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Abstract—Microclimate monitoring in agroforestry is very 

important to understand the complex interactions between 

vegetation, soil, and the environment. Microclimate parameters 

include air and soil temperature, air humidity, soil moisture, 

and light intensity. This research aims to develop a new 

microclimate data recording system for coffee-pine 

agroforestry, utilizing LoRaWAN and IoT technology to 

capture real-time microclimate parameters. Unlike traditional 

data loggers that require manual download on-site, this 

innovative system enables instant data download from IoT 

servers, thereby increasing data efficiency and accessibility. The 

system proved effective, significantly improving the precision of 

air temperature and humidity, as well as soil temperature 

measurements, with an average accuracy of 100%. However, 

soil moisture and light intensity recorded lower accuracies of 

81.23% and 82.56%, respectively, indicating potential areas for 

future research and system refinement. The system maintains a 

15-minute sampling period, aligning with conventional 

datalogger intervals. This represents an advancement in 

precision agriculture for microclimate monitoring, enabling the 

data to be utilized in decision-making for agroforestry 

management, which involves complex interactions between the 

local microclimate and the broader ecological system. It 

underscores the significance of sustainable land use as a 

response to global climate change. 

Keywords—Microclimate Monitoring; Coffee-Pine 

Agroforestry; Lorawan; IoT. 

I. INTRODUCTION  

Coffee-pine agroforestry is an innovative and sustainable 

land-use system that integrates coffee cultivation with pine 

trees, offering a range of ecological and economic benefits. 

This agroforestry system has gained attention due to its 

potential to enhance ecosystem services while maintaining 

crop productivity [1]. The integration of coffee and pine trees 

provides a middle ground, balancing negative impacts on 

ecosystem services while sustaining crop production [1] [2]. 

Furthermore, the coffee-pine agroforestry system has been 

found to create specific niches for certain taxa, indicating its 

potential to support biodiversity and ecological resilience in 

the long term [3]. Additionally, the system's potential for 

carbon storage and its economic benefits to farmers have 

been highlighted, with studies showing that it provides larger 

incomes to farmers compared to non-agroforestry models [4] 

[5] [6]. However, challenges such as the limitation of 

nitrogen in the system have been identified, requiring 

management interventions such as the addition of nitrogen 

fertilizers to increase coffee bean yield [7]. Overall, the 

coffee-pine agroforestry system presents a promising 

approach to sustainable land use, offering a balance between 

ecological conservation and agricultural productivity. 

The issue of microclimate monitoring in agroforestry is 

very important to understand the complex interactions 

between vegetation, soil, and the environment, where forest 

microclimate significantly influences biodiversity, 

ecosystem function, and plant-soil growth processes [8]. 

Factors like topography, vegetation structure, and proximity 

to forest edges affect microclimate conditions [9]. In 

agroforestry, monitoring assesses tree impacts on the 

environment, including water conservation, soil moisture 

preservation, increased soil fertility [10] [11], and potential 

climate change mitigation through carbon storage and erosion 

reduction [12] [13]. Moreover, microclimate's influence on 

plant health, photosynthesis, and ecosystem resilience 

emphasizes the importance of monitoring in optimizing 

agroforestry management, enhancing ecosystem services, 

and mitigating climate change. Specifically, in coffee-pine 

agroforestry, microclimate monitoring is vital due to coffee 

trees' sensitivity to temperature, humidity, and light, 

impacting yield and quality, and the need to manage this 

unique system effectively for sustainable production. 

To effectively bridge the identified research gap and 

record essential microclimate data like temperature, 

humidity, and light intensity within coffee-pine agroforestry, 

the utilization of advanced technologies such as LoRaWAN 

and IoT is imperative. LoRaWAN technology, renowned for 

its extended range and low-power capabilities, has already 

demonstrated its effectiveness in remotely monitoring 

environmental conditions in large-scale agriculture farms 
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[14] [15]. It holds immense promise for monitoring 

microclimates within the agroforestry system, enabling the 

real-time collection of data crucial for comprehending the 

impact of macroclimate changes on microclimates [16]. 

Recognizing the significance of understanding these 

microclimates, especially in the context of climate change 

and land-use shifts, underscores the pressing need for 

advanced monitoring systems [10]. Furthermore, the 

integration of microclimate data into species distribution 

models is indispensable for ecological research and 

environmental monitoring [17][18]. The versatile application 

of LoRaWAN technology in heterogeneous deployments for 

IoT networks tailored to specific needs further underscores 

its adaptability and relevance in various environmental 

settings [19]. 

In addition to technological advancements, it is 

paramount to consider the specific environmental and 

agricultural context within coffee-pine agroforestry systems. 

For example, managing coffee intensification in these 

systems can have notable impacts on the soil hydrological 

system and pine growth, highlighting the intricate 

interactions inherent to such environments [20][21]. 

Moreover, the potential influence of tree and plant 

interactions on the soil hydrological system emphasizes the 

need for a comprehensive understanding of the 

environmental dynamics within the agroforestry system 

[22][23][24]. Furthermore, the incorporation of microclimate 

data into species distribution models and the assessment of 

the effects of tree canopy trimming techniques in pine-based 

agroforestry systems vividly illustrate the relevance of 

microclimate data in both ecological and agricultural research 

[25][17]. 

Conventional microclimate datalogger typically require 

manual downloading of the data at the location where it is 

placed. This datalogger is designed to record certain 

microclimate data variables, capturing the environmental 

conditions experienced by organisms in terrestrial 

environments [26]. However, the process of downloading 

data from these dataloggers can be time consuming and prone 

to human error [27]. The need for manual downloads per site 

can hamper data synthesis across studies and hinder progress 

in global change biology [28]. 

The research conducted by the CEH-UB Projects Team at 

UB Forest involved the coffee plantation area within the UB 

Forest [25]. A Microclimate Datalogging System was 

installed as part of the activities of the Tropical Agroforestry 

Research Group. This system, in place since 2018, required 

routine manual data downloads. The sensors were 

strategically located in the coffee plantation area amidst the 

pine forest of UB Forest, specifically in the LC, MC, HC, and 

BMP plots. The sensor setup included a Light Intensity 

Sensor positioned above ground among the coffee plants, an 

Air Temperature and Humidity Sensor placed on a pine tree 

within the coffee plantation, and a Soil Temperature and 

Humidity Sensor located on the ground surface among the 

coffee plants [29]. A significant challenge was the manual 

downloading process required at each sensor's location. This 

necessitated the development of a remote sensing system for 

the sensor node, capable of recording microclimate 

parameters using IoT technology [30].  

In parallel, soil moisture sensors play a pivotal role in 

coffee-pine agroforestry, particularly in monitoring 

underground interactions related to water availability, which 

is essential for nutrient solubility and transport in the soil 

[31]. These sensors measure soil water content, providing 

vital data to comprehend how moisture levels impact nutrient 

solubility and plant uptake [32]. IoT technology, with its 

ability to collect real-time, precise data from diverse sensors, 

proves to be a more suitable choice for this application, 

facilitating efficient and integrated monitoring and 

management of the micro-environment in agroforestry 

systems [33]. 

The research question for this research is how LoRaWAN 

and IoT technology can be leveraged to enhance the 

monitoring and management of microclimatic conditions 

within coffee-pine agroforestry systems. The primary 

objectives of this research are to design and develop a 

microclimate data recording system using LoRaWAN and 

IoT technology that can collect and record real-time data, 

such as soil and air temperature, soil and air humidity, and 

light intensity in coffee-pine agroforestry. Additionally, the 

research aims to assess the performance and feasibility of this 

system in optimizing agricultural practices, improving crop 

yield, and promoting sustainability in coffee-pine 

agroforestry. This recording will facilitate instant data 

download from IoT servers, thereby eliminating the need for 

physical presence at the Sensor node location. 

