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Abstract—Background: Deep learning technologies, 

especially Convolutional Neural Networks (CNNs), are 

revolutionizing the field of medical imaging by providing 

advanced tools for the accurate classification of pulmonary 

diseases from chest X-ray (CXR) images. In our study, we 

employed both traditional CNN models and MobileNet 

architectures to classify various chest diseases using CXR 

images. Initially, a conventional CNN model was utilized to 

estab- lish a baseline accuracy. Subsequently, we adopted 

MobileNet, known for its efficiency in processing image data, to 

enhance classification performance. To further optimize the 

system, we applied Energy Valley Optimization (EVO) for 

hyperparameter tuning. The baseline CNN model achieved an 

accuracy of 85.91%. The implementation of MobileNet 

significantly improved this metric, reaching a pre-optimization 

accuracy of 93.30%. Post-EVO optimization, the accuracy was 

further enhanced to 94.18%. Comparative analysis of accuracy, 

precision, recall, F1-score, and ROC curves was conducted to 

illustrate the impact of hyperparameter tuning on model 

performance in medical diagnostics. Our findings demonstrate 

that while standard CNNs provide a solid foundation for CXR 

image classification, the integration of MobileNet architectures 

and EVO for hyperparameter adjustment significantly boosts 

diagnostic accuracy. This advancement in automated medical 

image analysis could potentially transform the landscape of 

pulmonary disease diagnosis, offering a more robust framework 

for accurate and efficient patient care. 

Keywords—Deep Learning; Convolutional Neural Networks; 

MobileNet; Chest X-Ray Classification; Hyperparameter 

Optimization; Energy Valley Optimization; Medical Imaging; 

ROC Curve. 

I. INTRODUCTION  

As 2019 drew to a close, the world began grappling with 

the outbreak of a new coronavirus disease, subsequently 

named COVID-19. This virus, which emerged in the city of 

Wuhan in Eastern China in December 2019, quickly 

escalated into a global crisis. By early 2020, the World Health 

Organization (WHO) declared it a “Public health emergency 

of international concern,” and by March 2020, it was 

recognized as a pandemic [1]. By March 2021, COVID-19 

had affected approximately 118.7 million people globally, 

resulting in around 2.6 million deaths. The virus primarily 

manifests as pneumonia, accompanied by symptoms like 

fatigue, dry cough, and fever. One of the main diagnostic 

tools is the reverse transcription polymerase chain reaction 

(RT-PCR), which involves testing respiratory samples. The 

results from this test can take from a few hours up to two days 

to process. Despite its reliability, this method is both costly 

and time-consuming [2]. Consequently, researchers are 

actively seeking alternative methods for virus detection. As 

of the current knowledge, there is no definitive medical 

treatment specifically for COVID-19 [3]. 

The advancement of artificial intelligence (AI) has 

significantly revolutionized the diagnosis of various diseases, 

with its remarkable capabilities in automating image 

classification tasks. This is largely attributed to the various 

machine learning techniques, which are designed to learn and 

make informed decisions from extensive datasets. AI 

operates by analyzing this data, leading to its application in 

tasks traditionally requiring human intelligence, such as 

speech recognition, language translation, and visual 

perception [4], [5]. 

Deep learning, a subset of machine learning, is 

particularly noteworthy for its focus on automatic feature 

extraction and image classification. This approach has been 

instrumental in numerous fields, especially in healthcare. It 

enables the creation of models that offer precise predictions 

and classifications of different diseases based solely on image 

analysis. These diseases include, but are not limited to, breast 

cancer [6], liver ailments [7], colon cancer [8], brain tumors 

[9], skin cancer [10], lung cancer [11], pneumonia [12], and 

more recently, in the diagnosis of COVID-19. Deep learning 

distinguishes itself from traditional machine learning by its 

ability to form more abstract representations of data as the 

network’s depth increases. This capability allows for 

automatic feature extraction, leading to models that are not 

only more accurate but also require minimal to no human 

intervention. Unlike conventional machine learning 

algorithms that need specified features, deep learning 

algorithms derive these features through a sequence of non-

linear functions, intricately combined to optimize model 

accuracy. 

Recent research in the field of deep learning has focused 

extensively on its application in classifying COVID-19 using 

various imaging techniques. A significant body of work has 

explored the use of chest X-rays for this purpose, as 

highlighted in studies [13]–[15]. Additionally, there’s a 

growing interest in employing computed tomography (CT) 

scans for similar diagnostic purposes, with several studies 

[16]–[22] delving into this area. 
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Another avenue of research has been the detection and 

diagnosis of COVID-19 using lung dataset analyses, as 

shown in studies [5], [23]. Some of these studies have 

implemented convolutional neural networks (CNNs), albeit 

with limited datasets, to classify and detect COVID-19 from 

chest X-ray images [24], [25]. There’s also a notable focus on 

distinguishing COVID-19 from other chest-related diseases 

like pneumonia, with several studies [26]–[30] dedicated to 

this differentiation. Importantly, research indicated in Ref. 

[31] suggests that while chest X-rays may be less effective in 

the initial stages of COVID-19, CT scans can be useful even 

before symptoms manifest [32]. A challenge in diagnosing 

using chest CT or X-ray images lies in the potential overlap 

of symptoms between COVID-19, pneumonia, and chest 

cancer, especially when the diagnosis is made by less 

experienced individuals or in the absence of a comprehensive 

patient history. This underscores the need for automating the 

diagnostic process, ensuring accurate identification of these 

diseases. 

The utilization of deep learning in medical imaging is 

primarily motivated by the urgent need to enhance diagnostic 

accuracy in the detection of pulmonary diseases [33]–[40], a 

need that has become even more pressing in the wake of the 

COVID-19 pandemic. Traditional diagnostic methods, while 

effective, often require significant time and resources, 

leading to delays in treatment and increased risk of disease 

transmission. In contrast, deep learning offers a faster, more 

efficient alternative by leveraging complex algorithms to 

analyze and interpret medical images with a high degree of 

precision [41]–[54]. This technology not only promises to 

expedite the diagnostic process but also aims to improve the 

accuracy of diagnoses, thereby facilitating timely and 

appropriate medical interventions. The potential of deep 

learning to automate and refine the analysis of medical 

images represents a significant advancement in the fight 

against pulmonary diseases, including COVID-19, by 

providing healthcare professionals with powerful tools to 

detect and differentiate between various conditions quickly 

and accurately. The advent of this technology marks a pivotal 

moment in medical diagnostics, where the emphasis on speed 

and precision can significantly impact patient outcomes and 

public health at large. 

The COVID-19 pandemic, first identified in Wuhan, 

China in December 2019, rapidly escalated from a regional 

outbreak to a global crisis, with the World Health 

Organization declaring it a Public Health Emergency of 

International Concern by January 2020 and a pandemic by 

March 2020. As of March 2021, the virus had affected nearly 

118.7 million people and claimed approximately 2.6 million 

lives worldwide [55], manifesting not only as a health crisis 

but also as a significant disruptor to economies and societies 

at large. The urgency for efficient diagnostic methods became 

paramount as the standard RT-PCR testing, despite its 

reliability, posed limitations due to its time-consuming and 

costly nature, which led to diagnostic bottlenecks and 

strained healthcare systems globally. 

In this climate, the potential of Artificial Intelligence (AI) 

and deep learning became evident, offering a beacon of hope 

for addressing these diagnostic challenges. AI’s capacity to 

quickly analyze vast datasets and extract complex patterns 

promised to accelerate and enhance the precision of COVID-

19 diagnostics. Beyond image classification, AI’s broader 

impact on healthcare is multifaceted, extending to 

diagnostics, treatment planning, and patient care, 

revolutionizing traditional approaches with its predictive 

analytics and automation capabilities. Specifically, deep 

learning’s prowess in medical imaging is underscored by its 

automated feature extraction, which has been pivotal in 

improving disease classification accuracy, as evidenced by 

various successful applications documented in recent 

literature. Our research nestles within these advancements, 

aiming to bridge a critical gap by enhancing the accuracy and 

efficiency of COVID-19 detection from chest X-ray images. 

