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Abstract—Object detection has played a crucial role in 

Advanced Driver Assistance Systems (ADAS) applications, 

particularly with integrating deep learning techniques. These 

advancements have improved ADAS applications by enabling 

more precise object identification, thereby enhancing real-time 

decision-making. Object detection models can be categorized 

into two main groups: two-stage and one-stage models. While 

prior studies reveal that one-stage detectors generally achieve 

higher frames per second (FPS) at the expense of some accuracy, 

they remain better suited for real-time ADAS applications. Our 

study aims to analyze the performance of an object detection 

model created using SSD-MobileNet, a one-stage detector 

approach. We focused on identifying road-related objects such 

as vehicles, and traffic signs. The contribution of our work lies 

in developing an object detection model using a pre-trained 

SSD-MobileNet and employing transfer learning. This process 

involves introducing a new fully connected layer tailored for the 

specific identification of objects in road scenes. The retraining 

of the SSD-MobileNet model is executed through GPU-

accelerated transfer learning on the MS COCO dataset, 

incorporating appropriate pre-processing to exclusively include 

road-related objects. Our findings indicate promising results for 

the retrained SSD-MobileNet model, achieving an F1 score of 

0.801, and a Mean Average Precision (mAP) of 65.41 at 71 FPS. 

A comparative analysis with other one-stage and two-stage 

detectors demonstrates the model's performance, surpassing 

some existing works in the literature related to road object 

detection. Notably, our model exhibits improved mAP while 

maintaining a higher FPS, rendering it more apt for ADAS 

applications. 

Keywords—ADAS; SSD-MobileNet; CNN; Object Detection; 

Transfer Learning; FPS; MS COCO. 

I. INTRODUCTION 

Amidst the alarming rise in road accidents, the continuous 

evolution of ADAS emerges as a solution, showcasing a 

substantial impact on mitigating these incidents. Lately, the 

development of ADAS not only aims to enhance driving 

experiences but also facilitates the creation of autonomous 

driving [1], [2]. Integrating embedded road object detection 

solutions plays a pivotal role in achieving ADAS objectives, 

such as Pedestrian Detection and Traffic Sign Recognition 

[3], [4]. However, several challenges remain. Specifically, 

ADAS requires fast object detection systems, leading to a 

need for real-time processing [5], [6]. Further, balancing 

computational efficiency and model accuracy is an ongoing 

challenge, particularly in resource-constrained embedded 

systems within vehicles [7], [8]. 

The application of Deep Learning algorithms for Object 

Detection within ADAS is designed to address these 

challenges, improving both the accuracy and cost efficiency 

of detecting road objects [9]. Deep learning utilizes multi-

layered neural networks to automatically learn patterns and 

representations from extensive data, including image 

analysis. This enhances insights and predictive capabilities 

across various fields, particularly object detection. In 

addition, the advancement of technology and the availability 

of powerful GPU graphic cards have enabled numerous 

researchers to implement robust deep-learning algorithms for 

object detection [10].  

In literature, Convolutional Neural Networks (CNNs) 

models, are becoming increasingly chosen as the primary 

deep learning approach for identifying and categorizing 

objects within images and video frames [10], [11]. Faster 

Region Proposal Network (Faster R-CNN) [12], You Only 

Look Once (YOLO) [13] and Single Shot MultiBox Detector 

(SDD) [14] stand out as some of the most widely employed 

CNN models for object detection. These architectures have 

demonstrated notable success in accurately identifying and 

localizing objects within images. Their architecture learns 

and extracts features from large input data through 

convolutional layers by incorporating a variety of network 

architectures [15]. Notably, Faster R-CNN [12] used the 

Region Proposal Network (RPN) to create candidate object 

frames. It then classified and found items with a sequence of 

convolutional and fully linked layers. In contrast, YOLO [13] 

turned the object identification task into a regression 

problem, using a single model to predict both the object's 

class and bounding box coordinates. Specifically, object 

detection approaches based on CNNs can be categorized into 

two types: two-stage detectors, exemplified by Faster R-

CNN, and one-stage detectors, like YOLO. The majority of 

these detectors employ anchor-based methods. They depend 

on predefined anchor boxes with diverse scales and aspect 

ratios, strategically placed across the image. These anchors 

play a crucial role throughout the training process, aiding the 
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model in accurately predicting anchor-box coordinates and 

their associated class probabilities [16]. 

