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Abstract—In this research, a modified Osprey optimization 

algorithm (MOOA) is presented to optimize droop control 

parameters. MOOA is a modification of the Osprey 

optimization algorithm by adding levy flight which has the 

advantage of exploiting a wider space and being adaptive to 

environmental changes. This research also modifies droop 

control, Proportional Integral Derivative (PID) is applied to 

secondary control. PID has flexibility in responding to changes 

in system conditions and fast response in dealing with system 

changes. The PID parameters are optimized using MOOA and 

are called MOOA-PID. The MOOA method is validated using 

23 CEC2017 benchmarks-function and performance on DC 

microgrid systems. This research uses the latest algorithms as a 

comparison, namely One-to-One Based Optimizer (OOBO), 

Preschool Educational Optimization Algorithm (PEOA), and 

the red-tailed hawk (RTH) algorithm in testing 23 CEC2017 

benchmark functions. From the simulation of the 23 CEC2017 

benchmark function, it is known that the MOOA method has 

better capabilities. MOOA has advantages in 15 out of 23 

benchmark functions. In DC microgrid system testing, MOOA-

PID is compared with the Proportional Integral (PI) method 

which is optimized with MOOA and is called MOOA-PI. Testing 

on the microgrid is aimed at determining the performance of the 

transient response of power, voltage and current in the system. 

Tests on DC microgrid systems found that the application of 

MOOA-PID in secondary control had better capabilities than 

MOOA-PI. The average value of voltage overshoot from 

MOOA-PID is 9.828% better than MOOA-PI. The average 

ITSE MOOA-PID score is 22.3% better than MOOA-PI. 

Keywords—Droop Control; Secondary Control; DC 

Microgrid; Metaheuristic; Optimization. 

I. INTRODUCTION  

Increased demand for electrical energy can be caused by 

various factors, and the primary causes may vary depending 

on the geographic, economic, social, and technological. Some 

common causes that can cause an increase in demand for 

electrical energy include economic growth, urbanization, 

increase in population, technological development, climate 

change and energy policy [1]–[5]. 

Geographical factors have a significant influence on the 

increasing demand for electrical energy. This is influenced by 

population distribution, infrastructure development, climate 

conditions, accessibility of energy sources, industrial 

development, and availability of renewable energy sources 

[6]. Several economic aspects that influence the demand for 

electrical energy include: economic growth, urbanization and 

urban development, industrial and business development, 

energy availability and costs, income levels and lifestyles, 

service sector growth and public service provision [7]. 

Several societal factors, such as changes in consumption 

patterns, urbanization, population growth, demographic 

shifts, lifestyle changes, and social welfare needs influence 

the demand for electrical energy [8], [9]. The growing need 

for electrical energy is mostly due to technological 

considerations. The following technological aspects have an 

impact on the demand for electrical energy: growing internet 

and information technology, electric vehicles and electric-

powered transportation, smart grids and smart electric 

networks, internet of things (IOT) and connected devices, 

increasing use of electronic devices [10]. 

It is important to note that the combination of these factors 

often results in an increase in electrical energy demand in a 

region. Solutions to overcome these challenges involve a 

combination of energy efficiency, use of renewable energy 

sources, and development of sustainable energy 

infrastructure [11]–[13]. 

The use of renewable energy sources continues to grow 

throughout the world along with increasing awareness of the 

issues of climate change and energy sustainability. Some 

renewable energy sources that are generally used today 

include solar energy, wind energy, water energy, biomass, 

geothermal energy, wave, and tidal energy. The increased use 

of renewable energy sources is driven by several factors, 

including Environmental awareness, Technological 

Innovation, and Regulations and Policies [14]–[17]. 

Although the use of renewable energy continues to grow, 

there are still challenges such as the sustainability of energy 

storage and integration into the electricity grid [18]–[23]. 

Overcoming challenges related to renewable energy requires 

a holistic and integrated approach involving various aspects, 

from technology and infrastructure to policy and public 

awareness. several solutions that can help overcome some of 

the challenges in adopting and integrating renewable energy: 

technological innovation, energy infrastructure and storage, 

policy and regulation, public education and awareness, 

collaboration and partnerships, and integrated and sustainable 

approaches. Combining these solutions in a context that suits 

local needs and challenges will enable broader and more 

sustainable adoption and integration of renewable energy 

[24], [25]. 

A microgrid is a local energy distribution system 

consisting of renewable energy resources, energy storage 

systems, and electrical loads that are connected and operate 
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independently or can operate connected to the main 

electricity grid [26]–[31]. Microgrids are designed to provide 

electrical energy to specific areas or communities in a more 

efficient, sustainable and decentralized manner [32]–[37]. 

Some of the main characteristics of microgrids include 

renewable energy sources, energy storage systems, 

independent operation capability, centralized energy 

management, decentralization, automatic monitoring, and 

control. Microgrids can be deployed in a variety of locations, 

including urban, rural, and remote areas, and at various 

scales, from residential neighborhoods to industrial areas or 

university campuses. The existence of microgrids helps 

increase the efficiency, sustainability, and resilience of 

energy systems [38]–[41]. Each type of microgrid has certain 

advantages and disadvantages depending on its specific needs 

and operational context [42]–[47]. The use of a particular 

type of microgrid depends on the implementation objectives 

and the characteristics of the environment in which the 

microgrid is operated [48]. 

Microgrids can use alternating current (AC) or direct 

current (DC) depending on the specific needs and design of 

the microgrid. The choice between an AC or DC microgrid 

will depend on a variety of factors, including load 

characteristics, available resources, existing infrastructure, 

and the purpose of the system. Each type of microgrid has 

advantages and disadvantages, and their application must be 

carefully considered according to the specific needs of the 

project or application [49]–[51]. Alternating current (AC) 

microgrids have several advantages in many situations. Here 

are some of the advantages of ac microgrids: main power grid 

compatibility, efficient energy distribution, mature 

technology, voltage flexibility, easy to convert voltage, 

support for various loads, and renewable resources. Although 

AC microgrids have several advantages, as explained 

previously, there are several disadvantages that need to be 

considered in their implementation. Some disadvantages of 

AC microgrids include loss of power in voltage conversion, 

limited use of renewable resources, lower efficiency over 

long distances, difficulty coping with demand peaks, and 

limited voltage flexibility [52]–[54]. 

DC microgrids are a type of decentralized energy system 

that uses direct voltage and current in energy distribution and 

storage. DC microgrids have several advantages that make 

them an attractive option in some contexts. Following are 

some of the advantages of DC microgrids. High energy 

efficiency, Easy integration with renewable resources, 

maintenance of DC equipment, efficient energy storage, 

flexibility in design and implementation, ease of management 

and control, safety at consumer level, and suitable for Special 

applications such as data centers, street lighting systems, and 

electric vehicles. These advantages make DC microgrids an 

attractive option especially in scenarios involving renewable 

resources, energy storage, and the use of equipment that 

generally operates on DC voltage and current [55]–[57]. 

Droop control is a control method used in electric power 

systems, especially in microgrid systems or decentralized 

distribution systems [58], [59]. The aim of droop control is to 

maintain voltage and frequency stability in the electrical 

system when load fluctuations occur. This is important 

because large fluctuations in frequency or voltage can disrupt 

the operation of electrical equipment and cause damage to the 

system. This method can be applied to electrical generators 

and power converters in microgrids or distribution systems 

that operate independently. Specifically, droop control 

adjusts the device output in a manner that is proportional to 

the deviation of the voltage or frequency from a reference 

value. Droop control on converters is used to maintain 

voltage and frequency stability in decentralized power 

systems, such as microgrids. Power converters, especially 

those used on renewable resources such as solar panels or 

wind turbines, play an important role in integrating these 

resources into the electrical grid. Droop control in the 

converter helps maintain power balance in the system in a 

manner that is proportional to the voltage or frequency 

deviation [60]–[62]. 

Droop control in DC microgrids is a control method used 

to maintain voltage and frequency stability in microgrids that 

operate with direct voltage and current (DC). DC microgrid 

systems often consist of multiple renewable resources, 

energy storage, and loads connected in a decentralized 

network [62]–[64]. Conventional droop control devices are 

employed in a DC Microgrid to introduce virtual resistances, 

which serve to distribute currents. Fluctuations in the bus 

voltage can give rise to the problem [65]–[67]. Regulating 

voltage and current distribution poses a challenge in this 

scenario. In the context of voltage control, a low virtual 

resistance results in an evenly distributed current but 

inadequate voltage regulation. Conversely, a high virtual 

resistance leads to an evenly distributed current but robust 

voltage regulation. Moreover, the irregular line resistance 

impacts the distribution of voltage and current [68]–[70]. 

Conventional droop control systems have proven to be a 

convenient method in DC microgrids due to their lack of 

reliance on communication links. The cost-effectiveness and 

user-friendliness of this technology contribute to its 

widespread adoption in DC microgrids. The lack of accuracy 

in power distribution and inadequate voltage control of this 

approach, despite their seemingly conflicting objectives, 

impede its broad implementation [71], [72]. Traditional 

techniques yield inadequate regulation of the electrical 

current sent between converters, incorrect allocation of 

current, and excessive variations in voltage [73], [74]. The 

droop coefficient is the factor that determines the precision of 

voltage stability and power distribution [75], [76]. More 

precisely, the accuracy of the current division increases as the 

voltage fluctuation increases, and conversely, when the droop 

coefficient increases. Extensive study has been conducted to 

address the shortcomings of this control system [77]–[79]. 

Conventional droop control, although becoming standard in 

some applications, has several disadvantages that need to be 

considered: unresponsive to load changes, lack of precision 

in regulating voltage, load imbalance, limitations in handling 

disturbances, dependence on network configuration, 

susceptible to incorrect settings and lack of ability to cope 

with maximum load variations. With advances in technology 

and the need for more adaptive and responsive control in 

modern power systems, computational droop control is 

increasingly becoming an attractive option and can provide 

significant benefits. 
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Innovations in droop control for DC microgrids continue 

to develop as the complexity and needs of decentralized 

electricity distribution systems increase. Several 

technological innovations that occur in DC microgrid droop 

control: adaptive algorithms, integration of renewable energy 

sources, use of communication technology, energy storage 

integration, hierarchical control, use of artificial intelligence 

technology, development of dynamic models. These 

innovations contribute to the development of more efficient, 

reliable and adaptive droop control for dc microgrids, 

enabling better integration of renewable energy sources, 

increased reliability and higher operational efficiency in 

electricity distribution systems [80], [81].  