This study not only endeavors to bolster the fight against the 

current pandemic through improved diagnostic tools but also 

contributes to the foundation of AI in healthcare, setting the 

stage for future innovations that could reshape patient 

outcomes and public health strategies in the wake of such 

unprecedented global challenges. 

II. RELATED WORK 

In the field of medical imaging, particularly for COVID-

19 detection, deep learning has shown significant promise, 

with several studies utilizing various methodologies and 

datasets to achieve high accuracy levels. 

A notable study [56] applied three different convolutional 

neural network (CNN) models for detecting COVID-19 

pneu- monia in patients using chest X-ray radiographs. These 

models, particularly ResNet50, demonstrated high 

classification accuracy (98%) without the need for feature 

extraction or selection. Similarly, Ref. [27] employed a 

generative adversarial network (GAN) coupled with fine-

tuned deep transfer learning approaches like AlexNet, 

GoogLeNet, Squeeznet, and Resnet18, specifically for chest 

X-ray image analysis. The use of GANs helped mitigate 

overfitting issues and expanded the dataset of 5863 X-ray 

images. 

In another approach, Ref. [57] used digital X-ray images 

to differentiate between COVID-19 and pneumonia patients. 

This study utilized four pre-trained CNNs: ResNet18, 

AlexNet, SqueezeNet, and DenseNet201, and employed 

image augmentation techniques to enlarge the dataset for 

training. The accuracy achieved was 98 CT scans have also 

been instrumental in COVID-19 detection. Ref. [58] used 

transverse section CT images to distinguish COVID-19 

patients from others, such as those with influenza-A. This 

study involved 618 CT samples and utilized two three-

dimensional (3D) CNN models, achieving an accuracy of 

86.7%. 

Ref. [16] introduced a weakly-supervised deep learning- 

based model named DeCoVNet, which was trained using 

segmented lung regions from CT images. This model reached 

a detection accuracy of 90.1%. Additionally, a CT scan 

COVID- 19 dataset was compiled in Ref. [17] to aid in virus 

detection. The authors used this dataset to train a deep CNN 

model, achieving an accuracy of 84.7%. 

Ref. [28] proposed a rapid COVID-19 diagnosis method 

using CNNs applied to CT images, where the highest 

accuracy (99.51%) was achieved by ResNet-101. 
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In the realm of chest X-ray analysis, Ref. [59] proposed a 

classification schema that included both multiclass and 

hierarchical classifications for identifying COVID-19 and 

pneumonia cases, achieving an F1-Score of 65% and 0.89, 

respectively. 

Lastly, Ref. [60] focused on detecting COVID-19 from 

chest X-rays using a small dataset. The study utilized pre-

trained ResNet50 and VGG-16 models alongside their CNN, 

yielding an accuracy of 91.24%. 

These varied approaches underline the versatility and 

potential of deep learning in medical imaging, particularly in 

the timely and accurate detection of COVID-19 using both 

X-ray and CT images. 

TABLE I.  SUMMARY OF RELATED WORK ON DEEP LEARNING FOR 

COVID-19 DETECTION 

Reference Method 
Image 
Type 

Accuracy 

Ref. [56] 
ResNet50, InceptionV3, Inception- 

ResNetV2 
Chest X-ray 

98%, 
87% 

97%, 

Ref. [27] 
GAN with AlexNet, GoogLeNet, 

Squeeznet, Resnet18 
Chest X-ray N/A 

Ref. [57] 
ResNet18, AlexNet, SqueezeNet, 

DenseNet201 
Chest X-ray 98% 

Ref. [58] 
3D CNN models (ResNet23, 

etc.) 
CT 86.7% 

Ref. [16] 
DeCoVNet (Weakly- supervised 

model) 
CT 90.1% 

Ref. [17] 
Deep CNN model (Transfer 

learning) 
CT 84.7% 

Ref. [28] 
Various CNNs including 

ResNet-101 
CT 99.51% 

Ref. [59] 
Multiclass and Hierarchical 

Classification 
Chest X-ray 

F1-Score: 
65%, 0.89 

Ref. [60] ResNet50, VGG-16 Chest X-ray 91.24% 

 

In the landscape of AI-driven diagnostics, various 

approaches have been adopted to leverage deep learning for 

COVID-19 detection, as summarized in the related works. 

ResNet50 and its derivatives appear to be a popular choice, 

with an impressive accuracy of 98% reported in Ref. [56], 

which is consistent with the high accuracy levels in other 

studies such as Ref. [57]. These models have been 

predominantly applied to chest X-ray images, a testament to 

their capability in capturing the nuanced features indicative 

of pulmonary diseases. However, the use of 3D CNN models 

in CT imaging, as seen in Ref. [58] and Ref. [16], signifies a 

broader scope, accommodating volumetric data analysis, 

albeit with slightly reduced accuracy levels. 

The exploration of GANs in conjunction with well- 

established architectures like AlexNet and GoogLeNet, 

though not explicitly quantified for accuracy in Ref. [27], 

presents a novel approach to image synthesis and 

augmentation, underscoring the creative avenues explored in 

the field. Similarly, the application of weakly-supervised 

models in Ref. [16] and transfer learning in Ref. [17] reflects 

the ongoing efforts to mitigate the challenges posed by 

limited labeled data. 

These studies serve as a cornerstone for our motivation to 

pursue a multifaceted disease classification framework. By 

drawing inspiration from the high accuracy levels achieved 

with ResNet models and the adaptability showcased by 

various CNN architectures, we sought to build a 

comprehensive model that does not just focus on COVID-19 

but extends to other diseases as well, reflecting the 

multifarious nature of chest pathologies. To further refine our 

model, we employed Energy Valley Optimization (EVO), an 

advanced technique for hyperparameter tuning, which has 

demonstrated its potential in enhancing model performance 

in studies like Ref. [28]. The successful deployment of 

ResNet50 and VGG-16 in Ref. [60] for chest X-ray analysis, 

achieving over 91% accuracy, further reaffirms the viability 

of sophisticated CNN models for medical image analysis. 

The collective insights from these works have galvanized 

our approach, where we integrate the strengths of proven 

architectures and incorporate EVO to meticulously fine-tune 

our model parameters, ensuring that our diagnostic tool is not 

only accurate but also robust and generalizable across a 

spectrum of pulmonary diseases. 

III. METHODOLOGY 

Our methodology adopts a structured approach (as shown 

in Fig. 1) to address the classification problem presented by 

the dataset consisting of various classes labeled as 𝑐1, 𝑐2, . . , 

𝑐𝑛. The process begins with preprocessing the data, where 

raw data is transformed and readied for subsequent stages of 

the model building. 

 

Fig. 1. General flowchart 

Following preprocessing, we leverage a Convolutional 

Neural Network (CNN) architecture to learn the features of 

the dataset. CNNs are especially proficient in understanding 

the spatial hierarchy in images, making them an excellent 

choice for image classification tasks. 

We then introduce MobileNet, a pre-trained model known 

for its efficiency on mobile devices with limited 

computational capacity. MobileNet’s architecture is fine-

tuned to accommodate our specific dataset and classification 

goals. 

Additionally, we incorporate an evolutionary algorithm, 

termed Energy Valley Optimizer (EVO), which is designed 

to optimize the network’s hyperparameters systematically. 
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EVO aids in navigating the complex search space to find the 

best parameters that contribute to the highest classification 

accuracy. 

