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Abstract—Parametric uncertainty in a dynamical system has 

the potential to undermine the performance of a closed-loop 

controller designed through classical techniques. This paper 

presents a novel approach to stochastic model predictive control 

(SMPC) by employing the polynomial chaos expansion (PCE) 

method called PCE-based model predictive control (PCE-

MPC). This method offers a more robust and efficient solution 

to tackle parameter uncertainties in dynamic systems. The PCE 

method is utilized to propagate uncertainties through 

orthogonal polynomials, and the Galerkin projection approach 

is employed to compute PCE coefficients via intrusive spectral 

projection (ISP). In Galerkin projection, the inner product 

involves an integration term, and the integration values are 

approximated using the Gauss-Legendre quadrature. This 

quadrature method precisely integrates the 𝒑-th order 

polynomial using 𝟐𝒑 − 𝟏 points. The numerical case study 

focuses on the short-period mode of the F-16 aircraft model. 

Simulation results demonstrate the robust performance of the 

proposed method in the presence of parameter uncertainties, 

with system states converging to the original points for each 

parameter realization under various initial conditions. 

Comparison results indicate negligible differences between 

MPC and PCE-MPC, showcasing nearly identical performance. 

However, further investigation is warranted in other cases and 

more complex systems involving parameter uncertainties. 

Keywords—Galerkin Projection; Intrusive Spectral 

Projection; Parameter Uncertainty; Polynomial Chaos; SMPC. 

I. INTRODUCTION 

The exploration of control system design, taking into 

account parameter uncertainties in dynamical systems, has 

emerged as an exciting research area [1]–[5]. The impact of 

parametric uncertainty becomes apparent when a controller is 

designed using classical techniques such as Proportional, 

Integral, Derivative (PID), and Linear Quadratic Regulator 

(LQR) [6]–[8], potentially leading to the deterioration of 

closed-loop performance. In the aerospace field, parameter 

uncertainties can arise from inaccuracies in aerodynamic 

coefficient modeling [9]. The need to address uncertainties in 

designing control algorithms arises particularly when dealing 

with known physical systems.  

According to [10], parametric uncertainty emerges in 

systems where the underlying physics is known, but the 

system parameters are either imprecisely known or 

anticipated to fluctuate over the operational lifetime. This 

uncertainty is also present when constructing system models 

from experimental data through system identification 

techniques, representing a system plant with an unknown 

parameter transfer function. Experimental measurements 

result in parameter values within a range of uncertainty. In 

both scenarios, the assumed knowledge is the variation range 

of these parameters, and the objective is to design controllers 

that ensure specified performance across these variations.  

Addressing parameter uncertainties effectively involves 

the use of robust control strategies [11]–[16]. In these control 

strategies, a worst-case analysis is performed to assess how 

variations in parameters impact the robustness of the control 

system. As a result, these strategies may be excessively 

cautious, especially when parameters rarely reach extreme 

values [17]. To mitigate this, adopting a control design 

approach that takes into account the distribution of 

parameters is expected to be less conservative. A novel way 

to implement the robust control concept is through stochastic 

control, where the uncertainty related to system parameters is 

acknowledged to follow a probability distribution [18]–[20]. 

By leveraging the understanding of the uncertainty 

distribution in system parameters, a control system designer 

may be willing to accept a modest yet clearly defined level of 

risk to achieve more substantial robustness margins.  

A crucial aspect in stochastic control involves handling 

the time evolution of uncertainty within model equations, 

essentially simulating stochastic systems. The widely used 

Monte Carlo is a common method for simulating general 

stochastic systems. However, its utility in control design may 

be constrained by the significant computational complexity 

involved. An efficient tool to significantly reduce the 

computational workload needed for simulating a stochastic 

system is Polynomial Chaos Expansion (PCE). This method 

utilizes the orthogonal polynomials, which are functions of 

random variables to approximate the uncertain parameters 

and the system states [21], [22]. In addition, the PCE 

framework was applied to solve some problems in 

engineering, such as fluid dynamics [23]–[25], finite 

elements [26]–[28], and solid mechanics [29]–[32]. The 

primary challenge in PCE is how to determine the 

coefficients of polynomial expansion. Typically, two 

methods, Galerkin projection and collocation [33], [34], can 

be employed to determine the coefficients of expansion. The 
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collocation method matches a PCE to the model output using 

uncertainty samples basically utilizing interpolation and 

regression [35], while the Galerkin projection method obtains 

a PCE by projecting the model output onto the space spanned 

by basis functions. Collocation has drawbacks, such as the 

lack of a well-established best way to select samples and the 

fact that the approximation error controlled by collocation 

does not necessarily decrease with the addition of more 

samples. The Galerkin method has two versions: intrusive 

and non-intrusive spectral projections [36]–[38]. The 

Intrusive Spectral Projection (ISP) approach has the 

advantage of being a more rigorous way for calculating PCE 

coefficients compared to the Non-Intrusive Spectral 

Projection (NISP) [39]. However, the limitations of this 

method are when the model is changed the whole code must 

be rewritten and tailored for every case and to solve the inner 

product is not straightforward for nonlinear systems. Another 

issue is the dimension system will be larger than the original 

system [40]. Despite its drawbacks, this approach is a 

straightforward method for designing control systems using 

models formulated in a state space equation. 

The application of PCE has been integrated with several 

control system methods, as demonstrated in references [3], 

[10], [17]–[20], [41]–[43] and therein. In [17], Linear 

Quadratic (LQ) control is designed by considering an 

expanded state space due to parameter variations using PCE. 

The expansion of the state space is achieved by transforming 

the probabilistic system into a deterministic one using the 

Galerkin method through the ISP approach. To efficiently 

handle high-order stochastic approximations, a modified LQ 

control is introduced for gain selection and performance 

evaluation [44]. This adaptation of LQ control exhibits 

improved performance for systems characterized by 

probabilistic uncertainty. However, it is important to note that 

the LQ control lacks the inclusion of input and state 

constraints in the design process, which may lead to potential 

constraint violations.  

