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Abstract—Solar energy is one of the most promising 

renewable energy sources that can reduce greenhouse gas 

emissions and fossil fuel dependence. However, solar energy 

production is highly variable and uncertain due to the 

influence of weather conditions and environmental factors. 

Accurate forecasting of photovoltaic (PV) power output is 

essential for optimal planning and operation of PV systems, as 

well as for integrating them into the power grid. This study 

develops a deep learning model based on Bidirectional Long 

Short-Term Memory (Bi-LSTM) to predict short-term PV 

power output. The main objective is to examine the effect of 

hyperparameter tuning on the forecasting accuracy and the 

actual PV output power. The main contribution is identifying 

the optimal combination of hyperparameters, namely the 

optimizer, the learning rate, and the activation function, for 

the PV output. The dataset consists of 143786 observations 

from sensors measuring solar irradiation, PV surface 

temperature, ambient temperature, ambient humidity, wind 

speed, and PV power output for 50 days in Bandung, 

Indonesia. The data is preprocessed by smoothing and splitting 

into training (70%, 35 days), validation (15%, 7.5 days), and 

testing (15%, 7.5 days) sets. The Bi-LSTM model is trained 

and tested with two optimizers: Adam and RMSprop, and 

three activation functions: Tanh, ReLU, and Swish, with 

different learning rates. The results indicate that the optimal 

performance is obtained by the Bi-LSTM model with Adam 

optimizer, learning rate of 𝟏𝒆−𝟒, and Tanh activation function. 

This model has the lowest MAE of 0.002931070979684591, the 

lowest RMSE of 0.008483537231080387, and the highest R-

squared of 0.9988813964105624 when tested with the 

validation dataset and requires 93 epochs to build. The model 

also performs well on the test dataset, with the lowest MAE of 

0.002717077964916825, the lowest RMSE of 

0.007629486798682186, and the highest R-squared of 

0.9992563395109665. This study concludes that 

hyperparameter tuning is a vital step in developing the Bi-

LSTM model to improve the accuracy of PV output power 

prediction. 

Keywords—Photovoltaic; Hyperparameter; Deep Learning; 

Bi-LSTM; PV Power Forecasting. 

I. INTRODUCTION 

Solar energy is a renewable and eco-friendly source of 

electricity that can meet the global energy demand and 

mitigate climate change, as well as ushering in a new era of 

sustainable energy production [1], [2], [3], [4].  This energy 

source can supply 65% of the world’s total electricity by 

2030 and achieve a prediction of 90% decarbonization by 

2050 [5]. The use of solar energy through photovoltaic (PV) 

systems is an attempt to mitigate climate change [6], [7], [8]  

and shift to cleaner energy sources [9]. However, this 

energy source is still underutilized, and research on it is 

ongoing, covering various aspects. 

PV solar energy is a relatively stable source that does 

not vary much throughout the year [10]. Therefore, it can be 

integrated into the power grid. This has implications for the 

complementarity of hybrid power systems, energy storage, 

and energy policy [5], [11]. This strategy can lower carbon 

emissions [9], reduce production costs  [7], and increase 

economic value [3]. However, the PV power output is 

highly volatile as it is influenced by weather factors [12], 

[13], [14], [15], [16], [17]. This indicates a non-linear 

relationship between solar irradiation and PV power [18], 

[19], [20], [21], [22], [23]. This situation is crucial for 

developing operational strategies and short-term and long-

term planning for the growing electricity demand [24], [25], 

[26]. This data provides certainty about the potential and 

availability of electrical energy, which can be utilized for 

optimal system planning and operation [27], [28]. 

Therefore, a PV power forecasting model that can capture 

complex and dynamic temporal patterns is needed for 

accuracy between forecasting results and reality. 

Hyperparameter tuning is one of the fundamental ways 

to improve the performance of deep learning models [29], 

[30], [31], [32], [33], [34], [35], [36], [37]. The commonly 

used hyperparameters include learning rate, optimizer, and 

activation function. Learning rate plays a significant role in 

the model training process. The optimizer in deep learning 

models also optimizes the model parameters during training. 

The activation function allows the model to learn more 

complex patterns in the data. Therefore, hyperparameters 

cannot be applied to deep learning models without careful 

consideration. The hyperparameter tuning requires proper 

configuration to achieve accurate forecasting results [38], 

[39], [40]. Several researchers have used hyperparameters to 

optimize the performance of deep learning models [41], 

[42], [43], [44], [45] and machine learning [46], [47], [48], 

[49], [50] has reviewed the comparison of various deep 

learning models to find the best model for forecasting PV 

power generation. The models compared include Recurrent 

Neural Network (RNN), Convolutional Neural Network 

(CNN), Long Short-Term Memory (LSTM), Gate Recurrent 
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Unit (GRU), and Bidirectional Long Short-Term Memory 