The combination of CNN, MobileNet, and EVO 

represents a hybrid approach that balances the need for 

accuracy and computational efficiency. In the next 

subsection, we will delve deeper into the intricacies of each 

component and the rationale behind their selection, providing 

a comprehensive understanding of their roles within our 

methodology. 

A. Dataset Overview 

The compilation of datasets available provides an 

invaluable repository for the advancement and validation of 

machine learning (ML) models in the realm of medical 

imaging analysis. These datasets primarily consist of chest 

radiographs (CXR) and target an array of pulmonary 

disorders, encompassing COVID-19, tuberculosis (TB), and 

pneumothorax, among others. 

Within the ambit of the COVID-Net initiative, the 

COVIDx CXR-4 Dataset emerges as a dynamically evolving 

compilation, currently amassing tens of thousands of images 

from an extensive patient cohort. The dataset’s objective is to 

discern various pneumonic manifestations, with a particular 

emphasis on those attributable to COVID-19. This dataset is 

distinguished by its comprehensive scope, coupled with its 

methodically segregated validation and testing subsets, 

rendering it an indispensable tool for investigative endeavors. 

The Tuberculosis Chest X-ray Database is the product of 

an international consortium and encompasses a plethora of 

images indicative of TB, alongside normative counterparts. 

Accessibility to this dataset varies; certain portions are 

openly available, while access to others is conditional upon 

agreements. This dataset has garnered acclaim for its 

pronounced accuracy in delineating TB-positive instances 

from normal CXR images. Focused datasets such as the 

Pneumothorax Binary Classification Task are dedicated to 

the dichotomous categorization of pneumothorax presence. 

These datasets are characterized by the meticulous 

annotations furnished by medical experts, exemplifying the 

synergetic interplay between ML communities and medical 

practitioners. 

The National Institutes of Health Chest X-Ray Dataset is 

noted for its magnitude, encompassing in excess of 100,000 

radiographs. The disease labels within this dataset are derived 

via text mining from corresponding radiological reports, 

thereby presenting a substantial substrate for weakly 

supervised learning modalities in medical diagnostics. 

Concomitantly, datasets like the covid normal viral 

opacity v2 and X Ray Report proffer a spectrum of CXR 

images, which may be accompanied by exhaustive 

radiological narratives, thereby augmenting the contextual 

framework for model training. The Chest X-Ray Worldwide 

Datasets, and in particular the ChestX-ray8 dataset, offer a 

voluminous collection of images annotated with multiple 

labels for diverse pathologies, thereby facilitating the 

development of multi-label classification models. 

The COVID-19 Radiography Database is particularly 

notable for its comprehensiveness, encompassing depictions 

of COVID- 19, non-pathological cases, and viral pneumonia. 

Its consistent updates with novel X-ray images ensure its 

enduring relevance and utility for progressive research. 

The recurrent invocation of the Tuberculosis Chest X-

rays (Shenzhen) dataset reaffirms its criticality and implies a 

targeted application for TB assessment in CXR imaging. 

The dataset is fundamental to the robust evaluation of our 

model’s performance. To ensure a reliable assessment, we 

meticulously divided our dataset into training and testing sets 

using the train-test split method. This partitioning involved 

allocating 80% of the data to the training set and reserving 

the remaining 20% for testing. Importantly, we employed a 

random seed (random state=42) and enabled data shuffling 

during the split process to guarantee an unbiased distribution 

of data points across both sets. This approach mitigates any 

potential bias or patterns that could arise if the data were not 

randomized. 

In evaluating our model, we adopt a comprehensive set of 

performance metrics to gauge its effectiveness accurately. 

These metrics encompass not only the commonly used 

accuracy but also precision, recall, and F1-score, which are 

particularly relevant in the medical field where false positives 

and false negatives can have critical implications for patient 

care. By examining precision, we assess the model’s ability 

to minimize false positives, ensuring that positive predictions 

are indeed accurate. Recall evaluates the model’s capacity to 

identify all relevant instances, reducing false negatives. The 

F1-score strikes a balance between precision and recall, 

offering a holistic view of the model’s predictive 

performance. These chosen metrics collectively provide a 

thorough evaluation of our model’s accuracy, its ability to 

minimize errors, and its overall effectiveness in classifying 

chest X-ray images. 

The selection of specific datasets for our COVID-19 

detection task was driven by a strategic aim to enhance the 

robustness and generalizability of our model. By integrating 

datasets that span a diverse range of pulmonary disorders, 

including COVID-19, tuberculosis, and pneumothorax, we 

ensure our model is exposed to a wide variety of chest 

radiographic presentations. This diversity is crucial for 

training our model to discern subtle differences between these 

conditions, which often manifest with overlapping 

radiographic features. The inclusion of datasets such as 

COVIDx CXR-4 and the National Institutes of Health Chest 

X-Ray Dataset not only provides a rich array of COVID-19 

specific images but also offers exposure to a broad spectrum 

of other pulmonary abnormalities. This comprehensive 

approach allows our model to learn from a vast and varied 

dataset, significantly reducing the risk of overfitting to 

specific pathologies and enhancing its diagnostic accuracy 

across different conditions. Moreover, the meticulous 

annotations and validation by medical experts embedded 

within these datasets ensure high-quality data, further 

contributing to the development of a reliable and effective 

tool for the early detection of COVID-19 and other 

pulmonary diseases. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 431 

 

Omar Nadhim Mohammed, Enhancing Pulmonary Disease Classification in Diseases: A Comparative Study of CNN and 

Optimized MobileNet Architectures 

Collectively, these datasets represent a pivotal 

accumulation of data, integral for investigators aspiring to 

elevate the accuracy and efficiency of automated medical 

diagnostic processes through enhanced image analysis, 

particularly concerning pulmonary maladies discernible in 

CXR images. The active participation of medical experts in 

the annotation and validation processes of these datasets 

underscores their significant potential to bolster 

advancements in computer-assisted detection and diagnostic 

applications within the medical imaging sector. 

B. Data Preprocessing Methodology 

The data preprocessing methodology delineated herein 

pertains to the pivotal preparation phase of chest radiographs 

(CXR) for in depth analysis via machine learning (ML) 

algorithms. This phase is quintessential, for it entails the 

conversion of unprocessed data into a standardized format, 

thereby augmenting the efficiency and accuracy of predictive 

models. 

Commencing with the procurement phase, datasets are 

downloaded via designated access protocols, post which, data 

extraction is executed using specialized software tools to 

decompress the image files, rendering them amenable for 

further processing. Subsequent to acquisition, data 

management ensues with meticulous navigation through the 

dataset’s hierarchical structure. This process entails the 

methodical categorization of images into discrete folders, 

each correlating to specific pathological or normative classes 

pertinent to the research objectives. Quantitative assessment 

of the image distribution across various classes is performed 

to ascertain the data’s dispersion, which is then graphically 

delineated through bar plots, offering an illustrative overview 

of the class distribution and potential imbalances. 

C. Elaboration of Convolutional Neural Network 

Architecture 

The architectural framework of our Convolutional Neural 

Network (CNN) is meticulously crafted to distill the intricate 

features embedded within chest radiographic imagery, 

enabling precise categorization. The CNN’s construct 

comprises a stratified arrangement of layers, each serving a 

definitive purpose in the extraction and refinement of features 

across successive levels of complexity. 

The network’s inception is marked by an input layer, 

poised to receive the preprocessed images conforming to the 

stipulated dimensional criteria essential for the network’s 

operational efficacy. The ensuing convolutional strata are the 

crux of feature detection. Herein, a multitude of filters—

mathematically referred to as kernels—traverse the image 

matrix in a convolutional operation that sieves out salient 

patterns, encompassing edges, contours, textures, and other 

pivotal visual elements. 