To overcome the limitations associated with handling 

applications where there is a cost advantage in either 

violating constraints or closely approaching operational 

limits, a burgeoning area of research focuses on the 

development of an advanced control system known as 

Stochastic Model Predictive Control (SMPC) [45]–[47]. 

SMPC commonly employs random sampling techniques like 

Monte Carlo [48], [49], where the system model is simulated 

multiple times based on samples to predict the time evolution 

of uncertainties. Despite its applicability to a range of 

problems, sampling-based approaches can become 

prohibitively expensive due to the substantial number of 

samples needed for accurate uncertainty propagation.  

In response to the limitations of Monte Carlo-based 

SMPC, an effective alternative is to use Polynomial Chaos 

Expansion-based Model Predictive Control (PCE-MPC). 

Numerous studies on PCE-MPC for systems with parameter 

uncertainties are documented in various literatures, as seen in 

references [50]–[53]. It is worth noting that the referenced 

papers assume the independence of randomness in parameter 

uncertainties. Building on insights from those works, our 

paper contributes as follows. 

1) Design PCE-MPC by assuming the parameter 

uncertainties are not independent but are instead regulated 

by a single random variable. 

2) Develop a generalized mapping from a stochastic to a 

deterministic linear system using an efficient approach to 

handle parameter uncertainties in dynamical systems. In 

contrast the approach presented in [10], we consider the 

system input to be deterministic. 

3) Present an optimization for SMPC reformulated as a 

deterministic MPC problem through the utilization of the 

PCE method. 

The proposed method is applied to the F-16 aircraft using 

a linear state space equation. To solve the PCE-MPC 

optimization problem, we utilize the quadratic programming 

(QP) method [54]–[56]. This method is widely used for 

addressing quadratic cost functions while accommodating 

linear equality and inequality constraints. 

The structure of this work is presented as follows. Firstly, 

Section 2 explores the theoretical underpinnings of PCE, 

setting the stage for our novel approach. Then, the PCE-MPC 

optimization problem constructed from the SMPC using the 

PCE method is expressed in Section 3. Additionally, Section 

3 presents the formula of the PCE-MPC problem in the QP 

framework. Next, the numerical example to implement the 

proposed method and discussion results is given in Section 4. 

Lastly, the end section of this paper draws the conclusion and 

suggestions that can be implemented in the future. 

II. UNCERTAINTY QUANTIFICATION 

This section explains PCE theory and its application to 

derive linear systems with time-invariant probabilistic 

uncertainties to be deterministic linear systems. 

A. Polynomial Chaos Expansion for One-dimensional Space 

Firstly, Wiener proposed the PCE to approximate the 

Gaussian random variables using polynomial expansions 

[57]. The polynomial chaos utilizes an orthogonal basis of 

ℒ2(Ω, ℱ, 𝜌), where ℒ2(Ω, ℱ, 𝜌) is the probability space of all 

random events 𝜉 with finite variance. The probability space 

(Ω, ℱ, 𝜌) is defined on the basis of the Ω sample space, σ-

algebra ℱ, and the probability size 𝜌 on (Ω, ℱ). A random 

variable, 𝑣(𝜉) ∈ ℒ2(Ω, ℱ, 𝜌), has the expansion [58]: 

𝑣(ξ) = ∑ 𝑐𝑚

∞

𝑚=0

𝜙𝑚(𝜉), (1) 

where 𝑐𝑚 indicates the deterministic expansion coefficient 

and 𝜙𝑚(𝜉) represents the PCEs basis which depends on the 

random variable vector 𝜉. The selection of the basis for the 

polynomial is adjusted to the random variable distribution. In 

fact, the convergence rate strongly depends on the basis 

selection [59], [60].  

 The expansion in Eq. (1) should be truncated for 

implementation. Thus, the expansion after truncation can be 

written as (2) [61]. 

𝑣(ξ) ≈ 𝑣̃(ξ) = ∑ 𝑐𝑚

𝑝

𝑚=0

𝜙𝑚(𝜉) = 𝒄𝑇  𝝓̅(𝜉), (2) 
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where 𝒄 = [𝑐0, 𝑐1, ⋯ , 𝑐𝑝]
𝑇
, 𝝓̅(𝜉) = [𝜙0, 𝜙1, ⋯ , 𝜙𝑝]

𝑇
with 𝑝 

is the order of polynomial basis function. For a one-

dimensional PCE, the number of terms is 𝑝 + 1. After the 

coefficient 𝒄 in (2) is calculated, the property of the 

orthogonal polynomial can be utilized to calculate the 

statistical measures of the random variable 𝑣̃(𝜉) especially to 

know the accuracy of PCE in predicting mean and variance. 

 To determine the polynomial basis in PCEs, Table I gives 

a piece of information on how to select the polynomial 𝜙𝑚 

corresponding to the probability density function (pdf) of 

random variable 𝜉 [40].  

TABLE I.  THE ORTHOGONAL POLYNOMIAL OF DIFFERENT PROBABILITY 

DENSITY FUNCTION FOR CONTINUOUS RANDOM VARIABLES 

Polynomial 𝜙𝑚(𝜉) Random Variable 𝜉 Domain 

Hermite Gaussian (−∞,∞) 

Legendre Uniform [−1, 1] 
Jacobi Beta (−1, 1) 

Laguerre Gamma (0,∞) 

B. Intrusive Spectral Projection for Linear System 

This section focuses on how to reformulate the stochastic 

system via an ISP approach. The stage of constructing a 

deterministic system from a stochastic system via the ISP 

method to efficiently propagate uncertainties can be 

explained as follows. Given a stochastic linear system is as 

follows: 

𝒙̇(𝑡, 𝜉) = 𝑨𝑐(𝜉)𝒙(𝑡, 𝜉) + 𝑩𝑐(𝜉)𝒖(𝑡) (3) 

where the state and input variables are expressed by 𝒙 ∈ ℝ𝑛𝑥  

and 𝒖 ∈ ℝ𝑛𝑢 respectively, 𝑨𝑐(𝜉) and 𝑩𝑐(𝜉) represent the 

state and input matrices depending on the random variables 

𝜉 ∈ ℝ. Since the system (3) has probability uncertainty for its 

parameters, the state variable trajectory becomes stochastic. 

