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Abstract—The major problem dealing with mobile robots is the
trajectory tracking control problem, in the presence of random
disturbance and unmeasurable angular velocity. In this paper,
we propose a Sliding Mode Control (SMC) based on a Nonlinear
Disturbance Observer (NDQO) and a Neural State Observer (NSO).
The (SMC-NDO) controller displays limitations in mitigating
external disturbances. Therefore, this research contribution sug-
gests a novel approach that integrates a Neural State Observer
(NSO) into the (SMC-NDQ) controller, to significantly enhance
the performance of a control system. The combined approach
improves disturbance reduction while simultaneously estimating
the unmeasurable angular velocity, ultimately leading to more ac-
curate path tracking. Furthermore, the Lyapunov method is used
to ensure the stability of the closed-loop control on the one hand,
and the stability of the Neural State Observer based on the Back-
propagation algorithm on the other hand. Numerical simulations
and the implementation of the Simulator in ROS/Gazebo demon-
strate better performance of our proposed approach (SMC-NSO-
NDO) compared to the Sliding Mode control-based Disturbance
Observer (SMC-NDO) and the Sliding Mode Control (SMC). The
control proposal in this work is ready for use on most ROS-
compatible robots. This experiment should offer an enlightening
perspective to robotics researchers.

Keywords—Unicycle Mobile Robot, Sliding Mode Control, Neural
State Observer, Disturbance Observer, Robot Operating System ROS.

I. INTRODUCTION

In the era of Industry 4.0, mobile robots play a crucial role as
they perform various difficult and dangerous tasks on behalf of
humans. Therefore, scientists are actively researching effective
solutions to problems that may occur in robotics [61], [28],
(361, [22], [49], [16], [40], [82], [25], [12], [78], [31], [3], [1].

The 5 most important types of robots in 2023, according
to the International Federation of Robotics report, are Mobile
cobots [43], mobile robots [35], [55], manipulators [70], Digital
Twins [44], and Humanoid Robots [6], [67]. These robots
integrate not only Robot Operating System (ROS) technologies
for efficient operations [10], [38], [2], [58], [66], [77], [11],
[52], [14] and [46] but also, the artificial intelligence (AI)
technology, [18], [48], [83], [84], [68], [47], [73] and [33].

Thanks to their advantages, unicycle mobile robots are be-
coming increasingly popular. For instance, their small size,
suitable price, rapidity, and light help avoid traffic jams. Mobile
robots have been used to perform specialized tasks in several
industries, including services, rescue, military, and disaster
relief [32]. However, they are classified as non-holonomic
mobiles due to wheel limitations [50], [49], [5], [37], [30], [74],
[72] and [26].

In addition, autonomy is a crucial aspect of robots. Thus, re-
searchers are actively working on developing methods in order
to enable robots to independently perform tasks without human
intervention in different areas, such as perception, decision-
making, and control. The primary objective consists of creating
robots that can operate effectively and efficiently in real-world
environments, [69], [9], and [27].

The choice of the control technique is based on the non-
linearity and the existence of internal and external disturbances.
On the other hand, several physical constraints such as the
uncertainty of the parameters, the errors in the modeling of
the physical systems to be controlled, and the imperfection of
the measuring instruments (hardware).

The studies [8], [62], [54], and [59] investigate PID control
that has been widely used in industry and its application to
robotics. However, the PID control system is inefficient when
some variables are modified or when there is a change in torque
burden, resulting in insufficient responses.

[45] presented a fuzzy flatness technique, where the benefits
of the regulator are adjusted online using a suitable fuzzy
controller, for handling Pioneer 3dx mobile robots efficiently. In
[70], backstopping controllers were implemented on the ground
Robot. [34] tested the effectiveness of the (SMC) based on
a new navigation planning algorithm that uses a delineation
polygon for a mobile robot. To reduce the chattering effect on
UMR, the SMC controller is used in [50]. However, in these
previous works, this technique does not address powerful white
noise disturbances.
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In [19], an SMC controller combining a neural network is
applied in a mobile robot. However, it is necessary to adjust the
neural network parameters using stability theory to determine
the update rate that affects the controller’s performance. In [42],
the SMC control is based on an extended state observer to
handle the shortcoming of undesired chattering. However, this
technique did not achieve the stability of the estimator based
on the neural network

An adaptive control law has been proposed in our case,
which is based on the sliding mode control approach. The
proposed solution takes into consideration the uncertainties in
the parameters of the robot, such as platform mass, inertia, and
wheel diameter. The robustness is addressed by this approach
when considering external disturbances [29], [51], [17], [23].
The Lyapunov direct method guarantees global asymptotic
stability, one of the major advantages of the proposed SMC
approach. Thus, the Lyapunov analysis’s equality ensured the
system stability through adaptive gains obtained by YALMIP
solver method. However, the presence of the ’chattering’ event
caused by the discontinuous part of this control law generates
a negative feedback loop. This creates undesirable effects on
the studied system.