(Bi-LSTM). The results show that the best model is CNN-

BiGRU for PV forecasting a day ahead. Meanwhile, the Bi-

LSTM model is the most suitable for a week ahead. By 

tuning the hyperparameters, such as learning rate, dropout 

rate, number of layers, etc., the best configuration that 

minimizes the error between the actual and forecasted 

values of PV power generation can be found. [51] has 

compared LSTM and Bi-LSTM models but did not mention 

which is better. [52] has used LSTM, while [41] and [53] 

used CNN-LSTM hybrid to perform their forecasting 

model. [54] has used the Bi-LSTM model to forecast solar 

irradiance. Moreover, [54] has also compared the LSTM, 

CNN, and GRU models. The Bi-LSTM model is claimed to 

have the best results. Based on the above explanation, [44] 

has stated that the choice of forecasting models depends 

highly on weather conditions and time horizons. The model 

selection cannot be determined for some instances alone, but 

there are various other factors to consider.  

All models used by [41], [44], [51], [52], [53], and [54] 

applied hyperparameters with the learning rate value of 10−3, 

which is the default value [41]. Researchers [44], [51], [54] 

used hyperparameter grid search and cross-validation with 

Adam as the optimizer. Researchers [52] and [54] used 

ReLU as the activation function type, while [53] used Tanh. 

However, no research performs hyperparameter tuning on 

setting the learning rate value and then comparing the 

optimizer and activation function. It is important to tune the 

hyperparameters in deep learning to get the best level of 

forecasting accuracy from several types of optimizers and 

activation functions used. 

This paper proposes to apply different hyperparameters 

to the Bi-LSTM model for PV power forecasting. The 

effects of hyperparameters such as learning rate, number of 

epochs, and activation function on forecasting accuracy will 

be thoroughly investigated. The number of hidden layers, 

neurons, and batch size are kept constant at certain values. 

The research objective is to investigate the impact of 

hyperparameter tuning on the Bi-LSTM model on 

forecasting accuracy and actual PV power output. This 

proposed research extends the previous work of [55], who 

successfully built a Bi-LSTM model with one layer and 50 

neurons to forecast solar irradiation one minute ahead. The 

hyperparameters in [55] include the Adam optimizer, Tanh 

activation function, and default learning rate. In this study, 

the Bi-LSTM model is used to forecast the PV output power 

with three learning rates: 1e−3, 1e−4, and 1e−5, batch size of 

256, and three activation functions: Tanh, ReLU, and Swish. 

The stopping criterion determines the number of epochs. 

Two optimizers are used: Adam and RMSprop. The novelty 

of this study is the variation of the learning rate value, the 

addition of the ReLU and Swish activation functions, and 

the RMSprop optimizer. The raw data is obtained from 

measurements of six sensors: solar irradiation, wind speed, 

PV surface temperature, ambient temperature, humidity, and 

PV output power. IoT supports data collection technology, 

which allows the IoT sensors to communicate with the data 

storage system automatically and continuously, eliminates 

the need for manual data collection and reduces the risk of 

human errors and interference. The number of sensor 

devices, software, and internet are connected to enable 

automatic communication. The dataset is presented as time 

series data, which is subsequently divided into three parts: 

training data, validation data, and test data. The PV 

performance results are then displayed and compared. 

II. LITERATURE REVIEW 

Deep learning is an effective artificial intelligence 

technique for predicting PV power output. Among the 

various deep learning models, Recurrent Neural Networks 

(RNNs) are especially suitable for time series applications  

[56], [57], [58], [59], as they account for the 

interdependence between inputs and outputs [60]. RNNs use 

memory characteristics to discover and retain the time 

correlation hidden in the solar irradiance data sequence. 

However, RNNs face challenges when the data sequence is 

long, as they take longer to train and may suffer from 

vanishing or exploding gradients, resulting in outputs that 

are zero or infinite. To overcome these issues, Long Short-

Term Memory (LSTM) networks are employed [18], [44], 

[61], [62], [63]. LSTM networks consist of LSTM cells that 

can preserve or discard previous hidden states using a forget 

gate and compute the currently hidden states as output based 

on [64]. [65] introduced the basis for the design of the 

forecast model, which is an innovative RNN called 

Xception LSTM. The advantages of the proposed model lie 

in its reduced computational complexity. Researchers [66] 

developed a model to predict solar radiation a day in 

advance on an hourly basis using only readily available 

weather data such as dry bulb temperature, dew point 

temperature, and relative humidity. The model does not 

require historical solar radiation data and is based on a deep 

Recurrent Neural Network with Long Short-Term Memory 

(LSTM-RNN). [67] used a deep recurrent neural network 

with multiple layers of long short-term memory units to 

forecast the power generation of a solar PV system for the 

next 1.5 hours. 