The integration of LoRaWAN and IoT technologies for 

monitoring microclimate data in coffee-pine agroforestry 

holds promise for gaining a comprehensive understanding of 

the intricate environmental dynamics in these systems. By 

harnessing advanced technologies and tailoring their 

application to the specific context of agroforestry, valuable 

insights into the effects of macroclimate fluctuations, land-

use practices, and agricultural management on microclimates 

can be acquired, facilitating more informed decision-making 

and the promotion of sustainable practices. Furthermore, the 

research's far-reaching implications extend to potential 

benefits for farmers, including improved crop growth, 

resource conservation, and reduced environmental impact. 

This technology could also find applications in various other 

farming practices and industries, with the potential to usher 

in positive changes in agriculture and environmental 

conservation.  

By harnessing the capabilities of LoRaWAN and IoT 

technology, a real-time and precise microclimate data 

recording system has been developed for coffee-pine 

agroforestry environments. This system significantly 

contributes to the processing of data for decision-making and 

the promotion of sustainable agroforestry practices. It 

underscores the influence of macroclimate variations and 

land use practices on the microclimate, thereby enhancing our 

understanding and management of these complex ecological 

interactions. This technological advancement not only 

enhances resource efficiency and crop yields but also 

promotes responsible agricultural practices by reducing 

water, energy, and chemical inputs, thereby mitigating the 

environmental impact of farming activities and fostering a 

more harmonious relationship between agriculture and the 

environment. 
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II. LITERATURE REVIEW 

The existing research on microclimate monitoring in 

agroforestry provides valuable insights into the dynamics of 

microclimates within forest ecosystems, offering relevant 

perspectives for the monitoring and recording of 

microclimate data in coffee-pine agroforestry. Studies have 

underscored the critical importance of understanding the 

drivers of variation in forest microclimate, particularly in the 

context of rapid land-use transformation and global change, 

emphasizing the relevance of such insights for agroforestry 

systems [13][34]. Studies have demonstrated the successful 

deployment of sensor networks for real-time environmental 

monitoring, showcasing the potential for similar applications 

in agroforestry settings [35]. Additionally, research has 

emphasized the importance of accounting for spatial variation 

in microclimate at resolutions smaller than most available 

climate data, highlighting the relevance of fine-scale 

microclimate monitoring in agroforestry systems [36][37]. 

Furthermore, studies have underscored the significance of 

microclimatic data in characterizing climate variability at 

unprecedented spatial and temporal scales relevant to 

biological processes in forests, emphasizing the relevance of 

such insights for agroforestry systems [10]. Moreover, 

research has shed light on the implications of planned farmer 

behavior and agroforestry innovations, providing valuable 

perspectives on the human dimensions of agroforestry 

practices and their impact on microclimates [25].  

The current research in the field of microclimate 

monitoring in agroforestry has shown significant progress in 

understanding the effects of environmental variables on 

microclimates, yet there are notable gaps that this research 

aims to address [38]. Existing studies have highlighted the 

need for a wider range of case studies to enhance our 

understanding of the effects of gap size on microclimate and 

soil moisture variations, emphasizing the necessity for 

comprehensive and diverse case studies to capture the 

variability of microclimates in different forest types [39]. 

Additionally, research has demonstrated the importance of 

understanding the buffering effect of forests on 

microclimates, emphasizing the need for further 

investigations to comprehend the implications of forest 

fragmentation on microclimate dynamics, particularly in the 

context of agroforestry systems [40][23]. Furthermore, the 

incorporation of microclimate into species distribution 

models has been recognized as crucial, yet the limitations of 

microclimatic grids in reflecting long-term climate dynamics 

over time have been acknowledged, indicating the need for 

improved methodologies to capture the long-term dynamics 

of microclimates [17]. Moreover, the literature has 

underscored the significance of microclimates in buffering 

the responses of plant communities to climate change, 

highlighting the necessity of predictive models to mitigate the 

impact of climate change on agroforestry systems, 

particularly in the context of smallholder coffee farms 

[41][38].  

These studies collectively contribute to a comprehensive 

understanding of the dynamics of microclimate data in forest 

ecosystems, providing valuable knowledge that can be 

leveraged for effective microclimate monitoring in coffee 

pine agroforestry. By addressing the need for diverse case 

studies, improving methodologies to record long-term 

dynamics of microclimate data, and in the future the need for 

predictive models to mitigate the impact of microclimate 

change on small-scale coffee agroforestry. 

The Internet of Things (IoT) constitutes a worldwide 

network infrastructure, encompassing both physical and 

virtual devices, interconnected through their data acquisition 

and communication functionalities [42]. This infrastructure 

consists of the internet network and its network development 

that can connect objects, sensors, and connections to provide 

independent cooperative services and applications [43]. IoT 

is defined as an internet network that connects objects 

equipped with sensors [44]. These sensors allow these objects 

to connect to the internet [45]. Thus, IoT enables the use of 

sensors and other devices to collect data automatically and 

present information in various forms, such as graphs and 

tables [43]. 

Fig. 1 shows the concept of IoT. The expression Internet 

of Things encapsulates three fundamental constituents: 

firstly, physical objects integrated with sensor modules; 

secondly, connections to the Internet; and thirdly, data 

centers located on servers for archiving information derived 

from various applications [46]. The aggregation of data 

procured from objects linked to the internet culminates in the 

formation of big data. This data can undergo analysis by 

entities such as government agencies, commercial 

enterprises, and other organizations, subsequently being 

harnessed to serve their specific interests. [47].  

 

Fig. 1. IoT concept 

LoRa is a network communication system with long-

distance and low power usage [48]. LoRa was initially used 

for military purposes, but over time, LoRa was promoted as 

a solution for the Internet of Things (IoT) [49]. LoRa is one 

of the Low-Power Wide Area Networks (LPWAN) protocols 

[50]. LoRa is quite suitable for IoT nodes that have limited 

resources/energy, and these nodes are in areas that are 

difficult to reach [51]. This wide area nature and low power 

usage make LoRa suitable for use in IoT technologies such 

as environmental monitoring, water pressure measurement, 

and other sensors [52][53]. 

LoRaWAN is a standard protocol from LoRa that works 

on the LoRa MAC layer, which facilitates communication 

between nodes, gateways, and network servers even though 

they have different fabrications [54]. In LoraWAN, the 

gateway is connected to the network server via a standard IP 

connection and acts as a transparent bridge, then converts RF 

packets to IP packets and vice versa [55]. LoRaWAN allows 

for a single-hop link between the IoT Sensor node and the 

gateway [56]. All nodes that use LoRa are capable of two-

way communication [52].  
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The application of LoRaWAN and IoT in environmental 

data recording has been demonstrated in various studies, 

providing valuable insights into the potential for monitoring 

and recording microclimate data in coffee-pine agroforestry. 