Hence, previous studies, [13], [60], [50], [39], [24], [80],
[81], and [63] delved into the utilization of a disturbance
observer in (SMC) to mitigate the impact of weak-amplitude
colored external disturbance. Despite its effectiveness in reduc-
ing certain disturbances, the sliding mode control based on a
disturbance observer is not only insufficient to handle forced
random disturbances but also unable to estimate the state vector.
Traditional disturbance observer-based control technology is
insufficient to enhance the tracking performance of systems
[21].

The presence of powerful external white noise disturbance
in robotic systems is characterized by random character and
uniform intensity at all frequencies. Often, external disturbance
cannot be directly measured [76], [53], and [56]. These distur-
bances significantly reduce achievable performance in terms of
tracking accuracy.

UMR issues manifest through unmeasurable angular velocity
and unpredictable, potent external disturbances. These factors
significantly impact robot control, potentially leading to severe
consequences ranging from operational malfunctions to haz-
ardous incidents like rollovers. Most of these robots present
nonholonomic constraints [50]. Our problem formulation be-
comes more complicated due to that.

Therefore, we need a filter to reject disturbance and accu-
rately estimate velocities in dynamic environments. The inte-
gration of a Neural State Observer (NSO) is required.

In this context, a Neural State Observer is employed to
achieve two main objectives: (1) to accurately estimate the
robot’s angular velocity in order to realize precise path track-

ing, and (2) to enhance control power and thus, improve
performance. The observer incorporates an artificial neural
network (ANN). Thanks to its ability to model and identify
complex and highly non-linear dynamic systems, an artificial
neural network is a good choice to synthesize the state-variable
observer of the unicycle robot. Furthermore, the NSO contains
an observation matrix that is adaptively calculated by using the
Lyapunov theory based on the backpropagation algorithm. Its
characteristics significantly affect the performance and accuracy
of the angular velocity state estimation process.

We presented the role of each technique in the proposed
controller:

« Despite its robustness, Sliding Mode Control may not ac-
curately estimate or compensate for powerful disturbances.

o The disturbance observer: The sliding controller helps
improve performance against disturbances. However, it is
limited in the face of random disturbances, and it cannot
estimate the robot’s velocity.

o The Neural State Observer: The proposed Neural State
Observer is applied to improve the reconstruction of the
angular velocity, which may not always be available, and
help reject disturbances in the controller.

Motivated by the above-reviewed papers and in order to
strengthen the arsenal of the existing techniques, we propose
in this work a new SMC-NDO-NSO approach applied to the
UMR robot. The major contributions of the proposed SMC-
NDO-NSO are detailed as follows:

1) Achieve accurate trajectory by estimating velocities on
UMR and reject the difficulties imposed by powerful
white noise disturbances.

2) The comparative analysis of the SMC-NDO-NSO, SMC-
NDO, and SMC controllers shows that the SMC-NDO-
NSO model is characterized by its ability to effectively
maintain the stability of the robot, demonstrating its
flexibility.

3) In order to test the SMC-NDO-NSO controller, we used
the Gazebo simulator environment to execute it on the
Minilab robot and Husky_robot, which was both effective
and performed well.

The remainder of this paper is structured as follows: Section
IT describes the kinematic and dynamic models of UMR.
Section III introduces the adaptive Sliding Mode Control based
on disturbance observer. Section IV presents the Neural State
Observer based on the backpropagation algorithm, with a
special focus on its stability. Then, section V provides details
about SMC integrated with the Neural State Observer and
Disturbance Observer for the stability analysis of closed-loop
control. Finally, VI summarizes the key findings of simulation
via MATLAB-SIMULINK and ROS and highlights major di-
rections for future research.
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II. UNICYCLE ROBOT MODEL The tracking error dynamics can be calculated as
The model used in this work describes UMR as a two- o 0 0
wheeled non-holonomic mobile robot that can rotate around 7 B Ye 7QU +vvr"coz ¢ 5
its axis. Each wheel is controlled independently see Fig. 1 ze o e QJri)’"Qbm € )

Y: Yr

Ya

Xu

Fig. 1. Unicycle Mobile Robot

A. Kinematic Modeling

Kinematic modeling provides a geometric representation of
the movement of the unicycle robot, while kinematic control
intervenes to regulate this movement by adjusting the kinematic
parameters.

