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Abstract—Brain-computer interface (BCI) has been widely 

used to capture electrical signals generated from the brain. One 

of the most commonly used methods in the BCI system is the 

electroencephalogram (EEG). However, processing brain 

signals is challenging and requires a lot of computation 

processes. This study selected single-channel EEG as the input 

command for a portable soft exoskeleton glove system. This 

research aims to develop an affordable soft exoskeleton glove 

driven by single-channel EEG for people with impaired hand 

motion. We proposed an intuitive control method that feels 

more natural by imagining hand movements. Eighteen healthy 

participants underwent EEG data collection while their brain 

activity (attention level) was measured under four controlled 

conditions: listening to preferred music with lyrics, listening to 

disliked music, pre-workout state, and post-workout state. 

These variations in attention level, mood, and physical exertion 

influenced the measured EEG signals to drive the soft glove. T-

test was applied to determine the significant difference for noise 

environment and physical variation tests. Those EEG signals 

are used to drive the linear actuator and provide mechanical 

assistance. Simple on/off control was embedded in the soft glove 

microcontroller to control the finger flexion/extension based on 

the EEG signal as a command. The result shows that the 

proposed wearable soft exoskeleton glove driven by EEG signal 

can be a potential assistive device for people with hand 

impairment. The speed for the soft glove was 3 seconds to close 

completely from a fully open. For optimal performance, this 

system needs to be used in a calm and distraction-free 

environment when the user is well-rested. 

Keywords—Embedded Control; Fabric; EEG; Soft 

Exoskeleton Glove; Brain-Machine Interface. 

I. INTRODUCTION 

A wearable exoskeleton robot is an assistive device that 

various researchers around the world have developed. Robot 

exoskeletons are widely used to provide mechanical support 

for both the upper and lower limbs. In the upper limb 

exoskeleton, this wearable robot assists hand movements 

such as the elbow or fingers of the user who cannot move 

normally. There are two types of exoskeletons based on the 

material used, i.e., hard exoskeleton and soft exoskeleton. 

Hard exoskeleton design technology has rapidly grown as a 

movement-assistive device and therapy kit. EksoVest is a 

passive upper-body exoskeleton with a moment and hinge 

mechanism developed by Ekso-BIONICS [1]. CAREX-7 was 

another hard exoskeleton supporting a total of 5 degrees of 

freedom (DOF) movement for the upper-limb torso with 3-

DOF motion and shoulder and elbow with 2-DOF motion [2]. 

In addition to hard exoskeleton products as movement-

assisting devices, there is also hard exoskeleton as a 

rehabilitation device. NEUROExos was a 4-DOF 

rehabilitation device for a motor disorder called spasticity [3]. 

Researchers utilized 3D printers for constructing the 

exoskeleton material and linkage system to minimize the 

weight [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], 

[15], [16]. By applying it, a lightweight and affordable hard 

exoskeleton could be manufactured. 

However, hard exoskeletons are challenging to attach and 

align, especially for different hand sizes of users. Therefore, 

researchers developed a soft exoskeleton hand for easy 

attachment and detachment to overcome this issue. It is safer 

and lighter compared to hard exoskeletons. Researchers 

employ pneumatic/hydraulic networks [17], [18], [19], [20], 

[21], [22], [23], [24], [25], [26], motor-tendon [27], [28], 

[29], [30], [31], [32], [33], [34], [35], [36], [37], and shape 

memory alloys (SMA) [38], [39], [40], [41], [42], [43], [44], 

[45]. Most developed soft exoskeleton hands were utilized to 

support finger flexion and extension and rehabilitation [46]. 

Soft exoskeleton products are available on the market and are 

often used for physical training and rehabilitation. 

Exoskeleton actuated by the soft modules (EAsoftM) 

proposed an active exoskeleton with active and passive joints 

to compensate for gravity and a rotating shoulder [47].  Soft 

exoskeletons are typically made from textiles or other flexible 

materials, making them lighter and more comfortable to wear. 