Creating an object detection model based on CNN entails 

substantial costs in terms of expertise, computational cost, 

and the availability of large annotated datasets [17]. The 

training process involves optimizing various network 

parameters to minimize classification errors in the output. 

Consequently, available pre-trained CNNs can be fine-tuned 

for specific domain object detection tasks using Transfer 

learning [11]. This enables the model to leverage knowledge 

learned from specific datasets [9]. The transfer learning 

approach emerges as a solution for addressing challenges 

related to object detection including reducing the number of 

detected classes to enhance the model’s performances for a 

specific field [18]. In literature, many contributions have 

demonstrated success in the identification of road objects 

with impressive accuracy using transfer learning. For 

instance, the study in [19] stands out, employing transfer 

learning with YOLO architecture to create two object 

detection models. This work exemplifies the efficacy of 

leveraging pre-existing knowledge and innovative 

architectures to achieve robust and accurate results in the 

field of road object detection and classification. 

SSD-MobileNet stands out among existing CNN-based 

object detection models due to its compelling combination of 

efficiency and accuracy [20]. The SSD architecture ensures 

real-time processing. The lightweight design of MobileNet 

allows for resource-efficient deployment on edge devices 

with constrained computational capabilities [21], [22]. The 

inherent multi-scale feature extraction of SSD enhances its 

ability to detect objects of various sizes within a single pass, 

contributing to its robust performance [23]. Consequently, 

the architecture of SSD-MobileNet is particularly suitable for 

time-sensitive ADAS applications.  

The present work has two main objectives. First, review 

the different object detection models based on the CNN 

architecture. Second, compare the accuracy and FPS 

performance of the SSD-MobileNet with existing models. 

More specifically, an investigation into road object detection 

is conducted by applying transfer learning to a pre-trained 

SSD-MobileNet model. This approach is employed to 

address the challenges of ADAS and facilitate efficient object 

detection. The research contributions of this work are as 

follows: (1) Preprocessing and cleaning the MS COCO [24] 

dataset to include only the road object classes, mainly, 

vehicles, pedestrians, motorcycles, traffic lights, and stop 

signs. (2) Retraining a lighter SSD-MobileNet model using 

transfer learning for road object detection. (3) comparing our 

SSD-MobileNet model with existing object detection models 

on two testing datasets, MS COCO, and VOC2007 [25], to 

understand the model's performance for ADAS applications. 

This paper adheres to the following structure: Section II 

explains how CNNs are used for detecting and classifying 

objects. It offers a comprehensive review of various object 

detection models, encompassing both two-stage and one-

stage detector architectures. Section III details the 

preprocessing of the MS COCO dataset used for retraining 

the SSD-MobileNet model. Section IV provides a summary 

and discussion of the obtained results. The conclusion 

integrates the findings and a consideration of potential 

avenues for future research. 

II. CNN FOR OBJECT DETECTION 

The use of CNN in creating object detection models has 

significantly enhanced the accuracy and efficiency of 

identifying and classifying objects in visual data. One of the 

earliest CNN architectures is AlexNet, introduced by 

Krizhevsky et al. [26]. These architectures usually comprised 

a sequence of convolutional and pooling layers, followed by 

fully connected layers. Subsequently, novel CNN 

architectures emerged in the literature, such as ResNets by He 

et al. [27]. They introduced skip connections, addressing the 

vanishing gradient problem and enabling the training of 

profound networks. Further advancements led to the 

development of more sophisticated CNN architectures, 

incorporating attention mechanisms. The Transformer 

architecture, proposed by Vaswani et al. [28], is a notable 

example of this evolution. 

The objective of CNN models developed with these 

architectures is to automatically learn hierarchical 

representations of data. This is achieved through the use of 

convolutional layers, allowing for the extraction of 

meaningful features at various levels of abstraction [10], [29]. 