One of the components of the proposed framework is a 

neural network model called Bi-LSTM, which is a modified 

version of LSTM with two LSTM layers, one forward and 

one backward [68]. Bi-LSTM can consider both the 

previous and next data information simultaneously. Bi-

LSTM is essential for extracting the most important features 

from the input data sequence, which takes both the 

preceding and subsequent parts of the sequence as inputs. 

Moreover, Bi-LSTM can be combined with the sine-cosine 

algorithm to optimize the performance parameters of the 

framework. Bi-LSTM was also used by [69] to extract a 

dataset for hourly solar radiation forecasting. This makes 

Bi-LSTM a suitable model for solving problems involving 

time series data. Bi-LSTM can produce accurate predictions 

of solar radiation [54]. Bi-LSTM is also applied to the 

prediction of wind speed and ambient temperature [70]. [71] 

designed a solar irradiation forecasting model based on a 

deep learning method that uses Bi-LSTM with an attention 

mechanism. The model can handle different weather 

scenarios by adapting to sunny and cloudy days. The model 

aims to achieve high accuracy in forecasting solar 

irradiation. Although Bi-LSTM is derived from LSTM, it 

shows similar estimation accuracy to LSTM in the case of 
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the air pollutant index. Likewise, the Bi-LSTM model has 

similar prediction accuracy to LSTM in terms of air 

pollution index and meteorological conditions [51].  

To obtain accurate parameters, [72]  used an 

optimization method and trained the model within a 

specified range. The training process for each machine 

learning algorithm was also carried out for a certain number 

of epochs. The results show that the training speed can be 

significantly increased compared to the original algorithm 

without compromising the prediction accuracy [73]. Various 

types of hyperparameters affect model performance, such as 

epoch, batch size, optimizer, learning rate, and activation 

function. 

The Rectified Linear Unit (ReLU) activation function is 

very suitable for nonlinear models, as it outperforms 

traditional activation functions such as Sigmoid or Tanh 

[74]. Even researchers [67], [75], [76], [77], [78] have 

proven that the addition of Sigmoid and Tanh activation 

functions to LSTM can improve the model's ability to 

predict PV power generation. Furthermore, [79] has 

compared LSTM, RNN, and GRU algorithms and found 

that the GRU model achieves the best performance due to 

its high accuracy and low error rate.  This result was 

obtained after using Adam as the optimizer, which showed 

superior performance. To enhance learning sensitivity and 

model performance, [75] employed the Adam optimizer, 

learning rate, and Long Short-Term Memory Network for 

Anomaly Detection (LSTM-AD) model, which proved to be 

more accurate and robust than other models. 

This research is presented in several sections. Section 2 

reviews the development of deep learning research in the 

forecasting field. LSTM and Bi-LSTM structure and Bi-

LSTM design are discussed in section 3; the detailed 

explanation of the hyperparameter is described in section 4. 

Methodology, results, and discussion are presented in 

sections 5 and 6. Meanwhile, the conclusion and future 

work are presented in sections 7 and 8. 

III. LSTM AND BI-LSTM STRUCTURE 

A. LSTM Structure 

LSTM cells are a special kind of RNN cells that can 

overcome the vanishing gradient problem of conventional 

RNNs. LSTM cells can store both short-term and long-term 

information by controlling the flow of information into and 

out of the cell [63], [67]. The cell has gates that decide what 

information to keep, discard, or output. Cell state is a 

variable that holds information over time and can be 

modified by the Input Gate and the Forget Gate. Cell 

output is a variable that determines what information to pass 

to the next cell or layer and can be modified by the Output 

Gate. 

Fig. 1 illustrates the internal structure of an LSTM cell. 

It has an Input Gate (𝑖𝑡) that acts like a filter and blocks 

irrelevant inputs. The Forget Gate (𝑓𝑡) helps the cell forget 

previous information in memory. This helps the cell focus 

on the new information it receives. The Output Gate (𝑜𝑡) 

decides whether to show or hide the contents of the memory 

cells (𝑐𝑡) at the output (ℎ𝑡) of the LSTM cell. These gates 

can reveal or hide content. These gates have a sigmoid 

activation function, which means they can only produce 

values between 0 and 1. This limits the output of the gate. 

 

Fig. 1.  LSTM cell structure [80] 

The LSTM equations are given as follows: 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) (1) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓) (2) 

𝑐𝑡 = 𝑓𝑡 ⨀𝑐𝑡−1 + 𝑖𝑡⨀𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (3) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡−1 + 𝑏𝑜) (4) 

ℎ𝑡 = 𝑜𝑡⨀𝑡𝑎𝑛ℎ(𝑐𝑡) (5) 

Where, 𝑥𝑡 is the current input and ℎ𝑡−1 is the previous 

output. ⨀ denotes element-wise product, 𝜎(. ) is the sigmoid 

function. The weight matrix is denoted by 𝑊𝑥𝑖 and the bias 

term by 𝑏𝑖.  