Metaheuristic optimization methods are approaches used 

to find optimal solutions or close to optimal solutions in large 

and complex search spaces. Metaheuristics are search 

techniques that are independent of the specific problem and 

tend to be effective for global optimization problems. Several 

new metaheuristic methods have been presented that are 

similar in application function as optimization techniques. 

One-to-One Based Optimizer (OOBO) is a new optimization 

technique for solving optimization problems in various 

scientific fields. The key idea in designing the suggested 

OOBO is to effectively use the knowledge of all members in 

the process of updating the algorithm population while 

avoiding the algorithm depending on certain population 

members. one-on-one correspondence between two groups of 

population members and selected members as a guide to 

increasing the involvement of all population members in the 

updating process. The CEC 2017 test suite which include 

fixed-dimensional, high-dimensional, and unimodal 

multimodal types are used to assess the optimization 

performance of the OOBO. The optimization findings 

demonstrate OOBO's amazing ability to balance exploration 

and exploitation in the problem-solving space while 

conducting a search [82]. 

The Preschool Educational Optimization Algorithm 

(PEOA), a novel human-based metaheuristic algorithm, is 

proposed to solve optimization problems. The involvement of 

humans in the preschool education process serves as a major 

source of inspiration for the design of PEOA. PEOA is 

mathematically modeled in three phases: (i) the steady 

increase of preschool teacher educational influence, (ii) the 

teacher-guided development of individual knowledge, and 

(iii) the increase in individual knowledge and self-awareness. 

The CEC 2017 test suite was used to evaluate PEOA's 

optimization potential. The optimization results that were 

obtained demonstrated how well PEOA balanced local 

exploitation and global exploration during the search. The 

PEOA technique for global optimization issues offers a 

number of benefits. In contrast to these benefits, PEOA has a 

number of drawbacks. The primary benefit of PEOA lies in 

its mathematical model's absence of control parameters that 

require human adjustment. Like all stochastic based 

optimizers, PEOA's primary drawback is that it cannot be 

guaranteed to find the global optimal solution [83].  

The Red-Tailed Hawk Algorithm (RTH) is a novel 

metaheuristic optimization technique inspired by nature. The 

red-tailed hawk, being a predator, employs a hunting 

technique that encompasses the detection of prey to the 

swooping stage. The hunting procedure consists of three 

distinct stages. During the elevated flight phase, the red-tailed 

hawk actively investigates the search area and identifies the 

specific location of its prey. During the low soaring stage, the 

red-tailed hawk maneuvers within the designated area 

surrounding its prey to strategically select the optimal 

position for hunting. Subsequently, the red-tailed bird swiftly 

swings and successfully strikes its intended objective 

throughout the descending and gliding phases. The suggested 

approach emulates the hunting strategy of the red-tailed hawk 

to solve practical optimization challenges. Twenty-three 

common benchmark test functions are used to evaluate RTH 

performance. These three types of mathematical functions 

help identify the nature of various optimization issues. The 

findings demonstrate that the suggested algorithm can 

quickly and robustly find the best solution for the majority of 

the functions under consideration [84]. 

Several metaheuristic applications in droop control have 

been presented by several researchers. A novel droop control 

technique is given, which enhances the optimization of 

particle swarms in island microgrids with many distributed 

generations operating in parallel. The incorporation of a 

fuzzy inference system enhances the original particle swarm 

optimization technique by dynamically adapting its 

parameters, resulting in enhanced convergence speed and 

optimization precision [85]. A new droop control approach is 

implemented by utilizing a proportional resonant (PR) 

controller, with its proportional gain optimized through the 

Ant Lion Optimization algorithm (ALO). The ALO 

optimized PR controller outperforms the typical PI controller 

in terms of error indices, voltage regulation, speed of 

response, and T.H.D levels [86].  The most suitable pairing 

of DC side capacitance (C) and PI gain is determined by 

employing the computational power of the swarm salp 

optimization algorithm (SSA), which is one of the most 

sophisticated soft computing optimization techniques 

available. This ideal combination ensures a suitable transient 

response when there are changes in load circumstances and 

when a distributed generator (DG) is added. The efficacy of 

the recommended control strategy is evaluated by comparing 

the results with previous methods that rely on transient 

response measurements, solution quality, and power quality, 

which have been used in recent research [87]. 

Although many metaheuristic algorithms have been 

proposed to optimize droop control, further research is 

needed to achieve optimal droop control performance for 

various types of problems. Therefore, this work offers an 

improved and modified droop control that uses the Lévy 

flight and the Osprey optimization algorithm (OOA) method. 

This article makes the following contributions: 

1. Modification of the Osprey optimization algorithm 

(OOA) by adding the Lévy flight algorithm known as 

MOOA. The Lévy Flight algorithm has several 

advantages including search efficiency, ability to find the 

global optimum and adaptability to the environment. 

2. Modify droop control by applying PID to secondary 

control. PID (Proportional-Integral-Derivative) is an 

extension of the simpler PI (Proportional-Integral) 

control. Some of the advantages of PID compared to PI 
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control are faster response, reduced overshoot, ability to 

handle non-linear systems and better stability 

3. Using the 23 CEC2017 Benchmark function, the 

performance of MOOA in solving optimization problems 

is assessed and compared with One-to-One Based 

Optimizer (OOBO), Preschool Educational Optimization 

Algorithm (PEOA) and Red-Tailed Hawk Algorithm 

(RTH). The benchmark function is designed to provide an 

objective evaluation standard for optimization 

algorithms, such as genetic algorithms, swarm 

algorithms, and other evolutionary algorithms. 

4. To determine the performance of implementing PID 

optimized with MOOA in a DC microgrid system 

compared with PI. 

The structure of this article is as follows: the Osprey 

optimization algorithm, Lévy Flight, Droop Control, and 

Proportional Integral Derivative (PID) are described in 

Section 2. Section 3 is the recommended control scheme. In 

Section 4 there are discussions and simulations. The 

conclusion is presented in the last section. 

II. METHODS 

A. Droop Control  

The main function of droop control in DC microgrids is 

to ensure balanced power distribution between power sources 

and loads in the microgrid when load changes occur. This 

helps maintain voltage stability. When load changes occur in 

a DC microgrid, droop control ensures that available 

resources contribute proportionally to those changes [88], 

[89]. This helps prevent power imbalances between resources 

and ensures that each resource makes an appropriate 

contribution to load requirements. Droop control helps 

maintain voltage within the desired range when load changes 

occur. This can avoid significant voltage fluctuations and 

maintain the operational stability of the microgrid [90], [91]. 

DC microgrids often include renewable resources such as 

solar panels and wind turbines. Droop control helps integrate 

the variable output of these renewable resources in a stable 

and distributed manner [92]. Applying droop control to DC 

microgrids can help create adaptive and efficient systems, 

especially in the context of small distributed power grids. By 

maintaining balanced power distribution, droop control 

supports the stable and reliable performance of DC 

microgrids [93]. 

The analogous circuit for two dc power supply is depicted 

in Fig. 1. linked in parallel and using resistive output 

impedances to share a shared load. A current will flow 

between the two dc sources if there is a voltage difference. 

Using a primary control, we can program virtual output 

impedances to lower the circulating current. The inner current 

and voltage control loops' voltage reference is modified by 

this control level (level 0). It has the output voltage stated as 

follows in the virtual output impedance loop: 

𝑉∗
𝑜 = V𝑟𝑒𝑓 − (R𝑑𝑗 ∙ 𝑖𝑗); 𝑗 = 1,2 (1) 

V𝑟𝑒𝑓 = v𝐷𝐶𝑛 − ε𝑣/2 (2) 

With the assumption that the maximum allowable voltage 

deviation is ε𝑣, the following design guidelines for R𝑑𝑗 and 

V𝑟𝑒𝑓  ought to be applied. 

R𝑑𝑗 = ε𝑣/I𝑚𝑎𝑥 (3) 

V𝑟𝑒𝑓  is the DC bus voltage reference set point in this case. 

Droop coefficient, or virtual resistance, is R𝑑,𝑗.  Whereas v𝑛 

is the nominal output voltage, I𝑚𝑎𝑥 is the maximum output 

current. 

 

 Fig. 1. DC Bus-connected parallel dc-dc converter 

This control loop provides the power converter with a 

resistive output impedance to compensate for the variation 

between the reference voltages, ∆V𝑜 = V𝑜1 − V𝑜2. As a 

result, the formula for the two converters' respective current 

distribution is as follows: 

∆I𝑜 = I𝑜1 − I𝑜2 (4) 

∆I𝑜 = ∆V𝑜/R𝑑𝑗 (5) 

This control not only allows the converters to run in 

parallel but also improves the dynamic performance of the 

output voltage. However, the voltage difference varies with 

load. Voltage regulation and power sharing precision are 

subject to performance trade-offs implemented by the droop 

controller at the primary control layer. A variety of 

distributed, decentralized, and centralized methods have been 

developed in recent years within the hierarchical control 

framework to improve power sharing accuracy, compensate 

for voltage deviations, and improve the reliability of DC 

microgrids. The main disadvantage of using the droop control 

method is the appearance of voltage deviations in the DC bus 

voltage when the power generated, and power consumed 

have an inequality. 

To minimize voltage deviations in the DC bus voltage, a 

level control secondary based on a PI (proportional-integral) 

controller is used to apply appropriate voltage deviation 

compensation δv. Secondary control is used to reduce voltage 

deviations. All  𝑑𝑣0 units get the error processed by the 

compensator to be able to compute the output voltage, which 

is established by monitoring the microgrid's voltage level and 

contrasting it with the reference voltage 𝑉∗
𝑀𝐺  (see Fig. 2). 

The controller has made the following statement: 

dv𝑜 = k𝑝(𝑉
∗
𝑀𝐺 − V𝑀𝐺) + k𝑖 ∫(𝑉∗

𝑀𝐺 − V𝑀𝐺)𝑑𝑡 (6) 
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Where 𝑘𝑝 and 𝑘𝑖  are the control settings of the compensator 

secondary control. Keep in mind that 𝑑𝑣𝑜 must be restrained 

to remain under the highest voltage deviation. Eq. (1) 

becomes at last. 

𝑉∗
𝑜 = (𝑉∗

𝑟𝑒𝑓 + dv𝑜) − R𝑑 ∙ I𝑜 (7) 

 

 

 Fig. 2. Secondary and primary controls for DC microgrids 

B. Proportional Integral Derivative (PID) 

PID (Proportional, Integral, Derivative) control is one of 

the control methods used in automatic control systems[94]. 