Meanwhile, the random variable does not affect the input 

variable, so it is deterministic. Furthermore, reducing the 

stochastic linear system to the deterministic linear system 

with PCEs refers to [10], [62]. 

Define state variables 𝒙(𝑡, 𝜉), 𝑨𝑐(𝜉) and 𝑩𝑐(𝜉) into 

𝑥𝑖(𝑡, 𝜉), 𝐴𝑐𝑖𝑗
(𝜉), and 𝐵𝑐𝑖𝑗

(𝜉) as a linear combination of the 

basis function 𝜙𝑚(𝜉), then we obtain 

𝑥𝑖(𝑡, ξ) = ∑ 𝑥̅𝑖,𝑚(𝑡)𝜙𝑚(𝜉)

𝑙ξ

𝑚=0

= 𝒙𝑖(𝑡)
𝑇𝝓̅(𝜉) (4) 

𝐴𝑐𝑖𝑗
(𝑡, 𝜉) = ∑ 𝑎̅𝑖𝑗,𝑚(𝑡)𝜙𝑚(𝜉)

𝑙𝜉

𝑚=0

= 𝒂̅𝑖𝑗
𝑇𝝓̅(𝜉) (5) 

𝐵𝑐𝑖𝑗
(𝑡, 𝜉) = ∑ 𝑏̅𝑖𝑗,𝑚(𝑡)𝜙𝑚(𝜉)

𝑙𝜉

𝑚=0

= 𝒃̅𝑖𝑗
𝑇
𝝓̅(𝜉) (6) 

where 𝒙𝑖(𝑡), 𝒂̅𝑖𝑗, 𝒃̅𝑖𝑗  and 𝝓̅(𝜉) ∈ ℝ𝑝+1 are defined as 

𝒙𝑖(𝑡) = [𝑥̅𝑖,0(𝑡), 𝑥̅𝑖,1(𝑡),⋯ , 𝑥̅𝑖,𝑙𝜉
(𝑡)]

𝑇

, 

𝒂̅𝑖𝑗 = [𝑎̅𝑖𝑗,0, 𝑎̅𝑖𝑗,1, ⋯ , 𝑎̅𝑖𝑗,𝑙𝜉
]
𝑇

, 

𝒃̅𝑖𝑗 = [𝑏̅𝑖𝑗,0, 𝑏̅𝑖𝑗,1, ⋯ , 𝑏̅𝑖𝑗,𝑙𝜉
]
𝑇

, 

𝝓̅(𝜉) = [𝜙0(𝜉), 𝜙1(𝜉),⋯ , 𝜙𝑙𝜉
(𝜉)]

𝑇

 

The coefficient 𝑎̅𝑖𝑗,𝑚 and 𝑏̅𝑖𝑗,𝑚 are obtained by Galerkin 

projection onto 𝜙𝑚(𝜉), 𝑚 = 0,1,⋯ , 𝑝 given by Eqs. (7) and 

(8) as follows: 

𝑎̅𝑖𝑗,𝑚 =
〈𝐴𝑐𝑖𝑗

(𝜉),  𝜙𝑚(𝜉)〉

⟨𝜙𝑚
2 (𝜉)⟩

 (7) 

𝑏̅𝑖𝑗,𝑚 =
〈𝐵𝑐𝑖𝑗

(𝜉),  𝜙𝑚(𝜉)〉

⟨𝜙𝑚
2 (𝜉)⟩

 (8) 

Substitute Eqs. (4), (5) and (6) into Eq. (3), so we obtain 

∑ 𝑥̇̅𝑖,𝑘(𝑡)𝜙𝑘(𝜉)

𝑝

𝑘=0

= ∑ ∑ ∑𝑎̅𝑖𝑗,𝑘

𝑝

𝑙=0

𝑝

𝑘=0

𝑛𝑥

𝑗=1

𝑥̅𝑗,𝑙(𝑡)𝜙𝑘(𝜉)𝜙𝑙(𝜉) 

+ ∑ ∑ 𝑏̅𝑖𝑗,𝑘

𝑝

𝑘=0

𝑛𝑢

𝑗=1

𝜙𝑘(𝜉)𝑢𝑗(𝑡). 

(9) 

Thus, by projecting (9) onto orthogonal basis function, i.e. 

𝜙𝑚 for 𝑚 = 0,⋯ , 𝑝, and dropping the germ 𝜉, then Eq. (9) 

can be simplified to 

∑ 𝑥̇̅𝑖,𝑚(𝑡)⟨𝜙𝑚
2 ⟩

𝑝

𝑚=0

= ∑ ∑ ∑ 𝑎̅𝑖𝑗,𝑘

𝑝

𝑙=0

𝑝

𝑘=0

𝑛𝑥

𝑗=1

𝑥̅𝑗,𝑙(𝑡)〈𝜙𝑘𝜙𝑙𝜙𝑚〉 

+∑𝑏̅𝑖𝑗,𝑚

𝑛𝑢

𝑗=1

𝑢𝑗(𝑡)⟨𝜙𝑚
2 ⟩. 