In fact, for the training and evaluation of these models, each 

input image undergoes a sequence of operations; convolution 

layers with filters, max pooling, fully connected layers, and 

activation functions [30]. These processes collectively 

ascertain the likelihood of an object's presence in an image, 

assigning probability values within the range of 0 to 1 [31]. 

This training procedure can extend over several weeks, 

depending on the used GPU parameters. The training initial 

step involves configuring the network, determining the 

number of layers, their dimensions, and the matrix operations 

linking them [32]. For object detection using CNN, the 

challenge of overfitting during training is critical. Overfitting 

occurs when a model performs well on training data but fails 

to generalize to unseen data [33]. To address this issue, 

learning optimization techniques play a pivotal role. 

Regularization methods, such as dropout, have been widely 

employed to prevent overfitting by randomly disabling 

neurons during training [33]. Moreover, techniques like data 

augmentation introduce variations in the training dataset, 

enhancing the model's ability to generalize [34]. 

Additionally, optimization algorithms, such as Adam, 

contribute to efficient convergence and improved 

generalization performance in object detection tasks [33].  

Fig. 1 depicts CNN architecture for object detection. The 

process of CNN consists of four key components: (1) The 

input layer. (2) A feature extraction layer containing various 

convolution and pooling layers. (3) A classification stage that 

is carried out through Fully Connected layers. (4) The output 

layers. More precisely, CNN extracts the images' features, 

where the output of each layer is known as a feature map. The 

input of the CNN layer is the labeled images, where the 

output contains the predicted object classes, the bounding 

boxes, and the confidence score [32], [35]. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 553 

 

Omar Bouazizi, Road Object Detection using SSD-MobileNet Algorithm: Case Study for Real-Time ADAS Applications 

car

Convolutional 

layer 1Input Image Output Image

    224×224×3 224×224×64 112×112×128 56×56×256 28×28×512

Convolutional 

layer 2

Pooling 2Pooling 1

Fully connected layer

Object 

Detection

Model

Output

 

Fig. 1. CNN for object detection 

CNN approaches used for object detection predominantly 

rely on anchor-based methods and can be categorized into 

two types: Two-stage detectors that are based on region 

proposal algorithms where they employ a two-step process to 

localize and classify objects. One-stage detectors where 

instead of using two detectors simultaneously they use 

DCNNs without splitting them into separate components 

[36], [37]. The next subsections provide an overview of the 

architectures of two-stage and one-stage detectors, followed 

by a review of diverse architectural approaches used for 

object detection models. 

A. Two-Stage Object Detection Models 

A typical two-stage model involves the extraction and 

classification of region proposals. In this stage, the model 

generates a set of candidate regions or bounding boxes that 

are likely to contain wanted objects [38]. After the region 

proposal, the model integrates a well-established image 

classification process [39], [40]. Fig. 2 illustrates the 

operational process of two-stage object detection models. 

Several two-stage detectors are employed for object 

detection. The next subsections provide detailed descriptions 

of each architecture. 

 

Fig. 2. Two-stage model detection diagrams 

1) R-CNN architecture: The authors of [41] introduced 

R-CNN, the first CNN-based model for target detection. R-

CNN attained an mAP of 54% on the PASCAL2012 dataset 

[42]. The main concept behind this region-based approach 

can be summarized as follows: firstly, an initial segmentation 

of the input image is performed to generate a substantial pool 

of regions. These regions are combined recursively to create 

larger areas, which are then employed to propose potential 

candidate regions. Lastly, feature extraction and 

classification are executed through an SVM to predict the 

coordinates of the target objects [43], [44]. In comparison to 

traditional detection approaches, R-CNN remarkably 

enhances accuracy. Nevertheless, this improvement comes at 

the expense of extensive computational demands. Training 

R-CNN models demands powerful GPUs, sometimes 

requiring multiple GPUs or specialized hardware for efficient 

processing, leading to a lack of computational efficiency. 

Additionally, scaling the region proposal to a fixed-length 

feature vector has the potential to distort objects, impacting 

detection speed, which is limited to 14 FPS [45]. 

2) SPP-NET architecture: The authors of [46] 

introduced the Spatial Pyramid Pooling Networks (SPP-Net). 