The use of PID control in droop control provides significant 

effectiveness in regulating frequency and voltage in 

microgrid systems. Several practical examples of the 

effectiveness of PID in droop control have been presented. In 

DC microgrids that use renewable energy sources such as 

solar panels or wind turbines, PID control in droop control is 

used to regulate the power contribution from renewable 

energy sources into the system [95], [96]. In DC microgrids 

that use multiple inverters to generate power from renewable 

energy sources or energy storage, PID control in droop 

control can be used to efficiently coordinate inverter 

operation [97], [98]. 

The main function of PID control is to ensure that a 

system can reach and maintain its setpoint (desired value) as 

efficiently as possible [99]. Every each PID component 

serves a distinct purpose. The Proportional (𝑘𝑝) control 

algorithm generates an output signal that is directly 

proportional to the deviation between the desired setpoint 

value and the current value of the system. In this scenario, the 

magnitude of the output signal increases in direct proportion 

to the magnitude of the difference. This component enhances 

the system's responsiveness to changes and brings it closer to 

the desired setpoint value. 

The integral (𝑘𝑖) is a measure of the cumulative difference 

between the setpoint value and the actual value of the system 

over a period. Integrals are useful for mitigating persistent 

defects in a system, even when the proportional components 

have already provided a response. This facilitates the system 

in achieving the designated setpoint value with accuracy and 

punctuality. 

The derivative (𝑘𝑑) measures the pace at which the 

difference between the setpoint value and the actual value of 

the system changes. The inclusion of derivative components 

in the system aids in achieving a seamless response to sudden 

alterations, hence avoiding the occurrence of overshooting 

(i.e., surpassing the desired value) or excessive oscillations. 

In essence, PID operates by integrating these three 

elements to generate an ideal output signal for system control. 

The PID parameters (𝑘𝑝, 𝑘𝑖, and 𝑘𝑑) can be fine-tuned based 

on the unique attributes and requirements of the controlled 

system. An optimally calibrated system utilising PID control 

can attain stability, accuracy, and excellent responsiveness to 

dynamic situations or desired values. An illustration of the 

Proportional Integral Derivative can be seen in Fig. 3. The 

PID equation is shown in Eq. 8. 

G𝑝𝑖𝑑(𝑠) = u(t) = k𝑝𝑒(𝑡) + k𝑖 ∫𝑒(𝑡)𝑑𝑡 +k𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (8) 

 

 Fig. 3. PID Controller 

C. Osprey Optimization Algorithm 

Osprey Optimization Algorithm (OOA) is an algorithm 

that imitates the natural behavior of ospreys [100]. random 

starting position in the search space at the start of the OOA 

implementation using Eq. (9). 

𝑋 =

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

 
 
 
 

𝑁𝑥𝑚

=

[
 
 
 
 

𝑋1,1 ⋯

⋮ ⋱
   
𝑋1,2 ⋯

⋮ ⋰
𝑋𝑖,1 ⋯

⋮ ⋰
   
𝑋𝑖,𝑗 ⋯

⋮ ⋱

𝑋1,𝑚

⋮
𝑋𝑖,𝑚

⋮
𝑋𝑁,1 ⋯ 𝑋𝑁,𝑗     ⋯ 𝑋𝑁,𝑚]

 
 
 
 

𝑁𝑥𝑚

 (9) 

𝑋𝑖,𝑗 = 𝑙𝑏𝑗 + 𝑟𝑖,𝑗 ∙ (𝑢𝑏𝑗 − 𝑙𝑏𝑗) (10) 

Where 𝑋 is the osprey population matrix, 𝑋𝑖 is the 𝑖𝑡ℎ osprey 

(possible resolution). 𝑋𝑖,𝑗 is the  𝑗𝑡ℎ size (variables pertaining 

to the problem), N is the quantity of ospreys, m is the number 

of variable problems. 𝑟𝑖,𝑗 is a random number in the interval 

[0, 1], 𝑙𝑏𝑗 is the lower bound and 𝑢𝑏𝑗 is the upper bound. Eq. 
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(3) states that the evaluated values for the problem's objective 

function can be represented by a vector. 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁𝑥𝑚

=

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁𝑥𝑙

 (11) 

Where 𝐹 is an objective function values vector and 𝐹𝑖 is the 

value of the objective function found for the  𝑖𝑡ℎ osprey.  

1) Phase 1: Fish hunting (exploration) and position 

identification.  

An underwater fish is defined in the OOA design as the 

position of another osprey in the search space with a higher 

objective function value for each osprey. Using the Eq. (12), 

the fish assemblage for each osprey was found. 

𝐹𝑃𝑖 = {𝑋𝑖|𝑘 ∈ {1,2, … , 𝑁}⋀𝐹𝑘 < 𝐹𝑖} ∪ {𝑋𝑏𝑒𝑠𝑡} (12) 

𝑋𝑖,𝑗
𝑃𝐼 = 𝑥𝑖,𝑗 + 𝑟𝑖,𝑗 ∙ (𝑆𝐹𝑖,𝑗 − 𝐼𝑖,𝑗 ∙ 𝑥𝑖,𝑗) (13) 

𝑋𝑖,𝑗
𝑃𝐼 = {

𝑋𝑖,𝑗
𝑃𝐼  , 𝑙𝑏𝑗  ≤ 𝑋𝑖,𝑗

𝑃𝐼 ≤ 𝑢𝑏𝑗;

𝑙𝑏𝑗 , 𝑋𝑖,𝑗
𝑃𝐼  < 𝑙𝑏𝑗  ;

𝑙𝑏𝑗 , 𝑋𝑖,𝑗
𝑃𝐼  > 𝑙𝑏𝑗  ;

 (14) 

𝑋𝑖 = {
𝑋𝑖

𝑃𝐼 , 𝐹𝑖
𝑃𝐼 <  𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
   (15) 

Where 𝐹𝑃𝑖  is the set of fish positions for 𝑖𝑡ℎ osprey and 𝑋𝑏𝑒𝑠𝑡  

is the greatest osprey (or contender) solution. One of these 

fish is randomly located by the osprey, which then strikes it. 

Eq. (13) is used to determine the updated location of the 

relevant osprey based on the osprey's simulated movement 

towards the fish. According to the Eq. (15), the osprey's 

original position is replaced by this new one if it raises the 

value of the objective function. 𝑋𝑖
𝑃𝐼  is the prey's new location 

depending on the initial OOA phase. 𝑋𝑖,𝑗
𝑃𝐼  is its j dimension, 

𝑟𝑖,𝑗 is a random number in the interval [0, 1], and 𝐼𝑖,𝑗 is a 

random number from the set {1, 2}., 𝐹𝑖
𝑃𝐼  is the objective 

function value, 𝑆𝐹𝑖 is the fish selected for the 𝑖𝑡ℎ prey, 𝑆𝐹𝑖,𝑗 

is the j dimension 

2) Phase 2: Fishing them into the right spot (exploitation).  

In Phase 2, a new random position is calculated as a 

position suitable for fish feeding using Eq. (16). If the value 

of the goal function remains constant at this new position, it 

will replace the old position of the associated osprey 

according to Eq. (17). 

𝑋𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 +

𝑙𝑏𝑗 + 𝑟 ∙ (𝑢𝑏𝑗 − 𝑙𝑏𝑗)

𝑡
 ;  𝑖

= 1,2, … , 𝑁; 𝑗 = 1,2, … ,𝑚;  𝑡
= 1,2, . . 𝑇 

(16) 

𝑋𝑖,𝑗
𝑃2 = {

𝑋𝑖,𝑗
𝑃2 , 𝑙𝑏𝑗  ≤ 𝑋𝑖,𝑗

𝑃2 ≤ 𝑢𝑏𝑗;

𝑙𝑏𝑗 , 𝑋𝑖,𝑗
𝑃2  < 𝑙𝑏𝑗  ;

𝑙𝑏𝑗 , 𝑋𝑖,𝑗
𝑃2  > 𝑙𝑏𝑗  ;

 (17) 

𝑋𝑖 = {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 <  𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
   (18) 

Where 𝑋𝑖
𝑃2 is the new position of the prey based on the 

second phase of OOA. 𝑋𝑖,𝑗
𝑃2 is the 𝑗𝑡ℎ dimension.  𝐹𝑖

𝑃2 is the 

value of the objective function. 𝑆𝐹𝑖,𝑗 is the fish selected for 

the 𝑖𝑡ℎ prey. 𝑆𝐹𝑖,𝑗 is the j dimension.  𝑟𝑖,𝑗 is a random number 

in the interval [0, 1]. t is the iteration counter of the algorithm, 

and 𝑇 is the total number of iterations. 

All the osprey positions were updated in accordance with 

the first and second stages of the intended OOA, completing 

the first iteration. Next, a comparison of the objective 

function values led to modifications to the best candidate 

solution. After that, the algorithm went on to the iteration that 

used the updated osprey placements, and so on, ending with 

the final iteration that used Equation (12) to (18). After the 

method has been fully implemented, the best candidate 

solution that was stored during the iterations is eventually 

given as a solution to the problem. 

A. Lévy Flight Optimization 

Lévy flight is a particular class of general random walks 

in which the stride length during the walk is described by a 

heavy-tailed probability distribution [101]. They can describe 

all stochastic processes that are scale-invariant. 

𝐿(𝑋𝑗) ≈ |𝑋𝑗|
1−𝛼

   (19) 

Where 𝑋𝑗 is the flight length, and 1 < 𝛼 ≤ 2 is the exponential 

power. The probability density of the Lévy stable process in 

integral form is defined as Eq. (12). 

𝑓𝐿(𝑥; 𝛼, 𝛾) =
1

𝜋
∫ 𝑒𝑥𝑝(−𝛾𝑞𝛼) cos  (𝑞𝑥)

∞

0

 𝑑𝑞  (20) 

Where α is the distribution index and controls the scale 

properties of the process while 𝛾 selects the scale units. 