They pose a lower risk of injury compared to hard 

exoskeletons. To enhance the user experience of 

exoskeletons, researchers are investigating sensors that can 

capture brain or muscle activity, enabling more intuitive and 

comfortable control. 

Electromyography (EMG) sensors are commonly used in 

wearable robots such as prosthetic hands and exoskeleton 

hands. In prosthetic hands, EMG is applied to measure 

muscle activity in the remaining hand of a user whose hand 

has been amputated. The EMG reads muscle activity and 

generates signals according to hand movements. Researchers 

used machine learning to classify hand movements and 
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provide classification results for hand movements in 

prosthetic hands [48], [49], [50]. The studies show that 

machine learning or deep learning can classify hand 

movement classification with high accuracy.  

For people with hand disabilities such as hand paralysis, 

brachial plexus injury (BPI) or persons who cannot use their 

arm or hand, muscle movement is very challenging to 

measure using the EMG sensor because they cannot move 

their hand muscles. Therefore, the electroencephalography 

(EEG) sensor is suitable for patients who cannot move their 

hands. Exoskeleton robots can be used for patients with hand 

paralysis by using commands from the EEG sensor. Research 

related to the BCI system hand glove had been done with a 

product called the hand Exoskeleton for Rehabilitation 

Objectives (HERO), which incorporated a textile-associated 

3D printing technique to produce a lightweight and wearable 

device [51]. This research utilized common spatial pattern 

(CSP) and linear discriminant analysis (LDA) classifiers to 

detect two classes where research volunteers were instructed 

to relax the Hand (Class 1) and perform a right-hand 

movement (Class 2). Other BCI-based soft exoskeleton 

gloves are used in stroke rehabilitation. The rehabilitation 

system is built like a visual game according to activities of 

daily living where participants move objects while EEG 

signals are being recorded [52], [53]. EEG sensors detect the 

brain waves categorized into delta, theta, alpha, beta, and 

gamma waves [54]. Delta wave is recognized during sleep 

with a frequency lower than 4 Hz, meanwhile, in the state of 

meditation and a relaxed mind, the EEG sensor detects the 

signal into theta and alpha waves. Beta waves are recognized 

when the brain is in full concentration mode [55]. 

Commonly, the EEG sensors that have been used 

previously are an EEG with more than one channel, and the 

price is relatively unaffordable for most people (around 1,000 

USD). It can detect and measure delta, theta, alpha, beta, and 

gamma waves. In addition, machine learning or deep learning 

algorithms are needed to classify the hand movements 

desired by the user/wearer using their brain signal [56], [57], 

[58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], 

[69], [70], [71]. Online movement recognition with multi-

channel EEG needs a high and complex computation process. 

However, personal computers/laptops or single-board 

computers (SBC) were widely added for EEG system 

recognition for driving the hand exoskeleton instead of 

embedded systems. These kinds of systems usually are large, 

and bulky, and need external computers for feature extraction 

and classification using online machine learning or deep 

learning. This large and complex exoskeleton system has two 

drawbacks: it's not portable and it's not user-friendly in terms 

of wearability.  

Therefore, developing and integrating a soft exoskeleton 

glove and single-channel EEG with a low-cost and small-size 

microcontroller will be significant for the portable and 

lightweight exoskeleton glove system. By achieving a 

portable soft exoskeleton glove based on EEG, the user can 

wear it easily and comfortably. Recently, EEG devices have 

become more portable and user-friendly, allowing for real-

time data collection, and robotic control. Single-channel EEG 

offers simplicity and portability for simple tasks, while multi-

channel EEG provides spatial resolution and accuracy for 

more complex tasks. 