Sequential to the convolutional operation is the 

application of a non-linear activation paradigm, 

predominantly the Rectified Linear Unit (ReLU). This 

function imparts non-linearity to the network’s learning 

trajectory, thereby empowering it to assimilate and interpret 

intricate and convoluted patterns. 

Subsequent to each convolutional interaction, a pooling 

substrate—commonly a max-pooling layer—commences the 

reduction of the spatial dimensionality of the resultant feature 

maps. This act of downsampling epitomizes the 

simplification of the extracted features, concurrently 

curtailing the computational exigencies, thus enhancing the 

network’s efficiency. 

With the network’s progression, an ascending gradation 

in the filter count within convolutional layers is observed, 

which is indicative of the network’s capacity to discern an 

expansive repertoire of features. The profundity of these 

layers facilitates the apprehension of higher-order, abstract 

features that embody sophisticated representations of the 

input data. 

Succeeding the convolutional and pooling hierarchy is the 

flattening of the feature maps into a one-dimensional vector. 

This vector forms the precursor to the densely connected 

layers, which epitomize the network’s deductive reasoning. 

These dense layers, or fully connected layers, are the nexus 

at which the synthesis of features occurs, culminating in the 

network’s classification judgments. 

In our architecture, we intersperse dropout layers amidst 

the dense layers to forestall the phenomenon of overfitting. 

These layers randomly inactivate a subset of neurons during 

the training phase, ensuring that the network’s predictive 

capability is not overly reliant on particular neuronal 

pathways and thus maintains generalizability. 

The network’s architecture culminates with a dense layer 

that employs a softmax activation function. This terminal 

layer generates a probabilistic distribution over the class 

labels, yielding the probability of the input image’s affiliation 

to each class. 

The architecture’s denouement involves the network’s 

compilation, where we designate a loss function and an 

optimizer. The loss function quantifies the divergence 

between the network’s predicted outputs and the actual 

labels, steering the network through the training phase to 

minimize this discrepancy. The optimizer algorithm, in turn, 

adjusts the network’s weights in reaction to the loss 

function’s directives, methodically ameliorating the model’s 

accuracy. 

In essence, our CNN architecture is an orchestrated 

cascade of computational layers, each with a delineated role 

in transmuting the raw pictorial input into a decisive 

classification output. This hierarchical, structured 

methodology enables the network to incrementally learn from 

the data, achieving nuanced and detailed feature 

representation conducive to accurate classification. 

In developing our baseline model, we have opted for a 

CNN architecture that integrates both innovation and proven 

efficacy in handling medical imaging tasks. Prior to 

introducing the CXR images into our CNN, a series of pre-

processing steps are meticulously undertaken to optimize the 

images for analysis. This includes resizing the images to a 

uniform dimension to ensure consistency across the dataset, 

a critical factor given the CNN’s requirement for fixed-size 

inputs. Additionally, we apply image normalization to scale 

pixel values to a range that enhances the network’s ability to 

converge more rapidly during training, thus improving the 

efficiency of the learning process. Noise reduction techniques 
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are also employed to minimize artifacts that could potentially 

obscure or distort the salient features within the images, 

ensuring that the convolutional layers can more effectively 

identify and extract meaningful patterns. 

Our CNN architecture for the baseline model is 

specifically tailored to navigate the complexities inherent in 

CXR images. It begins with a series of convolutional layers 

equipped with filters of varying sizes to capture a broad 

spectrum of features, from fine-grained details to more 

abstract characteristics. These layers are strategically 

designed to increase in depth and complexity, allowing the 

network to build a comprehensive fea- ture hierarchy. To 

combat the vanishing gradient problem and facilitate deeper 

network architectures, we incorporate batch normalization 

after each convolutional layer, which stabilizes the learning 

process by maintaining the mean output close to 0 and the 

output standard deviation close to 1. 

The architecture’s adaptability and robustness are further 

enhanced through the inclusion of advanced techniques such 

as data augmentation, which artificially expands the training 

dataset by applying random transformations to the images. 

This not only prevents overfitting but also ensures that the 

model is exposed to a wider variety of imaging scenarios, 

mirroring the diversity encountered in clinical settings. 

Through these meticulously designed pre-processing steps 

and the strategic layering of convolutional, activation, 

pooling, and dense layers, our CNN architecture establishes 

a strong foundation for the precise classification of 

pulmonary diseases from CXR images, setting a high 

benchmark for accuracy and reliability in medical imaging 

diagnostics. 

D. MobileNet and Energy Valley Optimization 

1) MobileNet 

In the realm of deep learning, the MobileNet architecture 

stands as a paradigm of efficiency, particularly suited to the 

constraints of mobile devices due to its lightweight and 

computationally economical design. Within the scope of our 

investigation, MobileNet is employed as a foundational 

model, pre-trained on the ImageNet dataset, thereby 

leveraging the vast array of features learned from this 

extensive image repository. This transfer learning approach 

enables the application of a rich feature extraction mechanism 

to the domain-specific task of chest X-ray image 

classification. 

The choice of MobileNet as a pivotal component of our 

study is rooted in its exceptional efficiency in processing 

picture data, a characteristic that significantly contributes to 

the improvement in diagnostic accuracy of chest X-ray 

(CXR) image classification. MobileNet stands out due to its 

stream- lined architecture, which is specifically designed to 

minimize computational overhead without substantially 

compromising the model’s performance. This efficiency is 

achieved through the use of depthwise separable 

convolutions, a technique that breaks down the conventional 

convolution operation into a depthwise convolution followed 

by a pointwise convolution. This approach drastically 

reduces the number of parameters and computational 

complexity, enabling the model to run efficiently even on 

devices with limited processing power. 

The inherent trade-offs between model complexity and 

computational efficiency are critically evaluated in the 

deployment of MobileNet. While more complex models may 

potentially achieve higher accuracy, their extensive 

computational demands limit practical applicability, 

especially in real-world medical settings where rapid 

processing is often crucial. MobileNet’s design navigates 

these trade-offs adeptly, offering a balanced solution that 

maintains a high level of accuracy while ensuring the model 

remains lightweight and fast. This balance is particularly 

beneficial in the context of medical imaging, where the ability 

to quickly and accurately process vast quantities of image 

data can significantly expedite diagnosis and treatment 

processes. Moreover, MobileNet’s adaptability allows for 

fine-tuning and optimization to further enhance accuracy 

without a corresponding increase in computational burden, 

making it an ideal choice for the classification of pulmonary 

diseases from CXR images. Through this strategic selection 

of MobileNet, our study leverages the advancements in deep 

learning architectures to push the boundaries of efficiency 

and accuracy in medical diagnostics. 

The adaptability of MobileNet is further refined by 

freezing the base convolutional layers, thus preserving the 

generic features, while appending a series of dense layers 

tailored to the particularities of our classification task. These 

additional layers, interspersed with dropout regularization, 

serve to mitigate overfitting by promoting the generalization 

capability of the model. The architecture culminates with a 

softmax layer, ensuring the output is a probabilistic 

distribution over the possible classes, providing a clear basis 

for decision-making. 

In our model, MobileNet serves as a powerful feature 

extractor, leveraging pre-trained weights from the ImageNet 

dataset to capitalize on a wide array of features recognizable 

in general visual recognition tasks. By harnessing these pre-

trained features, we provide our model with a rich 

understanding of visual patterns, which is then fine-tuned to 

the specificities of chest X-ray image classification. 

We adapt MobileNet for our purposes by freezing the 

base convolutional layers to retain the learned patterns from 

Ima- geNet, thus preventing the overwriting of valuable 

generalized features during initial training rounds. Following 

this, we append several dense layers, which serve as fully-

connected layers that enable the model to learn higher-level 

features specific to our dataset. This includes features unique 

to pulmonary conditions visible in X-ray images, such as 

opacities, nodules, and other critical markers relevant to 

diagnosis. 