Integrals in Eq. (11) have an analytical solution only in some 

cases. When 𝛼 equals 2, it represents a Gaussian distribution 

and when 𝛼 equals 1, it represents a Cauchy distribution. The 

solution to the integral in Eq. (11) generally requires the use 

of the series expansion method only when x has very large 

values as Eq. (13): 

𝑓𝐿(𝑥; 𝛼, 𝛾) =
𝛾Γ(1 + 𝛼) sin(

𝛼𝜋
2

)

𝜋𝑋(1+𝛼)
 , 𝑥 → ∞ (21) 

Where Γ is Gamma function. Mantegna[102]proposed an 

accurate and fast algorithm to generate stable Lévy processes 

for absolute values of the index distribution (𝛼) ranging 

between 0.3 and 1.99. Mantegna's method for random 

number generation is based on the Lévy distribution in Eq.14 

𝐿𝑒𝑣𝑦(𝛼) = 0.05 ×
𝑥

|𝑦|1/𝛼
 (22) 

𝑥 = 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎𝑥
2) (23) 

𝑦 = 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎𝑥
2) (24) 

𝜎𝑥   = [
Γ(1 + 𝛼) sin(

𝛼𝜋
2

)

Γ (
(1 + 𝛼)

2
)𝛼 2

(𝛼−1)
2

] 1/𝛼 𝑎𝑛𝑑 𝜎𝑥  = 1 dan 𝛼 = 1.5   (25) 

Where 𝑥 and 𝑦 are two normally distributed variables with 

standard deviations 𝜎𝑥 and 𝜎𝑦. The application of the Lévy 

flight algorithm is used as a search tool to optimize 
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parameters in droop control. This includes adjustment of 

droop constants, and coordination between control 

components to achieve optimal performance in terms of 

system stability, efficiency, and response. in addition, the 

Lévy flight algorithm could make dynamic adjustments to 

environmental conditions and operational needs of the 

microgrid. This allows droop control to be more adaptive to 

load changes, resource fluctuations, or network disruptions, 

thereby improving overall system reliability and 

performance. With the right approach, this algorithm can help 

overcome control challenges in microgrids. 

III. PROPOSED METHODS 

A. Modified Osprey Optimization Algorithm (MOOA) 

Osprey optimization algorithm (OOA) can solve low-

dimensional an unimodal optimization problems easily. 

However, when dealing with high-dimensional and 

multimodal optimization problems, the solutions obtained by 

OOA are not so good. To improve exploration, local optimal 

avoidance, exploitation, and OOA convergence, the Modified 

Osprey optimization algorithm (MOOA) algorithm is 

proposed. The proposed method combines the Osprey 

optimization algorithm (OOA) and Lévy flight optimization. 

Lévy flight optimization can maximize search agent 

diversification, which ensures that the algorithm can explore 

the search field efficiently and achieve minimum local 

avoidance. Lévy flight trajectories are helpful in getting a 

better move from exploration to exploitation in OOA. 

Therefore, the Lévy flight trajectory is used to update the 

Osprey's position after the position update. Fig. 4 is an 

MOOA flow diagram. The proposed MOOA method is a 

modification of the OOA method by changing Eq. (8) and 

adding Eq. (14) to Eq. (8). So, it becomes the following: 

𝑋𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗

𝐿𝑒𝑣𝑦(𝛼)

𝑡
 ;  𝑖 = 1,2, … , 𝑁; 𝑗

= 1,2, … ,𝑚;  𝑡 = 1,2, . . 𝑇 

(26) 

Ospreys carry the fish they catch to good locations to eat 

them. Based on this simulation of real behavior, the second 

phase of population updating in standard OOA is modeled. 

The position of the osprey in the search space is created by 

small changes caused by modeling the transport of the fish to 

the right position, which increases the power of OOA 

exploitation in local search and causes convergence towards 

a better limited solution. Modifying OOA by adding the levy 

algorithm in the exploitation phase produces small and 

sometimes large steps or long-distance jumps to expand the 

search space and improve global search capabilities, even to 

speed up the convergence speed. Lévy flight steps are used to 

update the position. 

B. Modified Secondary Control 

In a microgrid system, secondary control in droop control 

is used to improve overall system performance by paying 

attention to interactions between connected units. Several 

important aspects of secondary control in modified droop 

control are that it allows better coordination between units in 

the microgrid, can improve voltage and frequency effectively 

in the microgrid by suppressing overshoot and speeding up 

recovery of transient conditions, and allows the system to 

respond quickly to disruptions and unexpected changes in 

conditions. This research presents the latest approach to 

secondary control using PID. PI control systems tend to have 

overshoot (more than the setpoint value) and oscillation, 

especially if the integral gain (Ki) value is too large. This can 

cause the system to overshoot the target before finally settling 

around the setpoint value. Selection and adjustment of control 

parameters, as well as the introduction of additional control 

elements such as Derivative (D) in PID (Proportional-

Integral-Derivative) control, can help overcome some of 

these disadvantages. So Eq. (6) becomes Eq. (27). 

dv𝑜 = k𝑝(𝑉
∗
𝑀𝐺 − V𝑀𝐺)

+ k𝑖 ∫(𝑉∗
𝑀𝐺 − V𝑀𝐺)𝑑𝑡

+k𝑑

𝑑(𝑉∗
𝑀𝐺 − V𝑀𝐺)

𝑑𝑡
 

(27) 

 

 

 Fig. 4. The flow diagram of MOOA 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 811 

 

Widi Aribowo, Improved Droop Control Based on Modified Osprey Optimization Algorithm on DC Microgrid 

IV. RESULTS AND DISCUSSION 

A. Convergence Curve Profile 

The results of the proposed MOOA approach are 

compared to those of existing advanced techniques, including 

the Preschool Education Optimization Algorithm (PEOA), 

Red-Tailed Hawk Algorithm (RTH), One-to-One Based 

Optimizer (OOBO), and OOA. This article assesses the 

performance of MOOA by use the benchmark function. 

Initially, it is necessary to consider the 23 CEC2017 

benchmark functions. The function F1–F7 is characterized as 

unimodal. The function F8–F13 is multimodal. F14-F23 

refers to fixed-dimensional multimodal functions that are 

represented by mathematical equations. The simulation is 

executed via the MATLAB/Simulink program. Fig. 5 

presents a comparison of the outcomes of benchmark 

functions using the algorithms PEOA, RTH, OOBO, OOA, 

and MOOA. 

Statistical analysis is presented on the performance of 

MOOA and competitor algorithms to determine whether 

MOOA has a significant statistical advantage or not. By 

knowing the rank of each function, the mean rank value for 

each algorithm is obtained. Table I shows the statistical 

analysis of each function. The rank is a number indicating the 

best of mean value. The total rank value of each algorithm 

shows that MOOA has a value of 1. The average rank value 

is 1.739130435. Meanwhile, the difference in the Mean rank 

value between ranks 2, 3, and 4 is very slight. Table II is a 

comparison of the ranks of the unimodal functions of the 

algorithm. MOOA in multimodal has a rank of 1. A 

comparison of the multimodal function ranks of all the 

algorithms used can be seen in Table III. The MOOA and 

OOA rank values are the same, namely 1. In Table IV, the 

fixed-multimodal rank comparison of MOOA is 1. 

Comparison and characteristics of the solution distribution of 

each algorithm when solving 23 CEC2017 benchmark 

functions are shown in Fig. 5. The MOOA presented in this 

study outperforms its competitors in F1, F2, F3, F4, F6, F9, 

F10, F11, F12, F14, F15, F17, F18, F19, and F23. On F5, 

OOA has the best performance. PEOA has the lowest curve 

at F7. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

 
  

(g) (h) (i) 
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(j) (k) (l) 

 
 

 

(m) (n) (o) 

   

(p) (q) (r) 

   
(s) (t) (u) 

  
(v) (w) 

 Fig. 5. Algorithm convergence curves on corresponding benchmark tests 
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TABLE I.  COMPARISON OF MOOA AND OTHER ALGORITHMS 

Function OOBO RTH MOOA OOA PEOA 

F1 

Best 0.030547 2.60E-28 1.59E-77 2.77E-24 1.11E-26 

Mean 0.146 1.14E-20 1.65E-48 2.26E-18 1.11E-26 

Worst 0.44121 2.77E-19 4.07E-47 4.58E-17 1.11E-26 

Std 0.10134 5.54E-20 8.14E-48 9.11E-18 0 

Rank 5 4 1 3 2 

F2 

Best 0.088744 1.01E-13 4.46E-33 6.93E-13 2.04E-10 

Mean 0.159 8.76E-12 4.06E-23 4.23E-10 2.04E-10 

Worst 0.23641 6.91E-11 7.47E-22 2.97E-09 2.04E-10 

Std 0.038734 1.87E-11 1.51E-22 7.13E-10 0 

Rank 5 3 1 2 4 

F3 

Best 139.8532 2.02E-27 7.77E-74 1.61E-21 3.41E-24 

Mean 778.552 2.82E-21 1.76E-35 5.99E-10 3.41E-24 

Worst 2230.216 3.51E-20 3.93E-34 1.01E-08 3.41E-24 

Std 476.9595 9.30E-21 7.87E-35 2.14E-09 0 

Rank 5 3 1 4 2 

F4 

Best 0.32297 5.79E-14 8.74E-43 1.04E-13 4.81E-11 

Mean 0.51902 2.43E-12 2.48E-25 6.34E-11 4.81E-11 

Worst 0.86767 2.44E-11 3.68E-24 4.58E-10 4.81E-11 

Std 0.1336 5.82E-12 8.02E-25 1.12E-10 0 

Rank 5 2 1 3 4 

F5 

Best 29.6128 26.1362 4.27E-05 9.23E-11 28.8952 

Mean 31.4232 27.6911 24.943 0.0085848 28.8952 

Worst 35.6354 28.7012 28.7746 0.15201 28.8952 

Std 1.6964 0.57252 9.2894 0.032311 0 

Rank 5 3 2 1 4 

F6 

Best 3.9134 0.15036 1.06E-08 1.91E-12 2.3445 

Mean 5.1959 0.47326 0.012117 8.22E-05 2.3445 

Worst 6.0357 0.97497 0.042418 0.0006521 2.3445 

Std 0.54007 0.24345 0.011621 0.000195 0 

Rank 5 3 2 1 4 

F7 

Best 0.0060617 0.0001208 4.81E-05 3.43E-05 0.0030057 

Mean 0.020848 0.0013852 0.0019676 0.0014177 0.0030057 

Worst 0.0718 0.0038596 0.0059192 0.0039102 0.0030057 

Std 0.013792 0.0009004 0.0016135 0.0011241 0 

Rank 5 2 3 1 4 

F8 

Best -4237.0406 -8728.8512 -12569.487 -12569.487 -5621.781 

Mean -3252.0579 -7285.6639 -9603.9426 -10436.006 -5621.781 

Worst -2588.8041 -6351.0867 -3533.8006 -9016.0058 -5621.781 

Std 408.4557 594.5367 2962.6224 1774.6349 0 

Rank 5 3 2 1 4 

F9 

Best 2.8225 0 0 0 186.6653 

Mean 20.0082 0 0 0 186.6653 

Worst 53.3647 0 0 0 186.6653 

Std 16.065 0 0 0 0 

Rank 2 1 1 1 3 

F10 

Best 0.079224 7.99E-15 8.88E-16 9.68E-14 2.69E-11 

Mean 0.12849 8.83E-13 8.88E-16 5.21E-11 2.69E-11 

Worst 0.18116 6.79E-12 8.88E-16 4.79E-10 2.69E-11 

Std 0.032135 1.64E-12 0 9.77E-11 0 

Rank 5 3 1 2 4 

F11 

Best 0.10736 0 0 0 0 

Mean 0.32278 0 0 0 0 

Worst 0.66857 0 0 0 0 

Std 0.12994 0 0 0 0 

Rank 2 1 1 1 1 

F12 

Best 0.35508 0.0055156 9.93E-19 2.66E-13 0.11754 

Mean 0.61088 0.020033 6.97E-06 1.75E-06 0.11754 

Worst 0.84813 0.041693 4.51E-05 1.70E-05 0.11754 

Std 0.11753 0.010779 1.25E-05 4.82E-06 0 

Rank 5 3 1 2 4 

F13 

Best 2.3374 0.44964 1.29E-09 1.78E-12 2.9842 

Mean 2.9314 1.9696 0.13941 5.80E-06 2.9842 

Worst 3.3235 2.9693 1.3318 4.81E-05 2.9842 

Std 0.23085 0.93368 0.27585 1.28E-05 0 

Rank 5 3 2 1 4 

F14 

Best 1.0825 0.998 0.998 0.998 6.9033 

Mean 3.7183 4.098 3.0766 1.7642 6.9033 

Worst 9.6285 10.7632 12.6705 6.9033 6.9033 

Std 1.7705 3.7692 3.5096 1.4263 0 

Rank 3 4 2 1 5 
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Function OOBO RTH MOOA OOA PEOA 