(10) 

Then divided by ⟨𝜙𝑚
2 ⟩, Eq. (10) becomes: 

𝑥̇̅𝑖,𝑚(𝑡) = ∑ ∑ ∑ 𝑎̅𝑖𝑗,𝑘

𝑝

𝑙=0

𝑝

𝑘=0

𝑛𝑥

𝑗=1

𝑥̅𝑗,𝑙(𝑡)𝐶𝑘𝑙𝑚 

+∑𝑏̅𝑖𝑗,𝑚

𝑛𝑢

𝑗=1

𝑢𝑗(𝑡) 

(11) 

where 𝐶𝑘𝑙𝑚 =
⟨𝜙𝑘𝜙𝑙𝜙𝑚⟩

⟨𝜙𝑚
2 ⟩

. From Eq. (11), the obtained 

deterministic differential equation is as follows: 

𝑿̇(𝑡) = 𝓐𝑿(𝑡) + 𝓑𝒖(𝑡) (12) 

where 𝑿 ∈ ℝ𝑛𝑥(𝑝+1), 𝒖 ∈ ℝ𝑛𝑢, 𝓐 ∈ ℝ𝑛𝑥(𝑝+1)×𝑛𝑥(𝑝+1), 𝓑 ∈

ℝ𝑛𝑥(𝑝+1)×𝑛𝑢, and 𝑿 = [𝒙1
𝑻  𝒙2

𝑻  ⋯  𝒙𝑛𝑥

𝑻]
𝑻
. Define a matrix 

𝑻𝑚 as 

𝑻𝒎 =

[
 
 
 
𝐶00𝑚

𝐶10𝑚

⋮
𝐶𝑝0𝑚

     

𝐶01𝑚

𝐶11𝑚

⋮
𝐶𝑝1𝑚

     

⋯
⋯
⋱
⋯

     

𝐶0𝑝𝑚

𝐶1𝑝𝑚

⋮
𝐶𝑝𝑝𝑚]

 
 
 

 

The new state and input matrices, i.e., 𝓐 and 𝓑, can be 

defined as follows: 

𝓐 = [𝓐𝑖𝑗] where 𝓐𝑖𝑗 = ∑ 𝑎̅𝑖𝑗,𝑚𝑻𝑚
𝑝
𝑚=0 , 𝑖, 𝑗 = 1,… , 𝑛𝑥 

𝓑 = [𝓑𝑖𝑗] where 𝓑 = 𝑏̅𝑖𝑗 , 𝑖 = 1, … , 𝑛𝑥, 𝑗 = 1, … , 𝑛𝑢 

The conversion of a stochastic linear system with 𝒙 ∈ ℝ𝑛𝑥, 

𝒖 ∈ ℝ𝑛𝑢 using PCEs by order 𝑝, produces deterministic 

linear system where the states have a dimension of 𝑛𝑥(𝑝 + 1) 
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unknown PCE coefficients for the states {𝑥̅
𝑖,𝑚

(𝑡)}
𝑗=1,⋯,𝑛𝑥

𝑚=0,⋯,𝑝
. 

Then, Eq. (12) will be used to design the SMPC method. 

III. PCE-BASED MODEL PREDICTIVE CONTROL 

The polynomial chaos expansion-based MPC (PCE-

MPC) is designed to realize a robust control system dealing 

with parameter uncertainties. The PCE approach is used to 

approximate the stochastic parameters in relation to a random 

variable with a known probability density function (pdf). The 

parameters approximated by PCE in a dynamical system are 

assumed to be time-invariant. The controller design used in 

this study is based on the open loop control system without 

chance constraints. The SMPC optimization problem, while 

considering the uncertain parameter in a dynamical system, 

can be written as follows.  

Problem 1. (Stochastic MPC) 

min
𝒖

𝔼 [∑(‖𝒙𝑛+𝑖(𝜉)‖𝑸𝑥

2 + ‖𝒖𝑛+𝑖−1‖𝑹𝑢

2 )

𝑁ℎ

𝑖=1

] (13) 

subject to 

𝒙𝑛+𝑖+1(𝜉) = 𝑨𝑑(𝜉)𝒙𝑛+𝑖(𝜉) + 𝑩𝑑(𝜉)𝒖𝑛+𝑖 , 𝑖 ∈ [0, 𝑁ℎ − 1] 

𝒙𝑛(𝜉) = 𝒙0 

𝒖𝑛+𝑖 ∈ 𝕌, 𝑖 ∈ [0, 𝑁ℎ − 1] 

where 𝑛 =
𝑡

𝑇𝑠
∈ ℕ is the time index, and 𝑇𝑠 is the proper 

sampling time to convert a continuous-time system to a 

discrete-time system, 𝒙𝑛(𝜉) ∈ ℝ𝑛𝑥  and 𝒖𝑛 ∈ ℝ𝑛𝑢 denote the 

state and input variables in discrete-time of a linear system at 

time-𝑛, respectively, 𝜉 ∈ ℝ represents a time-invariant 

parameter, 𝑨𝑑(𝜉) ∈ ℝ𝑛𝑥 × ℝ𝑛𝑥  and 𝑩𝑑(𝜉) ∈ ℝ𝑛𝑥 × ℝ𝑛𝑢 are 

the matrices of state and input in discrete-time, respectively, 

𝑸𝑥 and 𝑹𝑢 denote the positive definite matrices as the 

weighting factors of states and inputs, 𝑁ℎ is the prediction 

horizon, 𝕌 ∈ ℝ𝑛𝑢 declares the convex compact set of input 

constraints, and 

‖𝒙𝑛+𝑖(𝜉)‖𝑸𝑥

2 = 𝒙𝑛+𝑖
𝑇 (𝜉)𝑸𝑥𝒙𝑛+𝑖(𝜉) 

‖𝒖𝑛+𝑖−1‖𝑹𝑢

2 = 𝒖𝑛+𝑖−1
𝑇 𝑹𝑢𝒖𝑛+𝑖−1 

The optimization problem in Eq. (13) is stochastic, so it 

is more convenient if changed to a deterministic optimization 

problem using the PCEs approach. By using PCEs, for 𝑥 ∈
ℝ, the quantity 𝔼[𝑥2] is approximated by 

𝔼[𝑥2] ≈ 𝔼 [∑𝑥̅𝑖𝜙𝑖

𝑝

𝑖=0

∑ 𝑥̅𝑗𝜙𝑗

𝑝

𝑗=0

] 

= 𝔼 [∑ ∑𝑥̅𝑖

𝑝

𝑗=0

𝑥̅𝑗𝜙𝑖

𝑝

𝑖=0

𝜙𝑗] 

(14) 