The robot’s kinematic model is given by [41].

T = v.cosf

Y =Q.sind (1)

6=90
with P = (x,y,0) is the robot position and orientation in the
world reference frame, and the pair (v,{2) is the linear and
angular velocities.

The kinematic controller used is the one proposed in [41]
and is given by

Ve v, cosl, +kyx,
Qe

Q. + vy (kyye + kg sinb) &)

with
« X, = gc : the velocity of the kinematic controller;
® Le = (9) (‘Tr - 33)’ Ye = (9) (y,, - ?/)’ 0. = (9) (97’ - 9):

the current position errors in the axes X ,Y and 6.

The value of the stability gains [k, k,, ko] in equation (2) is
fixed on by demonstrating the stability of the kinematic loop.
Indeed, the positive definite Lyapunov function is given

1 1
Vo=z (224 42) + — (1 — cosbe) )
2 ky
The temporal derivation of V[, along the trajectory is
. ) ) 1 /.
Vo = @@ + oo + 1 (esind.) )
Y

Thus, the following is the final result of the time derivative
of Vj equation (4) along the trajectory

» kgsin26,
Vo = —hpe? 4+ L= (©)
Y

The parameters k,,k,, kg must be positive to satisfy the

Lyapunov stability for kinematic control.

B. Dynamic Modeling
The dynamic model is required for simulation, robot motion
analysis, and the conception of various control algorithms.

From [13], assuming that the disturbance term is a non-
zero vector, the nonlinear dynamic modeling is defined by the
following

O(t) = 2202 4 Ly (t) +dy (2)

mo moR
(N
. . -
Q (t) = 7}:} (ZU,Q + ID—IzY,LQ (t) + dw (t)
with
e X=( 7 ): the state vector consists of two components:

Q
the linear velocity and the angular velocity;
Uy =TR + 7L
U = TR —TL
with Tp:the right wheel torque control; 77 :the left wheel
torque control;
dy
e d(t) = 4.

e Mgy = (m + QI%—‘;) : the equivalent mass;

o Ip= (I + QRL;IQ> : the equivalent inertia of UMR.

o U=

. white noise disturbance;

The equation (7) of the system can be formulated as such in
the following non-linear form

X (t)=F(X(t),u(t) = f(X)+ g1 (X).u(t) +g: (X)d (t)

(8)
with
Me aQQ
_ g . 3 .
o f(X)= S ] : a non-linear function;
- 0
o g1 = [ mBR B ]: an invertible function;
IoR
|10
* e [ 0 1

The parameters included in vector X are functions of some
physical parameters of the robot, such as
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e m.: the mass of the platform;

e Mmgq: the wheel mass;

o m: the total mass of the robot;

o Iq: the inertia concerning the wheel axis;

e R: the diameter of the robot wheel;

o L: the mid-distance between the two wheels;

« a: the distance between the midpoint of the two wheels A
and the center of gravity C.

where the parameter’s value is given in Table II.

Challenges, associated with the nonlinear dynamic model
of UMR including the coupling between movements of lin-
ear velocity and angular velocity, are interdependent. Thus,
modeling and control become more complex while introducing
uncertainties, high noise levels, and unknown parameters. That
is why powerful and intelligent control is needed to solve these
problems effectively.

III. ADAPTIVE SLIDING MODE CONTROL BASED ON
DISTURBANCE OBSERVER

Sliding mode control (SMC) is used in systems with dis-
turbances and uncertainties. It employs adaptive gains that
can adjust to changing robot dynamics and environmental
conditions for better controller performance. Lyapunov-based
sliding mode control ensures robot velocity convergence to
kinematic control commands.

A. Adaptive sliding mode control

In this paper, a Sliding Mode Control will be proposed for
a UMR. The sliding surface is defined by

S(t):[g;g;]:e(t)—kﬁ/e(t)dt ©)

o c(t) = ey, ]’ =X (t) — X, (t): the error models;
e >0 : positive value.

If the derivative of the sliding surface § (t) = 0, the
following equation is obtained
S(t)=c(t)+pe(t)=0 (10)

Starting from (8), we can rewrite the sliding surface deriva-
tive (10) as

(£00+91 (X)) +92(X).d(8) = X, ) + B =0 (1D

The sliding mode control taking into account disturbance is
designed as
) 12)

o Xe—Be(t) — f(X)—g2(X).d(t) -
u(t) =9 (KTan}eL(S)—nS !

with

« K = Z“ ): are gains to ensure stability of SMC
b

control;
e NS (t) : is feedback control with n > 0;
e KTanh(S) : ensure system robustness.