For instance, research that showcases the successful 

deployment of sensor networks for real-time environmental 

monitoring highlights the capacity to make informed 

decisions in response to adverse environmental events, which 

is pertinent to the dynamic conditions of agroforestry systems 

[35]. Additionally, studies emphasize the reduced cost and 

superior range of LoRaWAN, which is particularly important 

for applications in remote areas, aligning with the expansive 

nature of agroforestry settings [57]. Furthermore, the 

development of a LoRaWAN IoT node with ion-selective 

electrode soil nitrate sensors for precision agriculture 

underscores the potential for leveraging IoT technologies to 

enhance agricultural practices, which can be extended to the 

management of agroforestry systems [58]. Moreover, the 

predictive model for microclimatic temperature and its use in 

mosquito population modeling demonstrates the reliability of 

microclimate temperature estimation from ambient 

environmental conditions, offering valuable insights into the 

potential for predictive modeling in microclimate monitoring, 

which is relevant to understanding the microclimates within 

agroforestry systems [59]. These studies collectively 

contribute to the literature on the successful application of 

LoRaWAN and IoT in environmental data recording, 

providing a foundation for the potential implementation of 

similar technologies for monitoring and recording 

microclimate data in the coffee-pine agroforestry of UB 

forest. 

MQTT is a topic-based publish/subscribe communication 

protocol. MQTT is designed to be simple and lightweight for 

devices with limited resources and low bandwidth [60] [61]. 

With the design principle, namely the use of minimal 

bandwidth and reliability in ensuring data transmission [62]. 

In the publish/subscribe mechanism, publishers will send 

messages, and users will subscribe to topics related to the 

system, so subscribers can receive messages sent based on 

that topic [63]. In other words, a client or Sensor node can 

publish to a certain topic, and all subscribers can receive 

messages if they have the same topic [64]. 

III. RESEARCH METHODS 

The research methods of this research was systematically 

organized in alignment with the research flow illustrated in 

Fig. 2. 

 

Fig. 2. The research methods diagram 

The start process then continues into the literature review 

phase, where data related to the system design is carefully 

collected and examined. The design stage, system 

construction is carried out, so that the completion is 

successful. After that, the system undergoes detailed testing 

and analysis to ensure proper functioning and ensure that the 

system fulfills its purpose successfully. This analysis may 

require certain modifications and improvements to the 

system. The procedure then continues to the conclusion stage, 

where an evaluation is carried out to determine the 

effectiveness of the system in achieving its objectives. After 

a successful evaluation, the procedure ends. 

A. Location of Research 

The research was conducted in the Coffee-Pine 

agroforestry area of the UB Forest, situated on the slopes of 

Mount Arjuno in Sumbersari, Tawang Argo Village, 

Karangploso, Malang, at coordinates 7.824° South Latitude 

and 112.578° East Longitude, and at elevations ranging from 

1200 to 1800 meters above sea level. The UB Forest was 

selected as the research site due to its role as a hub for coffee-

pine agroforestry studies by students and lecturers. The UB 

Forest serves as the focal research area for this machine 

learning-based research, boasting diverse ecological features 

and a wide array of agroforestry practices. This expansive 

forest encompasses rolling hills, flatlands, and distinct 

microclimatic zones, offering a unique environment for 

developing a Microclimate Data Recorder using LoRaWAN 

and IoT technology. The forest's topography and soil 

composition further contribute to the intricacies of its 

microclimates, making it an ideal location for studying the 

influence of macroclimate changes on microclimates within 

the agroforestry system. The LC (Low density Coffee) plot is 

situated at an altitude of 1200 meters above sea level, while 

the BAU (Business As Usual) plot is at an altitude of 1300 

meters above sea level.  

The coffee-pine agroforestry system in the UB Forest area 

is divided into several plots, where each plot has different soil 

and vegetation characteristics. For this research, three plots 

were randomly selected to ensure variation in microclimatic 

conditions and plant composition. Plot description in UB 

Forest:  

• The LC plot in UB Forest exhibits a low canopy 

characterized by a canopy cover level of less than 40%. 

This condition results in increased direct sunlight 

exposure to plants beneath the canopy, which can impact 

soil temperature and moisture dynamics. Consequently, 

coffee plants within these plots may face heightened 

vulnerability to heat and drought stress, lacking 

protection from direct sunlight. However, such plots may 

also provide a suitable environment for the growth of 

other light-demanding plant species. This specific LC 

plot, encompasses a total of 500 plants, including 171 

coffee plants and 329 Pine plants, within a 2400 square 

meter area. Notably, management practices for this plot 

involve minimal intervention, with no pruning or weeding 

activities conducted. 

• The BAU Plot within UB Forest represents traditional 

farming conditions without specific interventions or 

canopy management. It functions as a control group in the 

research, offering insights into how coffee plants 

naturally develop without specialized canopy protection 

or management practices. This plot serves as a valuable 

reference point for evaluating the impacts of various 

canopy management strategies on other plots. The BAU 

plot encompasses a total of 679 plants, including 588 
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coffee plants and 91 pine plants, within a 2400 square 

meter area.  

B. Research Time 

This research was conducted for one full year, starting 

from October 2021 to September 2022. The choice of a 

duration of one year was intended to understand microclimate 

variations throughout the two seasons (rainy season and dry 

season) and how these variations affect the growth and 

development of coffee plants and pine trees.  

During each phase, data is collected weekly and analyzed 

to understand emerging patterns and trends. In pursuing a 

rigorous methodology, this research endeavors to gain 

comprehensive insights into the effects of microclimates on 

plant growth in Coffee-Pine plots within UB Forest and to 

assess the efficacy of IoT technology for monitoring these 

environmental parameters. 

C. Tools and Materials 

For the precise and efficient acquisition of microclimate 

data in the Kopi-Pinus terrain of UB Forest, we utilized the 

following tools and materials. 

The system developed in this research is the development 

of a multipoint LoRa communication network using the 

Lorawan and MQTT protocols for sending data in UB Forest 

to IoT Server. From the sensor, data will be obtained which 

will be sent by the LoRa  LSN50-V2 to the OLG02 gateway, 

forwarded to the IoT Server, and the data is processed in The 

Things Network. The architectural design of the 

Microclimate Data Recorder with IoT Technology is shown 

in Fig. 3. 

There are several reasons for strategically placing sensors 

in LC and BAU plots in agroforestry systems which are 

important for the selected locations in monitoring various 

microclimatic conditions. Sensors on BAU plots can track 

conditions such as higher sun exposure and temperature 

fluctuations, while sensors on LC plots can monitor more 

stable, shaded, and humid environments. This setting allows 

for a comprehensive understanding of microclimate 

variability, which forms the basis of management and 

adaptation strategies for plant and animal species in the 

system. Therefore, the careful placement of sensors on these 

contrasting plots highlights the importance of the diversity of 

microclimatic conditions in the research and sustainability of 

agroforestry systems. 

 

Fig. 3. Microclimate data recorder with LoraWAN and IoT technology 

Each LoRa Sensor node LSN50-V2 is equipped with 

various sensors, including air and soil temperature sensors, 

air and soil humidity sensors, as well as light sensors, as 

depicted in Fig. 4. These sensor nodes communicate with the 

Gateway using LoRa technology, and the Gateway transmits 

microclimate data through the 3G/4G internet network to the 

IoT Server. The microclimate data can then be accessed and 

downloaded from the IoT server. 

 

Fig. 4. LoRa Sensor Node and sensors 

In Fig. 4 it can be seen that the Sensor Node uses the 

Dragino model LSN50-V2 as a processor for input data from 

sensors to produce output according to needs and to transmit 

data via the LoRaWAN network. In this Sensor Node, there 

are several types of sensors used, namely the SHT31 air 

temperature and humidity sensor, the DS18B20 soil 

temperature sensor, the BH1750 light intensity sensor, and 

the SEN0308 DFRobot soil humidity sensor. Connection 

sensors to the Sensor Node can be seen in Table I. The SHT31 

sensor is used to measure air temperature and humidity while 

the DS18B20 sensor is used to measure the temperature of 

the planting media (soil). The BH1750 functions to measure 

light intensity, while the SEN0308 DFRobot functions to 

measure the moisture content of planting media (soil). 