This architecture offered a solution to the issue of fixed input 

size images encountered in R-CNN, which led to reduced 

detection efficiency. The SPP-Net algorithm concurrently 

extracts region-specific features from the input image as it 

progresses through the convolutional layers, performing all 

convolution calculations. Once the final convolutional layer 

is traversed, a fully connected layer is added to process the 

resulting fixed-size feature vector. This model outperforms 

the R-CNN in terms of both efficiency and speed. SPP-Net 

attains a mAP of 59.2% on the VOC2007 dataset [16]. 

3) Fast R-CNN architecture: In 2015, the same authors 

of [41] introduced the Fast R-CNN architecture in [12]. This 

architecture builds upon the foundations of SPPNet and R-

CNN. Notably, Fast R-CNN diverges from its predecessors 

by incorporating the softmax function for classification, in 

contrast to the use of SVM. Additionally, it substitutes the 

region of interest (RoI) layer with the final pooling layer for 

convolution. The transformation of the bounding box feature 

into a fixed-size feature map provides access to the fully 

connected layer. Ultimately, the last classification layer is 

substituted with two fully connected (FC) layers. Despite 

these modifications, Fast R-CNN achieves an impressive 

accuracy of 70.0% on VOC2007 and VOC2012 [12], [47]. 

4) Faster R-CNN architecture: Faster R-CNN was 

created by the authors of [48] in 2015. This novel approach 

introduces the layer of Region Proposal Network (RPN) to 

replace the conventional selective search method. This 

evolved model is divided into two distinct components: a 

comprehensive CNN block responsible for producing the 

RPN, and the application of the Fast R-CNN algorithm [49], 

[50]. Notably, a layer is shared between these two stages, 

facilitating communication. Remarkably, this algorithm 

achieves an mAP exceeding 70% on both VOC 2012 and 

VOC2007 datasets [48]. 

5) Mask R-CNN architecture: In 2017, the Mask R-

CNN algorithm was introduced in [51]. This algorithm is 

specifically designed for bounding box detection and 

generates three essential outputs: bounding box coordinates, 

object masks, and class labels. Through this innovative 

approach, Mask R-CNN not only generates segmentation 

masks but also enhances the efficiency of object detection 

within input images or videos. To facilitate feature extraction, 

Mask R-CNN adopts ResNet-FPN [52], [53] as its 

foundational model. It achieved an optimal precision that 

reaches an mAP of 70.4% on the VoC2017 dataset while 

maintaining a peak speed of nearly 5 FPS due to extensive 

computational demands. 

B. One-Stage Object Detection Models 

In object Detection systems; and when it comes to speed, 

one-stage models surpass two-stage detectors. Various 

instances of one-stage model structures can be found, which 

include YOLO [54], SSD [55], and RetinaNet [56] among 

others. Fig. 3 illustrates the procedural flow within one-stage 

models. 

 

Fig. 3. One-stage model detection diagrams 
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1) YOLO architecture: In 2015, the authors of [13] 

introduced YOLO, a specialized detection framework 

designed for real-time predictions. YOLO employs a singular 

CNN to analyze the entire image, dividing it into distinct 

regions and then predicting bounding boxes and class 

probabilities for each region. The confidence score is 

subsequently established by multiplying the detection 

probability with the Intersection over the Union (IoU) value. 

This distinctive approach renders YOLO exceptionally swift, 

achieving an mAP of over 53% on the VOC2012 dataset [31]. 

Subsequent improved iterations, YOLOv2 to YOLOv8, 

attain a processing speed of 45 FPS to 70 FPS [57]. However, 

YOLO encounters challenges in effectively handling small 

objects grouped within spatially constrained areas to predict 

correct and stable Bounding Boxes [58]. 

2) SSD architecture: In 2016, the authors of [14] 

introduced the Single Shot MultiBox Detector (SSD) 

algorithm. Similar to YOLO, this model employs regression 

and draws inspiration from the use of anchor boxes, aiming 

to enhance multi-scale object detection performance. SSD 

combines predictions from multiple feature maps with 

varying resolutions to handle objects of diverse sizes 

effectively. The backbone of the SSD algorithm is VGG-16, 

with the last two fully connected layers being replaced by 

convolutional layers [59]. SSD achieves an impressive mAP 

of 76.8% on the VOC 2012 dataset while operating at a speed 

of 65 FPS [14]. A fundamental contrast between SSD and 

earlier algorithms lies in their detection approach. More 

specifically, SSD tests the deeper layers for detection, 

whereas the older algorithms perform detection tests across 

multiple distinct layers [55]. 