The main contribution of this study is an intuitive control 

and simple method that allows for natural control through 

imagined hand movements based on single-channel EEG, 

which is applied to drive the soft exoskeleton glove. Fabric-

based exoskeleton robots will be developed because it is easy 

to attach, detach, and align. Moreover, it is comfortable for 

the user to wear. The proposed fabric-based exoskeleton 

glove offers a compelling alternative for situations that 

prioritize comfort, affordability, and ease of use. The single-

channel EEG is integrated with the developed soft glove 

using a custom Bluetooth communication device for a simple 

communication interface. Because EEG is vulnerable to 

noise, 18 study participants are involved in studying the effect 

of noise sound (music) and fatigue to find the optimum 

utilization environments. The soft glove is controlled using 

embedded on-off control based on the feedback from the 

linear potentiometer on the linear actuator. When the soft 

glove is controlled using single-channel EEG, the grasping 

force generated during flexion motion is measured for 

providing mechanical grasping assistance. This system 

allows a user to modulate grasping force during 

flexion/extension for improved mechanical assistance. 

II. MATERIALS AND METHODS 

A. Single Channel EEG 

This study selected the Neurosky Mindwave headset as 

the affordable EEG sensor. It can measure 12-bit raw 

brainwave data (3-100 Hz) with a sampling rate of 512 Hz. 

Two signal values are generated from single-channel EEG, 

namely attention and meditation. Attention signal is the focus 

of this research to be extracted as a soft glove input signal 

command. Attention level is presented as a score/value from 

0 to 100, indicating the intensity of the user's "focus" or 

"attention" level. The level of attention increases when the 

user focuses on a single thought or external object and 

decreases when he/she is not focused. Attention levels were 

categorized into five levels: poor attention, lack of attention, 

neutral, high enough attention, and full attention. Attention 

levels at neutral are considered normal concentration levels, 

while attention levels at less and poor are lower than normal. 

Attention levels above neutral levels indicate the person has 

a higher current concentration level. People with "full 

attention" levels ranging between 80 and 100 have very high 

concentration levels. These attention level categories are 

summarized in Table I. 

TABLE I.  ATTENTION LEVEL ON SINGLE CHANNEL EEG [72] 

Attention level Classification 

1 - 19 Poor Attention 

20 -39 Lack of Attention 

40 - 59 Neutral 

60 -79 High Enough Attention 

80 - 100 Full Attention 

 

Many external factors can affect the value of attention, 

such as age, gender, noise, background music, fatigue, 

illness, and many others. This study took several samples 

from several study participants who were tested for their 

attention level. The factors tested in this study include 
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background music, noise, and fatigue after working out. The 

study participants consisted of 18 people, namely nine males 

and nine females (age = 24.3 years, SD=7.6). All study 

participants were physically and mentally healthy and had 

eaten before the EEG measurement. Tests were conducted 

between 10 a.m. and 2 p.m. in a closed, air-conditioned room 

to reduce external noise or interference. A day before the test, 

participants were advised not to drink alcoholic and 

caffeinated beverages first. This study utilized adult study 

participants to minimize the influence of factors such as 

incomplete brain development or age-related cognitive 

decline on the EEG. The list of study participants who 

participated in this research is summarized in Table II. 

TABLE II.  LIST OF PARTICIPANTS IN EXTERNAL FACTOR TESTING 

Participant Gender Age Occupation 

A Female 15 Student 

B Male 15 Student 

C Female 16 Student 

D Male 17 Student 

E Female 17 Student 

F Male 18 Student 

G Female 22 College student 

H Male 22 College student 

I Female 23 College student 

J Male 23 College student 

K Female 23 College student 

L Male 23 College student 

M Female 31 Worker 

N Male 35 Worker 

O Female 33 Worker 

P Male 34 Worker 

Q Female 36 Worker 

R Male 35 Worker 

 

Music has a substantial effect on a person's behavior and 

attention. Many researchers have studied the impact of music 

on human behavior, such as eating, drinking, and 

psychological behavior. A study of work concentration levels 

and background music showed that people who listened to 

music during an attention test had highly variable scores on 

an attention test. This study explores how background music, 

with likes and dislikes, affects one's attention performance. 

In this test, participants were asked to listen to two songs. One 

song is a song the participants like, and the other is one that 

the participants do not like. While listening to the song, 

participants will be asked to work on math problems provided 

previously, and their attention value will be measured using 

a Mindwave headset for 80 seconds. This test is conducted 

for 1 trial for each study participant.  