DFRobot's SHT31, DS18B20, BH1750, and SEN0308 

sensors use 5v voltage. The SHT31 sensor output is 

connected to pins PB6 and PB7, and on the DS18B20 sensor, 

the output from the sensor is connected to pin PB3. On the 

BH1750 sensor, the output from the sensor is connected to 

pins PA9 and PA10, and on the SEN308 DFRobot sensor, the 

output from the sensor is connected to pin PA1. This system 

will require a gateway to send data to the IoT platform. The 

gateway used is Dragino OLG02 which uses the LoRaWAN 

protocol. The data obtained from sensor readings by the 

Dragino LSN50-V2 Sensor Node will be initially transmitted 

to The Things Network through the Dragino OLG02 

Gateway. Subsequently, The Things Network will relay the 

data to the IoT Server platform, specifically Thingspeak. This 

sequence of actions ensures data recording, processing, 

presentation in graphical formats, and availability for further 

analysis through downloads. 

TABLE I.  CONNECTION SENSORS TO SENSOR NODE 

No Sensor Pin Sensor Node LSN50-V2 

1 Sensor SHT31 Connect to pin PB6 and PB7 

2 Sensor BH1750 Connect to pin PA9 and PA10 

3 Sensor SEN0308 Connect to pin PA1 

4 Sensor DS18B20 Connect to pin PB3 
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Process of Microclimate Data Recorder with LoRaWAN 

and IoT Technology on Fig. 3, here are several points that can 

be explained regarding system design: 

• LSN50-V2 is a LoRa Sensor Node as in Fig. 5 and will 

accommodate several sensors, namely air humidity 

temperature sensors, soil air humidity temperature, and 

light intensity as seen in Fig. 5(a) on testing. Data on the 

sensor will be forwarded by the LSN50-V2 to the 

gateway. Solar panels are used to charge the Sensor Node 

battery as shown in Fig. 5(b) on site operation. Battery 

condition is continuously monitored and recorded to 

ensure functional efficiency. If problems occur with 

recharging, an evaluation of the panel capacity can be 

performed. 

 

Fig. 5. LoRa sensor node (a) on testing (b) on site 

• The OLG02 LoRa gateway, as depicted in Fig. 6, 

functions as a device that establishes a connection 

between a Sensor Node and an IoT server using a 3G/4G 

internet public communication network, specifically 

provided by Telkomsel. The Lora Gateway is situated in 

a forested region, a secluded area that is accessible solely 

through internet communication over the 3G/4G network. 

The Lora Gateway offers supplementary connectivity 

alternatives through LAN cable and Wifi. Strategically 

positioned atop a 12-meter tower (as illustrated in Fig. 6), 

the gateway is situated to receive robust LoRa signals 

emitted by the Sensor Node. Given its considerable power 

requirements, the gateway relies on access to a reliable 

public electricity network, which is typically available in 

the vicinity of the forest and supplied by PLN 

(Perusahaan Listrik Negara). Gateways assume a crucial 

role in the reception of data from LoRa Sensor Nodes and 

their subsequent transmission to The Things Network 

(TTN).  

• TTN, accessible via the address 

au1.cloud.thethings.network, constitutes an open, 

worldwide, and community-driven IoT service designed 

to relay data received from IoT gateways to the IoT Server 

platform. TTN has been deployed in 70 countries across 

the globe and is poised for further expansion, with the 

overarching objective of establishing a comprehensive 

Internet of Things network on a global scale. 

• The IoT Server, accessible through thingspeak.com, 

represents an analytical platform service within the 

domain of the Internet of Things (IoT). Its primary 

function is to enable cloud-based recording, aggregation, 

visualization, and analysis of real-time data streams of 

microclimate data series in coffee-pine agroforestry 

environments. 

 

Fig. 6. Lora Gateway + Lora Antenna  

D. Data Collection Process 

Microclimate data, once stored on the Internet of Things 

(IoT) Server, specifically ThingSpeak, can be both displayed 

and downloaded. The process involves accessing the 

ThingSpeak website through a web or mobile application, 

followed by logging into one's account and accessing the 

relevant channel ID. The data can then be visualized in the 

form of graphs and downloaded for storage in a CSV file 

format. This facilitates subsequent processing and analysis of 

the collected data. 

The data collection process is pivotal to the integrity of 

this research. The procedure employed for gathering 

microclimate data from the Coffee-Pine Agroforestry in UB 

Forest is as follows: 

• Preparation of Tools and Materials: Before data 

collection, a thorough check is conducted to ensure all 

instruments are operational. This includes the calibration 

of IoT sensor nodes, battery checks, gateway 

configuration, and establishing internet connectivity 

through WiFi, Ethernet, or Cellular networks (3G/4G) to 

the Cloud Server. 
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• Sensor Node Installation: Strategic placement of IoT 

sensors is determined for each plot—specifically, the LC 

and BAU plots in this research. The selected locations 

should typify the average conditions of the plot and be 

shielded from any potential physical interference. 

• Data Acquisition: The microclimate measurements 

captured by the IoT Sensor Nodes are systematically 

logged on the IoT Server (ThingSpeak.com), ensuring 

data is available for display and download. The recording 

process is continuous, capturing data from the initiation 

of the setup through to the end of the operation. Real-time 

data from the IoT Sensor Nodes are transmitted to the 

Cloud Server via an IP network through WiFi, Ethernet, 

or 3G/4G cellular connections. 

E. Data Calibration 

In the calibration process, equipment or sensors are 

calibrated by comparing them with a higher accuracy 

calibration standard as a reference. This is conducted in a 

controlled environment to minimize the influence of external 

variables. A series of measurements are taken to identify the 

discrepancy between the equipment readings and the standard 

values. Adjustments are made to the equipment, if necessary, 

to rectify any discrepancies. This process is repeated until the 

equipment demonstrates the desired accuracy. 

Comprehensive documentation, including a calibration 

certificate indicating the equipment's performance post-

calibration, is prepared to ensure the equipment measures 

accurately and consistently. The calibration process involves 

using precise measuring tools as references that meet 

established standards. These tools include the AMF-035 

Multimeter, a versatile 5-in-One measuring device capable of 

measuring wind speed, light intensity (lux meter), air 

temperature, and humidity. The Delta-T HH2 Moisture 

Meter, a versatile reader used with Delta-T soil moisture 

sensors, displays readings on an LCD and stores data for later 

download to a PC. Additionally, the Yieryi TPH01803 

Multimeter, a crucial tool for maintaining plant fertility, 

accurately measures soil temperature, humidity, and pH 

levels. 

F. Microclimate Data Analysis 

The process of Microclimate Data Analysis adheres to a 

meticulous Exploratory Data Analysis (EDA), a crucial 

preliminary step in data science designed to comprehend and 

deconstruct datasets thoroughly. It commences with Data 

Cleaning to validate data accuracy and maintain consistency, 

followed by the application of Descriptive Statistics to unveil 

notable trends and variations, thereby fostering a 

comprehensive grasp of data attributes. Subsequently, 

Comparative Analysis and Parameter Summary enable a 

discriminating examination and comparison between the 

Data-LC and Data-BAU datasets, duly acknowledging their 

unique characteristics and providing a robust footing for 

subsequent in-depth analysis or data-informed decision-

making. 

IV. RESULT AND DISCUSSION 

During implementation, testing of the Microclimate Data 

Recorder with LoRaWAN and IoT Technology was carried 

out in the Green House Laboratory and on the Coffee-Pine 

Agroforestry land in UB Forest. This test aims to ensure the 

Sensor Node, Gateway, and IoT Server are working properly. 