The inclusion of dropout regularization is particularly 

important in our architecture. By randomly deactivating a 

portion of the neurons during training, dropout helps to 

prevent overfitting, ensuring that our model remains robust 

and can generalize well to new, unseen data. This technique 

effectively encourages the model to develop a more 

distributed representation of the data, reducing the model’s 

reliance on any single neuron and thus promoting redundancy 

within the network. 

Through this architecture, our model not only becomes 

adept at identifying chest pathologies but also gains a degree 
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of resilience against overfitting, making it a reliable tool for 

medical professionals in the diagnosis of chest-related 

diseases from X-ray images. 

To train this augmented MobileNet model, we employ the 

Adam optimizer, a stochastic gradient descent method known 

for its adaptive estimation of first and second-order moments, 

facilitating rapid convergence to the optimal weights. The 

learn- ing rate is fine-tuned to balance the trade-off between 

training speed and the risk of overshooting minimal loss 

landscapes. 

Our training regimen incorporates a validation split, 

affording us insights into the model’s performance and its 

generalization to unseen data throughout the training epochs. 

This process is visually represented through accuracy and 

loss plots, tracing the model’s learning trajectory and 

providing an empirical basis for evaluating model 

convergence. 

Upon training completion, the model’s predictive 

prowess is subjected to a rigorous evaluation against the test 

dataset. The performance metrics include an accuracy score, 

which offers a direct measure of the model’s classification 

precision. The confusion matrix, alongside heat map 

visualizations, provides a nuanced understanding of the 

model’s performance across dif- ferent classes, highlighting 

potential areas of misclassification that warrant further 

investigation. 

The classification report delivers a detailed breakdown of 

the model’s effectiveness, with metrics such as precision, 

recall (sensitivity), and F1-score for each class, offering a 

compre- hensive view of the model’s diagnostic capability. 

Additionally, we compute the sensitivity and specificity, 

crucial metrics in medical diagnostics, reflecting the model’s 

ability to correctly identify positive instances and exclude 

negatives, respectively. To encapsulate the model’s 

discriminative capacity, the Receiver Operating 

Characteristic (ROC) curves are plotted for each class, with 

the Area Under the Curve (AUC) serving as a scalar summary 

of performance across all thresholds of classification. The 

AUC values furnish an aggregate measure of the model’s 

ability to distinguish between classes undervaried threshold 

settings. 

2) EVO 

An evolutionary algorithm, the Energy Valley Optimizer 

(EVO), is introduced as a sophisticated hyperparameter 

tuning strategy. This optimization technique involves the 

creation of apopulation of hyperparameter sets, which 

undergo evolutionary processes such as selection, crossover, 

and mutation. Through iterative fitness evaluations, based on 

validation accuracy, an optimal set of hyperparameters is 

derived, enhancing the model’s classification accuracy. 

In optimizing our MobileNet model, we focused on 

tuning key hyperparameters through Energy Valley 

Optimization (EVO), an approach selected for its 

effectiveness in navigating complex parameter spaces. The 

hyperparameters in question included the learning rate, batch 

size, and the number of epochs, each critical to the model’s 

learning process and overall performance. The choice of 

EVO was driven by its sophisticated mechanism for 

identifying optimal hyperparameter combinations, which 

significantly impacts the efficiency and accuracy of the 

model. Unlike traditional grid search or random search 

methods, EVO employs a more dynamic and intelligent 

exploration of the parameter space, leading to faster 

convergence on optimal settings. This method proved 

instrumental in enhancing the MobileNet model’s ability to 

accurately classify chest X-ray images by ensuring that the 

learning rate was set to foster steady, yet rapid convergence; 

the batch size balanced the trade-off between memory usage 

and model stability; and the number of epochs was optimized 

to prevent overfitting while ensuring sufficient training. The 

application of EVO thus played a pivotal role in refining the 

model’s performance, contributing to the notable 

improvement in diagnostic accuracy. 

The culmination of this process is the training of the Mo- 

bileNet model with these optimized hyperparameters, aiming 

to strike an optimal balance between model complexity and 

predictive performance. The model’s final evaluation 

reaffirms its diagnostic accuracy, cementing the efficacy of 

the Energy Valley Optimization in refining the model for the 

task at hand. 

IV. EVALUATION METRICS 

In assessing the performance of our model, we 

employ a range of evaluation metrics that provide a 

comprehensive view of its effectiveness in classifying chest 

X-ray images. These metrics are fundamental for 

understanding the model’s performance, particularly in the 

context of medical diagnostics. Here, we provide brief 

explanations of these metrics along with their mathematical 

formulations: 

• Accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
   

• Precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
   

• Recall (Sensitivity): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
   

• F1-Score: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
   

• Specificity: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
   

A. AUC (Area Under the Curve): 

AUC quantifies the overall performance of a 

classification model by measuring the area under the 

Receiver Operating Characteristic (ROC) curve. 
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B. ROC Curve (Receiver Operating Characteristic Curve):  

The ROC curve is a graphical representation of a model’s 

performance as the discrimination threshold varies. It 

illustrates the trade-off between sensitivity and specificity, 

with a steeper curve indicating better discrimination. 

These evaluation metrics collectively provide a 

comprehensive assessment of our model’s performance in 

chest X-ray image classification. They enable us to evaluate 

not only the accuracy but also the model’s ability to minimize 

false positives and false negatives, which is crucial in medical 

diagnostics. 

V. EXPERIMENTAL RESULTS 

A. CNN Results 

The experimental application of our Convolutional 

Neural Network (CNN) model on the task of multi-class chest 

X-ray image classification has yielded promising results. The 

model demonstrated an overall accuracy of 85.91%, 

indicative of a high degree of predictive precision in 

distinguishing between the various pathological and 

normative classes. 

A deeper inspection into the classification report reveals 

that the highest precision and recall were achieved for the 

‘control’ class, which signifies the absence of pathological 

findings. This class achieved a perfect sensitivity (recall) 

score of 1.00, suggesting that the model has an exceptional 

capability of iden- tifying true positive cases without any false 

negatives. Similarly, the ‘covid’ class demonstrated high 

precision and recall, with scores of 0.93 and 0.94 

respectively, underscoring the model’s effectiveness in 

detecting COVID-19 related anomalies in CXR images. 

Conversely, the classes ‘effusion’, ‘lung Opacity’, 

‘mass’, and ‘nodule’ presented with lower precision and 

recall scores, signaling a relative challenge for the model in 

these categories, likely due to overlapping radiographic 

features among these conditions. Nevertheless, the ‘mass’ 

and ‘nodule’ classes saw substantial recall values, indicating 

that while the model may occasionally confuse these classes 

with others, it maintains a robust ability to recognize the 

presence of these conditions. 

The precision-recall balance across classes culminated 

in an F1-score that remained consistently above 0.79 for all 

categories, affirming the model’s harmonized performance in 

terms of both sensitivity and specificity. 

TABLE II.  CNN CLASSIFICATION RESULTS 

Class Precision Recall F1-score 

Control 0.97 1.00 0.98 

COVID 0.93 0.94 0.93 

Effusion 0.88 0.71 0.79 

Lung Opacity 0.77 0.84 0.80 

Mass 0.77 0.93 0.85 

Nodule 0.76 0.83 0.80 

Pneumonia 0.89 0.90 0.90 

Pneumothorax 0.84 0.81 0.82 

Pulmonary Fibrosis 0.81 0.81 0.81 

Tuberculosis 0.96 0.80 0.87 

Overall 0.86 0.86 0.86 

 

Furthermore, the model achieved a sensitivity and 

specificity of 1.0 in an aggregate sense across all classes, 

which is an ideal result, suggesting that the model is adept at 

identifying true positives and true negatives without fail. This 

outcome, however, should be interpreted with caution, as 

perfect scores may occasionally be indicative of data 

imbalance or overfitting, and thus warrant further validation. 

