓𝑝 , 𝑓𝑞) = 𝑒

−(𝑓𝑔−𝑓𝑝)
2

2𝜎𝑟
2

 𝑔𝑠 (𝑝,𝑞)= 𝑒

−‖(𝑞−𝑝)‖2
2

2𝜎𝑠
2

 
(1) 

Where σr and σs are the root mean square deviation. 

Euclidean distance between their arguments in gaussian filter 

especially in c radially symmetric[68]. 

𝑐(𝜉,𝑥)= 𝑒
−

1
2

(
𝑑(𝜉,𝑥)

𝜎𝑑
)

2

 
(2) 

Effective edge information preservation in image 

smoothing filters is crucial since it significantly affects the 

final image's quality. In order to efficiently smooth images 

while keeping edge information, bilateral filters use functions 

made of spatial and colour information [69]. The output 

picture after being processed by a bilateral filter is denoted as 

us, as illustrated in (1), where s is the central point and t is the 

image of any point in s's neighbourhood N(s). 

𝑢𝑠=
1

𝑍𝑠
∑ 𝐺𝜎𝑠𝑡∈𝑁(𝑠) (𝑠−𝑡)𝐺𝜎𝑟

(𝑔𝑠−𝑔𝑡)𝑔𝑡  (3) 

𝑍𝑠=∑ 𝐺𝜎𝑠𝑡∈𝑁(𝑠) (𝑠−𝑡)𝐺𝜎𝑟
(𝑔𝑠−𝑔𝑡)   

where 𝐺𝜎𝑠
 and 𝐺𝜎𝑟

 are spatial and Gaussian kernel functions. 

The spatial proximity factor and grayscale similarity factor 

are represented by the symbol σs. 𝐺𝜎𝑠
(𝑠 − 𝑡) denotes the 

difference in the grey value, while 𝐺𝜎𝑟
(gs-gt) denotes the 

spatial separation between point t in neighbourhood N(s) and 

other points. 
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Medical data presents a number of intrinsic obstacles for 

object detection in medical imaging, particularly when using 

YOLO (You Only Look Once) in the context of pulmonary 

carcinoma. Even though YOLO is a strong and popular object 

identification technique, there are particular challenges when 

using it to medical imaging? 

1. Scale Variation: 

Challenge: The size of pulmonary nodules, which may be 

indicative of cancer, can vary greatly. While some might be 

bigger and easier to spot, others might be much smaller and 

harder to find. 

Approaches: Since YOLO is a single-shot detector, it 

might not be able to handle large-scale fluctuations. Various 

adjustments are made to the anchor box arrangement or 

multi-scale training in order to better manage the size 

variation in pulmonary nodules [18]. 

2. Occlusion: 

Challenge: Pulmonary nodules can be partially or fully 

occluded by anatomical structures or other tissues, making it 

difficult for the algorithm to detect them accurately. 

Approaches: Data augmentation techniques can simulate 

occlusion scenarios during training. Additionally, exploring 

more sophisticated network architectures or incorporating 

contextual information to improve occlusion handling is 

essential [70]. 

3. Background Clutter: 

Challenge: The presence of diverse anatomical structures, 

vessels, or abnormalities in the lung can introduce 

background clutter, potentially leading to false positives. 

Approaches: Utilizing transfer learning with pre-trained 

models on relevant medical datasets can help the network 

focus on pulmonary features. Post-processing techniques like 

non-maximum suppression can also reduce false positives 

[71]. 

4. Class Imbalance and Scarce Annotations: 

Challenge: Medical datasets often suffer from class 

imbalance, with a small number of positive cases (pulmonary 

carcinoma) compared to negative cases. Moreover, obtaining 

accurate annotations for medical images can be time-

consuming and challenging. 

Approaches: Techniques such as focal loss can help 

mitigate the impact of class imbalance. Semi-supervised 

learning or weakly supervised approaches may be explored 

to address the scarcity of annotated data [16]. 