In tests carried out at UB Forest with different conditions for 

each Sensor Node. The data sent will be repeated every 15 

minutes according to the data recording settings. 

A. LC and BAU Microclimate Data Recording 

The selection of the LC and BAU plots for this advanced 

research was informed by a prior research that involved four 

locations: BAU, LC, Medium-density Coffee (MC), and 

High-density Coffee (HC), utilizing conventional dataloggers 

[25]. The current research aims to develop and test an Internet 

of Things (IoT)-based data recording system, aspiring to 

enhance the ease and practicality of data collection. The 

adoption of IoT technology is anticipated to significantly 

improve data collection efficiency, enabling automatic and 

real-time data acquisition, a marked improvement over the 

more labor-intensive and time-consuming conventional 

methods. By concentrating on the LC and BAU sites, this 

research not only builds upon previous data and observations 

but also assesses the potential of IoT technology to 

revolutionize data collection methods in agroforestry 

research. 

A summary of the results of recording LC and BAU 

microclimate data is shown in Table II. The raw data can be 

downloaded from the IoT server. Plot Data LC in 

https://thingspeak.com/channels/1291445, and Plot Data 

BAU in  https://thingspeak.com/channels/1285589. 

TABLE II.  SUMMARY LC AND BAU MICROCLIMATE DATA RECORDING 

Loc Parameter Range Mean Std. Dev 

LC 

Voltage (Volt) 2.95 to 3.9 V 3.55 0.18 

Soil Temperature (C) 15.2 to 31.6°C 19.57 1.76 

Intensity (Lux) 0 to 1169.375 lux 279.11 435.31 

Air Temperature (C) 12.55 to 26.55°C 19.68 2.77 

Air Humidity (%) 34.88 to 80.0% 75.99 6.13 

Soil Humidity (%) 58.384 to 83.536% 71.02 4.54 

BAU 

Voltage (Volt) 2.9 to 4.45 V 3.49 0.23 

Soil Temperature (C) 16.7 to 27.2°C 20.58 2.19 

Intensity (Lux) 0 to 46215 lux 954.6 2949.62 

Air Temperature (C) 13.8 to 37.3°C 20.53 3.64 

Air Humidity (%) 34.64 to 80.0% 73.21 8.9 

Soil Humidity (%) 37.468 to 94.792% 64.08 15.2 

 

As seen in Table II, the comparative analysis of the 

combined parameter summaries and statistical analyses for 

the Data-LC and Data-BAU datasets reveals several 

insightful trends and variances between the two sets of 

environmental data. Both datasets exhibit stable voltage 

readings, with Data-LC averaging at 3.55 volts and Data-

BAU slightly lower at 3.49 volts, this shows consistent 

battery voltage and stable charging from the solar panels all 

the time in both environments [69]. 

In terms of soil temperature, Data-LC recorded an 

average of 19.57°C, while Data-BAU was slightly higher at 

20.58°C, coupled with a wider range of temperature readings, 

indicating potential differences in sensor placement locations 

between the two datasets. the. Light intensity readings 

showed marked variations, with Data-BAU showing a wider 

range and higher average (954.58 lux). The disparity in these 

two parameters arises because the LC plot is situated within 
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a coffee agroforestry setting where the pine tree canopy is 

denser than that of the BAU plot . 

Air temperature readings were generally within the 

expected range for both data sets, but Data-BAU presented 

slightly higher averages and increased variance. Humidity 

levels in the air and soil are within physically reasonable 

ranges for both data sets, but Data-BAU tends to show 

slightly lower humidity means and larger variances, 

potentially indicating varying microclimates. The 

discrepancy in these two parameters is attributed to the 

location of the BAU plot within a coffee agroforestry area 

characterized by a sparser pine tree canopy and pruning 

practices, in contrast to the LC plot, which features a denser 

canopy with fewer pruning activities [70]. 

Traditionally, the process required physically 

downloading data from microclimate recorders, specifically 

LC and BAU models, positioned in remote areas within 

coffee-pine agroforests [71]. This task was both time-

consuming and costly due to the inaccessibility of these 

locations. However, the introduction of LoRaWAN 

technology and the Internet of Things (IoT) has 

revolutionized this process [72]. With the new system, data 

collection no longer necessitates physical presence at the site. 

Instead, it can be remotely accessed and downloaded via an 

IoT server over the internet. This advancement offers 

substantial benefits, notably in terms of convenience, 

efficiency, and cost-effectiveness, as it eliminates the need 

for long and expensive journeys to remote forest areas [73]. 

B. Measurement and Calibration 

Measurements for calibration are carried out using a 

calibration measuring instrument as a reference and 

simultaneously with data collection on the sensor node. The 

microclimate measurement results are shown in table III. 

TABLE III.  MICROCLIMATE MEASUREMENT RESULTS 

Time 

Air  

Temp. 

(C) 

Air  

Humid. 

(%) 

Soil 

Temp. 

(C) 

Soil 

Moisture 

(%) 

Light  

Intensity 

(Lux) 

Ref. Node Ref. Node Ref. Node Ref. Node Ref. Node 

07:59 26.8 28.1 45.5 39.3 31 29.2 62.2 60.67 3830 3505 

08:14 27.9 28.7 59 53.9 30 29.3 62.1 60.54 1513 1326 

08:44 28.2 29.1 55 49.4 31 29.8 62.1 60.19 2230 2115 

09:15 28.9 31.2 65.5 58.4 31 29.6 62.1 60.19 3015 2840 

09:30 30.1 32.3 59.5 55.6 26 24.3 62 60.85 1119 1153 

09:59 29.9 31.6 62.3 53 29 28.9 62.3 60.46 1539 1452 

10:29 30.5 30.6 55.1 53.2 31 29.5 62.7 60.03 3520 3315 

11:00 31.8 33.3 53.9 48.4 31 29.6 61.9 59.16 1513 1326 

12:00 32.9 35.2 65 58.8 31 29.3 62.1 60.85 1420 1203 

12:30 34.4 36.6 59.8 49.5 25 24.3 62.2 60.67 2900 2667 

Ref – Reference, measurement results from a calibration 

measuring instrument. Node - Reading data parameters from 

the Sensor Node. 

The calibration process is essential when discrepancies 

are observed in the readings of various parameters such as air 

temperature, soil temperature, air humidity, soil moisture, 

and light intensity, compared to standard measuring tools 

[74]. To enhance the accuracy and ensure the sensor node 

readings align more closely with those of the reference tools, 

calibration is performed using the linear regression method 

[75]. The linear regression formula, y = mx + c, where y 

represents the predicted value (reading from the reference 

instrument), m is the slope of the regression line, x is the 

independent value (sensor reading), and c is the intercept (y-

intercept), is employed to ascertain the optimal m and c 

values that best represent the relationship between the sensor 

readings and the readings from conventional tools[76].  

Linear regression results for each parameter, Air 

temperature is 𝑦 = 1.1389𝑥 − 2.6499, Humidity is 𝑦 =
0.8749𝑥 + 1.1513, Soil Temperature is 𝑦 = 0.925𝑥 + 1, 

Soil moisture is 𝑦 = 0.19𝑥 + 48.548, Light intensity is 𝑦 =
0.9354𝑥 − 23.598. 

Based on the coefficients obtained from calculations 

using the linear regression method, these coefficients will be 

entered into the Payload Formatter on The Things Network 

to produce more accurate reading values [77]. Next, 

observations are made again and compared with the same 

reference tool to confirm whether the calibration was 

successful and the reading values became more accurate. 