Equation (8) includes unwanted white noise disturbances
[ dy dy ]T represents heavy robot loads. These disturbances
degrade the tracking performance and the accuracy of the
sliding mode controller (12) as well as increase the system
error or deviation from the intended path. To address this issue,
advanced strategies are needed to estimate and mitigate the
stochastic nature of noise.

B. Adaptive sliding mode control with disturbance observer

The NDO design technique of the system (8) in [15] is
reviewed in this section. The disturbance d is an unknown-
bounded constant, it follows that

d=0 (13)
given that equation (8) can be written
g2X)dt)=X(t) - f(X)—gq1 X)u(t)  (Ab

the initial disturbance observer is suggested in [15] as

d=~1(X) g2 (X)d+1(X). (X~ (X) = 1 (X)u (1)) (15)

~ A
d=d—d (16)

Equations (13) and (15) are used to differentiate (16), explain

d=-1(X)g2d =0 a7

where [(x) is the disturbance observer gain matrix which
can be designed such that the system (17), is exponentially
stable for all X € R". Consequently, disturbance estimate

3 (t) can approach d(t) exponentially as ¢ — oo. However,
the disturbance observer (15) cannot be implemented due to
the unavailability of X. To solve this, an auxiliary variable is
defined

N

z=d—p(X) (18)
Define the function p (X) by
op (X
1(X) = %(X ) (19)

After substituting (15) and (19) into (18), we obtain the
expression of the nonlinear disturbance observer is given as
follows [15]
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A state observer for (22) can be described by
200 =d- B0 X
A A A
@001 ( 2EREIFI0E) 0 | X0 =F (%0r.00) +o (x0-%0)
2 = 2 (X) +p(X) T =CX ()

From equations (12) and (20), we obtain the sliding mode
control w (t) as follows [15]

u(t) =g (X) ™

Xe—fBe—f(X)— g2 (X). d(t) —
KTanh(S) — S%
21

with o (X) = 28, (X) = 1(X) g2 (X) [15].
Fig. 2 shows the SMC-NDO controller. The disturbance

Observer has been used to improve SMC control performance
by estimating low-amplitude disturbances affecting the system.

¥

o, 7 ol
Trajectory and Q
Velocity .
\__Reference |,£l ‘ ‘r

L P 4 N P, s . ‘\‘ + P N Y
A~ | Transformation Nonlinear e Sliding Mode
matrix kinematic control| Control (SMC) []

. VN - N > 4

1 d(r)

Non-linear Disturbunce
Ohbserver (NDO)

X
y
U

0

r =
Kinematic
-
modeling
\ J

-

Dynamic |
madelin

Fig. 2. Sliding mode control scheme based on a disturbance observer

After the running of the SMC-NDO [13], and SMC [50]
controllers by MATLAB-SIMULINK, there are still large-
amplitude white disturbances in the control despite the presence
of the Disturbance Observer.

Motivated by this concept, we propose to combine the system
Neural State Observer with the Sliding Mode Controller and the
Disturbance Observer. The proposed controller is characterized
by its stability and intelligence as well as its ability to handle
significant white noise disturbances. In addition, it can also
accurately estimate the angular velocity; known as a vector
quantity that cannot be measured directly. These characteristics
help avoid jitter and instability of control signals. They are
particularly crucial for sensitive applications, such as industrial
robots used for transporting heavy loads.

IV. NEURAL STATE OBSERVATION

The proposed Neural State Observer structure and observing
error equations are discussed. Indeed, a feedforward neural
network is used to replace the nonlinear function.

The equations system of the nonlinear model is express

{ X (t) = F(X(t),u(t)) = f(X) + g1 (X) u(t) + g2 (X)d (t)

T =0CX e

where

A A

X and Y represent the state and output observer, respectively.
The observation gain matrix £ is obtained after stability anal-
ysis of the neural state observer.

The estimation error is

A
eo =X (t) —X(t) 24)

The derivative of the estimation error is obtained by
o =F(X(t),u(t) —FX(t),u(t)) —LC e (t) (25)

According to the approximation property of ANN, the nonlin-
ear function F (X (¢),u(t)) can be represented by ANN with
constant ideal weights W and V as follows. Thus, the ANN

functional estimates for F’ (X, u, t) is given by

F(X(t),u(t)) =Wo (Vh)
)A( u (26)

FX (1) (ny:ﬁm(v@
e h(X,u) : is the input vector of neural network.