It is important to note that while YOLO can be applied to 

medical imaging, the specific challenges and solutions may 

vary based on the characteristics of the medical data and the 

imaging modality used. Additionally, the references provided 

are not specific to pulmonary carcinoma but offer insights 

into addressing challenges in object detection tasks. 

Detection speed is particularly crucial in real-world 

applications, and the You Only Look Once (YOLO) 

architecture is a prime example that highlights the 

significance of fast and efficient object detection. YOLO is 

known for its real-time processing capabilities, and its design 

principles shed light on why detection speed is vital for 

practical object detection systems. 

a) Real-Time Processing in YOLO: 

YOLO is designed to perform object detection in real-

time, allowing it to process images and videos quickly 

without compromising accuracy. The YOLO architecture 

divides the input image into a grid and makes predictions for 

bounding boxes and class probabilities simultaneously. This 

approach enables YOLO to achieve impressive detection 

speeds, making it suitable for applications where timely 

processing is essential [13]. 

b) Applications in Autonomous Vehicles: 

In the context of autonomous vehicles, detection speed is 

critical for ensuring rapid decision-making. YOLO's ability 

to provide real-time object detection makes it well-suited for 

applications like self-driving cars, where quick identification 

of pedestrians, vehicles, and obstacles is crucial for ensuring 

safe navigation. 

c) Enhanced Surveillance Systems: 

Surveillance systems benefit significantly from fast 

detection speeds, as they need to analyze live video feeds and 

respond promptly to security threats. YOLO's efficiency in 

processing frames at high speeds makes it valuable for 

surveillance applications, where timely detection of 

suspicious activities is of utmost importance. 

d) Reduced Latency in Robotics: 

YOLO's real-time capabilities are advantageous in 

robotics, where low latency is essential for tasks such as robot 

navigation and interaction with the environment. The ability 

to quickly detect and respond to objects enables robots to 

operate more efficiently and safely in dynamic environments. 

e) Scalability for Large Datasets: 

YOLO's speed is beneficial for handling large datasets 

efficiently. In scenarios where there is a need to process a vast 

amount of visual data, YOLO's ability to provide fast and 

accurate detection contributes to the practicality of 

implementing object detection systems at scale [17]. 

f) User Interaction in Augmented Reality: 

YOLO's real-time processing is advantageous in 

applications involving augmented reality, where objects in 

the real world need to be quickly identified and overlaid with 

virtual information. The fast detection speed contributes to a 

seamless and responsive user experience. Here's an 

illustration of how the YOLO algorithm works [13]: 

• Input Image: 

The algorithm takes an input image of any size. 

• Grid Division: 

The image is divided into a grid. YOLO typically uses a 

grid size of, for example, 7×7 or 13×13. 
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• Bounding Box Prediction: 

For each grid cell, YOLO predicts bounding boxes. Each 

bounding box is described by a set of parameters: (x, y) 

representing the center of the box, width (w), height (h), and 

a confidence score [72]. 

• Class Prediction: 

YOLO also predicts the class probabilities for each 

bounding box. The class probabilities are computed for all the 

predefined classes. 

• Final Detection: 

The final detections are obtained by combining the 

bounding box coordinates, confidence scores, and class 

probabilities. Non-maximum suppression is applied to filter 

out redundant overlapping bounding boxes [73].  

This efficiency makes YOLO particularly suited for real-

time applications. Here are a few concrete examples of 

YOLO's applications in different domains: 

• Medical Imaging in Hospitals: 

Application: YOLO can be used for real-time detection 

and localization of abnormalities in medical images, such as 

detecting tumors or anomalies in X-rays, MRIs, or CT scans 

[18]. 

• Autonomous Vehicles: 

Application: YOLO plays a crucial role in the perception 

module of autonomous vehicles by providing real-time object 

detection for identifying pedestrians, vehicles, cyclists, and 

other obstacles on the road [35]. 