3) RetinaNet architecture: Later On, in 2019, the 

authors of [60] introduced the architecture of RetinaNet. It 

addresses a challenge in SSD, which encounters class 

imbalance, resulting in the omission of object classes in 

certain regions. In contrast to the method of discarding 

negative samples, RetinaNet employs an innovative loss 

function referred to as focal loss [61], which effectively 

attenuates their gradients. This approach applied to the MS 

COCO dataset, achieved an mAP of 59.1% [60]. 

III. SSD-MOBILENET FOR ROAD OBJECT DETECTION 

In this section, we aim to study the applicability of CNN-

based object detection models for ADAS applications. 

Literature shows that one-stage detectors are faster and more 

suitable for real-time applications at the cost of some 

accuracy [62], [63]. As a direct result, in this work, we 

focused on analyzing the performance of the SSD-

MobileNet, a one-stage detector model, for road object 

detection. After, we compare its performance with other 

existing object detection models from the literature. The 

original SSD-MobileNet model, designed for 90 different 

classes, is impractical for ADAS due to computational 

constraints and real-time processing requirements in ADAS 

applications. In our study, we optimized the model by 

reducing the number of classes, reducing complexity, and 

enhancing suitability. This adjustment is advantageous, as it 

improves accuracy and FPS when using a GPU. 

Our initial step involved preprocessing and refining the 

MS COCO dataset to exclusively encompass entities relevant 

to road scenarios, such as vehicles, pedestrians, and traffic 

signs. Following this, we retrained the SSD-MobileNet using 

the resulting annotated dataset. The following subsections 

describe the details of the training dataset, the methodology 

employed for retraining SSD-MobileNet through transfer 

learning, and the applied evaluation metrics. 

A. The Training Dataset 

The construction of an object detection model requires the 

collection of datasets containing annotated and classified 

images. For road scenes, several annotated datasets can be 

used, such as KITTI [64], COCO [25], Berkeley DeepDrive 

[23], Pascal VOC [25], and the Google Open Image dataset. 

These datasets can be used for training and evaluation. 

For experimental purposes, and to facilitate the training 

of the SSD-MobileNet model, the MS COCO dataset was 

chosen. The original MS COCO dataset passed through 

preprocessing and cleaning to focus on road-related objects, 

namely cars, persons, motorcycles, traffic lights, and stop 

signs. These classes were selected to address essential 

elements in road scenarios, enabling ADAS to comprehend 

and respond effectively to diverse traffic situations. The car 

and motorcycle classes play a crucial role in calculating Time 

to Collision for collision avoidance applications. The person 

class is vital for enhancing pedestrian safety and preventing 

accidents. Additionally, classes associated with traffic lights 

and stop signs are essential for interpreting and responding to 

traffic signals, ensuring secure navigation at intersections. 

After cleaning and preprocessing, the resultant dataset 

comprises 73k training and validation images extracted from 

video frames depicting road scenes, each accompanied by 

corresponding labels. Additionally, the Pascal VOC2007 

dataset was employed for testing purposes, undergoing the 

same preprocessing steps as the MS COCO dataset. Table I 

provides a summary of the statistical details for the training 

and the validation datasets used in this study. The training set 

images are presented sequentially, each paired with a 

corresponding text file delineating the bounding box 

coordinates and the respective class of objects within the 

image. 

TABLE I.  THE STATISTICS OF THE TRAINING AND THE VALIDATION 

DATASET 

Source Images 
Classes 

Instances’ Statistics 

MS COCO 

Train Val Train Val 

64521 8798 

Car 232449 41020 

Person 38930 6869 

Motorcycle 14047 2478 

Traffic Light 11493 2028 

Stop Sign 1750 308 

B. Methodology 

The efficacy of deep learning models is significantly 

impacted by the dataset's size. In object detection, models 

trained on limited datasets may encounter pronounced 

overfitting issues, memorizing training data patterns without 

generalizing them to new, unseen data [65]. To address this 

challenge, transfer learning becomes relevant as an approach 

[66]. Thus, instead of starting training from scratch, we 

initiate the training process with a pre-trained model (see Fig. 