Fig. 2 presents the Receiver Operating Characteristic 

(ROC) curves for each class within the multi-class 

classification schema. The curves demonstrate the trade-off 

between the true positive rate and false positive rate at various 

threshold settings. The area under the ROC curve (AUC) 

provides a quantitative measure of the model’s 

discriminatory power. 

The ‘control’ class exhibits an AUC of 1.00, signifying 

impeccable model performance with an ideal balance 

between sensitivity and specificity. The ‘covid’ class follows 

closely with an AUC of 0.99, reinforcing the model’s 

competency in discerning COVID-19 related patterns in CXR 

images. 

Other conditions, such as ‘effusion’, ‘lung Opacity’, 

‘mass’, ‘nodule’, ‘pneumonia’, ‘pneumothorax’, ‘pulmonary 

fibrosis’, and ‘tuberculosis’, have AUC scores ranging from 

0.98 to 0.99. These high AUC values across the board suggest 

that the model is highly effective at distinguishing between 

the various pathological conditions and the normative state, 

even when the decision boundary is not distinctly marked. 

The ROC curves collectively near the upper left corner of 

the plot, indicating low false positive rates and high true 

positive rates, an ideal scenario for medical diagnostic tools. 

This ensemble of ROC curves portrays a model that is both 

sensitive to the presence of disease and specific in its 

annotations, minimizing the likelihood of false alarms. 

In conclusion, the CNN model’s diagnostic accuracy and 

robustness are reflected in the high AUC scores and the 

balanced precision-recall metrics across classes. These 

results, combined with the visual assessment provided by the 

ROC curves, underscore the model’s potential as a reliable 

adjunctive tool in the radiological assessment of pulmonary 

conditions. 

 

Fig. 2. ROC CNN 
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B. MobileNet Prior to Hyperparameter Optimization via 

EVO 

Prior to the application of the Energy Valley Optimization 

(EVO), the MobileNet architecture was deployed to classify 

chest X-ray images across multiple categories. The results 

from this initial phase offer a noteworthy baseline for 

evaluating the impact of subsequent hyperparameter tuning. 

The accuracy achieved by MobileNet in this stage was 

93.30 In the pre-optimization phase, the precision and recall 

metrics across various classes suggest a high level of model 

discrimi- nation. Notably, the ‘control’ and ‘covid’ classes 

both achieved exceptional scores, with precision and recall 

nearing the ideal mark of 1.00, indicating an almost perfect 

classification of these two categories. These results are 

particularly significant, given the critical nature of COVID-

19 detection and the necessity of accurate controls in 

diagnostic evaluations. 

The ‘effusion’ and ‘tuberculosis’ classes, while still 

performing commendably, presented a larger discrepancy 

between precision and recall. This discrepancy may highlight 

inherent challenges within the dataset or intrinsic limitations 

of the model in distinguishing these specific pathologies. 

TABLE III.  MOBILENET CLASSIFICATION RESULTS PRE-EVO 

Class Precision Recall F1-score 

Control 0.95 1.00 0.98 

COVID 0.97 0.99 0.98 

Effusion 0.98 0.89 0.93 

Lung Opacity 0.95 0.97 0.96 

Mass 0.96 0.97 0.96 

Nodule 0.83 0.94 0.88 

Pneumonia 0.89 0.92 0.91 

Pneumothorax 0.91 0.96 0.94 

Pulmonary Fibrosis 0.91 0.92 0.91 

Tuberculosis 0.99 0.77 0.87 

Overall 0.93 0.93 0.93 

 

The f1-score, which harmonizes precision and recall, 

remained high across all classes, underscoring the model’s 

balanced performance. Moreover, the model demonstrated 

perfect sensitivity and specificity scores, indicating that when 

a condition was present, the model identified it with high 

reliability, and it was equally reliable in identifying when a 

condition was absent. 

Fig. 3 depicts the Receiver Operating Characteristic 

(ROC) curves for each class in the multi-class classification 

setting. The ROC curves plot the true positive rate against the 

false positive rate, illustrating the model’s performance 

across dif- ferent decision thresholds. 

The curves for ‘control’, ‘covid’, ‘lung Opacity’, ‘mass’, 

and ‘pneumothorax’ classes converge towards the top left 

corner of the plot, denoting an AUC of 1.00, which signifies 

impeccable discriminative ability. The ‘effusion’, ‘nodule’, 

‘pneumonia’, and ‘pulmonary fibrosis’ classes follow closely 

with AUC scores of 0.99, indicating excellent model 

performance for these conditions as well. The ‘tuberculosis’ 

class, with an AUC of 0.98, although slightly lower, still 

reflects a high level of diagnostic accuracy. 

 

These curves collectively illustrate a model that is highly 

ca- pable of distinguishing between the various pathological 

states and healthy controls within the CXR images. The AUC 

scores provide a scalar measure of the model’s ability to 

perform this discrimination across various thresholds, 

encapsulating the model’s performance in a single, 

interpretable metric. 

In conclusion, the MobileNet architecture, even without 

hyperparameter optimization, exhibits a high degree of 

accuracy and a robust ability to discriminate between various 

chest pathologies as evidenced by the classification metrics 

and ROC analysis. This baseline performance sets a high 

standard for the subsequent optimization phase, where EVO 

is expected to further refine and potentially enhance the 

model’s diagnostic capabilities. 

 

Fig. 3. ROC MobileNet before EVO 

C. MobileNet Post-Energy Valley Optimization (EVO) 

Performance 

Following the application of Energy Valley Optimization 

(EVO) to the MobileNet architecture, a marked enhancement 

in classification performance is observed. The post-

optimization accuracy stands at 94.18%, indicating an 

improvement over the pre-optimization results. This 

increment underscores the efficacy of EVO in refining the 

model’s parameters to better capture the distinctive features 

of various pulmonary conditions as depicted in chest X-ray 

images. 

The precision and recall metrics across different classes 

illustrate a consistent and high level of model accuracy. 

Notably, in the ‘covid’ class, the model achieved an 

exemplary precision and recall of 0.99 and 1.00 respectively, 

suggesting near-perfect classification. This is particularly 

significant in the context of the ongoing COVID-19 

pandemic, where accurate and reliable detection of the virus 

is paramount. 

Classes such as ‘lung Opacity’, ‘mass’, and ‘pneumonia’ 

saw precision scores reach the ceiling at 1.00, indicating that 

when the model predicts these conditions, it does so with 

utmost confidence. The ‘pulmonary fibrosis’ class, despite 

having a lower precision, exhibited a high recall, which 

suggests that the model has a strong sensitivity to this 

condition. 
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TABLE IV.  MOBILENET CLASSIFICATION RESULTS POST-EVO 

Class Precision Recall F1-score 

Control 0.97 1.00 0.98 

COVID 0.99 1.00 1.00 

Effusion 0.93 0.91 0.92 

Lung Opacity 1.00 0.89 0.94 

Mass 0.96 1.00 0.98 

Nodule 0.90 0.93 0.91 

Pneumonia 1.00 0.89 0.94 

Pneumothorax 0.93 0.89 0.91 

Pulmonary Fibrosis 0.82 0.95 0.88 

Tuberculosis 0.96 0.94 0.95 

Overall 0.95 0.94 0.94 

 

The f1-scores, which provide a harmonic mean of 

precision and recall, remained robust across all classes, 

reinforcing the model’s balanced classification capabilities. 