• Surveillance Systems: 

Application: YOLO can be employed in surveillance 

systems for real-time monitoring and detection of suspicious 

activities, unauthorized individuals, or objects in restricted 

areas [13]. 

• Retail and Inventory Management: 

Application: YOLO can be utilized in retail environments 

for tracking inventory, monitoring product shelves, and 

managing stock levels in real time [17]. 

• Drones and Aerial Surveillance: 

YOLO enables drones to perform real-time object 

detection, helping with tasks such as search and rescue 

missions, monitoring wildlife, and assessing disaster-stricken 

areas [35]. 

These examples showcase the versatility of YOLO in 

addressing diverse computer vision challenges in real-world 

scenarios. The algorithm's speed and accuracy make it a 

popular choice for applications requiring rapid and reliable 

object detection. We aim to analyze and compare the 

accuracy, efficiency, and overall effectiveness of these two 

versions of the YOLO object detection algorithm against 

established reference models. By explicitly stating this 

objective in the introduction, we provide a clear roadmap for 

readers, setting the stage for a focused exploration of the 

comparative performance of YOLOv7 and YOLOv8 in the 

context of object detection. 

Experiments were carried out by training custom datasets 

model with YOLOv7 and YOLOv8 independently in order to 

consider which one of the two performs well in terms of 

precision, recall, mAP@0.5 and mAP@0.5:0.95.  

B. Experimental Setup 

Many platform is there to run YOLOv8 like Roboflow 

here I have used Anaconda Prompt is a platform that offers 

coding. Created a custom dataset with the help of pulmonary 

carcinoma 1098 CT images has done annotation with the help 

of labelme. Here, torch version 2.0.1+cpu is used. All 

experiments were conducted on a Dell Latitute e5470 using 

the Anaconda prompt for training, validation, and testing the 

custom model. The results are stored in the local disk folder 

as run->segment->train. Fig. 5 shows the images used in 

research. 

C. Model Training and Parameter Settings 

When training the model, the weights were loaded and 

fine-tuned after pre-training the model on the COCO dataset. 

To accelerate the convergence of the model and reduce the 

loss value, the initial learning rate was set to 0.01, weight 

decay rate to 0.0005, and momentum factor to 0. These 

parameters were updated using a stochastic gradient descent 

algorithm to achieve end-to-end model training with 100 

training epochs. 

D. Dataset Description 

• The dataset used in this research were download form 

online dataset such as kaggle, LDIC, UCI repository. The 

dataset was available in UCI ML Repository, the Cancer 

Imaging Archive (TCIA) Public Access, Kaggle, and EL-

CAP lung images. In the UCI ML Repository, data 

consists of 32 instances and 56 attributes. All predictive 

attributes are nominal and can only have integer values 

between 0-3 (URL: 

https://archive.ics.uci.edu/ml/datasets/lung+cancer) [74]. 

• LIDC-IDR involves diagnostic and pulmonary carcinoma 

showing thoracic CT images with interpreted lesions 

marked up. Seven institutions and eight medical image 

organization collaborated to generate this data set, which 

contains 1018 cases. Every radiologist individually 

reviewed each CT image and classified the lesions into 

three groups ("nodule > or =3 mm," "nodule <3 mm," and 

"non-nodule > or =3 mm") (URL: 

https://wiki.cancerimagingarchive.net/download/attachm

ents/1966254/TCIA_LIDC-

IDRI_20200921.tcia?version=1&modificationDate=160

0709265077&api=v2) [75]. 