Neural state observer is described by

R(0) = Weo (f)ﬁ) FLOT ) - () 27)

A

Y(t)=CX(t)
A. Artificial Neural Network (ANN) Architecture

A neural network consists of three different layers: input,
hidden, and output. Each input is weighted and connected to
a node in the hidden layer. Each hidden node is connected to
each output layer node via weight ((see Table I).

The considered ANN studied in this work is:

o Three layers where the input layer contains four neurons,
3 T
the first is the state vector X = [ v Q ] and the second

is the controller © = [ U U ]T, 100 neurons in the
hidden layer, and the output layer contains two neurons
representing linear and angular velocity.

o The activation function of the hidden nodes is a unit
sigmoid function to simplify and clarify the stability study
development.

Barhoumi Nawress, Sliding Mode Control based on Neural State and Disturbance Observers: Application to a Unicycle Robot

using ROS2



Journal of Robotics and Control (JRC)

ISSN: 2715-5072

969

TABLE 1. NEURAL NETWORK ARCHITECTURE

Input Layers Hidden Layers
(v (), (t),u(t) 100

Output Layers

(b0.60)

Fig. 3 presents the Neural State Observer, which estimates
the position error of the robot system by reconstructing the un-
measurable angular velocity in the SMC-NDO-NSO controller.

The observer incorporates two key elements: 1) a dedicated
Artificial Neural Network method (see subsection IV-A) and
2) an adaptive observation matrix £, automatically adjusted
using the backpropagation algorithm (see subsection IV-B).
This combination facilitates the development of robust and
accurate situational awareness by optimizing convergence and
effectively filtering noise.

X(t)
wiy —” F(X(/).u(/]) L, % L C
Y(r)
+ ¢

/,|x(,).,.1l)Jj,) T
1
£l C

L «

«
NSWAE;

Co 0D
’ WP/ A2 Y|
o

7 Iy
7

Fig. 3. Structure of a Neural State Observer (NSO)

B. Stability Analysis of a Neural State Observer Using the
Backpropagation Algorithm

According to equations (25) and (26), the derivative of the
estimating error is expressed as follows

¢, = Wao (Vh) — Wo (f)l%,) — LCe, 28)

The nonlinear function F'(X (¢),w (t)) is assumed to be con-
tinuous, and Lipschitz concerning the argument X (t). There-
fore, the Lipschitz property is written as

HF(X 0. - F (R0, H

VX (1), X (), 3/ R (29)
<+ |xw-Ro|
By selecting a candidate Lyapunov function of the form
V= eOTPco (30)

the derivative of this Lyapunov function is then written
V(1) = e& (1) Peo (1) + €2 (1) Péo (1) =

€19

—el' (t) [CTLTP + PLC) e, (t) +

250 P (Fx0.u0) - F (£0.00)))

Using the Lipschitz property, the second term on the right
can be written as

AN VAWAY
Wo (Vh) - Wo (v h) H <27 (1) Py lleo ()]
(32)

Replacing this result in the expression for the derivative of
the Lyapunov function gives

2eT (t) P

o

{ V(t) =l () Peo () + T (D PE (DS (33

—eI () [CTLTP + PLC — 2PA] e, (1)

We can add (28) in Lyapunov function (33), yields

<.

(t) = eZ (1) Pe, (t) + €Z () Pé, (1) =

A A et
Wo (Vh) —Wo <Vh, — LCe, (t)) Pe, (t) +

S S

(34)

ol

€

O P (Wo (Vh) = Wa (Vh) — £Ce, (t))
—el' (t) [CTLTP + PLC — 2Py] e, (t)

IN

Using Schur complement, we transform the algebraic in-
equality, relation (32), into a matrix inequality as follows:
ctcp+pPLC P

[ p % pl> 0 (35)

The Lyapunov method is utilized to ensure the stability of the
Neural State Observer based on the backpropagation algorithm,
which is characterized by its ability to adjust the weights of
connections between neurons and minimize the mean squared
error between the actual outputs and the desired outputs to
ensure the stability of the NSO and its accurate estimation of
the system’s state vector.

The gain matrix of £ as well as P and ~ variables are cal-
culated to solve the optimization problem, using the YALMIP
solver. This method also aims to determine the best-fit param-
eters in order to improve the performance of the controller.
The values of the matrix £ and P, as well as the ~ value, are
illustrated in Section VI.

V. SLIDING MODE CONTROL BASED ON NEURAL STATE
OBSERVER AND DISTURBANCE OBSERVER

SMC-NDO-NSO combines the robustness of sliding-mode
control, the capability of the NDO disturbance observer, and
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NSO additional observation features. This integrated approach
is designed to improve the overall performance of the control
system, particularly in the presence of white noise disturbances
and non-linearities.