4). More specifically, transfer learning is employed to discard 
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the fully connected layers of the pre-trained model while 

retaining the convolutional blocks, and introduce a new fully 

connected layer. This leads to the fine-tuning of only the top-

layer parameters. Consequently, transferring knowledge from 

a pre-trained model enhances the model's performance and 

facilitates the utilization of learned features in specific 

domains, such as road scene object detection. Notably, its 

effectiveness in handling lighting variations, weather 

conditions, and diverse road infrastructure, ensures the 

reliability needed for practical deployment in ADAS 

applications. 

 

Fig. 4. Transfer learning for road object detection 

The outline of our experimentation is depicted in Fig. 5. 

We set up the SSD-MobileNet [55], [67] for retraining, 

employing the cleaned and pre-processed dataset. After 

acquiring the MS COCO dataset, we allocated 15% of the 

images to a test folder and the remaining 85% to a training 

folder. Employing Labellmg tools, we annotated the target 

objects in each image, this tool enabled us to define bounding 

boxes for missing annotated classes. After, we proceeded to 

train the object detection model using our GPU graphics card 

where we specifically used the TensorFlow machine learning 

library. The experiment was carried out using the NVIDIA 

GeForce RTX 2060 GPU, 16 of RAM, and 12 CPU. 

 

Fig. 5. Object detection with SSD MobileNet 

C. Object Detection Evaluation Metrics 

Within this section, we outline diverse metrics employed 

for the assessment of neural network models. These 

evaluation metrics are pivotal tools that enhance our capacity 

to comprehensively evaluate the SSD-MobileNet models. 

The evaluation metrics most commonly employed in 

evaluating object detection models are Precision, Recall, the 

F1 score, Loss, and mAP [68], [69]. These metrics find 

widespread application in showcasing the effectiveness of 

models designed for object detection during and after 

training. 

The Precision, Recall, and F1 scores are denoted by (1), 

(2), and (3) respectively. These three metrics evaluate the 

correctness of predictions and the model's capability to detect 

relevant objects within the training dataset [70]. However, 

these metrics may not completely capture the complexities of 

object detection scenarios, particularly in cases involving 

imbalanced datasets, as is evident in ours (see Table I). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (2) 

𝐹1 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

The Cross-Entropy Loss function, as presented by (4), 

assesses the disparity between predicted and true class 

probabilities.  𝑖  is the true probability distribution for the 

class 𝑖,  ̂𝑖 is the predicted probability distribution, and n is the 

number of classes. In the training process of our object 

detection model, this loss function played a pivotal role as a 

critical optimization criterion. Its primary function was to 

guide the model in minimizing the difference between its 

predictions and the actual class distributions, but it cannot be 

used to reflect on the model's effectiveness in handling real 

ADAS scenarios [71]. 

𝐻( ,  ̂) = −∑  𝑖 . 𝑙𝑜𝑔( �̂�)
𝑛

𝑖
 (4) 

We also used the mAP as depicted in (5). 𝐴𝑃𝑖 is the 

average Precision for the class 𝑖 and 𝑛 is the number of 

classes. The mAP consolidated the precision and recall 

performance across multiple classes. Thus, it provided an 

assessment of the model's ability to accurately identify and 

classify objects within the 5 chosen classes [70]. We 

predominantly relied on mAP to evaluate our model's 

performance. Considering the distribution of classes in our 

training dataset (see Table I), mAP provided valuable insights 

into the model's generalization across different classes, 

helping assess its suitability for ADAS. For instance, the 

evaluation of the car class precision is crucial for applications 

like time to collision, while person and traffic light classes 

play essential roles in pedestrian safety applications. 

𝑚𝐴𝑃 = 
∑ 𝐴𝑃𝑖
𝑛
𝑖

𝑛
  (5) 

An additional metric used in evaluating object detection 

models is Intersection Over Union (IoU). This metric requires 

two inputs; The predicted coordinates of a detected object 

within the image, and the actual Bounding Box coordinates 

of the same object derived from the image's associated label. 