When people become tired due to work or daily activity, 

they will usually complain and find it difficult to concentrate 

and focus their attention on the tasks they have to do. The 

value of attention is affected explicitly by physical and 

mental fatigue, and attention is a key feature of dynamic 

human behavior. Therefore, the attention value measured by 

the EEG was tested after the study participants did some 

physical exercises. Participants were asked to run on a 

treadmill for 10 minutes in this test. After running on the 

treadmill, they were asked to work on the math problems 

while their attention was measured using the single-channel 

EEG. This measurement of EEG signal for pre-workout and 

post-workout was conducted for 1 trial for each study 

participant for 80 seconds.  

B. Soft Exoskeleton Glove System and Control 

In this study, the wearable assistive soft robotic glove 

aims to assist people with BPI or impaired hands in daily 

activities such as grasping and lifting objects. Compared to 

the hard exoskeleton, the advantage of this type of wearable 

assistive soft robotic glove is that it is more comfortable to 

use and can adapt well to wrap/align to the hands of 

users/wearers [17], [29]. Therefore, the glove does not injure 

the user in performing daily activities. In addition, because it 

is made of SR-10 fabric, this glove can be washed and 

cleaned. The prototype of the wearable assistive soft robotic 

glove can be seen in Fig. 1. The developed fabric-based soft 

exoskeleton glove system can be attached and detached easily 

from the user. The linear actuators are attached between the 

hand and elbow, while the battery and controller units are 

placed between the user's shoulder and elbow. Because it is 

lightweight and small and comprises actuators, batteries, and 

a controller, the user can wear the soft glove system 

comfortably. 

 
(a) 

 
(b) 

Fig. 1. Fabric-based soft exoskeleton glove, (a) Soft glove prototype, (b) 

The glove worn by a study participant 

The prototype of the wearable assistive soft robotic glove 

that has been successfully developed will be given input in 

the form of an EEG signal (attention level). Linear actuator 

L12-P with a linear potentiometer position sensor with a 

closed length of 152 mm and the maximum voltage of 12 

volts (Actuonix, Victoria, BC, Canada) was selected as the 

primary actuator for the soft glove due to it is relatively small 

compared to the pneumatic or hydraulic system. It converts 

rotational motion by an electric motor into linear motion to 

drive the soft glove. The maximal stroke of the linear actuator 

is 5 cm and the maximum speed (no load) is 24 mm/s. This 

stroke is sufficient to drive the developed soft glove for finger 

flexion and extension motion. The design of the soft glove 

can be seen in the previous research [73]. 

The schematic of the hardware from the EEG to the soft 

robotic glove can be seen in Fig. 2. The EEG signal was 

Battery and 

controller 

Tendon sheath 

Linear actuator 

L12-P 

Fabric soft 

glove 
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obtained by an Arduino microcontroller equipped with a 

Bluetooth receiver. It sent the signal to the soft glove 

controller through an analog signal. L293D driver motor was 

selected to provide bidirectional drive currents for extending 

and retracting the actuator stroke. This system employed two 

linear actuators on the soft glove to actuate the soft glove 

extension and flexion motion. The motions from the linear 

actuator were transferred using a tendon sheath to drive the 

soft glove fingers. 

 

Fig. 2. Proposed hardware for the soft exoskeleton glove 

This study implemented a modified on-off control with 

dead-zone value to extend or retract to the desired stroke 

displacement on the actuator. The proposed modified on-off 

control with a dead-zone value could increase the system's 

longevity, reduce the switching control (smoother response), 

and reduce power consumption. Because the signal coming 

from EEG was noisy, the attention signal as the linear 

actuator's input command was filtered using a discrete first-

order low-pass filter to smooth the input signal as written in 

equation (1). It is easy to implement with basic mathematical 

operations and computationally efficient, making it suitable 

for real-time applications. 