Since 𝑥̅𝑖 and 𝑥̅𝑗 are deterministic, Eq. (14) can be rewritten as 

𝔼[𝑥2] ≈ ∑∑𝑥̅𝑖

𝑝

𝑗=0

𝑝

𝑖=0

𝑥̅𝑗𝔼[𝜙𝑖𝜙𝑗] (15) 

= ∑∑ 𝑥̅𝑖

𝑝

𝑗=0

𝑝

𝑖=0

𝑥̅𝑗 ∫ 𝜙𝑖𝜙𝑗𝑓𝜉  𝑑𝜉
𝒟𝜉

 

= 𝒙 𝑇𝑽 𝒙 𝑇 

where 𝒟𝜉  is the domain of 𝜉, 𝑥̅𝑖 is the coefficient of 

polynomial 𝜙𝑖, 𝑓𝜉 ≡ 𝑓(𝜉) is the pdf of 𝜉, 𝑽 ∈ ℝ(𝑝+1)×(𝑝+1) =

𝑣𝑖𝑗  is a diagonal matrix with 𝑣𝑖𝑗 = ∫ 𝜙𝑖𝜙𝑗𝑓𝜉𝒟ξ
𝑑ξ =

𝔼[𝜙𝑖
2]δ𝑖𝑗, i.e., δ𝑖𝑗 = 1 if 𝑖 = 𝑗 and δ𝑖𝑗 = 0, if 𝑖 ≠ 𝑗, and 𝒙 =

[𝑥̅0, 𝑥̅1, ⋯ , 𝑥̅𝑝]
𝑇
. Furthermore, by referring to Eq. (15), for 

𝒙 ∈ ℝ𝑛𝑥 , the quantity 𝔼[𝒙𝑇𝒙] is approximated by 

𝔼[𝒙𝑻𝒙] ≈ 𝑿𝑇(𝑰𝒏𝒙
⊗ 𝑽)𝑿 (16) 

where the identity matrix is denoted by 𝑰𝑛𝑥
∈ ℝ𝑛𝑥×𝑛𝑥, the 

Kronecker product is denoted by ⊗, and 𝑿 is given in Eq. 

(12). The objective function in Eq. (13) can be derived as 

follows: 

min
𝒖

 𝔼 [∑(‖𝒙𝑛+𝑖(𝜉)‖𝑸𝑥

2 + ‖𝒖𝑛+𝑖−1‖𝑹𝑢

2 )

𝑁ℎ

𝑖=1

] 

= ∑(𝔼[‖𝒙𝑛+𝑖(𝜉)‖𝑸𝑥

2 ] + 𝔼[‖𝒖𝑛+𝑖−1‖𝑹𝑢

2 ])

𝑁ℎ

𝑖=1

 

(17) 

By assuming that the control inputs do not depend on the 

random variables and referring to Eq. (16), the objective 

function in Eq. (17) is rewritten in terms of PCEs as 

min
𝒖

 ∑(𝔼[‖𝒙𝑛+𝑖(𝜉)‖𝑸𝑥

2 ] + 𝔼[‖𝒖𝑛+𝑖−1‖𝑹𝑢

2 ])

𝑁ℎ

𝑖=1

 

≈ min
𝒖

 ∑(‖𝑿𝑛+𝑖(𝜉)‖𝑸𝑥̅

2 + ‖𝒖𝑛+𝑖−1‖𝑹𝑢

2 )

𝑁ℎ

𝑖=1

 

(18) 

where 𝑸𝑥̅ = 𝑸𝑥 ⊗ 𝑽. The final reformulation of Problem 1 

using PCEs can be stated below. 

Problem 2. (PCE-MPC Optimization) 

min
𝒖

 ∑(‖𝑿𝑛+𝑖(𝜉)‖𝑸𝑥̅

2 + ‖𝒖𝑛+𝑖−1‖𝑹𝑢

2 )

𝑁ℎ

𝑖=1

 (19) 

subject to 

𝑿𝑛+𝑖+1 = 𝓐𝑑𝑿𝑛+𝑖 + 𝓑𝑑𝒖𝑛+𝑖 , 𝑖 ∈ [0, 𝑁ℎ − 1] 

𝑿𝑛 = 𝑿0 

𝒖𝑛+𝑖 ∈ 𝕌, 𝑖 ∈ [0, 𝑁ℎ − 1] 

where 𝓐𝑑  dan 𝓑𝑑  are matrix forms of the discrete-time 

system after discretizing system (12). 

 Problem 2 is deterministic MPC optimization, which can 

be solved using the quadratic programming (QP) formula 

[63], [64]. By defining new variables, i.e., 

𝑿̅ = [𝑿𝑇 𝑿𝑇 ⋯ 𝑿𝑇]𝑇 ∈ ℝ𝑛𝑥(𝑝+1)𝑁ℎ×1, 

𝒖̅ = [𝒖𝑇 𝒖𝑇 ⋯ 𝒖𝑇]𝑇 ∈ ℝ𝑛𝑢𝑁ℎ×1, 

the QP formulation of Problem 2 is given by Problem 3. 
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Problem 3. (QP of PCE-MPC Optimization) 

min
𝒖̅

1

2
𝒖̅𝑇𝑯𝒖̅ + 𝒖̅𝑇𝒈 (20) 

subject to 

𝒍𝑏 ≤ 𝒖̅ ≤ 𝒖𝑏 

where 𝒈 = 2𝜷𝑇𝑸̅𝑥̅𝑭𝑿𝑛 ∈ ℝ𝑛𝑢𝑁ℎ×1 

𝑯 = 2(𝜷𝑇𝑸̅𝑥̅𝜷 + 𝑹̅𝑢) ∈ ℝ𝑛𝑢𝑁ℎ×𝑛𝑢𝑁ℎ 

𝑸̅𝑥̅ = diag(𝑸𝑥̅, … , 𝑸𝑥̅) ∈ ℝ𝑛𝑥(𝑝+1)𝑁ℎ×𝑛𝑥(𝑝+1)𝑁ℎ  

𝑹̅𝑢 = diag(𝑹𝑢, … , 𝑹𝑢) ∈ ℝ𝑛𝑢𝑁ℎ×𝑛𝑢𝑁ℎ 

𝜷 =

[
 
 
 