B. Bi-LSTM Structure 

Bidirectional Long Short-Term Memory (Bi-LSTM) is a 

neural network model that is part of the proposed 

framework. Bi-LSTM is a variant of LSTM that has forward 

and backward LSTM layers. Bi-LSTM can capture both past 

and future data simultaneously. Bi-LSTM is crucial for 

extracting the most relevant features from the input data 

sequence by taking into account both its past and future. Bi-

LSTM is an appropriate model for solving time series data 

problems [69].   

For PV power output prediction, Bi-LSTM can help the 

network learn the complex and irregular patterns of PV 

power. Bi-LSTM can integrate information from historical 

PV power output data and other environmental variables 

from both before and after the prediction time. This can 

enhance the accuracy and reliability of PV power forecasts, 

especially under variable weather conditions [81]. Fig. 2 

[68] shows the structure of Bi-LSTM. 

 

Fig. 2.  Bi-LSTM structure [68][50/45] 

As shown in Fig. 2, the word vector is denoted by 𝑤1, 

𝑤2, 𝑤3, … 𝑤𝑛.  The forward and backward hidden states are 

denoted by 𝑓ℎ𝑛 and 𝑏ℎ𝑛, respectively. 𝑛 is the length of a 
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sentence. The final hidden vector of the Bi-LSTM is given 

by: 

ℎ𝑡 = [𝑓ℎ𝑡 − 𝑏ℎ𝑡] (6) 

C. Bi-LSTM Model Design 

The Bi-LSTM model is designed based on the Bi-LSTM 

architecture in Fig. 2. The model consists of one input layer, 

one hidden layer with 50 neurons without additional dropout 

layers, and one fully connected output layer for prediction. 

Fig. 3 shows the design plot of the Bi-LSTM model. 

 
Fig. 3.  Bi-LSTM plot model 

IV. THEOREMA CONCEPT 

A. Hyperparameter Tuning 

The performance of the Bi-LSTM model depends on the 

choice of hyperparameters, which are the parameters that 

control the learning process and the architecture of the 

model. In this section, we describe the method of 

hyperparameter tuning and the criteria for selecting the 

optimal values for the hyperparameters that influence the 

model structure and the prediction of PV output power. The 

hyperparameters that we evaluated are epoch, batch size, 

optimizer, learning rate, and activation function. To avoid 

overfitting and reduce the training time, we applied the early 

stopping technique, which terminates the training process if 

the validation loss does not decrease for some consecutive 

epochs. We fixed the batch size at 256. We tested two 

optimizers: Adam and RMSprop. We experimented with 

three different learning rates: 1e-3, 1e-4, and 1e-5. We 

compared three activation functions: hyperbolic tangent, 

ReLU, and Swish. 

B. Activation Function 

An activation function is a non-linear transformation 

applied to the weighted sum of the inputs of a node in an 

artificial neural network, producing the node’s output. 

Activation functions enable neural networks to incorporate 

non-linearity, which is essential for learning complex and 

abstract functions from the input data. 

This study focuses on three activation functions for 

neural networks: Tanh, ReLU, and Swish. The Tanh 

function is a non-linear transformation that has several 

advantages for neural network applications, defined as (7). 

𝑡𝑎𝑛ℎ (𝑥)  =
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)
 (7) 

It is symmetrical around the origin, meaning that tanh (-

x) = -tanh (x), which allows it to capture symmetric data 

patterns. It also has a zero mean, which reduces the bias in 

the network and facilitates the convergence of gradient 

descent. Moreover, it can output both positive and negative 

values, which is beneficial for data that has both aspects. 

Fig. 4 shows the graph of the Tanh function and its 

derivative. 

 
Fig. 4.  Hyperbolic Tangent function and its derivative 

The ReLU function is a widely used activation function 

in neural networks. It takes an input x and outputs the 

maximum value between x and zero, effectively discarding 

all negative values. Fig. 5 shows the graph of the ReLU 

function and its derivative. The ReLU function can be 

mathematically expressed as: 

𝑓(𝑥)  = 𝑚𝑎𝑥 (0, 𝑥) (8) 

 
Fig. 5.  ReLU function and its derivative 

The Swish activation function is defined as: 

𝑓(𝑥)  = 𝑥 × 𝜎(𝛽𝑥) (9) 

Where 𝜎 is a sigmoid function, and 𝛽 is either a constant or 

trainable parameter. Unlike ReLU functions, which only 

produce non-negative values, Swish functions can output 

both positive and negative values. This allows Swish 

functions to smoothly interpolate between linear functions 

and ReLU functions, as shown in Fig. 6. 
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Fig. 6.  Swish function and its derivative 

C. Optimizer and Learning Rate  

The optimizer is the algorithm that implements the 

gradient descent method and adjusts the learning rate 

dynamically. A good optimizer can speed up the training 

process and avoid getting stuck in local minima. The 

learning rate determines how fast the model updates its 

weights and biases based on the gradient descent algorithm. 