• Kaggle gives Lung opacity CXR images are collected 

from Radiological Society of North America (RSNA) 

CXR in DICOM format with a set of labels indicating if 

the patient was diagnosed with pulmonary carcinoma in 

the future, even one year after the scan was taken (URL: 

https://www.kaggle.com/datasets/preetviradiya/covid19-

radiography-

dataset/download?datasetVersionNumber=2) 

mailto:mAP@0.5
mailto:mAP@0.5:0.95


Journal of Robotics and Control (JRC) ISSN: 2715-5072 467 

 

Moulieswaran Elavarasu, Unveiling the Advancements: YOLOv7 vs YOLOv8 in Pulmonary Carcinoma Detection 

E. Precision 

Precision are standard metrics used for binary 

classification tasks, where the ratio of true positive 

predictions to the total predicted positives, and recall is the 

ratio of true positive predictions to the total actual positives 

[76], [77]. It is calculated using the following formula [78]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛=  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (4) 

Where True Positives (TP) are the instances where the model 

correctly predicts the positive class. False Positives (FP) are 

the instances where the model incorrectly predicts the 

positive class.  

F. Recall 

Recall, also known as sensitivity or true positive rate, is 

calculated using the following formula [76], [77]: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (5) 

Where True Positives (TP) are the instances where the model 

correctly predicts the positive class. False Negatives (FN) are 

the instances where the model fails to predict the positive 

class when it is actually present. The recall analysis offers 

valuable insights into the performance of both YOLOv7 and 

YOLOv8, particularly concerning their ability to capture 

instances of both Benign and Malignant cases. Recall, also 

known as sensitivity, is a critical metric in object detection 

tasks. 

G. Accuracy  

The PASCAL VOC (Visual Object Classes) Challenge, 

which popularised the use of the mAP measure for assessing 

object identification algorithms, is one of the seminal works 

in this field. The PASCAL VOC challenges were held every 

year between 2005 and 2012 [79]. Subsequent works and 

challenges, such as COCO (Common Objects in Context), 

have further refined and extended the evaluation metrics, 

including the use of different IoU thresholds [80] , [81]. 

Formula 3 refers the accuracy of true positive (TP), false 

positive (FP), true negative (TN), false negative (FN) [82]. 

Accuracy =  [𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 +𝐹𝑁] (6) 

YOLOv8 is more accurate than YOLOv7, mostly because 

of important architecture improvements and tactical changes. 

With the use of cross-stage partial networks and 

CSPDarknet53 as the backbone architecture, feature 

representation is improved, enabling more sophisticated and 

discriminative feature learning. YOLOv8 is noteworthy for 

its refinement of the Feature Pyramid Network (FPN), which 

enhances its capacity to record data at various resolutions. 

Adaptive management of item scales during training is made 

possible by dynamic anchor assignment, which promotes 

more accurate localization. Improved training methodologies 

and sophisticated data augmentation techniques can improve 

generalisation, and an effective model design balances 

computing efficiency and complexity. YOLOv8's accuracy is 

further enhanced by ensemble approaches and the 

collaborative nature of the YOLO community, which make 

use of collective insights and iterative improvement. 

YOLOv8's accuracy improvements are essentially the result 

of a comprehensive strategy that includes architectural 

innovations, training techniques, and cooperative 

improvements. 

V. EXPERIMENT RESULTS 

Table II represents the performance of YOLOv8 and 

YOLOv7 using Precision, recall and mAP@0.5 and 

mAP@0.5:0.95. 

Precision is a metric that reflects the accuracy of positive 

predictions made by the model, indicating the proportion of 

positive instances among all predicted positive instances. It is 

particularly relevant in scenarios where the cost of false 

positives is high. Based on the precise analysis of the results 

presented in Table II, it is evident that YOLOv7 consistently 

outperforms YOLOv8 in all scenarios. YOLOv8 exhibits a 

performance of 58.2% and 92.3% for all classes, with 76.4% 

accuracy for Benign class and Malignant class, respectively. 