F15 

Best 0.0006802 0.0003075 0.0003079 0.0003196 0.0007287 

Mean 0.0018641 0.007723 0.0012145 0.0007695 0.0007287 

Worst 0.021132 0.020363 0.022267 0.0016383 0.0007287 

Std 0.0040299 0.009683 0.0043861 0.0004392 0 

Rank 4 5 3 2 1 

F16 

Best -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

Mean -1.03165 -1.03164 -1.03161 -1.0317 -1.03162 

Worst -1.0313 -1.0316 -1.0316 -1.0282 -1.0316 

Std 0.0001012 4.53E-16 5.51E-06 0.001017 0 

Rank 4 3 1 5 2 

F17 

Best 0.3979 0.39789 0.39789 0.39789 0.39789 

Mean 0.39915 0.397891 0.39789 0.40271 0.39799 

Worst 0.40598 0.39795 0.3979 0.47168 0.39789 

Std 0.0019329 1.29E-05 2.56E-06 0.014991 0 

Rank 4 2 1 5 3 

F18 

Best 3 3 3 3 3 

Mean 3.0221 3 11.6406 4.1503 3 

Worst 3.4313 3 30.0017 30.004 3 

Std 0.085529 2.92E-14 12.8547 5.3884 0 

Rank 4 2 1 5 3 

F19 

Best -3.8628 -3.8628 -3.8628 -3.8603 -3.8624 

Mean -3.8613 -3.8319 -3.8624 -3.7647 -3.86241 

Worst -3.8514 -3.0898 -3.8609 -3.2893 -3.8624 

Std 0.002915 0.1546 0.0003556 0.11177 0 

Rank 3 2 4 1 5 

F20 

Best -3.3197 -3.322 -3.3195 -3.2932 -3.3199 

Mean -3.2437 -3.2602 -3.2753 -2.4182 -3.3199 

Worst -2.9996 -3.2031 -3.162 -1.59 -3.3199 

Std 0.069747 0.060624 0.059926 0.44798 0 

Rank 4 2 3 5 1 

F21 

Best -9.1563 -10.1532 -10.1532 -10.1532 -10.1486 

Mean -5.3591 -5.473 -7.1289 -10.1528 -10.1486 

Worst -3.4018 -2.6305 -2.6827 -10.1451 -10.1486 

Std 1.4626 2.5498 3.073 0.0016129 0 

Rank 5 4 3 1 2 

F22 

Best -10.2226 -10.4029 -10.4029 -10.4029 -5.0843 

Mean -6.2031 -6.1776 -7.4178 -10.3994 -5.0843 

Worst -3.1203 -2.7659 -1.8375 -10.3721 -5.0843 

Std 2.4428 2.505 3.0216 0.0087709 0 

Rank 3 4 2 1 5 

F23 

Best -10.2725 -10.5364 -10.5364 -10.5364 -3.8346 

Mean -7.5192 -5.9055 -17.2815 -10.5361 -3.8346 

Worst -2.4036 -2.4217 -2.8707 -10.5322 -3.8346 

Std 2.5849 2.4765 3.2939 0.0008277 0 

Rank 3 4 1 2 5 

F16 

Best -1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

Mean -1.03165 -1.03164 -1.03161 -1.0317 -1.03162 

Worst -1.0313 -1.0316 -1.0316 -1.0282 -1.0316 

Std 0.0001012 4.53E-16 5.51E-06 0.001017 0 

Rank 4 3 1 5 2 

Sum rank 96 66 40 51 76 

Mean rank 4.173913043 2.869565217 1.739130435 2.217391304 3.304347826 

Total rank 5 3 1 2 4 

TABLE II.  RANK COMPARISON OF UNIMODAL FUNCTIONS BETWEEN ALGORITHMS (F1-F7) 

Function OOBO RTH MOOA OOA PEOA 

Sum rank 35 20 11 15 24 

Mean rank 5 2.8571429 1.5714286 2.1428571 3.4285714 

Total rank 5 3 1 2 4 

TABLE III.  RANK COMPARISON OF MULTIMODAL FUNCTIONS BETWEEN ALGORITHMS (F8-F13) 

Function OOBO RTH MOOA OOA PEOA 

Sum rank 24 14 8 8 20 

Mean rank 4 2.333 1.3333 1.3333 3.33 

Total rank 4 2 1 1 3 

 

 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 815 

 

Widi Aribowo, Improved Droop Control Based on Modified Osprey Optimization Algorithm on DC Microgrid 

TABLE IV.  RANK COMPARISON OF FIXED-MULTIMODAL FUNCTIONS BETWEEN ALGORITHMS (F14-F23) 

Function OOBO RTH MOOA OOA PEOA 

Sum rank 37 32 21 28 32 

Mean rank 3.7 3.2 2.1 2.8 3.2 

Total rank 4 3 1 2 3 

 

B. Implementing MOOA for Droop Control 

The DC microgrid depicted in Fig. 6 consists of two 

sources: a DC generator (DCG) and a photovoltaic (PV) 

system. A microgrid operates at a low voltage level, 

specifically with a bus voltage of 100V. Low voltage is 

commonly employed in residential installations to power DC 

loads. The specifics of the utilized system are displayed in 

Table I. An error arises from the differentiation between the 

bus voltage and the reference voltage, as depicted in Fig. 1. 

The absolute value is calculated, multiplied by the duration, 

and thereafter converted to ITAE. The MOOA iteration is 

iterated using the ITAE outcomes. The droop coefficient 

values for each converter and the PID parameters are 

included in the MOOA iteration results. Due to the temporal 

multiplication function of time multipliers, Integral of Time-

weighted Absolute Error (ITAE) is useful for evaluating 

system performance in adapting to changes in setpoint or 

operational conditions. Therefore, ITAE is optimized in this 

study. The mathematical definition of ITAE is as follows: 

𝐼𝑇𝐴𝐸 = ∫ 𝑡. 𝑒(𝑡). 𝑑𝑡
∞

0
  (28) 

Apart from that, to find out the reliability and stability of 

the system against control responses due to changes. This 

research uses ITSE (Integral of Time multiplied by Squared 

Error). The mathematical equation is as follows: 

𝐼𝑇𝑆𝐸 = ∫ 𝑡. 𝑒(𝑡)2. 𝑑𝑡
∞

0
  (29) 

In this session, the MOOA method combined with PID 

(MOOA-PID) for secondary control is presented. The 

performance of MOOA-PID is validated using the MOOA-

PI method. The control parameters of the main control and 

secondary control are searched using the proposed method. 

The control parameters of the main control and secondary 

control are searched using the proposed method. The first 

comparison is a system without a second control and the 

second comparison is a system that has a second control. The 

parameters obtained from the MOOA approach are applied to 

the system. The parameters obtained can be seen in Table V 

and Table VI. Table V is the parameters in the first source 

and Table VI is the control parameters in the second source. 

Testing the application of the proposed method to droop 

control uses 3 case studies, namely: 

1. The first case study is implementing the system with an 

initial load of 4000 W and in the 1st second the load drops 

by 500 W. 

2. The second case study is a system with a load of 2500 W 

and the load increases by 800 W in the 1st second, 

3. The third case study is a 3000W load system whose load 

conditions change. The load in the 1st minute increases 

by 1000W and decreases by 500W in the 2nd second. 

In case study 1, the system has a load of 4000 W. In the 

1st second, the system loses a load of 500 W. So, the system 

is loaded with a load of 3500 W. An illustration of the power, 

voltage and current of the system with the concept of case 

study 1 can be seen in Fig. 7. In the first case study, the 

average overshoot voltage of MOOA-PI and MOOA-PID is 

118.15 and 106.9. The proposed method has an average 

overshoot voltage of 9.521%. Meanwhile, the proposed 

method can reduce the average undershoot voltage value by 

3.35%. The performance in assessing the stability and 

precision of the control system measured using ITSE shows 

that the MOOA-PID method is 41.1738% better than the 

MOOA-PI method. Control response measurements to 

evaluate system performance in adapting to changes in 

setpoint or operational conditions using ITAE found that the 

MOOA-PI method had a better response of 7.11% compared 

to MOOA-PID. Detailed simulation results from case study 1 

can be seen in Table VII. 

In case study 2, the system load is 2500W which increases 

to 3300W in the 1st second. An illustration of the load 

changes in the system with case study 2 can be seen in Fig. 8. 

The average undershoot voltage value from the MOOA-PID 

method is 6.736% better than MOOA-PI. Meanwhile, the 

average value of Overshoot voltage for the MOOA-PID 

method is 8.522% better than MOOA-PI. The ITSE value of 

MOOA-PID is 17.742% better than MOOA-PI. Meanwhile, 

the ITAE value from MOOA-PI is 10.556% better than 

MOOA-PID. Details of the simulation with case study 2 

conditions can be seen in Table VIII. 

In the third case study, the system was conditioned by 

changing the load twice, namely by increasing the load by 

1000W and decreasing the load by 500W. An illustration of 

the third case study can be seen in Fig. 9. From the simulation 

in the third case study, the ITSE value of MOOA-PID is 

7.99% better than MOOA-PI. On the other hand, the ITAE 

value from MOOA-PI is 23.118% better than MOOA-PID. 