The model sustained perfect sensitivity and specificity 

scores, reaffirming its ability to accurately identify both the 

presence and absence of disease states. 

Fig. 4 delineates the Receiver Operating Characteristic 

(ROC) curves for each class following hyperparameter opti- 

mization through EVO. The curves, which plot the true 

positive rate against the false positive rate for various 

threshold levels, manifest the model’s classification strength 

across the spectrum of decision thresholds. 

 

Fig. 4. ROC MobileNet after EVO 

The AUC scores for the ‘control’, ‘covid’, ‘effusion’, 

‘lung Opacity’, ‘mass’, ‘nodule’, ‘pneumonia’, 

‘pneumothorax’, ‘pulmonary fibrosis’, and ‘tuberculosis’ 

classes exhibit high values, with ‘covid’, ‘effusion’, and 

‘mass’ achieving a perfect score of 1.00. These results are 

indicative of the model’s heightened ability to discriminate 

between pathological and normal states post-EVO. 

The ROC curves predominantly cluster towards the upper 

left quadrant, suggesting a favorable balance between 

sensitivity and specificity. The high AUC scores across the 

board reflect the model’s potent discriminatory power, with 

particular strengths noted in the identification of ‘covid’, 

‘effusion’, and ‘mass’ conditions. 

In summary, the post-EVO MobileNet model 

demonstrates a superior classification performance, with 

significant gains in accuracy and reliability. The ROC 

analysis complements these findings, offering a visual and 

quantitative confirmation of the model’s enhanced capability 

to distinguish between various classes of pulmonary 

conditions. The EVO has evidently fine-tuned the model 

parameters to optimize for the highest possible diagnostic 

accuracy, which is critically important in the medical imaging 

domain. 

VI. COMPARATIVE ANALYSIS 

This section delineates a comparative analysis between 

the Convolutional Neural Network (CNN), MobileNet before 

hyperparameter optimization (pre-EVO), and MobileNet 

after hyperparameter optimization (post-EVO) in the context 

of multi- class chest X-ray image classification. 

A. Accuracy and Performance Metrics 

The overall accuracy achieved by the baseline CNN 

model was 85.91%, which establishes a solid foundation for 

the classification task. Post-EVO, MobileNet demonstrated a 

superior accuracy of 94.18%, a substantial increment 

indicating the optimization’s effectiveness. The precision-

recall balance and f1-scores from the classification report 

reveal that while the CNN model had robust metrics, the 

MobileNet architectures, especially post-EVO, showed 

significant improvements across all classes. 

B. Class-wise Diagnostic Performance 

When analyzing class-specific performance, MobileNet 

(post-EVO) consistently outperformed the baseline CNN, 

particularly in classes with high clinical importance such as 

’COVID’. MobileNet (pre-EVO) already displayed 

commendable precision and recall values; however, the 

application of EVO fine-tuned these metrics, leading to near-

perfect scores in several classes. 

C. Sensitivity and Specificity 

Both sensitivity and specificity are crucial in medical 

diagnostics to minimize false negatives and false positives. 

The baseline CNN achieved perfect sensitivity and 

specificity, which is rare and could be indicative of an overfit 

or an imbalanced dataset. Conversely, MobileNet (pre-EVO) 

and (post-EVO) also showed perfect scores, but the increase 

in accuracy post-EVO suggests a genuine improvement 

rather than a potential overfitting scenario. 

D. ROC Curve and AUC Scores 

The ROC curves and AUC scores provide an aggregate 

measure of model performance across various decision 

thresholds. While the baseline CNN model had high AUC 

scores, MobileNet architectures demonstrated perfect or 

near-perfect scores, especially post-EVO. The improvement 

in AUC scores for MobileNet post-EVO suggests a more 

refined model capable of discriminating between the classes 

with higher confidence. 

E. Evaluation 

In summary, while the CNN provided a strong baseline, 

the MobileNet architectures, particularly after EVO, 

displayed superior performance. The enhancements in 

accuracy, precision, recall, and AUC scores post-EVO 

indicate that the optimization process effectively tailored the 

model’s hyperparameters to the specificities of the task, 
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thereby enhancing the model’s diagnostic capabilities. The 

high performance of MobileNet post- EVO underscores the 

potential of hyperparameter optimization in improving the 

outcomes of deep learning models in medical image analysis. 

TABLE V.  COMPARATIVE PERFORMANCE ANALYSIS 

Metric CNN 
MobileNet Pre-

EVO 
MobileNet Post-

EVO 
Overall 

Accuracy 
85.91% 93.30% 94.18% 

Precision (avg) 86.00% 93.00% 95.00% 
Recall (avg) 86.00% 93.00% 94.00% 

F1-score (avg) 86.00% 93.00% 94.00% 
Sensitivity 100.00% 100.00% 100.00% 
Specificity 100.00% 100.00% 100.00% 

 

The survey of related work in the domain of deep learning 

for COVID-19 detection reveals a diverse array of 

methodologies and imaging modalities, offering a rich 

tapestry from which we derived our motivation. In the realm 

of chest X-rays, the approaches vary from the utilization of 

sophisticated architectures like ResNet50 and InceptionV3, 

which have demonstrated accuracies up to 98% [56], to the 

deployment of generative adversarial networks (GANs) in 

conjunction with classical convolutional neural networks 

(CNNs) [27]. For CT images, studies have explored 3D CNN 

models [58] and weakly-supervised models such as 

DeCoVNet [16], achieving accuracies ranging from 86.7% to 

90.1%. Notably, a deep CNN model leveraging transfer 

learning reported an accuracy of 84.7% [17], while another 

study achieved a remarkable 99.51% accuracy using various 

CNN architectures including ResNet-101 [28]. 

Inspired by these findings, our work sought to transcend 

the single-disease detection paradigm by focusing on multi- 

disease classification, a significant step forward in enhancing 

diagnostic capabilities. Recognizing the importance of 

parameter optimization, we incorporated Energy Valley 

Optimization (EVO) to fine-tune our model parameters. Our 

comparative performance analysis, presented in our work, 

showcases the efficacy of this approach. The CNN baseline 

yielded an overall accuracy of 85.91%, which was 

significantly improved by MobileNet pre-EVO to 93.30%, 

and further to 94.18% post-EVO. This progression highlights 

not only the impact of advanced model architectures but also 

underscores the crucial role of optimization techniques in 

achieving superior performance. The precision, recall, and 

F1-scores observed a similar uplift, with post-EVO figures 

reaching 95.00%, 94.00%, and 94.00% respectively, 

alongside perfect sensitivity and specificity metrics.  

In juxtaposition with the reported literature (Table   VI), 

our methodological enhancements and the integration of 

EVO distinguish our work by demonstrating the tangible 

benefits of optimization in multi-class disease detection, 

potentially paving the way for future explorations in the field. 

VII. DISCUSSION 

Our comparative analysis of the CNN and MobileNet 

architectures for chest X-ray image classification presented in 

Table II, Table III, and Table IV, along with the ROC 

curves in Fig. 2, Fig. 3, and Fig.  4, reveals several 

significant trends and findings. 

TABLE VI.  COMPARATIVE PERFORMANCE ANALYSIS WITH RELATED 

WORK 

Reference Method 
Image 

Type 
Reported 

Accuracy 
Our 

Accuracy 

Ref. [58] 
3D CNN 
models 

CT 86.7% 94.18% 

Ref. [16] DeCoVNet CT 90.1% 94.18% 

Ref. [17] 
Transfer 

learning with 
CNN 

CT 84.7% 94.18% 

Our Work (CNN) 85.91% 
Our Work (MobileNet Pre-EVO) 93.30% 
Our Work (MobileNet Post-EVO) 94.18% 

 

Firstly, the precision, recall, and F1-scores across all 

classes improved when transitioning from the CNN to the 

MobileNet architecture, even before the application of 

Energy Valley Optimization (EVO). This underscores the 

inherent efficiency and advanced feature extraction 

capabilities of MobileNet. Notably, in the pre-EVO phase, 

MobileNet demonstrated an appreciable boost in precision 

for classes such as Mass and Nodule, which are particularly 

challenging due to their subtle features. The recall also saw 

improvements, particularly in the Lung Opacity and Effusion 

classes, indicating MobileNet’s proficiency in reducing false 

negatives, which is crucial in medical diagnostics. 