In contrast, YOLOv7 achieves a lower accuracy of 51.2% for 

all classes, and 53.2% and 52.3% for Benign and Malignant 

classes, respectively. This comparison reveals that YOLOv8 

demonstrates a 7% improvement in overall class detection, 

with a higher number of true positives in relation to the total 

number of detected objects, compared to YOLOv7. Table 2 

reveals the recall results, demonstrating that YOLOv8 

surpasses YOLOv7 solely in the detection of Benign and 

Malignant cases, achieving percentages of 78.5% and 24.7% 

respectively, in contrast to YOLOv7's results of 77.8% and 

20.9%. However, when considering the overall class recall 

for Benign and Malignant cases, YOLOv7 outperforms 

YOLOv8, with YOLOv7 achieving 55% compared to 

YOLOv8's 61.2% and 88.1%. Notably, YOLOv8 exhibits 

superior recall in the detection of Benign and Malignant 

cases, with an 88.1% recall rate, compared to YOLOv7's 

76.4%, representing a marginal difference of 11.7%. 

mAP is a common metric for evaluating object detection 

models. It computes the average precision at different IoU 

(Intersection over Union) thresholds and then averages them 

[83], [84]. There may not be a single authoritative source for 

the notion of mAP@0.5:0.95 and its widespread application 

in object detection evaluations. Nonetheless, in the context of 

evaluating object identification, the original Average 

Precision metric and its extension to mAP are extensively 

described. Comparing the results in Table 2 for 

mAP@0.5:0.95 and mAP@0.5, it is evident that YOLOv8 

outperforms YOLOv7 in terms of accuracy across all cases. 

Specifically, YOLOv8 exhibits an overall class result of 

53.3% and 33.3% for mAP@0.5:0.95 and mAP@0.5, 

respectively, YOLOv7 achieves 49% and 31.5%. The mAP 

values, which measure the precision of object detection in a 

frame by comparing detected boxes to ground truth bounding 

boxes at an IOU of 0.5, further demonstrate YOLOv8's 

superior performance. The 4% difference in mAP@0.5 

between YOLOv8 and YOLOv7 indicates the former's ability 

accurately detect objects. Additionally, YOLOv8 exhibits 

better performance in terms of average mAP at different 

thresholds for mAP@0.5:0.95, with a slight difference of 

2.7% compared to YOLO7.  Fig. 5 represents the images that 

is used in the research it represents the class malignant in the 

result with the help of yolov8m predict.  
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TABLE II.  PERFORMANCE RESULT OF YOLOV8 AND YOLOV7 

Class Images 
Precision Recall mAP@0.5 mAP@0.5:0.95 

YOLOv8 YOLOv7 YOLOv8 YOLOv7 YOLOv8 YOLOv7 YOLOv8 YOLOv7 

All 1098 0.582 0.512 0.612 0.526 0.533 0.49 0.333 0.312 

Benign 1098 0.923 0.532 0.881 0.764 0.713 0.7 0.534 0.522 

Malignant 1098 0.764 0.523 0.545 0.550 0.645 0.599 0.512 0.5 

 

 

Fig. 5. Images used in the research 

VI. CONCLUSION 

This study conducted a comparative analysis of YOLOv7, 

a widely used model, and YOLOv8, a relatively new model. 

The experiment yielded significant contributions compared 

to previous works cited in the literature review. The study 

demonstrated the ease of setting up and using detection 

models, as well as the use of various evaluation metrics for 

experimentation and comparison. Additionally, the 

experiment showcased the effectiveness of YOLOv8 

compared to YOLOv7, with both models being evaluated in 

terms of precision, recall, and mAP. The results indicated that 

YOLOv8 outperformed YOLOv7, with a precision value of 

58.2% compared to 51.2%, an accuracy score of 53.3% to 

49%, and a higher mAP@0.5:0.95. The findings of this study 

will be beneficial to researchers seeking to use either model 

as a reference for their experiments, taking into account the 

evaluation metrics. However, further research is necessary to 

determine the performance differences between the two 

models in various applications and use cases. Our 

investigation has revealed that YOLOv8 consistently 

outperforms YOLOv7 across precision, recall, and accuracy 

metrics. The observed improvements can be attributed to 

architectural enhancements, refined training strategies, and 

the iterative nature of community-driven development. To 

make object detection algorithms even better, more research 

could be done on improving hyperparameter settings, finding 

new ways to add to data, and seeing how different datasets 

affect model performance. 
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