The IoU produces a result ranging from 0 to 1, representing 

the precision of object detection [72]. The diagram of Fig. 6 

depicts the formula applied for IoU computation. When the 

IOU value surpasses a specific threshold, a true positive is 

affirmed; otherwise, it's categorized as a false positive, while 

false negatives pertain to undetected objects. This metric 

essentially evaluates the spatial overlap between predicted 

and true bounding boxes, emphasizing localization accuracy. 

It holds particular significance for real-time ADAS 

applications to ensure stable bounding box positioning on a 

specific object within an image. 
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Fig. 6. Computation of the IOU 

IV. RESULTS AND DISCUSSION 

To evaluate the performance of our Object detection 

model, we computed the F1 score, the mAP, and the FPS on 

the validation dataset outlined in Section 3.1, which 

represents 15% of the pre-processed dataset.  

Fig. 7 illustrates the training and testing loss curves over 

40k steps. Notably, the model's loss stabilizes at around 0.005 

after approximately 25k steps. Specifically, this stability 

suggests that the model is learning the patterns in the training 

data and approaching an optimal set of parameters. 

Furthermore, the achieved stability prompted us to stop the 

training to prevent overfitting. The comparison between the 

training and validation plots reinforces the idea that the 

training process is performing optimally. 

 

Fig. 7. Train and test loss curve during training 

Fig. 8 illustrates the Precision-Recall curve, during 

training. This curve is commonly employed as an evaluation 

metric in scenarios characterized by imbalanced class 

distributions, as is the case in our dataset. Analysis of this 

curve demonstrates that our model can maintain high 

precision while capturing a relatively modest number of true 

positives. This observation is crucial, particularly in the 

context of ADAS, where our road object detection model 

must address challenges such as multiple instances with 

varying object scales and occasional overlap, while the used 

training dataset contains an imbalanced number of classes. 

Fig. 9 illustrates the evolution of Precision, Recall, and F1 

scores throughout the training process over 40000 steps. The 

recall outperforms the other metrics, indicating that the model 

places a priority on capturing as many true positives as 

possible rather than false positives. This emphasis on recall 

is particularly significant for safety-critical ADAS 

applications, specifically those related to pedestrian safety, 

where missing a true positive is considered more dangerous 

than misclassifying a detected object. After training, our 

model reported an F1 score of 0.801, a precision of 0.756, and 

a recall of 0.873. 

 

Fig. 8. Precision-Recall Curve during training 

 

Fig. 9. Precision, Recall, and F1 Score 

To further evaluate the performance of the lighter version 

of SSD-MobileNet with other existing models, we also tested 

on VOC 2007 after preprocessing, cleaning, and labeling it to 

only include the selected road objects. In pursuit of a fair 

comparison, we referenced various studies to include models 

that were created and evaluated on either the MS COCO or 

VOC2007 datasets. Moreover, to ensure a consistent metric 

for FPS, we considered models that were tested on a GPU, 

similar to our model. In this comparison, we focused on mAP 

and FPS metrics. The mAP offers a well-balanced evaluation 

of precision and recall, providing insights into the models' 

overall performance and localization accuracy. Meanwhile, 

FPS quantifies the models' efficiency, representing the 

number of frames processed per second; an essential metric 

for real-time ADAS applications. 

Table II summarizes the mAP results and FPS metrics for 

the selected models alongside our own. Specifically, [73] 

introduced a model utilizing a multi-level Feature Pyramid 

method based on the one-stage architecture of M2det. 

Another model, detailed in [19], employed the one-stage 

detector architecture of YOLOv3 and YOLOv4. The last 

reported mAP score is the score of our model, while the 

remaining models were described in the review [31]. It is 
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important to note that in this comparison, certain limitations 

exist, such as variations in model architecture between one-

stage and two-stage detectors. Additionally, for specific 

models like YOLOv4 as described in [19], the authors 

implemented a tuning method where model hyperparameters 

were adjusted for optimal performance. 