The average value of voltage overshoot from MOOA-PID 

has a better value of 11.707%. The average voltage 

undershoot value of MOOA-PID is 0.889% better than 

MOOA-PI. Detailed simulation results from the third case 

study can be seen in Table IX. 
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 Fig. 6. Simple structure of DC microgrid with proposed method 

   
(a) (b) (c) 

 Fig. 7. System response from case 1 to (a) Power (b) Voltage (c) Current 

TABLE V.  EACH ALGORITHM'S VALUE OF CONTROL IN SOURCE 1 

Methods 𝐏𝒗𝒍 𝑰𝒗𝒍 𝐏𝒄𝒍 𝑰𝒄𝒍 𝐏𝒔𝒄 𝑰𝒔𝒄 𝑫𝒔𝒄 𝑹𝒅𝒄𝒎 

No Secondary Control 0.6723 0.2379 0.1824 0.6808    0.8977 

MOOA-PI 0.0639 0.9086 0.1412 0.7307 0.0271 136  0.8977 

MOOA-PID 0.0639 0.9086 0.1412 0.7307 0.1756 29.59 0.0032 0.8977 

TABLE VI.  EACH ALGORITHM'S VALUE OF CONTROL IN SOURCE 2 

Methods 𝐏𝒗𝒍 𝑰𝒗𝒍 𝐏𝒄𝒍 𝑰𝒄𝒍 𝐏𝒔𝒄 𝑰𝒔𝒄 𝑫𝒔𝒄 𝑹𝒅𝒄𝒎 

No Secondary Control 0.8368 0.6668 0.3202 0.2897    0.2200 

MOOA-PI 0.5865 0.4116 0.3948 0.5807 0.0274 191  0.2200 

MOOA-PID 0.5865 0.4116 0.3948 0.5807 0.1934 83.09 0.0185 0.2200 

TABLE VII.  TRANSIENT RESPONSE OF VOLTAGE IN CASE 1  

 TIME (0 -1) SECONDS TIME (1 -2) SECONDS 
ITAE ITSE 

Methods Overshoot Undershoot Overshoot Undershoot 

MOOA-PI 132.4 93.34 103.9 99.47 0.7367 0.2249 

MOOA-PID 110.1 99.39 103.7 99.89 0.7931 0.1323 

TABLE VIII.  TRANSIENT RESPONSE OF VOLTAGE IN CASE 2 

 TIME (0 -1) SECONDS TIME (1 -2) SECONDS 
ITAE ITSE 

Methods Overshoot Undershoot Overshoot Undershoot 

MOOA-PI 139.1 88.82 100.8 92 0.6016 0.6093 

MOOA-PID 119.7 99.14 100.4 93.86 0.6726 0.5012 
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(a) 

 

(b) 

 

(c) 

 Fig. 8. System response from case 2 to (a) Power (b) Voltage (c) Current 

 

(a) 

 

(b) 

 

(c) 

 Fig. 9. System response from case 3 to (a) Power (b) Voltage (c) Current 

TABLE IX.  TRANSIENT RESPONSE OF VOLTAGE IN CASE 3  

 TIME (0 -1) SECONDS TIME (1 -2) SECONDS TIME (2 -3) SECONDS 
ITAE ITSE 

Methods Overshoot Undershoot Overshoot Undershoot Overshoot Undershoot 

MOOA-PI 142.5 95.37 100.9 91.9 103.9 99.38 0.6016 0.6093 

MOOA-PID 116.2 94.89 100.4 92.86 103.5 99.89 0.6726 0.5012 

 

V. CONCLUSION 

The Osprey Optimization Algorithm (OOA) is a method 

that imitates the life of ospreys in nature. Levy flight is a 

phenomenon that occurs in random movements in nature, 

where the movement steps taken follow a levy distribution. 

Levy flights can be more efficient than other random 

movement patterns due to the possibility of taking large 

strides that potentially cover distant and unexplored 

territories. This research presents a modified OOA method by 

adding the Lévy flight method. The proposed method is 

named Modified Osprey Optimization Algorithm (MOOA). 

Apart from that, this research also describes the application 

of Proportional Integral Derivative (PID) control to MOOA-

based secondary control. The MOOA method is applied to 

optimize the PID. Validation of this research uses 2 case 

studies. The first case study compares MOOA with One-to-

One Based Optimizer (OOBO), Preschool Educational 

Optimization Algorithm (PEOA), and red-tailed hawk (RTH) 

algorithm using the CEC2017 benchmark function. The 

second case study compared the application of the MOOA 

method to PID and PI to secondary controls. From the 

simulation carried out in the first case study of the application 

of aviation levies to OOA, better exploration and exploitation 

results were obtained. MOOA has better results on 20 of 23 

CEC2017 benchmark functions than OOA. MOOA can 

conduct exploration and exploitation faster and deeper to 

achieve convergent value. In the second case study, the 

implementation of PID with MOOA shows promising 

performance. The average voltage overshoot value from 

MOOA-PID is 9.828% better than MOOA-PI and the average 

voltage undershoot value from MOOA-PID is 2.887% better 

than MOOA-PI. 

In future work, it would be interesting to apply the 

proposed MOOA algorithm to different and more complex 

datasets. MOOA has better exploration and exploitation 

which has the potential to be applied in solving optimization 

problems such as DC motor control, PV parameters, etc. 

Apart from that, it is necessary to study the application with 

other algorithms. Meanwhile, droop control needs to be 

explored more deeply in the application of the latest control 

methods. 

REFERENCES 

[1] A. Menati, K. Lee, and L. Xie, “Modeling and analysis of utilizing 

cryptocurrency mining for demand flexibility in electric energy 
systems: A synthetic texas grid case study,” IEEE Trans. Energy 
Mark. Policy Regul., vol. 1, no. 1, pp. 1–10, 2023. 

[2] A. A. Ahmed, A. Alsharif, and N. Yasser, “Recent advances in energy 
storage technologies,” Int. J. Electr. Eng. Sustain., pp. 9–17, 2023. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 818 

 

Widi Aribowo, Improved Droop Control Based on Modified Osprey Optimization Algorithm on DC Microgrid 

[3] M. Wen, C. Zhou, and M. Konstantin, “Deep neural network for 
predicting changing market demands in the energy sector for a 

sustainable economy,” Energies, vol. 16, no. 5, p. 2407, 2023. 

[4] F. S. Al-Ismail, M. S. Alam, M. Shafiullah, M. I. Hossain, and S. M. 
Rahman, “Impacts of Renewable Energy Generation on Greenhouse 

Gas Emissions in Saudi Arabia: A Comprehensive Review,” 
Sustainability, vol. 15, no. 6, p. 5069, 2023. 

[5] F. L. Fuga and D. S. Ramos, “Proposals to improve the demand 
response in Brazil,” Electr. J., vol. 36, no. 1, p. 107237, 2023. 

[6] T. Tröndle, J. Lilliestam, S. Marelli, and S. Pfenninger, “Trade-offs 

between geographic scale, cost, and infrastructure requirements for 

fully renewable electricity in Europe,” Joule, vol. 4, no. 9, pp. 1929–
1948, 2020. 

[7] F. Taghizadeh-Hesary, E. Rasoulinezhad, M. Shahbaz, and X. V. Vo, 
“How energy transition and power consumption are related in Asian 

economies with different income levels?,” Energy, vol. 237, p. 
121595, 2021. 

[8] L. Melnyk, H. Sommer, O. Kubatko, M. Rabe, and S. Fedyna, “The 

economic and social drivers of renewable energy development in 

OECD countries,” Probl. Perspect. Manag., vol. 18, no. 4, p. 37, 

2021. 

[9] M. Kumar, “Social, economic, and environmental impacts of 
renewable energy resources,” Wind Sol. hybrid Renew. energy Syst., 
vol. 1, 2020. 

[10] N. Bamati and A. Raoofi, “Development level and the impact of 

technological factor on renewable energy production,” Renew. 
Energy, vol. 151, pp. 946–955, 2020. 

[11] Y. Bai et al., “Flexibility quantification and enhancement of flexible 

electric energy systems in buildings,” J. Build. Eng., vol. 68, p. 
106114, 2023. 

[12] M. S. Bakare, A. Abdulkarim, M. Zeeshan, and A. N. Shuaibu, “A 

comprehensive overview on demand side energy management 
towards smart grids: challenges, solutions, and future direction,” 
Energy Informatics, vol. 6, no. 1, pp. 1–59, 2023. 

[13] A. Chadly, R. R. Urs, M. Wei, M. Maalouf, and A. Mayyas, “Techno-
economic assessment of energy storage systems in green buildings 

while considering demand uncertainty,” Energy Build., vol. 291, p. 
113130, 2023. 

[14] G. E. Halkos and A. S. Tsirivis, “Electricity production and 

sustainable development: The role of renewable energy sources and 
specific socioeconomic factors,” Energies, vol. 16, no. 2, p. 721, 2023. 

[15] A. Raihan, M. Rashid, L. C. Voumik, S. Akter, and M. A. Esquivias, 

“The dynamic impacts of economic growth, financial globalization, 
fossil fuel, renewable energy, and urbanization on load capacity factor 
in Mexico,” Sustainability, vol. 15, no. 18, p. 13462, 2023. 

[16] M. Talaat, M. H. Elkholy, A. Alblawi, and T. Said, “Artificial 

intelligence applications for microgrids integration and management 

of hybrid renewable energy sources,” Artif. Intell. Rev., vol. 56, no. 9, 
pp. 10557-10611, 2023. 

[17] R. Liu and Y. A. Solangi, “An Analysis of Renewable Energy Sources 
for Developing a Sustainable and Low-Carbon Hydrogen Economy in 
China,” Processes, vol. 11, no. 4, p. 1225, 2023. 

[18] A. Rafique, I. Ferreira, G. Abbas, and A. C. Baptista, “Recent 
advances and challenges toward application of fibers and textiles in 

integrated photovoltaic energy storage devices,” Nano-Micro Lett., 
vol. 15, no. 1, p. 40, 2023. 

[19] C. Schubert et al., “Hybrid Energy Storage Systems Based on Redox-

Flow Batteries: Recent Developments, Challenges, and Future 
Perspectives,” Batteries, vol. 9, no. 4, p. 211, 2023. 

[20] Y. Sun et al., “Surface chemistry and structure manipulation of 

graphene-related materials to address the challenges of 
electrochemical energy storage,” Chem. Commun., vol. 59, no. 18, pp. 
2571–2583, 2023. 

[21] M. Amir et al., “Energy storage technologies: An integrated survey of 

developments, global economical/environmental effects, optimal 

scheduling model, and sustainable adaption policies,” J. Energy 
Storage, vol. 72, p. 108694, 2023. 