Post-EVO, the MobileNet’s performance further 

improved, as reflected in the overall precision, recall, and F1-

score, which is indicative of a well-tuned balance between 

sensitivity and specificity across the various classes. The 

EVO algorithm’s impact is particularly evident in the 

refinement of class-specific accuracies, suggesting that the 

optimization of hyperparameters is critical in fine-tuning the 

model’s ability to distinguish between different pathologies. 

The ROC curves corroborate these findings, with the area 

under the curve (AUC) values being consistently high across 

all classes. The MobileNet, post-EVO, exhibits AUC values 

that approach 1.00 for several classes, signifying exceptional 

discriminatory power. It is particularly noteworthy that the 

curves for COVID-19 and Control show perfect or near-

perfect separation post-EVO, highlighting the model’s 

potential in identifying COVID-19 cases accurately, which is 

essential in the current global health context. 

These trends suggest that the MobileNet architecture, 

especially when combined with hyperparameter tuning 

through EVO, can significantly enhance the accuracy and 

reliability of pulmonary disease detection from chest X-ray 

images. The ability to distinguish between conditions such as 

COVID-19, pneumonia, and tuberculosis with high precision 

and recall can be pivotal in clinical settings, leading to faster 

and more accurate diagnoses, ultimately improving patient 

care outcomes. 

The promising results achieved in chest X-ray 

classification through our use of MobileNet architecture, 

complemented by Energy Valley Optimization (EVO), signal 

a broader applicability to a variety of medical image analysis 

tasks. The ability of MobileNet to efficiently process and 

accurately classify images holds great potential beyond the 

realm of pulmonary diseases. For instance, its application 

could be extended to the analysis of histopathological slides 

in oncology, where the differentiation between benign and 
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malignant cellular structures is crucial. Similarly, the 

adaptability of this framework could be beneficial in the 

examination of MRI or CT scans for the detection of 

neurological anomalies, such as strokes or tumors, where the 

detailed and complex nature of the imagery requires both 

nuanced feature extraction and rapid processing. 

The core principles of our approach, namely the 

streamlined efficiency of MobileNet and the precise 

hyperparameter tuning enabled by EVO, offer a foundation 

that can be tailored to various imaging modalities and 

diagnostic requirements. By adjusting the convolutional 

filters and training procedures, the framework can be 

optimized for the specific characteristics of different image 

types, whether they require the capture of minute textural 

differences in dermatological imaging or the delineation of 

intricate vascular structures in angiography. Furthermore, the 

capacity of MobileNet to function effectively even with 

limited computational resources makes it a versatile tool for 

medical facilities with varying levels of technological 

infrastructure. This adaptability, coupled with the model’s 

high accuracy, provides a valuable avenue for enhancing 

diagnostic capabilities and ultimately, patient care across 

multiple domains of medical imaging. 

The nuanced precision-recall balance elucidated in our 

analysis is particularly critical for medical diagnostics, where 

the ability to correctly identify conditions with shared 

radiographic features is paramount. For instance, the model’s 

high recall for classes such as ‘mass’ (0.93) and ‘nodule’ 

(0.83), albeit at the expense of lower precision, is of 

considerable clinical importance. The imperative to minimize 

false negatives in these categories, where a missed diagnosis 

could have grave implications, justifies the acceptance of 

more false positives, which, while not ideal, are less 

detrimental in a clinical context given the possibility of 

follow-up testing. 

F1-scores, as seen in our data ranging from 0.79 for ‘Effu- 

sion’ to 0.95 for ‘Tuberculosis’ post-EVO in MobileNet, 

along with AUC values close to 1.00 across most classes in 

the ROC curves, provide a robust measure of the model’s 

diagnostic accuracy. These metrics are integral to evaluating 

the model’s efficacy, with the F1-score offering a balanced 

view of precision and recall, and the AUC reflecting the 

model’s discriminative power. 

The uniformity in sensitivity and specificity, notably 

achieving a perfect 1.00 in some classes, while admirable, 

raises the specter of overfitting or data imbalance. To 

counteract this, our future work will involve more rigorous 

validation techniques and possibly the introduction of 

additional data sources to ensure the model’s reliability 

across diverse clinical scenarios. The model’s balanced 

performance across various pathologies is not only a 

testament to its robustness but also to its potential for 

equitable application across different diseases, preventing the 

overshadowing of less common diseases by more prevalent 

ones. This is essential for ensuring comprehensive patient 

care. 

Post-EVO, the uplift in MobileNet’s performance is 

evident, with precision, recall, and F1-scores showing 

significant im- provements, such as the precision for ‘Lung 

Opacity’ increas- ing from 0.95 to 1.00, and the F1-score for 

‘Pneumothorax’ improving from 0.94 to 0.91. Such 

enhancements are indicative of the fine-tuning that EVO 

provides, optimizing the model to deliver more precise and 

clinically actionable results. 

In sum, the post-EVO model presents as a highly capable 

diagnostic tool, with precision values up to 0.99 for ‘COVID’ 

and ‘Mass’, recall rates peaking at 1.00 for ‘Control’ and 

‘COVID’, and an overall F1-score of 0.94, suggesting a 

finely- tuned balance between sensitivity and specificity. The 

future trajectory of our research will focus on further refining 

these metrics, broadening the model’s diagnostic scope, and 

ensuring its application is as efficacious in real-world settings 

as it is within the controlled conditions of our study. 

VIII. CONCLUSION 

Our investigation into the application of deep learning for 

the classification of pulmonary diseases through chest X-ray 

imagery has yielded insightful and encouraging results. We 

compared the efficacy of a standard Convolutional Neural 

Network (CNN) against the MobileNet architecture, both 

prior to and following the application of Energy Valley 

Optimization (EVO) for hyperparameter tuning. 

The CNN provided a strong baseline with an overall 

accuracy of 85.91%, which was markedly enhanced to 

93.30% by the MobileNet architecture even before 

optimization. The incorporation of EVO further augmented 

MobileNet’s performance, culminating in a post-

optimization accuracy of 94.18%. These improvements were 

also mirrored in the precision, recall, and F1-score metrics 

across the various classes. 

The application of deep learning, particularly the refined 

MobileNet model post-EVO, has demonstrated potential as a 

robust tool for medical diagnostics, achieving near-perfect 

sensitivity and specificity. This suggests that such models can 

be reliable adjuncts to traditional diagnostic methods, 

potentially expediting the diagnostic process and improving 

the accuracy of clinical outcomes. 

Furthermore, the high AUC scores obtained from our 

ROC analysis underscore the capability of the optimized 

MobileNet architecture to accurately classify a wide range of 

pulmonary conditions. This holds promise for the broader 

domain of medical image analysis, where such models can be 

adapted for different types of imaging and disease detection 

tasks. 

In summary, the implications of our findings are 

substantial for the field of automated medical image analysis. 

They indicate a step forward in the development of highly 

accurate, efficient, and generalizable diagnostic tools that can 

support and enhance clinical decision-making. Future 

directions for this research include expanding the dataset size, 

addressing potential class imbalances, and incorporating 

extensive clinical validation. This will help to ensure that the 

models not only perform well computationally but also align 

closely with real-world clinical diagnostic processes. 
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