A suitable learning rate can help the model converge to the 

optimal solution without overshooting or underfitting.  

This research employs two optimizers: Adam and 

RMSprop. Adam is an optimization algorithm that extends 

stochastic gradient descent by adapting the learning rate for 

each parameter based on the estimates of the first and 

second moments of the gradient. It also stabilizes the search 

process by using a decaying exponential moving average of 

the gradient to update the parameters. 

RMSprop is a learning algorithm that applies a decay 

factor to discard historical observations and focus on recent 

inputs. It is an adaptive learning algorithm that adjusts the 

learning rate dynamically and thus reduces the need for 

manual tuning.  

V. METHODOLOGY 

A. Collecting and Preparing Data 

This research uses data from direct measurements of 

several factors that affect PV output power. These factors 

are solar irradiance, ambient temperature and humidity, PV 

surface, wind speed, and PV power output. The sensors used 

are the pyranometer sensor, DHT22, PT100, anemometer, 

and PZEM-017. To facilitate the data collection process, 

this research employs IoT technology, which allows the IoT 

sensors to transmit the data to the storage system 

automatically and continuously. This method not only 

eliminates the need for manual data collection, but also 

reduces the risk of human errors and interference. 

The data was collected over 50 days, from October 6th to 

November 24th, 2023, in Bandung, Indonesia, which is 

located at an altitude of about 768 meters above sea level 

and has a sunshine duration of about 2400 hours per year. 

During this period, there was a transition from the dry 

season to the rainy season (transition season). Therefore, the 

data collected during this period covers the conditions of 

dry, transitional, and rainy seasons. The data was recorded 

and stored every 30 seconds. In total, 143,786 data points 

were obtained, representing a comprehensive and high-

resolution dataset. Smoothing technique was applied to the 

raw data to reduce noise and suppress data fluctuations, 

including outliers. Normalization used min-max scaling to 

help models converge more quickly and ensure that input 

features are within an appropriate range [0,1]. It preserves 

the original distribution of the data and does not distort the 

differences between the maximum and minimum values. 

This ensures that the model can learn from all features in a 

balanced.  

Bi-LSTM processes data in sequential format, so tabular 

data needs to be converted into supervised sequences. The 

data was split into three sets before training the model: 

training (70%, 35 days), validation (15%, 7.5 days), and 

testing (15%, 7.5 days), based on chronological order. The 

training data was used to train the model, and the validation 

data was used to monitor the loss. The test data was only 

used after training was complete to measure the model’s 

ability to generalize new data. The entire dataset consists of 

primary data, and no data augmentation process was 

applied. 

B. Model Training and Validation 

The proposed Bi-LSTM model design is trained using 

the backpropagation algorithm. The model updates its 

weights and bias values at each iteration using batch training 

data to minimize the loss function. The training process 

terminates when the validation loss reaches a minimum 

point, using early stopping to prevent overfitting. The 

performance metrics Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), and R-squared evaluate the 

model. MAE and RMSE are common metrics for measuring 

the regression model’s prediction error. MAE is the average 

of the absolute differences between the predicted and actual 

values. A low MAE value means that the model has a small 

error in predicting the PV power output. RMSE is the square 

root of the average of the squared differences between the 

predicted and actual values. A low RMSE value means that 

the model has a small error in predicting the PV power 

output. MAE and RMSE have slightly different meanings. 

MAE treats all errors equally, while RMSE penalizes larger 

errors more. A very large error in the model predictions 

makes the RMSE larger than the MAE. The errors have the 

same magnitude when RMSE is equal to MAE. There is no 

standard threshold value to determine whether the MAE or 

RMSE value is good or bad. The MAE and RMSE values 

that are good or bad depend on the context and scale of the 

dependent variable that is predicted. The similarities 

between the two are as (10) and (11). 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑[𝑖] − 𝑃𝑎𝑐𝑡𝑢𝑎𝑙[𝑖]|𝑛

𝑖=1   (10) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑[𝑖] − 𝑃𝑎𝑐𝑡𝑢𝑎𝑙[𝑖])

2𝑛
𝑖=1   (11) 

R-squared (𝑅2) measures how well a statistical model 

fits the data. It is the proportion of the variance in the 

dependent variable that the model explains. The 𝑅2 value is 
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between 0 and 1. The higher the value, the better the fit. The 

equation for 𝑅2 is: 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (12) 

The pre-processed training and validation data are used 

to train and validate the Bi-LSTM model. The training data 

fits the model, and the validation data assesses its 

performance during the training process. The validation data 

also monitors the model’s generalization and prediction 

accuracy.  

The model is trained for up to 5,000 epochs, 

representing the maximum number of iterations to learn 

from the training dataset. The early stopping method 

terminates training if the evaluation metric does not improve 

over consecutive epochs on the validation dataset. In this 

case, the specified patience value is 5, and the minimum 

delta value is 1𝑒−5. This training process is applied across 

pre-defined optimizers, learning rates, and activation 

function configurations. 