 

𝓑𝑑 𝟎 𝟎 ⋯ 𝟎
𝓐𝑑𝓑𝑑 𝓑𝑑 𝟎 ⋯ 𝟎

𝓐𝑑
2𝓑𝑑 𝓐𝑑𝓑𝑑 𝓑𝑑 ⋯ 𝟎
⋮ ⋮ ⋮ ⋱ ⋮

𝓐𝑑
𝑁ℎ−1

𝓑𝑑 𝓐𝑑
𝑁ℎ−2

𝓑𝑑 𝓐𝑑
𝑁ℎ−3

𝓑𝑑 ⋯ 𝓑𝑑]
 
 
 
 

 

𝑭 =

[
 
 
 
 
 
𝓐𝑑

𝓐𝑑
2

𝓐𝑑
3

⋮

𝓐𝑑
𝑁ℎ]

 
 
 
 
 

, 𝒍𝑏 =

[
 
 
 
 
𝒖𝑚𝑖𝑛

𝒖𝑚𝑖𝑛

𝒖𝑚𝑖𝑛

⋮
𝒖𝑚𝑖𝑛]

 
 
 
 

, 𝒖𝑏 =

[
 
 
 
 
𝒖𝑚𝑎𝑥

𝒖𝑚𝑎𝑥

𝒖𝑚𝑎𝑥

⋮
𝒖𝑚𝑎𝑥]

 
 
 
 

 

with 𝜷 ∈ ℝ𝑛𝑥(𝑝+1)𝑁ℎ×𝑛𝑢𝑁ℎ ,  𝑭 ∈ ℝ𝑛𝑥(𝑝+1)𝑁ℎ×𝑛𝑥(𝑝+1), 𝒍𝑏 ∈
ℝ𝑛𝑢𝑁ℎ×𝑛𝑢𝑁ℎ, and 𝒖𝑏 ∈ ℝ𝑛𝑢𝑁ℎ×𝑛𝑢𝑁ℎ. In the next section, the 

mathematical model of the F-16 aircraft is described to 

examine the proposed controller method in the presence of 

parametric uncertainty. To implement the PCE-MPC for the 

discrete-time system of (3), the algorithm is summarized as 

follows. 

PCE-MPC algorithm 

INPUT prediction horizon 𝑁ℎ, weighting matrices 𝑸𝑥 

and 𝑹𝑢, sampling time 𝑇𝑠, simulation time 𝑡𝑓, 

the number of random samplings 𝑁, initial 

states 𝒙0
𝑠 = 𝒙0, 𝑠 = 1,⋯ ,𝑁 

OUTPUT states 𝒙𝑠 at time 𝑛, ∀𝑠 = 1,⋯ ,𝑁 

Step 1 for 𝑠 = 1:𝑁  

Step 2 set 𝑛 = 0 

while 𝑛 < 𝑇 =
𝑡𝑓

𝑇𝑠
 do Step 4-6 Step 3 

      Step 4 
min

𝒖̅

1

2
𝒖̅𝑇𝑯𝒖̅ + 𝒖̅𝑇𝒈   s.t.   𝒍𝑏 ≤ 𝒖̅ ≤ 𝒖𝑏 

obtain 𝒖̅ = {𝒖0|𝑛, ⋯ , 𝒖𝑁ℎ|𝑛}  

     Step 5 𝒙𝑛+1
𝑠 = 𝑨𝑑(𝜉𝑠)𝒙𝑛

𝑠 + 𝑩𝑑(𝜉𝑠)𝒖0|𝑛 

Step 6 set 𝑛 = 𝑛 + 1  

Step 7 OUTPUT   {𝒙𝑛
1 , ⋯ , 𝒙𝑛

𝑁}, 𝑛 ∈ [0, 𝑇]; STOP. 

IV. NUMERICAL CASE STUDY AND DISCUSSION 

The numerical example used in this simulation is the F-

16 aircraft. The below equation gives the short-period mode 

of an F-16. 

𝒙̇(𝑡, 𝜉) = 𝑨𝑐(𝜉)𝒙(𝑡, 𝜉) + 𝑩𝑐𝒖(𝑡) (21) 

where the state vector is represented by 𝒙 = [𝛼, 𝑞, 𝑥𝐸]𝑇 ∈
ℝ𝑛𝑥 , the angle of attack is expressed by 𝛼, the pitch rate is 

symbolized by 𝑞, and the elevator state capturing actuator 

dynamics is denoted by 𝑥𝐸 . The system input, 𝒖 ∈ ℝ𝑛𝑢, 

describes the elevator deflection in degrees.  

The state and input matrices, 𝑨𝑐(𝜉) and 𝑩𝑐 in the 

presence of time-invariant parameter uncertainties are given 

by [10]. 

𝑨𝑐(𝜉) = [
−0.6398 0.9378 −0.0014
𝑎21(𝜉) 𝑎22(𝜉) 𝑎23(𝜉)

0 0 −20.2
] ; 𝑩𝑐 = [

0
0

20.2
]  

where 𝑎21(𝜉) = −1.5679(1 + 0.2𝜉), 𝑎22(𝜉) =
−0.8791(1 + 0.2𝜉), and 𝑎23(𝜉) = −0.1137(1 + 0.2𝜉). 

The values of 𝑎21(𝜉), 𝑎22(𝜉), and 𝑎23(𝜉) are assumed to 

have a uniform distribution with 20% deviation about their 

nominal values. The randomness of those three parameters is 

governed by a single random variable, i.e., 𝜉 ∈ [−1,1]. These 

uncertainties are caused by a high angle of attack that results 

in inaccurate aerodynamic coefficient modelling. The 

parameters of MPC simulation under probabilistic parameter 

uncertainties are summarized in Table II. 