To calculate the measurement accuracy of the sensor node 

based on this reference value, the accuracy can be calculated 

using the formula [78]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 −
𝑉𝑎𝑙𝑢𝑒 𝑆𝑒𝑛𝑠𝑜𝑟 𝑛𝑜𝑑𝑒 −𝑉𝑎𝑙𝑢𝑒 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑉𝑎𝑙𝑢𝑒 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
) × 100% (1) 

The results of calibration calculations by applying linear 

regression and their accuracy for Soil Moisture are shown in 

Table IV. 

TABLE IV.  CALIBRATION RESULTS AND ACCURACY SOIL MOISTURE 

Time 
Soil moisture 

Reference Node Calibration Accuracy 

07:59 62.17 60.67 71.7 81.8% 

08:14 62.08 60.54 71.2 82.4% 

08:44 62.13 60.19 71.5 81.2% 

09:15 62.08 60.19 71.2 81.7% 

09:30 62.04 60.85 71.0 83.3% 

09:59 62.34 60.46 72.6 79.9% 

10:29 62.73 60.03 74.6 75.7% 

11:00 61.87 59.16 70.1 81.5% 

12:00 62.08 60.85 71.2 83.0% 

12:30 62.17 60.67 71.7 81.8% 

Average Accuracy 81.23% 

 

Calibration results, after applying linear regression and 

accuracy to all parameters [79]. The results indicate that for 

air temperature, air humidity, and soil temperature, an 

exemplary average accuracy of 100% was achieved. 

However, for soil moisture and light intensity, the accuracies 

were 81.23% and 82.56% respectively, denoting good 

accuracy. This illustrates that while the sensor node exhibits 

excellent accuracy for air temperature, air humidity, and soil 

temperature, it shows good accuracy for soil moisture and 

light intensity, highlighting the effectiveness of the 

calibration process [80]. 

C. Functional Testing 

Functional testing in the development of a microclimate 

recorder aims to ensure that the device operates correctly. The 

specific goal is to ensure that all functions of the microclimate 

recorder, such as measuring soil humidity, temperature, and 

light intensity work as expected. 
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Fig. 7 displays the functional test results for soil moisture 

with two dotted line graphs, in Fig. 7(a) Soil Moisture (BAU) 

and Fig. 7(b) Soil Moisture (LC), which shows soil moisture 

in percentage throughout the day on the 20th October. Both 

charts show similar data points, maintaining a consistent 

humidity level of around 60% from morning to evening, as 

seen by the continuous flat line formed by the connected red 

dots throughout the chart. This unchanged soil moisture data 

shows minimal fluctuations, changes of only around 5% 

which usually occur in the dry season in coffee pine 

agroforestry areas in non-irrigated forests [81]. Under these 

conditions, soil moisture levels depend primarily on rainfall, 

resulting in daily variations due to evaporation during the day 

and dew accumulation at night [82]. 

 

Fig. 7. Soil Humidity in BAU and LC 

Fig. 8 Show charts display a typical pattern of air 

temperature, starting from the early hours of the day (04:00) 

and extending into the late afternoon (16:00). The 

temperature rises as the day progresses, peaking at around 

midday, and then begins to fall slightly as the day advances 

towards the evening.  

 

Fig. 8. Air Temperature BAU and LC 

Fig. 8 shows chart Fig. 8(a) Air Temperature (BAU), 

which starts at around 25 degrees Celsius in the early 

morning, rises steadily to reach just above 30 degrees Celsius, 

and maintains this peak for a short period before beginning to 

decline. Chart Fig. 8(b) Air Temperature (LC) is very similar 

to Chart Fig. 8(a), with different locations with a steady rise 

from the early morning, a peak at the same level, and a subtle 

decline after the peak[83]. 

Fig. 9 shows two-line charts Intensity BAU Fig. 9(a) and 

LC Fig. 9(b), both depicting light intensity measured in lux 

for the same day. The general shape of both curves is quite 

similar, suggesting that both BAU and LC conditions are 

subject to the same general light patterns, which are likely 

driven by the sun's position in the sky [84]. The differences 

in the magnitude of fluctuations during peak hours could be 

due to local variations in cloud cover, shading, or the 

sensitivity and positioning of the light sensors [85]. 

 

Fig. 9. Light Intensity BAU and LC 

The soil humidity data is anomalous when compared to 

the other parameters, as it does not show the expected daily 

variation [86]. Air temperature and light intensity data both 

exhibit typical diurnal cycles, indicating that these sensors are 

likely functioning correctly and that they are capturing the 

expected natural variations in environmental conditions 

[87][88]. The consistent readings across both (BAU) and 

(LC) for all parameters suggest that the conditions or 

locations for these measurements are experiencing similar 

environmental factors or that they are part of a controlled 

experiment with uniform conditions [89]. The functional 

testing for Soil Humidity, Air Temperature, and Light 

Intensity seems to be running well. 

D. Testing Connection to the Internet and LoRa 

The goal is to verify and ensure that the LoRa gateway 

Dragino OLG02 can effectively connect to the internet 

network via GSM 3G/4G communication. This testing 

includes checking the gateway's ability to detect and connect 

to a 3G/4G network, measuring the signal strength and 

quality of the LoRa connection, and ensuring connection 

stability over a specified time. Fig. 10 shows the result of 

testing the connection to the internet and LoRa. 
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Fig. 10. Result of testing connection to the internet and LoRa 

Fig.  10(a) shows that the gateway communication is 

connected to the internet via 3G/4G cellular properly (Cell - 

active) and in Fig. 10(b) has received an IP number [90]. 

LoRa communication is also connected to the Sensor Node, 

likewise, the LoRaWAN protocol is also active (LoRa and 

LoRaWAN icons are active). Likewise, the WiFi on the 

Gateway is also active (WiFi - active) and Fig. 10(b) shows 

WiFi has received an IP number, this WiFi is useful for 

monitoring and setting up the gateway [91]. Overall, the 

Dragino OLG02 gateway delivers in terms of connectivity 

and stability [92]. Its reliability and efficiency make it 

suitable for various applications, especially in recording 

coffee-pine agroforestry microclimate data where high 

reliability is demanded [90]. These test results provide 

confidence in its use in long-term applications. 

E. LoRa Signal Range and Quality Testing 

Testing the range and quality of the LoRa signal is carried 

out by reading the RSSI (Received Signal Strength Indicator) 

and SNR (Signal-to-Noise Ratio) data read at the gateway 

from receiving the LoRa signal from the Sensor Node, and 

then comparing it with existing signal quality standards. 

There is this test also includes a signal range evaluation to 

determine the extent to which the LoRa signal can be received 

with good quality. Table V shows the result of LoRa Signal 

Range and Quality Testing and Fig. 11 shows the graph LoRa 

Signal Range and Quality Testing. 

At Table V and Fig. 11 a closer distance of 50 meters, the 

Received Signal Strength Indicator (RSSI) was recorded at -

87dbm, and the Signal to Noise Ratio (SnR) was at 10db, 

indicating high and good signal quality [93]. However, as the 

distance increases from 100 meters to 300 meters, there is a 

noticeable decrease in signal quality. RSSI values drop to a 

range between -96dbm and -99dbm, while SnR shrinks from 

6db to -12db. This trend highlights the increasing dominance 

of noise over the actual signal, indicating a decrease in signal 

clarity. RSSI and SnR readings at longer distances serve as 

important indicators of practical operational range limits for 

LoRa devices in a given test scenario [94]. Especially at a 

distance of 350 meters, coupled with the thick pine plants as 

a canopy in the UB forest, the signal quality decreases 

sharply. RSSI plummeted to a low of less than -115dbm, 

causing poor signal reception. Therefore, this specific 

distance is characterized as a practical range threshold for 

installing the device in a UB forest environment, beyond 

which the device's ability to transmit a reliable signal will be 

significantly compromised [95].  