After training and validating the Bi-LSTM model, it is 

tested on a new data set that the model has not used before. 

The output data are evaluated by MAE, RMSE, and 𝑅2.     

VI. RESULT AND DISCUSSION 

Solar irradiance data, PV output power, ambient 

temperature, humidity, PV surface temperature, and wind 

speed over 50 days (see in Fig. 7). The Pearson correlation 

analysis examined the relationships between PV output 

power and other features. The results indicate strong 

positive correlations with solar irradiance (0.999636) and 

PV surface temperature (0.953538), a strong positive 

correlation with ambient temperature (0.795445), a strong 

negative correlation with environmental humidity (-

0.654475), and a weak positive correlation with wind speed 

(0.467850). In summary, the PV output power is 

significantly influenced by solar irradiance and PV surface 

temperature, moderately affected by ambient temperature, 

negatively impacted by environmental humidity, and only 

slightly associated with wind speed. 

Fig. 8 compares the raw and average data from the six 

sensors obtained by averaging the raw data with a specific 

window size. The average data reduces the noise and 

outliers in the data. Fig. 9 to Fig. 14 show the training and 

validation loss curves for each hyperparameter variation, 

plotted at learning rates 1e-3, 1e-4 and 1e-5. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 7.  (a) Solar irradiance, (b) PV output power, (c) Ambient temperature, (d) Ambient humidity, (e) PV surface temperature, (f) Wind speed 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 683 

 

Nana Sutarna, Hyperparameter Tuning Impact on Deep Learning Bi-LSTM for Photovoltaic Power Forecasting 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 8.  (a) Solar irradiance, (b) PV output power, (c) Ambient temperature, (d) Ambient humidity, (e) PV surface temperature, (f) Wind speed 
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(a) (b) 

 

(c) 

Fig. 9.  Training and validation loss curves with Adam optimizer and Tanh activation function, (a) Learning rate 1e-3, (b) Learning rate 1e-4, (c) Learning rate 

1e-5

  

(a) (b) 

 

(c) 

Fig. 10.  Training and validation loss curves with Adam optimizer and ReLU activation function, (a) Learning rate 1e-3, (b) Learning rate 1e-4, (c) Learning 

rate 1e-5 
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(a) (b) 

 

(c) 

Fig. 11.  Training and validation loss curves with Adam optimizer and Swish activation function, (a) Learning rate 1e-3, (b) Learning rate 1e-4, (c) Learning 

rate 1e-5 

  

(a) (b) 

 

(c) 

Fig. 12.  Training and validation loss curves with RMSprop optimizer and Tanh activation function, (a) Learning rate 1e-3, (b) Learning rate 1e-4, (c) 

Learning rate 1e-5 
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(a) (b) 

 

(c) 

Fig. 13.  Training and validation loss curves with RMSprop optimizer and ReLU activation function, (a) Learning rate 1e -3, (b) Learning rate 1e-4, (c) 

Learning rate 1e-5 

  

(a) (b) 

 

(c) 

Fig. 14.  Training and validation loss curves with RMSprop optimizer and Swish activation function, (a) Learning rate 1e-3, (b) Learning rate 1e-4, (c) 

Learning rate 1e-5 
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Fig. 9 to Fig. 14 illustrate some of the effects of the 

applied hyperparameters on the Bi-LSTM model. Graph (a) 

displays the training and validation losses over the epochs. 

The training loss is initially very high but drops sharply and 

then oscillates around lower values. The validation loss 

initially drops, but not as fast as the training loss, and also 

oscillates over time. This suggests that the model is 

learning, but overfitting has happened, as shown by the gap 

between training loss and validation loss. Graph (b) 

compares the training and validation losses during the 

model training process. At the start of the epochs, both 

experience a steep decline, but the decline slows over time. 

The training loss keeps decreasing until it nears zero, while 

the validation loss stabilizes after reaching a certain point. 

This could suggest that the model has been overfitting as it 

learns noise or specific details from the training data that do 

not generalize well to the validation data. Graph (c) shows 

that the model has a low and stable training and validation 

loss. This implies that the model has learned well from the 

data, has no overfitting or underfitting, and can be regarded 

as an optimal model for the data. 

Table I summarizes the impact of different 

hyperparameters on PV performance, measured by MAE, 

RMSE, and R-squared. The data indicates how the model 

performed during the validation phase of training. 

The results indicate that Adam and RMSprop optimizers 

have similar results, with Adam slightly superior in terms of 

MAE and RMSE but RMSprop slightly superior in terms of 

R-Squared. This indicates that both optimizers can achieve 

optimal results with different parameters.  