[22] S. Nahirniak, A. Ray, and B. Saruhan, “Challenges and future 

prospects of the MXene-based materials for energy storage 
applications,” Batteries, vol. 9, no. 2, p. 126, 2023. 

[23] Q. Hassan, A. Z. Sameen, H. M. Salman, M. Jaszczur, and A. K. Al-

Jiboory, “Hydrogen energy future: Advancements in storage 
technologies and implications for sustainability,” J. Energy Storage, 

vol. 72, p. 108404, 2023. 

[24] M. Irfan, Y. Hao, M. Ikram, H. Wu, R. Akram, and A. Rauf, 
“Assessment of the public acceptance and utilization of renewable 

energy in Pakistan,” Sustain. Prod. Consum., vol. 27, pp. 312–324, 
2021. 

[25] W. Wang, B. Yuan, Q. Sun, and R. Wennersten, “Application of 

energy storage in integrated energy systems—A solution to 
fluctuation and uncertainty of renewable energy,” J. Energy Storage, 
vol. 52, p. 104812, 2022. 

[26] M. Abbasi, E. Abbasi, L. Li, R. P. Aguilera, D. Lu, and F. Wang, 
“Review on the microgrid concept, structures, components, 

communication systems, and control methods,” Energies, vol. 16, no. 
1, p. 484, 2023. 

[27] M. Uddin, H. Mo, D. Dong, S. Elsawah, J. Zhu, and J. M. Guerrero, 

“Microgrids: A review, outstanding issues and future trends,” Energy 
Strateg. Rev., vol. 49, p. 101127, 2023. 

[28] A. Micallef, J. M. Guerrero, and J. C. Vasquez, “New Horizons for 

Microgrids: From Rural Electrification to Space Applications,” 

Energies, vol. 16, no. 4, p. 1966, 2023. 

[29] C. -C. Liu et al., "Microgrid Building Blocks: Concept and 
Feasibility," in IEEE Open Access Journal of Power and Energy, vol. 
10, pp. 463-476, 2023. 

[30] L. Zhou, Q. Liu, Y. Chen, Q. Ning, Z. Xiao and S. Wang, "Digital-

Power-Communication Concept for Energy Coordination in PV-

Battery-Charging DC Microgrid," in IEEE Transactions on Smart 
Grid, vol. 14, no. 6, pp. 4219-4229, Nov. 2023. 

[31] A. Saleh et al., “Optimal model predictive control for virtual inertia 

control of autonomous microgrids,” Sustainability, vol. 15, no. 6, p. 
5009, 2023. 

[32] V. Khare and P. Chaturvedi, “Design, control, reliability, economic 
and energy management of microgrid: A review,” e-Prime-Advances 
Electr. Eng. Electron. Energy, p. 100239, 2023. 

[33] R. Förster, M. Kaiser, and S. Wenninger, “Future vehicle energy 
supply-sustainable design and operation of hybrid hydrogen and 
electric microgrids,” Appl. Energy, vol. 334, p. 120653, 2023. 

[34] F. Y. Vincent, T. H. A. Le, and J. N. D. Gupta, “Sustainable microgrid 

design with peer-to-peer energy trading involving government 

subsidies and uncertainties,” Renew. Energy, vol. 206, pp. 658–675, 
2023. 

[35] L. M. León, D. Romero-Quete, N. Merchán, and C. A. Cortés, 

“Optimal design of PV and hybrid storage based microgrids for 
healthcare and government facilities connected to highly intermittent 
utility grids,” Appl. Energy, vol. 335, p. 120709, 2023. 

[36] I. Ahmed, A. Basit, F. e Mustafa, M. Alqahtani, and M. Khalid, “The 

nexus of energy in microgrids: A review on communication barriers 

in distributed networks auxiliary controls,” IET Gener. Transm. 
Distrib., vol. 17, no. 22, pp. 4907-4922, 2023. 

[37] Y. Huang et al., “Multi-objective optimization of campus microgrid 
system considering electric vehicle charging load integrated to power 
grid,” Sustain. Cities Soc., vol. 98, p. 104778, 2023. 

[38] A. Albaker, M. Alturki, R. Abbassi, and K. Alqunun, “Zonal-Based 
Optimal Microgrids Identification,” Energies, vol. 15, no. 7, p. 2446, 
2022. 

[39] M. Debouza, A. Al-Durra, T. H. M. EL-Fouly, and H. H. Zeineldin, 

“Survey on microgrids with flexible boundaries: Strategies, 

applications, and future trends,” Electr. Power Syst. Res., vol. 205, p. 
107765, 2022. 

[40] M. Mathew, M. S. Hossain, S. Saha, S. Mondal, and M. E. Haque, 

“Sizing approaches for solar photovoltaic‐based microgrids: A 
comprehensive review,” IET Energy Syst. Integr., vol. 4, no. 1, pp. 1–
27, 2022. 

[41] S. Kumar, R. Sharma, S. S. Murthy, P. Dutta, W. He, and J. Wang, 

“Thermal analysis and optimization of stand-alone microgrids with 

metal hydride based hydrogen storage,” Sustain. Energy Technol. 
Assessments, vol. 52, p. 102043, 2022. 

[42] K. Shankar, S. R. Salkuti, and S.-C. Kim, “Review on Microgrids: 

Types, Challenges, Opportunities, Uncertainties, and Their 
Modeling,” Power Qual. Microgrids Issues, Challenges Mitig. Tech., 
pp. 363–389, 2023. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 819 

 

Widi Aribowo, Improved Droop Control Based on Modified Osprey Optimization Algorithm on DC Microgrid 

[43] B. Modu, M. P. Abdullah, M. A. Sanusi, and M. F. Hamza, “DC-
Based microgrid: Topologies, control schemes, and 

implementations,” Alexandria Eng. J., vol. 70, pp. 61–92, 2023. 

[44] M. A. Ahmed, G. Abbas, T. A. Jumani, N. Rashid, A. A. Bhutto, and 
S. M. Eldin, “Techno-economic optimal planning of an industrial 

microgrid considering integrated energy resources,” Front. Energy 
Res., vol. 11, p. 1145888, 2023. 

[45] Z.-L. Li, P. Li, Z.-P. Yuan, J. Xia, and D. Tian, “Optimized utilization 

of distributed renewable energies for island microgrid clusters 
considering solar-wind correlation,” Electr. Power Syst. Res., vol. 
206, p. 107822, 2022. 

[46] A. H. Tariq, S. A. A. Kazmi, M. Hassan, S. A. M. Ali, and M. Anwar, 
“Analysis of fuel cell integration with hybrid microgrid systems for 

clean energy: A comparative review,” Int. J. Hydrogen Energy, vol. 
52, pp. 1005-1034, 2023. 

[47] N. T. Mbungu, A. A. Ismail, M. AlShabi, R. C. Bansal, A. Elnady, 

and A. K. Hamid, “Control and estimation techniques applied to smart 
microgrids: A review,” Renew. Sustain. Energy Rev., vol. 179, p. 
113251, 2023. 

[48] M. Ehjaz, M. IQBAL, S. S. H. ZAİDİ, and K. Bilal, “Design and 

implementation of a peer-to-peer energy trading scheme in multi-

microgrid network with photovoltaics and wind energy,” J. Energy 
Syst., vol. 7, no. 2, pp. 158–172, 2023. 

[49] M. Daisy, M. H. Aliabadi, S. Javadi, and H. M. Naimi, “A robust 

transient and sustainable faults location approach for AC microgrid 
based on voltage and current difference measurements,” Int. J. Electr. 
Power Energy Syst., vol. 153, p. 109343, 2023. 

[50] D. Jain and D. Saxena, “Comprehensive review on control schemes 

and stability investigation of hybrid AC-DC microgrid,” Electr. 
Power Syst. Res., vol. 218, p. 109182, 2023. 

[51] S. A. Hosseini, B. Taheri, S. H. H. Sadeghi, and A. Nasiri, “An 

Overview of DC Microgrid Protection Schemes and the Factors 
Involved,” Electr. Power Components Syst., pp. 1–31, 2023. 

[52] B. Sahoo, S. K. Routray, and P. K. Rout, “AC, DC, and hybrid control 

strategies for smart microgrid application: A review,” Int. Trans. 
Electr. Energy Syst., vol. 31, no. 1, p. e12683, 2021. 

[53] O. Azeem et al., “A comprehensive review on integration challenges, 

optimization techniques and control strategies of hybrid AC/DC 

Microgrid,” Appl. Sci., vol. 11, no. 14, p. 6242, 2021. 

[54] J. Singh, S. Prakash Singh, K. Shanker Verma, A. Iqbal, and B. 
Kumar, “Recent control techniques and management of AC 

microgrids: A critical review on issues, strategies, and future trends,” 
Int. Trans. Electr. Energy Syst., vol. 31, no. 11, p. e13035, 2021. 

[55] F. S. Al-Ismail, "DC Microgrid Planning, Operation, and Control: A 

Comprehensive Review," in IEEE Access, vol. 9, pp. 36154-36172, 
2021. 

[56] V. F. Pires, A. Pires, and A. Cordeiro, “DC Microgrids: Benefits, 

Architectures, Perspectives and Challenges,” Energies, vol. 16, no. 3, 
p. 1217, 2023. 

[57] S. S. Rangarajan et al., “DC microgrids: a propitious smart grid 
paradigm for smart cities,” Smart Cities, vol. 6, no. 4, pp. 1690–1718, 
2023. 

[58] A.-C. Braitor, G. C. Konstantopoulos, and V. Kadirkamanathan, 
“Current-limiting droop control design and stability analysis for 

paralleled boost converters in DC microgrids,” IEEE Trans. Control 
Syst. Technol., vol. 29, no. 1, pp. 385–394, 2020. 

[59] Y. C. C. Wong, C. S. Lim, M. D. Rotaru, A. Cruden, and X. Kong, 

“Consensus virtual output impedance control based on the novel 
droop equivalent impedance concept for a multi-bus radial 

microgrid,” IEEE Trans. Energy Convers., vol. 35, no. 2, pp. 1078–
1087, 2020. 

[60] X. He, V. Häberle, I. Subotić, and F. Dörfler, “Nonlinear Stability of 

Complex Droop Control in Converter-Based Power Systems,” IEEE 
Control Syst. Lett., vol. 7, pp. 1327–1332, 2023. 

[61] P. Sun, Y. Wang, M. Khalid, R. Blasco-Gimenez, and G. 

Konstantinou, “Steady-state power distribution in VSC-based MTDC 
systems and dc grids under mixed P/V and I/V droop control,” Electr. 
Power Syst. Res., vol. 214, p. 108798, 2023. 