Substituting Equations (27) into Equation (21), the robust
controller for the nonlinear system (8) is proposed as

%o (R -x.0)) -
u() =97 (X) | ¢ (X) g (X)d(t) -
KTanh (S) — 51282 e |
v sy Wo(viz)Jr x
L(T—7)
=9, ' (X) )
—f (X + g0 (X)d (t) — KTanh (S) —
S |g2(X)?|
a(X)

with
e e(t) =X (1) X. (1)

To demonstrate the stability of the SMC-NDO-NSO loop,
the positive definite Lyapunov function is given

2

V@@=%§+E 37)

The time derivative of V' (S, d) along the state trajectory is

V=SS+d.d (38)

Considering (8), (9) and (17), Equation (38) can be rewritten
as

. S.g5 (X).q -2l
V= (39)
KTanh (S) — dap((xx)) g2 (X).d?

Substituting (36) into (39), and since o (X) = 22X g, (X) > 0

, yields
g ~ 2
< [ 2Belfio]-emfan| -
?(X) — KTanh (S)

The derivative of V' (.5, d) is as follows

[sg2007\
Vo ’d t ‘ - NZT) — KSTanh (S)
41)
whatever the case S # 0 and K > 0
V < —KSTanh (S) 42)

To satisfy the Lyapunov stability for SMC-NDO-NSO, the
parameters k, and k;, must be positive constants.

Fig. 4 illustrates the SMC-NDO-NSO control, which is
responsible for keeping the robot on the reference path to
minimize the error between the robot position, and velocities.
This control strategy integrates adaptive gain and estimating
techniques to reject power disturbances and accurately estimate
the robot’s velocities simultaneously.

F
Dynamic Kinematic
madelin modeling

5 e ~
Transformation \hm]lnelr _( Sliding Mode
natrix ~| kinematic control Cantrol (SMC} |

(31 W (1)

Neural State Observer
(NSO

Fig. 4. Proposed control scheme based on SMC-NDO-NSO

VI. SIMULATION RESULTS

The simulation was performed in Simulink MATLAB 2022b.
Notes in Table II are the chosen settings for the UMR.

TABLE II. UNICYCLE MOBILE ROBOT PARAMETERS

Settings Values
Platform mass me = 17kg
Wheel mass mq = 0.5kg
Wheel radius r = 0.095m
Half distance between two wheels L=24m
The distance between wheel mass point A and C a=0.05m

Inertia relative to the Centre of Gravity I. = 0.537kg - m?

Inertia relative to wheel diameter I, = 0.0011kg - m?

Inertia relative to the axis of the wheel Io = 0.0023kg - m?

Total mass of the robot m = 18kg

Robot inertia I =0.6393kg - m?

To verify the effectiveness of the new control, a straight-
track simulation was performed.

o Position of the robot:

x (t) =t xo (1) =0
yr () =3 a(t)=04q w(t)=3
0, (t) =0 0 (1) = 0
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v, (t) =3m/s
Q. (1) = OTC{d/s a(t)=0 {
« Kinematic controller parameters:
ky=6; k,=1; kyg=02
e SMC parameters:
ke=-20; k,=-20; =1

vg (t) =1m/s

eference velocities:
Qo (t) = 0rad/s

e NDO Pargmeters:
Hx) = Z 0.5 3”’(}(): [ 8:2 2 ]?
o (X) = { 065 0(.)5 ]

The SMC-NDO-NSO control optimization problem aims to
determine the optimal gain values to ensure UMR stability. To
achieve this, we entered the initial condition of each value in
the controllers and then, we solved the optimization problem
using both YALMIP and Lyapunov methods (see Equation 42
and Equation 6).

Based on stability analysis of a neural state observer using the
back-propagation algorithm for robot modeling, we concluded
that the value following of P, L, and v (see Equation 34) are
the most convenient:

p_ 597.1871 501.7899
~ |501.7899  363.6224
[= 130.9927 442.6544
T |442.6544 165.9741
v=0.9

During training for velocity estimation, the neural network
successfully learned the training data and achieved a perfor-
mance value of 0.05 and a gradient of 1le — 07 in 6 validation
checks within 100 iterations, as shown in Table III.

TABLE III. EVALUATION OF NEURAL NETWORK TRAINING RESULTS

Unit Initial value | Stopped value | target value
Epoch 0 0 50
Performance 0.566 0.0315 0.05
Gradient 1.34 0.832 le — 07
Validation checks 0 0 6

After conducting several experiments, we have noticed that
the hidden layer (number 100) yields an optimal layer size for
the prediction method.