It can be seen that a learning rate that is too large or too 

small can cause poor results. A learning rate that is too large 

can cause optimization not to converge, such as in the case 

of RMSprop, with a learning rate of 0.001 and activation 

function tanh, which has the worst MAE, RMSE, and R-

squared. A learning rate that is too small can cause 

optimization to be very slow, such as in the case of Adam 

and RMSprop, with a learning rate of 0.00001, which 

requires the most epochs. The optimal learning rate depends 

on the optimizer and activation function used, but it 

generally ranges from 0.0001 to 0.001. 

The activation function used also affects the 

optimization results. Activation function tanh has the best 

results on Adam optimizer but the worst on RMSprop 

optimizer. Activation function ReLU has consistent results 

on both optimizers but is not significantly superior. 

Activation function swish has varied results but tends to be 

better than ReLU. This indicates that the suitable activation 

function for a model depends on the characteristics of the 

data and the cost function used. The epochs required to 

achieve optimal results vary depending on the optimizer, 

learning rate, and activation function used. More epochs do 

not always mean better results because they can cause 

overfitting. The optimal epoch is the epoch that can 

minimize the cost function and maximize the model 

performance without overfitting. 

Here are the model test results for various combinations 

of optimizer, learning rate, and activation function using the 

test data set. 

Fig. 15 to Fig. 20 show the model test results with the 

test data set. The predicted and actual values are similar, 

indicating high consistency and accuracy. The graphs 

compare the actual and predicted PV output for different 

samples. PV output fluctuates considerably, with clear high 

and low peaks. The prediction closely follows the actual 

trend with some minor errors. 

Table II shows the performance metrics of the Bi-LSTM 

model on the test dataset. 

The results of the test dataset show that the model with 

the most petite MAE and RMSE values and the most 

considerable R-squared value is the model with the Adam 

optimizer, 0.0001 learning rate, and Tanh activation 

function. This model has an MAE of 

0.002717077964916825, an RMSE of 

0.007629486798682186, and an R-squared of 

0.9992563395109665. This shows that this model has the 

best performance in producing accurate and consistent 

predictions with the data. 

TABLE I. MAE, RMSE, AND R-SQUARED VALUES FOR EACH HYPERPARAMETER VARIATION ON THE VALIDATION DATASET 

Optimizer Learning Rate Activation Function Epoch MAE RMSE R-Squared 

Adam 

0.001 

Tanh 

22 0.004070896655321121 0.008869696570799045 0.9987772439622090 

0.0001 93 0.002931070979684591 0.008483537231080387 0.9988813964105624 

0.00001 327 0.002950216876342893 0.008494445179073256 0.9988785179861571 

0.001 

ReLU 

38 0.003721485612913966 0.008670073451764371 0.9988316638376880 

0.0001 106 0.002939773257821798 0.008493989051406988 0.9988786383999457 

0.00001 286 0.003316620597615838 0.008978748017144270 0.9987469920272450 

0.001 

Swish 

22 0.003941037692129612 0.009373708275253825 0.9986343317977803 

0.0001 81 0.003408287419006228 0.008759638505377976 0.9988074004284178 

0.00001 672 0.003003477584570646 0.008577423782461256 0.9988565004217558 

RMSprop 

0.001 

Tanh 

14 0.004501458723098040 0.009402009215592349 0.9986260730114997 

0.0001 51 0.003195056691765785 0.008537983632001086 0.9988669921407287 

0.00001 74 0.006006725598126650 0.011162349142668322 0.9980634287326158 

0.001 

ReLU 

45 0.003965230192989111 0.008609205082816086 0.9988480109673381 

0.0001 68 0.003045603865757585 0.008591317769371177 0.9988527928594263 

0.00001 507 0.003008354920893908 0.008665288670447609 0.9988329529927027 

0.001 

Swish 

50 0.003026960883289576 0.008419624951058590 0.9988981872541753 

0.0001 84 0.003061102470383048 0.008613629928087070 0.9988468263575603 

0.00001 723 0.003035151399672031 0.008657630881653819 0.9988350147765716 
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In general, it can be seen that the model with the Adam 

optimizer tends to have more petite MAE and RMSE values 

and larger R-squared values compared to the model with the 

RMSprop optimizer. This shows that Adam's optimizer is 

more effective in adjusting the model weights and reaching 

the minimum point of the loss function. 

The model with the Tanh activation function tends to 

have smaller MAE and RMSE values and larger R-squared 

values compared to the ReLU or Swish activation function 

model. This shows that the Tanh activation function is more 

suitable for dealing with the non-linearity of the data and 

producing outputs that match the range of target values. 

The model with a 0.0001 learning rate tends to have 

smaller MAE and RMSE values and larger R-squared 

values than the model with a 0.001 or 0.00001 learning rate. 

This shows that a 0.0001 learning rate is the optimal value 

to accelerate the model convergence without causing 

overshooting or underfitting. 