The signal conditioning input block diagram is depicted 

in Fig. 3. Simulink Support Package for Arduino Hardware 

was utilized for an embedded control system on the Arduino 

Nano microcontroller. The measured EEG signal was sent to 

the soft glove via Bluetooth device. The minimum (0) and 

maximum (100) values from the EEG were converted to the 

minimum (0 cm) and maximum (5 cm) displacement strokes 

for driving the finger flexion and extension. Modified on-off 

control, regulates the motion of the linear actuator stroke 

based on the EEG signal input. The overall block diagram of 

the modified on-off controller for the soft glove is presented 

in Fig. 4(a). The overall control block for the soft glove was 

developed under Simulink, as shown in Fig. 4(b). The speed 

for extending and retracting the linear actuator stroke was 

provided with a supply voltage of 6V (max PWM value of 

255). The linear actuator was commanded to stop if the 

displacement error was between -0.05 cm and 0.05 cm, as 

depicted in Fig. 4(c) (dead-zone block), to reduce the 

oscillation in the on-off feedback control. 

𝐺(𝑧) =
0.8647

𝑧 − 0.1357
 (1) 

 

Fig. 3. Block diagram for EEG signal filtering 

The figure for the soft exoskeleton glove worn by a user 

is depicted in Fig. 5. The glove is comfortable and 

lightweight; therefore, a user can wear the glove without 

fatigue for a long time usage. For the finger extension, the 

linear actuator stroke was set at 1.3 cm while the finger 

flexion was adjusted at 5.7 cm of linear actuator stroke. Each 

linear actuator was utilized for finger flexions/extensions 

(index, ring, and middle). The thumb was fixed at a particular 

position as shown in Fig. 5. 

C. Grasping Performance Measurement 

 The grasp force test on the glove was carried out to 

determine how much force was generated on the fingertips 

when using a wearable assistive soft robotic glove. Before the 

grasp force test was carried out, several pieces of supporting 

equipment were developed for the test. A 10 k  resistor was 

selected to process the output voltage from a force-sensing 

resistor (FSR) sensor. The accuracy and reliability of the FSR 

sensor measurements are affected by nonlinearities and 

temperature. The output voltage ( oV ) can be computed using 

Equation (2). R, Vin, and RFSR are the selected resistor (10 k

 ), input voltage (5V), and measured FSR resistance value 

( ), respectively. The proposed measurement equipment to 

measure the generated force on the soft exoskeleton glove is 

shown in Fig. 6. 

The grasp force test aims to determine the amount of grip 

force produced by the finger when using a wearable assistive 

soft robotic glove. The force generated by the linear actuator 

was reduced by the user's tendon-sheath friction and finger 

stiffness. The roughness of the surfaces and the tension in the 

tendon influence the amount of frictional force encountered 

in the soft glove. When the actuator applies force, this 

stiffness of the fingers leads to resistance to movement and 

reduces the force transmitted to the gripped object. 

 The shape of the force measurement was fabricated as 

shown in Fig. 6(a). The complete photo of the measurement 

system is presented in Fig. 6(b) to simplify the grasping force 

test. The measurement of the grip force on each fingertip was 

carried out as in Fig. 6(c). The input signal to move the finger 

comes from a potentiometer that is slowly rotated from an 

angle position of 0° to 270°. The angle of 0° equals a stroke 

of 1 cm of the actuator. Meanwhile, the angle of 270° equals 

a stroke of 5 cm. After giving the maximum input, the finger 

will press the FSR sensor (force-sensitive resistor) maximally 

and obtain the data grasp force on each fingertip during the 

grasping process. 

𝑉𝑜 = 𝑉𝑖𝑛
𝑅

𝑅 + 𝑅𝐹𝑆𝑅
 (2) 

 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1084 

 

Joga Dharma Setiawan, Portable Fabric-Based Soft Glove Controlled with Single-Channel Electroencephalography 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Overall EEG control for soft exoskeleton flexion/extension motion assistance, (a) On-off control diagram block, (b) Embedded overall control on 

Arduino microcontroller, (c) Proposed on-off control on the soft glove motion

  
(a) (b) 

Fig. 5. Mechanical assistance for hand motion, (a) Finger extension, (b) Finger flexion 
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(a) (b) (c) 

Fig. 6. Grasping force measurement. (a) Proposed grasping measurement. (b) Overall grasping measurement system. (c) Grasping force.  measurement 

III. RESULTS AND DISCUSSION 

The results for the effect of music and working out are 

presented in Fig. 7. The measured attention signal for a study 

participant while listening to music and working out are 

plotted in Fig. 7(a) and 7(b).  A T-test is conducted to 

determine the significant difference in the tested condition. 