A. Simulation results: SMC-NDO-NSO controller applied on
UMR in MATLAB-SIMULINK 2022b

Fig. 5 shows powerful white external noise disturbance
values were used to assess the robustness of the SMC-NDO-
NSO controller.

Fig. 6 displays motor torque, linear velocity, angular velocity,
and estimation error (e,, e ) between actual velocities and
estimated velocities using NSO. After about 3 seconds, the

Disturbance
25

20

[N.m]
o

Time(sec)

Fig. 5. White noise signal

Motor torques based on SMC-NDO-NSO

Gl

T
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Time(sec)

Comparison of Reference, Actual, and Estimated Robot-Linear Velocity
T T

1 1
0 5 10 15
Time (s)

Comparison of Reference, Actual, and Estimated Robot-Angular Velocity

T
~2r —_,
\m: \ | 0
~ 0 [  S—
S Qobs
-2 1 1
0 5 10 15
Time (s)
Estimation error
0.01 T T
€y
0.005 el
o
3
3] 0
=
-0.005
0.01 L L
5 10 15

Time (s)

Fig. 6. Torque, Linear and angular velocities, and estimation error
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torque (71, 71) converges to 0, leading to a stable driving torque
for the right and left wheels.

The following figure compares the UMR’s reference (v,., 2,.),
actual (v, Q) and estimated velocities (vops, Qops). It can be seen
that the speeds estimated by NSO optimize the actual velocities
to follow the robot’s reference velocities. Furthermore, the
forced external disturbance is reduced, contributing to the
stabilization of both linear velocity (around 1m/s ) and angular
velocity (around Orad/s) within 5 seconds.

Simulations, in the last figure, illustrate the effective response
of the proposed Neural State Observer to estimation errors. It
was demonstrated that the error converges to zero, generally
less than 0.01 for both linear and angular velocities within 5
seconds, which greatly reduces the discrepancy between Y (t)

A
and Y (t). This means that the state estimator provides an
accurate estimate of the robot’s velocity.

The robust SMC-NDO-NSO control system enhances the
system’s resilience to external disturbances and ensures the
robot’s stability by enabling it to follow its reference trajectory,
through its ability to resist external disturbances and estimate
the system’s status.

Fig. 7 illustrates the robot trajectory by demonstrating its
convergence to the reference trajectory (.., y,, 0,- ) and straight-
line stabilization and reducing the distance error (e;, e, €g)
to 0 within 5 seconds. Simulations validate the SMC-NDO-
NSO approach and improve the robustness of the robot model.
An additional Neural State Observer term enhances disturbance
rejection and provides accurate URM tracking velocity estima-
tion.

Evolution of & (SMC-NDO-NSO) (]}Elrror evolution in z (SMC-NDO-NSO)

= T =.-0.2
B} E]

0 -0.4

0 5 10 15 0 5 10 15

Time(sec) Time(sec)
5 Evolution of y (SMC-NDO-NSO) o 5Error evolution in y (SMC-NDO-NSO)
— — — — e,

SN AVl —vH f¢
25 -0.5

0 5 10 15 0 5 10 15

Time(sec)
Evolution of § (SMC-NDO-NSO)

Time(sec)
Error evolution in 6

— €

O[rad)
o005 o
ahvon
T

o
]
]
e

Orad)

5 ocoo
ol R®

"o 5 10 15 0 5 10 15
Time(sec) . Time(sec)
Trajectory (SMC-NDO-NSO)

T

= === Reference trajectory
= Real trajectory

a[m]
Fig. 7. Trajectories and Tracking errors

1) Simulation results: Difference between SMC-NDO-NSO,
SMC-NDO and SMC control: The computational efficiency and

performance characteristics of the SMC-NDO-NSO controller
will be evaluated objectively using a comparative analysis of
the SMC-NDO controller cited by [13] and the SMC controller
stated by [50].

Our simulation results indicate that, despite the presence
of powerful external disturbances and nonlinearities in the
system, the proposed SMC-NDO-NSO scheme improves the
disturbance rejection performance, as shown in both Fig. 8.
Linear velocity is estimated to be 1, while angular velocity is
estimated to be 0 within 3 minutes. On the contrary, we cannot
guarantee the stability of linear and angular velocity based on
the SMC-NDO and SMC controllers, due to the magnitude of
disturbances reaching up to 2.8.