[62] N. A. Sevostyanov and R. L. Gorbunov, "Control Strategy to Mitigate 
Voltage Ripples in Droop-Controlled DC Microgrids," in IEEE 

Transactions on Power Electronics, vol. 38, no. 12, pp. 15377-15389, 

Dec. 2023. 

[63] S. Liu, H. Miao, J. Li, and L. Yang, “Voltage control and power 

sharing in DC Microgrids based on voltage-shifting and droop slope-

adjusting strategy,” Electr. Power Syst. Res., vol. 214, p. 108814, 
2023. 

[64] M. Carnaghi, P. Cervellini, M. Judewicz, R. G. Retegui, and M. 
Funes, “Stability analysis of a Networking DC microgrid with 

distributed droop control and CPLs,” IEEE Lat. Am. Trans., vol. 21, 
no. 9, pp. 966–975, 2023. 

[65] O. Ja’afreh, J. Siam, and H. Shehadeh, “Power Loss and Total Load 

Demand Coverage in Stand-Alone Microgrids: A Combined and 

Conventional Droop Control Perspectives,” IEEE Access, vol. 10, pp. 
128721–128731, 2022. 

[66] N. Bhatt, R. Sondhi, and S. Arora, “Droop control strategies for 
microgrid: A review,” Adv. Renew. Energy Electr. Veh. Sel. Proc. 
AREEV 2020, pp. 149–162, 2022. 

[67] F. Lu and H. Liu, “An Accurate Power Flow Method for Microgrids 
with Conventional Droop Control,” Energies, vol. 15, no. 16, p. 5841, 
2022. 

[68] G. Lin, W. Zuo, Y. Li, J. Liu, S. Wang, and P. Wang, “Comparative 

analysis on the stability mechanism of droop control and VID control 

in DC microgrid,” Chinese J. Electr. Eng., vol. 7, no. 1, pp. 37–46, 
2021. 

[69] Y. Zhang, X. Qu, M. Tang, R. Yao, and W. Chen, “Design of 
nonlinear droop control in DC microgrid for desired voltage 

regulation and current sharing accuracy,” IEEE J. Emerg. Sel. Top. 
Circuits Syst., vol. 11, no. 1, pp. 168–175, 2021. 

[70] Y. Han, X. Ning, L. Li, P. Yang, and F. Blaabjerg, “Droop coefficient 

correction control for power sharing and voltage restoration in 

hierarchical controlled DC microgrids,” Int. J. Electr. Power Energy 
Syst., vol. 133, p. 107277, 2021. 

[71] R. Kumar and M. K. Pathak, “Distributed droop control of dc 
microgrid for improved voltage regulation and current sharing,” IET 

Renew. Power Gener., vol. 14, no. 13, pp. 2499-2506 2020. 

[72] Shivam and R. Dahiya, “Distributed control for DC microgrid based 
on optimized droop parameters,” IETE J. Res., vol. 66, no. 2, pp. 192–
203, 2020. 

[73] Z. Li, K. W. Chan, J. Hu, and J. M. Guerrero, “Adaptive droop control 

using adaptive virtual impedance for microgrids with variable PV 

outputs and load demands,” IEEE Trans. Ind. Electron., vol. 68, no. 
10, pp. 9630–9640, 2020. 

[74] D. Baros, N. Rigogiannis, N. Papanikolaou, and M. Loupis, 

“Investigation of communication delay impact on DC microgrids with 
adaptive droop control,” in 2020 International Symposium on 
Industrial Electronics and Applications (INDEL), pp. 1–6, 2020. 

[75] Y. Xiong et al., “Adaptive dual droop control of MTDC integrated 
offshore wind farms for fast frequency support,” IEEE Trans. Power 
Syst., vol. 38, no. 3, pp. 2525–2538, 2022. 

[76] Y. Shen, W. Wu, B. Wang, and S. Sun, "Optimal Allocation of Virtual 

Inertia and Droop Control for Renewable Energy in Stochastic Look-

Ahead Power Dispatch," in IEEE Transactions on Sustainable 
Energy, vol. 14, no. 3, pp. 1881-1894, July 2023. 

[77] A. H. Lone and N. Gupta, “A novel load flow method for islanded 
microgrids with optimum droop coefficients,” e-Prime-Advances 
Electr. Eng. Electron. Energy, vol. 6, p. 100341, 2023. 

[78] C. Guo, J. Liao, and Y. Zhang, “Adaptive droop control of unbalanced 

voltage in the multi-node bipolar DC microgrid based on fuzzy 
control,” Int. J. Electr. Power Energy Syst., vol. 142, p. 108300, 2022. 

[79] A. Yavuz, N. Celik, C.-H. Chen, and J. Xu, “A Sequential Sampling-

based Particle Swarm Optimization to Control Droop Coefficients of 

Distributed Generation Units in Microgrid Clusters,” Electr. power 
Syst. Res., vol. 216, p. 109074, 2023. 

[80] H. Zhang, S. Gao, and P. Zhou, “Role of digitalization in energy 

storage technological innovation: Evidence from China,” Renew. 
Sustain. Energy Rev., vol. 171, p. 113014, 2023. 

[81] X. Xianyong and Z. Zixuan, “New Power Systems Dominated by 
Renewable Energy Towards the Goal of Emission Peak & Carbon 

Neutrality: Contribution, Key Techniques, and Challenges.,” Adv. 
Eng. Sci. Kexue Yu Jishu, vol. 54, no. 1, 2022. 

[82] M. Dehghani, E. Trojovská, P. Trojovský, and O. P. Malik, “OOBO: 

A New Metaheuristic Algorithm for Solving Optimization Problems,” 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 820 

 

Widi Aribowo, Improved Droop Control Based on Modified Osprey Optimization Algorithm on DC Microgrid 

Biomimetics, vol. 8, no. 6, p. 468, 2023. 

[83] P. Trojovský, “A new human-based metaheuristic algorithm for 

solving optimization problems based on preschool education,” Sci. 
Rep., vol. 13, no. 1, p. 21472, 2023. 

[84] S. Ferahtia et al., “Red-tailed hawk algorithm for numerical 

optimization and real-world problems,” Sci. Rep., vol. 13, no. 1, p. 
12950, 2023. 

[85] L. Zhang, H. Zheng, Q. Hu, B. Su, and L. Lyu, “An adaptive droop 

control strategy for islanded microgrid based on improved particle 
swarm optimization,” IEEE Access, vol. 8, pp. 3579–3593, 2019. 

[86] R. P. Nair and P. Kanakasabapathy, “PR controller-based droop 
control strategy for AC microgrid using Ant Lion Optimization 
technique,” Energy Reports, vol. 9, pp. 6189–6198, 2023. 

[87] T. A. Jumani, M. Mustafa, W. Anjum, and S. Ayub, “Salp swarm 
optimization algorithm-based controller for dynamic response and 

power quality enhancement of an islanded microgrid,” Processes, vol. 
7, no. 11, p. 840, 2019. 

[88] J. Kumar, A. Agarwal, and V. Agarwal, “A review on overall control 
of DC microgrids,” J. energy storage, vol. 21, pp. 113–138, 2019. 

[89] F. Gao, R. Kang, J. Cao, and T. Yang, “Primary and secondary control 

in DC microgrids: a review,” J. Mod. Power Syst. Clean Energy, vol. 
7, no. 2, pp. 227–242, 2019. 

[90] S. Ansari, A. Chandel, and M. Tariq, “A comprehensive review on 

power converters control and control strategies of AC/DC microgrid,” 
IEEE Access, vol. 9, pp. 17998–18015, 2020. 

[91] N. Ghanbari and S. Bhattacharya, “Adaptive droop control method for 
suppressing circulating currents in dc microgrids,” IEEE Open Access 
J. Power Energy, vol. 7, pp. 100–110, 2020. 

[92] G. Wang, G. Duan, J. Duan, S. Cao, Y. Song, and J. Kang, “An 
integrated control method of multi-source Islanded microgrids,” 
Energy Reports, vol. 9, pp. 630–636, 2023. 

[93] N. Khosravi et al., “A novel control approach to improve the stability 

of hybrid AC/DC microgrids,” Appl. Energy, vol. 344, p. 121261, 
2023. 

[94] D. N. Nguyen and T. A. Nguyen, “Proposing an original control 

algorithm for the active suspension system to improve vehicle 
vibration: Adaptive fuzzy sliding mode proportional-integral-

derivative tuned by the fuzzy (AFSPIDF),” Heliyon, vol. 9, no. 3, 
2023. 

[95] N. M. Dawoud, T. F. Megahed, and S. S. Kaddah, “Enhancing the 

performance of multi-microgrid with high penetration of renewable 

energy using modified droop control,” Electr. Power Syst. Res., vol. 
201, p. 107538, 2021. 

[96] N. B. Roy and D. Das, “Probabilistic optimal power dispatch in a 
droop controlled islanded microgrid in presence of renewable energy 

sources and PHEV load demand,” Renew. Energy Focus, vol. 45, pp. 
93–122, 2023. 

[97] P. Lusis, L. L. H. Andrew, A. Liebman, and G. Tack, “Interaction 

between coordinated and droop control PV inverters,” in Proceedings 

of the Eleventh ACM International Conference on Future Energy 
Systems, pp. 314–324, 2020. 

[98] R. Xu, C. Zhang, Y. Xu, Z. Dong, and R. Zhang, “Multi-objective 
hierarchically-coordinated volt/var control for active distribution 

networks with droop-controlled PV inverters,” IEEE Trans. Smart 
Grid, vol. 13, no. 2, pp. 998–1011, 2021. 

[99] R. El-Sehiemy, A. Shaheen, A. Ginidi, and S. F. Al-Gahtani, 

“Proportional-Integral-Derivative Controller Based-Artificial Rabbits 

Algorithm for Load Frequency Control in Multi-Area Power 
Systems,” Fractal Fract., vol. 7, no. 1, p. 97, 2023. 

[100] M. Dehghani and P. Trojovský, “Osprey optimization algorithm: A 
new bio-inspired metaheuristic algorithm for solving engineering 

optimization problems,” Frontiers in Mechanical Engineering  , vol. 
8. 2023. 

[101] P. Barthelemy, J. Bertolotti, and D. S. Wiersma, “A Lévy flight for 
light,” Nature, vol. 453, no. 7194, pp. 495-498, 2008. 

[102] R. N. Mantegna, “Fast, accurate algorithm for numerical simulation 

of Lévy stable stochastic processes,” Phys. Rev. E, vol. 49, no. 5, p. 
4677, 1994. 

 

 

 