Fig. 7(c) shows that background music with lyrics (do not like 

music) has a more significant adverse effect on attention 

values than music without lyrics (favorite music). Music with 

lyrics is a more complex stimulus than instrumental music 

alone, which explains the graph above that music with lyrics 

has a significant adverse effect on attention scores than music 

without lyrics (p-value < 0.05). Based on the test results, the 

utilized EEG will produce a higher attention value when a 

user listens to his/her favorite music. After a workout, the 

samples were selected from the male and female study 

participants' youngest, middle, and oldest. The results show 

that after doing exercise for 10 minutes, the study 

participant's attention values were decreased as shown in Fig. 

7(d). 

For the grasping force performance, the force generated 

by each finger is affected by the length of the tendon, finger 

stiffness, and tendon-sheath friction. The length of tendons 

used in the index, middle, and ring fingers varies, and the 

force is inversely proportional to the length of the tendons 

used. The following is the data on the grasp force test for each 

finger, which is presented in Table 3. The obtained grasping 

force vs. time is given in Fig. 8. The measured grasping force 

is obtained using the developed device as shown in Fig. 6. 

Providing sufficient tendon length for general users is 

difficult. Therefore, designing the glove with adjustable 

tendon length will be conducted in future study. Varying 

tendon lengths in a soft exoskeleton glove can have practical 

implications on its functionality. Excessive tendon length can 

lead to slack in the soft glove mechanical system, making 

precise control over finger movements difficult. Excessive 

tendon length can compromise control precision while a 

shorter length can provide higher tension but lead to 

discomfort during the use of the soft glove. 

TABLE III.  MEASURED RASPING FORCES ON THREE FINGERS 

Finger 
Length of 

tendon (mm) 

Maximum 

force (N) 

Index 19.5 5 

Middle 20.0 4 

Ring 19.0 3 

 

To determine the response of the actuator in the soft 

glove, voltage with increments of 1 volt was given to the 

linear actuator from 1 volt to 12 volts. The results of the linear 

actuator response to voltage variations are shown in Fig. 9(a). 

The response graph which has experienced steady-

state/constant shows that the linear actuator has moved fully 

to carry out a full extension movement. The results show that 

the greater the value of the electric voltage applied to the 

linear actuator, the faster the actuator response. Therefore, a 

voltage value of 12 volts was chosen as the working voltage 

for the soft robotic glove for the best response. 

Meanwhile, the closed-loop response is shown in Fig. 

9(b), and Fig. 9(c). Step input is given to the soft glove as an 

input command to determine the time constant of the soft 

glove (Fig.9(a)). The response without load and response 

with load lines indicate that the soft glove is not being worn 

and is being worn when the soft glove is tested. The test 

results on the input step show that the time constancy for the 

soft glove is 1.8 seconds using 12 volts of power. Fig. 9(c) 

shows that the soft glove can follow sinusoidal commands 

despite a slight delay of around 0.6 seconds. The time 

response for the previous silicone-based soft glove with a 

dual motor tendon actuator was 2.8 seconds when it is worn 

[30].  The measured time constant in this study is sufficient 

to provide the mechanical support from finger full 

open/extension to finger full close/flexion for grasping the 

object. 

 

Measured 
grasping 

force (N) 
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(a) 

 
(b) 

 
(c) 

 
 

(d) 

              
   (e) (f) 

Fig. 7. Effect of listening to music and working out. (a) Music with lyrics and without lyrics for a study participant.  Effect of workout for a study participant. 

(c) Average attention values for all participants with listening to music. (d) Effect of workout on average attention signal for all study participants. (e) 

Boxplot for music (noise) effect (p-value < 0.05). (f) Boxplot for the workout (fatigue) effect (p-value < 0.05).   