The effectiveness of radio waves, including LoRa, 

diminishes with increased distance. An external antenna has 

been utilized to boost the range [96]. However, the sensor 

node's placement in a coffee-pine forest with pine trees 

reaching up to 30 meters in height results in the attenuation 

of the LoRa signal [97]. To enhance coverage across a 

broader region, the utilization of repeaters is a viable option. 

However, this approach warrants consideration of certain 

challenges, particularly in remote and forested areas. In these 

locations, gateways necessitate substantial electricity 

resources and incur significant costs [98]. Therefore, this 

aspect presents a potential area for further research. 

 

Fig. 11. Graph LoRa signal range and quality testing 

TABLE V.  RESULT OF LORA SIGNAL RANGE AND QUALITY TESTING 

No Distance (m) Timestamp RSSI SnR 

1 
50 

2023-12-10 11.11.31 -86 11 

2 2023-12-10 11.13.31 -87 10 

3 
100 

2023-12-10 11.25.31 -96 6 

4 2023-12-10 11.26.31 -94 1 

5 
150 

2023-12-10 11.32.31 -97 -2 

6 2023-12-10 11.34.31 -99 -7 

7 
200 

2023-12-10 11.40.31 -99 -7 

8 2023-12-10 11.42.31 -97 -5 

9 
250 

2023-12-10 11.51.31 -98 -11 

10 2023-12-10 11.53.31 -99 -11 

11 
300 

2023-12-10 11.58.31 -98 -9 

12 2023-12-10 11.59.31 -99 -12 

 

F. Performance Testing 

The performance of this system will be tested, including 

delay and packet loss. The delay was obtained from the time 

difference between n+1 and n packet. It can be seen in the 

delay from the UB Forest Environment Test. 

Delay testing is carried out by calculating how long it 

takes for the system to receive and display sensor readings in 

the The Things Network application. The purpose of this test 

is to measure Network Latency by determining the time 
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required for data transmission from the sensor node to the IoT 

Server via the gateway and The Things Network. 

The research required microclimate data from each site, 

with each data point being only 11 bytes and sampled every 

15 minutes, thus avoiding the need for large data packets or 

high network traffic. During testing, data was transmitted 

every 15 minutes, 32 times in total. For the BAU Sensor 

Node, the results showed an average delay of 0.2534 seconds, 

with a minimum and maximum delay of 0.2059 seconds and 

0.3083 seconds respectively. Similarly, the LC Sensor Node 

recorded an average delay of 0.2506 seconds, with the delays 

ranging from a minimum of 0.2053 seconds to a maximum of 

0.3211 seconds. These delay frequencies for both BAU and 

LC are illustrated in Fig. 12. 

 

Fig. 12. Graph of the number of delay frequencies for BAU and LC 

Fig. 12 shows that the LoRa network has consistent and 

controlled delays in both BAU and LC test conditions [99]. 

This performance indicates reliability in data transmission, 

which is important for LoRa applications that require timing 

accuracy [100]. Recommendations for further research could 

include investigations into the factors that can cause delay 

variations and how to optimize them. 

Conducting packet loss tests is an essential step in 

ensuring the integrity and efficiency of data transmission 

within the LoRa network [101]. The main goal of this testing 

is to identify the frequency and causes of packet loss during 

the data transmission process from LoRa sensor nodes to the 

gateway, and thereafter to TTN/ThingsBoard [102]. The 

purpose of these tests is to evaluate the impact of distance and 

environmental conditions on packet loss and to analyze at 

which stage the packet loss most frequently occurs, whether 

from the sensor node to the gateway, from the gateway to 

TTN, or TTN to ThingsBoard. The results of the packet loss 

tests are presented in Table VI. 

TABLE VI.  THE RESULTS OF THE PACKET LOSS TESTS 

No 
Distance 

(m) 
Node 

Packets 

Sent (byte) 

Packets 

loss (%) 
Category 

1 50 BAU 25 0 Very good 

2 100 LC 25 0 Very good 

3 150 BAU 25 4 Very good 

4 200 LC 25 4 Very good 

5 250 BAU 25 8 Very good 

6 300 LC 25 8 Very good 

 

In the packet loss testing of the LoRa network, it was 

found that four nodes, installed at six different distances, 

exhibited relatively low packet loss values. The BAU node at 

150m and the LC node at 200m recorded a packet loss of 4%, 

while the BAU node at 250m and the LC node at 300m 

showed a packet loss of 8%. These results show very good 

results [103]. 

G. Device Durability Testing 

The purpose of this test is to assess resistance to 

environmental factors by measuring how long the LoRa 

sensor node (Dragino LSN50-V2) withstands different 

environmental conditions, such as extreme temperatures, 

high humidity, dust, or rain. 

Test results show that the LoRa Dragino LSN50-V2 

Sensor Node device has shown good durability in testing on 

UB Forest land, facing extreme weather conditions for 7 

months of operation. The performance of the device in 

overcoming various environmental challenges, including 

extreme temperatures, high humidity, and wet/dry conditions, 

confirms its good reliability and structural durability [104]. 

The device not only survived in terms of its physical integrity 

but also in maintaining consistent efficient data transmission, 

indicating that fluctuating environmental conditions do not 

significantly impact its primary function. This is very 

important, considering that data transmission stability is a 

critical factor in LoRa applications [105]. In addition, the 

device's ability to maintain its operation with the help of solar 

panels to recharge the battery from the solar panel shows 

optimal energy efficiency, an important aspect for long-term 

field applications. Throughout the research, there were 

challenges related to the device's durability, such as rainwater 

infiltration, the equipment box turning into an ant nest, and 

solar panels that were inadequate for recharging the battery. 

However, these issues have been effectively addressed. 

H. Integration Testing of the Things Network with IoT 

Server 

The purpose of this test is to validate the TTN integration 

with the IoT Server and ensure that data from the LoRa 

Dragino LSN50-V2 Sensor Node device sent to The Things 

Network can be forwarded and displayed correctly on the IoT 

Server (Thingspeak). Fig. 13 shows the results of the Sensor 

Node and The Things communication and Table VII shows 

the result sample data record in the IoT Server (Thingspeak). 

Fig. 13 illustrates that the integration testing between The 

Things Network (TTN) and the IoT Server (Thingspeak) for 

the LoRa system was successfully executed, yielding 

favorable outcomes. The integration process was seamless, 

showcasing consistent and reliable data transmission without 

any loss of data. Notably, the transmission delay times were 

minimal, not exceeding 1 second, a critical factor for IoT 

applications requiring rapid responses. This efficiency 

underscores the system's capability in managing real-time 

data transmission and preserving data integrity [106]. 

 

Fig. 13. Results of the sensor node and the things communication 
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TABLE VII.   SAMPLE DATA RECORD IN THE IOT SERVER (THINGSPEAK) 

BAU  

Date Volt 
Soil 

Temp. 
Lux 

Air 

Temp. 

Air 

Hum. 

Soil 

Hum. 