TABLE II.  PARAMETERS OF MPC SIMULATION 

Parameter Value Unit 

𝑻𝒔 0.01 𝑠 

𝑵𝒉 20 (equivalent to 0.2 s) N/A 

𝒖𝒎𝒊𝒏 −25 deg 

𝒖𝒎𝒂𝒙 25 deg 

𝑹𝒖 1 N/A 

𝑸𝒙 diag(10,1000,1) N/A 

𝒙𝟎 (35, 0, 0)𝑇 N/A 

 

PCE-MPC aims to stabilize the pitch rate and angle of 

attack variables while satisfying the elevator constraint due 

to uncertain parameters in the system model. The observed 

state variables in this study are the angle of attack and pitch 

rate variables. By referring to Table I, the Legendre 

polynomials are employed to formulate the PCEs. The order 

of PCEs is set to 𝑝 = 1, 2, 3, and 4, resulting in 𝑝 + 1 terms 

in the expansion. The Galerkin projection method is used to 

compute polynomial coefficients. The inner product is 

approximated using numerical integration, namely Gauss-

Legendre quadrature [65] with 2𝑝3 − 1 quadrature points 

since there is inner product calculation, ⟨𝜙𝑘𝜙𝑙𝜙𝑚⟩ resulting 

𝑝3 order, should be evaluated. The simulation is performed 

using MATLAB R2021a on a computer with 8GB RAM and 

a core i5 processor. The errors of mean and variance values 

for each state variable at time 𝑡 can be computed by 

𝜺𝜇(𝑡) = |
𝝁(𝑡)−𝝁𝑒𝑥𝑎𝑐𝑡(𝑡)

𝝁𝑒𝑥𝑎𝑐𝑡(𝑡)
|, and 𝜺𝜎(𝑡) = |

𝝈(𝑡)−𝝈𝑒𝑥𝑎𝑐𝑡(𝑡)

𝝈𝑒𝑥𝑎𝑐𝑡(𝑡)
| 

where 𝝁𝑒𝑥𝑎𝑐𝑡(𝑡) and 𝝈𝑒𝑥𝑎𝑐𝑡(𝑡) denote the exact values of 

mean and variance at time 𝑡. The exact values of mean and 

variance are calculated as follows. 

𝝁𝑒𝑥𝑎𝑐𝑡 = 𝔼[𝒙] 

𝝈𝑒𝑥𝑎𝑐𝑡 = diag(𝔼[(𝒙 − 𝝁𝑒𝑥𝑎𝑐𝑡)(𝒙 − 𝝁𝑒𝑥𝑎𝑐𝑡)
𝑇]) 

where  𝔼[𝒙] = ∫ 𝒙𝑓𝜉𝒟𝜉
𝑑𝜉 and the exact solution of system 

(21) is given by  

𝒙(𝑡) = 𝑒𝑨𝑐(𝜉)𝑡𝒙0 + ∫ 𝑒𝑨𝑐(𝜉)(𝑡−𝜏)𝑩𝑐𝒖(𝜏)𝑑𝜏
𝑡

0
  

 The errors of mean and variance for the angle of attack 

and pitch rate due to propagating the uncertainty are shown 

in Fig. 1. 
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Fig. 1. Error convergence of angle of attack (top) and pitch rate (bottom) in 

stochastic system (21) over simulation time of 10 s. The displayed results 

are at time 10 s computed using 𝒖 = 25∘ 

Fig. 1 illustrates the errors in mean and variance for the 

angle of attack and pitch rate variables concerning the PCE 

order. It is evident that as the polynomial degree increases, 

the error values for both the mean and variance of the angle 

of attack and pitch rate decrease. The system described by Eq. 

(21) is solved using a 4th-order Runge-Kutta method over a 

simulation time of 10 seconds for a specific input. However, 

due to the escalating dimensionality associated with higher-

degree polynomials and the marginal reduction in mean and 

variance errors, the PCE is truncated at the fourth order.  

To assess the effectiveness of PCE in predicting the mean 

and variance of state variables, a comparison is made with the 

Monte Carlo method. The errors in predicting the mean and 

variance for the angle of attack and pitch rate are presented in 

Fig. 2. 

 

Fig. 2.  The error comparisons in predicting the mean and variance of angle 

of attack (top) and pitch rate (bottom) with respect to Monte Carlo samples 

over simulation time of 10 s. The displayed results are at time 10 s using the 

same input 

Fig. 2 shows the mean and variance produced by the PCE. 

The errors of 4th-order PCE are smaller than Monte Carlo 

method both angle of attack and pitch rate. For the 

information, the PCE only needs 5 samples to obtain better 

accuracy in predicting the mean and variance. Even though 

the Monte Carlo method uses 50.000 samples it cannot yield 

the same accuracy as PCE on a 4th-order basis. On the other 

hand, increasing the number of samples in Monte Carlo can 

influence a computational burden. In contrast to the 4th-order 

PCE, it only needs 3.02 s for solving the system (12) using 

the Runge-Kutta method. The computational time with the 

different number of samples is shown in Table III. 

TABLE III.  COMPUTATIONAL TIME OF MONTE CARLO WITH THE 

DIFFERENT NUMBER OF SAMPLES 

Number of samples Computational time (s) 

10 0.09 

50 0.33 

100 0.55 

500 2.73 

1000 4.61 

5000 21.70 

10000 43.33 

50000 223.35 

 

A. PCE-MPC Simulations 

To tackle the sensitivity of PCE-MPC under varying 

initial conditions, we establish two simulation variations as 

follows. 

• Scenario 1: 𝒙𝟎 = (35,0,0)𝑇 

• Scenario 2: 𝒙𝟎 = (−10,−10,0)𝑇 

Based on the obtained results previously, the PCE-MPC 

is designed using a fourth-order basis. The optimal inputs by 

solving the QP optimization (20) of the PCE-MPC problem 

(19) under various initial conditions are shown in Fig. 3.  