Study participants 
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Fig. 8. Grasp force on each finger 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Open-loop and closed-loop responses from the soft glove. (a) Voltage 

input signal variations to drive the linear actuator from 0 cm to 5 cm (full 

extension). (b) Response of the soft glove from the step input command. (c) 

Soft exoskeleton glove response to the sinusoidal commanded signal. 

 For the performance of the feedback control commanded 

with the EEG signal, a user was commanded the soft glove to 

assist the finger flexion and extension. The linear actuator 

displacement stroke followed the input signal command from 

the EEG attention signal as shown in Fig. 10. The modified 

on-off control with the error dead-zone of + 0.05 cm 

successfully reduced the linear actuator stroke displacement 

oscillation. The feedback control generated a steady state 

error of around 0.1 cm. A user was tasked to grasp a bottle of 

drinking water and lift the bottle using the user attention 

signal measured by single-channel EEG. Based on the test 

result, the user successfully commanded the soft glove to 

assist the finger flexion in grasping and lifting the bottle 

without falling to the ground, as depicted in Fig. 11. These 

results confirm that by implementing single-channel EEG, 

the soft glove can be driven and integrate easily with simple 

processing and control algorithms compared to multichannel 

EEG [52], [66], [68], [69], [74]. This study applies simple 

processing for EEG with simple tasks (open/closed) and also 

utilizes a fixed length of tendon. In the future,  designing the 

glove with adjustable tendon length will be conducted and 

augmented with multi-channel EEG for more complex tasks. 

 Involving humans as study participants in EEG research 

raises ethical considerations. Therefore, carefully considering 

the ethical and safety aspects of EEG research, researchers 

can ensure the responsible and safe use of EEG technology 

for advancing scientific knowledge and developing new 

applications, especially in soft wearable robotic technology. 

 

Fig. 10. Soft exoskeleton glove response to the commanded input signal 

from EEG 

 

Fig. 11. Soft exoskeleton glove commanded using EEG signal 

IV. CONCLUSIONS 

In this research, the soft exoskeleton glove has been 

developed using fabric material to make it comfortable for the 

user to wear and attach. The exoskeleton glove is intended to 

provide mechanical assistance through flexion and extension 
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movements on the user's hand. We have successfully 

integrated single-channel EEG with a soft exoskeleton glove. 

The user can move the soft glove for flexion or extension by 

using his mind as an attention signal. The attention signal 

generated from single-channel EEG is susceptible to being 

influenced by the environment and the user's body conditions. 

Based on our research results, a tired body condition from a 

workout can reduce the attention signal. Listening to music 

also influences the generated attention signal. It will increase 

if someone listens to music he/she likes, and vice versa. Our 

findings indicate that noise and fatigue can significantly 

weaken the attention signals used to control the soft 

exoskeleton glove. To optimize performance, it is 

recommended to use the glove system in a quiet environment 

and when the user is well-rested. 

The position of finger flexion and extension movements 

can be controlled using on-off feedback control with a steady 

state of around 0.1 cm. The maximum grasping forces 

produced to provide mechanical assistance on the index, ring, 

and middle fingers are 5 N, 4 N, and 3 N, respectively. The 

proposed soft exoskeleton glove can be a potential assistive 

and rehabilitation devices for people with hand impairment. 

Using an attention signal measured by the single channel 

EEG, a user can easily control the soft glove motion for 

flexion and extension mechanical assistance to grasp and lift 

an object. 

 The developed soft exoskeleton augmented with single-

channel EEG technology is still under development, and its 

effectiveness can vary depending on the specific condition 

and individual needs. However, there are potential benefits 

for improving independence and quality of life for stroke 

survivors or those with spinal cord injuries, making it an 

affordable device for rehabilitation and assistive technology. 

Soft exoskeleton gloves offer advantages but they also pose 

potential limitations such as strength, heat, and sweat. In 

future study, multi-channel EEG with deep learning will be 

augmented in the soft glove for more complex grasping tasks. 

More advanced nonlinear control will be developed to control 

the motion of linear actuator. 
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