2021-10-

01T00:03:12 
3.8 18.3 0 18.1 78.48 68.968 

2021-10-

01T00:18:12 
3.8 18.3 0 17.8 78.48 69.28 

2021-10-

01T00:33:12 
3.8 18.2 0 17.4 78.16 69.464 

2021-10-

01T01:03:12 
3.8 18.1 0 16.5 77.36 69.528 

2021-10-

01T01:18:12 
3.8 18.1 0 16.2 77.04 69.656 

2021-10-

01T01:48:13 
3.8 18.1 0 17 79.84 69.464 

2021-10-

01T02:03:12 
3.8 18 0 17 79.6 69.216 

2021-10-

01T02:18:12 
3.8 18 0 17.1 79.6 69.44 

2021-10-

01T02:33:12 
3.8 18 0 17.3 79.68 69.464 

2021-10-

01T02:48:12 
3.8 18 0 17.3 79.36 69.16 

2021-10-
01T03:03:12 

3.8 18 0 17 78.56 69.128 

LC 

Date Volt 
Soil 

Temp. 
Lux 

Air 

Temp. 

Air 

Hum. 

Soil 

Hum. 

2021-10-
01T00:14:07 

3.6 19.9 0 17.2 79.76 79.176 

2021-10-

01T00:29:06 
3.6 19.8 0 16.6 79.28 79.208 

2021-10-
01T00:44:06 

3.6 19.7 0 16 78.88 79.24 

2021-10-

01T00:59:06 
3.6 19.6 0 15.7 78.16 79.424 

2021-10-
01T01:14:07 

3.6 19.5 0 15.5 78.64 79.424 

2021-10-

01T01:29:07 
3.6 19.5 0 15.7 79.76 79.392 

2021-10-
01T01:44:06 

3.6 19.5 0 16.7 80 78.896 

2021-10-

01T01:59:06 
3.6 19.5 0 17 80 78.712 

2021-10-
01T02:14:06 

3.6 19.5 0 17.2 80 78.992 

2021-10-

01T02:29:06 
3.6 19.5 0 17.2 80 78.744 

2021-10-

01T02:44:06 
3.6 19.5 0 17 80 78.832 

 

The integration of The Things Network (TTN) with IoT 

servers introduces various challenges, including constrained 

coverage, scalability concerns, security vulnerabilities, and 

possible data latency [107]. Addressing matters of data 

ownership, privacy, and regulatory compliance can be 

intricate, and achieving interoperability with alternative IoT 

platforms may be constrained [108]. In terms of security, it is 

noteworthy that TTN has implemented SSL encryption 

measures to enhance data protection. 

The results of integration testing between Things 

Network (TTN) and IoT Server (ThingSpeak) for the 

LoRaWAN system have been successfully realized and 

provided good results [109]. This shows that the 

interconnection of LoRaWAN technology from sensor nodes 

to IoT servers has been established effectively [110]. This 

shows that the system has been successfully developed and 

has succeeded in recording microclimate data in coffee pine 

agroforestry by measuring the variables of soil and air 

temperature, soil and air humidity, and light intensity. This 

system provides ease and practicality of data collection from 

the new system, eliminating the need to physically visit and 

download the parameters of each datalogger, and reducing 

the number of dataloggers required per plot from three to a 

more manageable number, simplifying the process 

significantly. 

Table VII shows an example of data on an IoT Server 

(Thingspeak) that displays recorded data from BAU and LC 

in an easy-to-understand manner, emphasizing the user-

friendly aspects of the system. The intuitive interface and 

clear data representation in the dashboard make it easy to 

monitor and analyze microclimate data. This test not only 

proves the technical reliability of the system in bridging TTN 

and IoT Server (Thingspeak) but also shows its ease of use, 

making this system an effective and practical solution for IoT 

applications in microclimate data recording. In other studies, 

experiments were carried out using different IoT platforms 

such as ThingsBoard and Blynk [111]. However, the use of 

Thingspeak has proven to be adequate, straightforward, easy 

to use, and provides reliability in communication systems. In 

the future, we plan to explore Ubidots and Firebase as 

potential options [112]. 

In contrast to previous systems of traditional dataloggers, 

this new system increases the simplicity and feasibility of 

data acquisition by eliminating the need for the physical 

presence and download of parameters from each datalogger. 

In addition, this reduces the number of dataloggers required 

per plot from three to a more practical one, simplifying 

operations significantly. These improvements contribute to 

not only increasing the efficiency of data collection but also 

significantly reducing labor and time expenditures, which is 

an important advance in the effort to achieve more effective, 

precise, and labor-conservative agricultural methodologies. 

The versatility of this system includes its applicability in a 

variety of agroforestry contexts and its ability to adapt to a 

wide range of environmental conditions. 

Regarding data security and privacy issues, the 

ThingSpeak IoT platform ensures enhanced protection  [113]. 

The ThingSpeak API Server facilitates secure connections 

between devices and ThingSpeak through the support of 

HTTPS and MQTT protocols, both of which are known for 

their robust security features [114]. This approach ensures 

that data transmitted to and from IoT devices is safeguarded 

against unauthorized access and breaches, thereby 

maintaining the integrity and confidentiality of the data [115]. 

V. CONCLUSIONS 

The LoRaWAN and IoT technology has been 

successfully developed and has succeeded in recording 

microclimate data in coffee pine agroforestry, significantly 

increasing the accuracy of measuring air temperature, air 

humidity, and soil temperature, achieving an average 

accuracy of 100%. While the accuracy for soil moisture and 

light intensity stood at 81.23% and 82.56% respectively, the 

most notable advancement is the instantaneous data retrieval 

from an IoT server, a stark contrast to the labor-intensive 

traditional methods requiring manual collection from 

multiple dataloggers in the forest. The consistency in the 
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sampling period maintained every 15 minutes as with 

previous datalogger systems, negates the need for additional 

testing. 

The new system's ease and practicality of data collection, 

eliminating the need to physically visit and download 

parameters from each datalogger, and reducing the number of 

dataloggers required per plot from three to a more 

manageable number, significantly streamline the process. 

This not only makes data collection more efficient but also 

substantially reduces the labor and time involved, marking a 

significant leap forward in the pursuit of more efficient, 

accurate, and labor-saving agricultural practices. This system 

can be implemented across various agroforestry locations and 

is adaptable to a wide range of environmental conditions. 

This research emphasizes the transformative impact of 

advanced technologies in agroforestry, significantly cutting 

down labor and time, and offering vital insights into how 

macroclimate shifts and land use affect microclimates. It 

extends beyond enhancing precision agriculture to broader 

realms, including environmental monitoring and climate 

change studies, underlining its extensive relevance. 

Moreover, our findings reveal the complex interplay between 

local microclimates and larger ecological systems, stressing 

the urgency for sustainable land use in response to global 

climate change. 

Challenges and Limitations: Throughout the research, 

several impediments were faced. The location of the Sensor 

Node in the forest, along with the thickening canopy of pine 

plants, resulted in a notable weakening of the LoRa signal, 

thereby reducing the range of signal transmission. 

Additionally, the efficacy of the light and soil moisture 

sensors was less than ideal, as their accuracy did not meet the 

anticipated standards. In light of these findings, it becomes 

crucial to prioritize the integration of sensors with superior 

accuracy in future endeavors, to guarantee both the 

dependability and exactness of the data collected. 

Future Research Directions: Regarding accuracy, the new 

equipment shows varying results for different parameters. 

For air temperature, soil temperature, and air humidity, the 

new equipment has demonstrated excellent accuracy. 

However, for measurements such as light intensity and soil 

moisture, the accuracy is less than satisfactory, only reaching 

an accuracy of around 80%. This shows that although the new 

system offers major improvements in data collection 

methods, there is still room for improvement in the accuracy 

of certain parameters, in particular light intensity and soil 

moisture. 
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