TABLE II.  SSD-MOBILENET PERFORMANCE ON ROAD OBJECT 

DETECTION 

Model Testing Dataset @mAP FPS 

M2det [73] MS COCO 63.96 <5 

R-CNN [31] VOC 2007 66 <5 

SPP-Net [31] VOC 2007 54.2 <5 

SDD-VGG16 [31] VOC 2007 77.2 46 

Yolov3 [19] VOC 2007 76.55 35 

Yolov3 – tiny [19] VOC 2007 62.5 134 

Yolov4 [19] VOC 2007 87.48 72 

Yolov4 [31] MS COCO 43.5 43.5 

SSD-MobileNet (ours) MS COCO 65.41 71 

SSD-MobileNet (ours) VOC 2007 63.46 71 

 

The evaluation of our system yielded a mAP of 65.41, and 

an FPS of 71, which is notable, particularly considering our 

use of a relatively smaller training dataset and limited 

computational resources. Some models achieved a higher 

accuracy, but they had a lower FPS, making them less 

suitable for ADAS [19]. Notably, the model created using 

YOLOv3-tiny achieved the best FPS, however, it required 

more computational resources for its development, and its 

mAP was comparatively lower than the other models. 

Fig. 10 illustrates the normalized confusion matrix of our 

SSD-MobileNet model, providing insights into its 

performance. The high values on the diagonal signify the 

successful detection of the chosen classes. The class with the 

lower detection rate is the motorcycle class, primarily due to 

its limited representation in the training dataset (see Table 1). 

This performance could be improved by balancing the 

distribution of classes in the used dataset, thereby preventing 

any single class from dominating the training data. To address 

this imbalance, we can apply the strategy of data 

augmentation before initiating the transfer learning process, 

emphasizing images containing instances with lower class 

occurrences. 

Fig. 11 depicts multiple instances of inference outcomes 

generated by our post-trained SSD-MobileNet model. These 

results not only offer object identification by name but also 

provide a confidence score, denoting the certainty of the 

object's presence. These confidence thresholds for detection 

indicate the model's certainty in its predictions by identifying 

reliable detections. We set a threshold of 0.6 during inference 

to decide if a prediction is confident which is useful to 

balance avoiding false detection and catching real objects, 

especially in ADAS where safety is crucial. Achieving this 

balance is crucial for ensuring the reliable performance of 

road object detection models in real-world scenarios, 

ultimately enhancing the safety and effectiveness of ADAS 

applications. The visual representation depicted in Fig. 11 of 

inference outcomes complements the information revealed 

by the confusion matrix, collectively painting a 

comprehensive picture of our model's effectiveness in object 

detection. 

 

Fig. 10. Confusion matrix normalized 

 

Fig. 11. SSD-MobileNet inference results 

V. CONCLUSION 

In this paper, we address the challenge of comparing road 

object detection models fairly, considering factors like 

performance evaluation, real-time processing, and diverse 

road environments. More specifically, this study contributes 

to understanding road object detection models, focusing on 

implementing SSD-MobileNet in the context of road scenes. 

Our key contributions are the preprocessing of the MS COCO 

dataset to include specific road object classes, retraining a 

lighter SSD-MobileNet model using transfer learning, and 

conducting a comparative analysis with existing models on 

MS COCO and VOC2007 datasets. The goal is to assess the 

model's performance, especially in the context of ADAS 

applications. Our model demonstrated enhanced 

performance, achieving an F1 score of 0.801, signifying its 

ability to detect relevant objects within the training dataset. 

Additionally, the mAP of 65.41 offers insights into our 

model's overall performance and localization accuracy. In 

terms of efficiency for ADAS, the inference was achieved at 

71 FPS on a GPU platform, highlighting the model's 

capability for real-time processing. 
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Nevertheless, the aspiration of achieving real-time object 

detection remains a distant goal. Primarily, due to significant 

challenges posed by computational limitations and inherent 

complexity of advanced detection models. This paves the 

way for many prospective trajectories, including optimizing 

model architectures to deal with the SSD-MobileNet model’s 

architecture limitations and exploring advanced data 

augmentation methods to deal with the unbalanced road 

object classes in the MS COCO dataset. 
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