TABLE II. PERFORMANCE METRICS OF THE BI-LSTM MODEL ON THE TEST DATASET 

Optimizer Learning Rate Activation Function MAE RMSE R-Squared 

Adam 

0.001 

Tanh 

0.003997925668954849 0.008143173861224937 0.9991528282449326 

0.0001 0.002717077964916825 0.007629486798682186 0.9992563395109665 

0.00001 0.002729639410972595 0.007645030926041554 0.9992533061652874 

0.001 

ReLU 

0.003458088263869286 0.007797044548122558 0.9992233164569916 

0.0001 0.002800385467708111 0.007605045564780076 0.9992610965073316 

0.00001 0.003244191408157349 0.008288208296090500 0.9991223823100112 

0.001 

Swish 

0.004004122689366341 0.008871008569855635 0.9989946204659559 

0.0001 0.003282828954979777 0.007987291530800480 0.9991849520632167 

0.00001 0.002856964943930507 0.007776242364446661 0.9992274552447540 

RMSprop 

0.001 

Tanh 

0.004337667953222990 0.008688081684123942 0.9990356563289488 

0.0001 0.002898113569244742 0.007669436045163762 0.9992485312010984 

0.00001 0.005953839514404535 0.010716544846109140 0.9985327854476317 

0.001 

ReLU 

0.003802391933277249 0.007780276373306885 0.9992266535498037 

0.0001 0.002860911190509796 0.007737620918411848 0.9992351099826845 

0.00001 0.002857413608580828 0.007866109258940565 0.9992094961632283 

0.001 

Swish 

0.002819041023030877 0.007552835190088818 0.9992712072375900 

0.0001 0.002878439147025347 0.007802775130595164 0.9992221744484671 

0.00001 0.002874915255233645 0.007863925551382968 0.9992099349474389 

 

A. Experiment 1: Adam Optimizer and Tanh Activation Function  

  

(a) Learning rate 1e-3 (b) Learning rate 1e-4 

 
(c) Learning rate 1e-5 

Fig. 15.  Comparison of actual and predicted PV output 
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B. Experiment 2: RMSprop Optimizer and Tanh Activation Function  

  
(a) Learning rate 1e-3 (b) Learning rate 1e-4 

 
(c) Learning rate 1e-5 

Fig. 16.  Comparison of actual and predicted PV output 

C. Experiment 3: Adam Optimizer and ReLU Activation Function  

  
(a) Learning rate 1e-3 (b) Learning rate 1e-4 

 
(c) Learning rate 1e-5 

Fig. 17.  Comparison of actual and predicted PV output 

D. Experiment 4: RMSprop Optimizer and ReLU Activation Function 

  
(a) Learning rate 1e-3 (b) Learning rate 1e-4 
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(c) Learning rate 1e-5 

Fig. 18.  Comparison of actual and predicted PV output 

E. Experiment 5: Adam Optimizer and Swish Activation Function 

  
(a) Learning rate 1e-3 (b) Learning rate 1e-4 

 
(c) Learning rate 1e-5 

Fig. 19.  Comparison of actual and predicted PV output 

F. Experiment 6: RMSprop Optimizer and Swish Activation Function 

  
(a) Learning rate 1e-3 (b) Learning rate 1e-4 

 
(c) Learning rate 1e-5 

Fig. 20.  Comparison of actual and predicted PV output 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 691 

 

Nana Sutarna, Hyperparameter Tuning Impact on Deep Learning Bi-LSTM for Photovoltaic Power Forecasting 

VII. CONCLUSION 

The performance of the Bi-LSTM model in predicting 

the PV output power depends on the choice of 

hyperparameters, such as the optimizer, the learning rate, 

and the activation function. This study conducted a 

comprehensive hyperparameter tuning to find the optimal 

combination of these hyperparameters. The evaluation 

metrics used were MAE, RMSE, and R-squared, calculated 

using the validation and test datasets. The model training 

also considered the number of epochs, the computation cost 

and time, and the loss curves' convergence. The results 

showed that the best performance was achieved by the Bi-

LSTM model with the Adam optimizer, a learning rate of 

0.0001, and Tanh's activation function. This model had the 

lowest MAE of 0.002931070979684591, the lowest RMSE 

of 0.008483537231080387, and the highest R-squared of 

0.9988813964105624 when tested with the validation 

dataset, which required 93 epochs to build. The model also 

performed well on the test dataset, with the lowest MAE of 

0.002717077964916825, the lowest RMSE of 

0.007629486798682186, and the highest R-squared of 

0.9992563395109665. This study concluded that 

hyperparameter tuning was essential in developing the Bi-

LSTM model to improve the accuracy of PV output power 

prediction. Higher prediction accuracy can help more 

efficient energy management and contribute to the 

advancement of renewable energy and AI technologies.  

VIII. FUTURE WORKS 

Future research will apply a genetic algorithm to find the 

optimal hyperparameters for the deep learning model that 

forecasts PV power output and extend the research to 

multiple geographical locations to examine how the effect of 

hyperparameter tuning differs across various locations. 
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