 

Fig. 3. Optimal inputs by solving the PCE-MPC optimization in (19) using 

quadratic programming under 1000 Monte Carlo simulation runs 

Fig. 3 shows the proposed method can satisfy the given 

input constraints, |𝒖(𝑡)| ≤ 25∘. The elevator adjustment in 

the beginning time can be caused by the controller's way of 

returning the angle of attack from the initial values to the 

original points. Using the control input depicted in Fig. 3, the 

angle of attack and pitch rate trajectories under 1000 Monte 

Carlo simulation runs with different initial conditions are 

shown in Fig. 4. 

Fig. 4 displays the pitch rate and angle of attack responses 

with different initial conditions calculated among 1000 

samples of 𝑎21(𝜉), 𝑎22(𝜉), and 𝑎23(𝜉) as a function of 𝜉. 

Based on Fig. 4, it's evident that PCE-MPC demonstrates 
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robust performance as both the angle of attack and pitch rate 

responses converge to their original values in both scenario 1 

and scenario 2. 

Fig. 5 illustrates histograms of the angle of attack and 

pitch rate at 5 s, 10 s, 15 s, and 20 s under different initial 

conditions. From Fig. 5, it is apparent that both the angle of 

attack and pitch rate exhibit minimal variance initially, which 

diminishes over time, approaching zero. This indicates that 

PCE-MPC effectively mitigates the impact of parameter 

uncertainties in the dynamical system, ensuring convergence 

to the original points across all uncertainty realizations, as 

depicted in Fig. 5. 

 

Fig. 4. The angle of attack and pitch rate response with parameter 

realizations calculated under 1000 Monte Carlo simulation runs and various 

initial conditions 

 

Fig. 5. Histograms of the angle of attack (top) and pitch rate (bottom) under 

1000 Monte Carlo simulation runs and various initial conditions at different 

time 

 

Fig. 4 displays the pitch rate and angle of attack responses 

with different initial conditions calculated among 1000 

samples of 𝑎21(𝜉), 𝑎22(𝜉), and 𝑎23(𝜉) as a function of 𝜉. 

Based on Fig. 4, it's evident that PCE-MPC demonstrates 

robust performance as both the angle of attack and pitch rate 

responses converge to their original values in both scenario 1 

and scenario 2. 

Fig. 5 illustrates histograms of the angle of attack and 

pitch rate at 5 s, 10 s, 15 s, and 20 s under different initial 

conditions. From Fig. 5, it is apparent that both the angle of 

attack and pitch rate exhibit minimal variance initially, which 

diminishes over time, approaching zero. This indicates that 

PCE-MPC effectively mitigates the impact of parameter 

uncertainties in the dynamical system, ensuring convergence 

to the original points across all uncertainty realizations, as 

depicted in Fig. 5. 

B. Comparison Between MPC and PCE-MPC 

To assess the performance of PCE-MPC, it is crucial to 

compare it with standard MPC. We ensure a fair comparison 

by setting identical initial conditions and controller 

parameters between PCE-MPC and standard MPC. The 

results of this comparison are presented in Fig. 6 and Fig. 7, 

illustrating state responses and histograms, respectively. 

Fig. 6 and Fig. 7 depict that both MPC and PCE-MPC 

exhibit negligible differences, showcasing nearly identical 

performance. Overall, the effectiveness of these control 

methods hinges on system conditions and uncertainties. In 

this scenario, the comparable performance between MPC and 

PCE-MPC may be attributed to factors like the system's 

uncertainties not significantly impacting the performance of 

SMPC, and the system itself being relatively simple without 

a complex uncertainty structure. The computational 

complexity between MPC and PCE-MPC is given in Table 

IV. 

 

Fig. 6. The angle of attack and pitch rate responses between MPC and PCE-

MPC under 1000 Monte Carlo simulation runs 
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Fig. 7. The angle of attack and pitch rate histograms of MPC and PCE-MPC 

under 1000 Monte Carlo simulation runs at different time 

TABLE IV.  COMPUTATIONAL TIME BETWEEN MPC AND PCE-MPC FOR 

EACH RANDOM SAMPLING 

Methods Computational time (s) 

MPC 8.97 

PCE-MPC 9.76 

 

Table IV examines the time taken to solve MPC and PCE-

MPC optimizations using QP for each random sampling. It is 

evident that MPC exhibits lower computational complexity 

compared to PCE-MPC. This is attributed to the higher 

dimensionality of the system when employing the PCE 

method with the ISP approach to construct a deterministic 

system. 

V. CONCLUSION 

 This paper effectively showcases the design and 

application of PCE-MPC in the presence of time-invariant 

probabilistic parameters. Initially, the system with 

probabilistic parameters undergoes conversion into a 

deterministic one via an ISP approach. This transformation 

results in a system dimension larger than the original so that 

it affects computational efficiency. The accuracy of PCE in 

predicting the mean and variance of state variables is 

compared to the Monte Carlo method. The controller design 

proposed relies on a surrogate model, established through the 

PCE approach under assumptions outlined in Section III. The 

QP framework is utilized to obtain optimal control inputs by 

solving the surrogate optimization problem constructed using 

the PCE method. The practical demonstration of the proposed 

controller focuses on the short-period mode of the F-16 

aircraft. The simulation results indicate that PCE-MPC 

effectively stabilizes angle of attack and pitch rate responses 

under parameter uncertainty across various initial conditions. 

Considering the complexity concerns, it is recommended to 

scrutinize the computational efficiency of the proposed 

method using the QP framework and alternative approaches. 

Furthermore, revisiting the comparison between MPC and 

PCE-MPC, this time incorporating a more complex system 

like longitudinal model dynamics, is advisable. Another 

potential challenge lies in integrating chance constraints of 

the states into the PCE-MPC method, as in certain cases, 

considering state constraints is vital in controller design 

processes. By utilizing chance constraints, violations of state 

constraints can be mitigated. In the aerospace field, external 

disturbances such as turbulence should be considered in 

actual implementation. Additionally, the PCE-MPC method 

represents a significant advancement in predictive control, 

offering promising applications not only in aerospace but also 

in fields like chemical processes and finance where parameter 

uncertainties are prevalent. 
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