Linear velocity
4 T T -

X265 v (SMC-NDO-NSO)
v (SMC-NDO)
Y 2.49439 » (SMO)

L,
4 X 8.3
= A A Y 1 21796 » Y 0.999996 A

uo WAL . .
I v wuv' vy o WW i 'W W
15
Time(sec)
Angular velocity
. 2 (SMC-NDO-NSO)

2 X 3.5 =) (SMC-NDO 1l
= U\A / Y2 80628 v 6031 0251 Q ESMC ) “
= of g ” N RA LA
3 M \/v YW W vv‘ svf’v\‘ \ r

2F

> . 5 s 0 12 4

Time(sec)

Fig. 8. Comparative Analysis of Velocity Performance: SMC-NDO-NSO, SMC-NDO,
and SMC Controllers

In Fig. 9 we observe that the SMC-NDO-NSO controller
converges to 0 in less than 5 minutes in a stable manner,
allowing the robot to follow its reference trajectory smoothly.
It also provides more satisfactory system responses than SMC-
NDO [13] and SMC [50] structures that focus on low-amplitude
external perturbations.

Fig. 10 presents the difference between the performance of
SMC-NDO-NSO controller, which forced the disturbance to
converge to 0, and the SMC-NDO controller [13], which was
unable to react to the random disturbance whose amplitude was
equal to 2.57. The strength of perturbations still gets stuck in
the unstable system state, with disturbances large enough to
result in a robot crash.

To enhance this comparison, we provide an in-depth analysis
of the differences in Stability, Convergence time, and robustness
between the three methods.

Stability and Convergence time In the SMC-NDO-NSO
controller simulation, we can evaluate the timing stability of
the system. In contrast, as for SMC-NDO and SMC controllers,
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Fig. 9. Comparative Analysis of Motor Torques Performance: SMC-NDO-NSO, SMC-
NDO, and SMC Controllers
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Fig. 10. Comparative Analysis of d (¢) Performance: SMC-NDO-NSO and SMC-NDO
Controllers

assessing the timing stability of the system is difficult due to
the severity of disturbances present in the overall system during
the simulation.

Robustness against disturbances Based on numerical sim-
ulation comparison, we conclude that the SMC-NDO-NSO
controller is robust and intelligent, unlike the SMC-NDO and
SMC controllers.

B. Simulation results: Setup to test ROS Melodic in Gazebo
simulator.

Our experiment was conducted on a robot running in ROS
and robot Simulators shown in Fig. 11.

Table IV shows the characteristics of each device used to
develop this work

On the host computer, Simulink or MATLAB sends operating
data and sets commands to Gazebo on the target Linux machine.
The software passes this information to the Gazebo Simulator,
which displays sensor data and model information through the

SMC-NDO-NSO controller

u, (1) , (1)

Fig. 11. Implementation of SMC-NDO-NSO control in MiniLab ROS

TABLE IV. DESKTOP COMPUTER EQUIPPED

Desktop computer N°2
AMD Ryzen5 RTX
VMware Workstation
Ubuntu 20.04LTS

Desktop computer N°1
HP corei7 GTX
MATLAB 2022b

Windows 10

Hardware
Software
Operating System

output terminal in real-time. The ROS device configuration aims
to ensure communication with another ROS device show in
Fig. 12.

The three major development steps, as shown in Fig. 13, are
explained as follows:

Host computer

SMC-NDO-NSO Control ‘ t i

Ubuntu 20.04 LTS
#HROS & [R— MATLAB
SIMULINK®
[®al Connect to ROS device %

To connect to the ROS device, specify its address, your
username, and your password. The generated ROS node
will be deployed In the glven Catkin workspace folder.

Device address: |192.168.137.2

Userame: |user

Password: ‘.-...-.-

Remember my password

ROS folder: | /opt/ros/melodic/

Catkin workspace: | ~/fcatkin

OK Cancel Test Help

Fig. 12. Connect to ROS Device
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o In MATLAB-SIMULINK models: Before being imple-
mented in the Simulink model, the SMC-NDO-NSO and
SMC-NDO controllers applied to the UMR were extracted
from linear and angular velocities estimated in the ((MAT)
file format.

o In MATLAB-Simulink support for ROS: the input esti-
mated state, based on SMC-NDO-NSO, showed that the
two ports of the bus assignment block, (Linear.X) and
(Angular.Z). This technique can collect linear and angular
velocity signals.

« We used the Robotics System Toolbox to run our proposed
method based on MATLAB/Simulink (Device 1) in the
simulation environment (Device 2).

ROS Publisher

N E

DEGASN

Jemd_vel

Linear velocity

Publish

Embedded
MATLAB Function

Fig. 13. Interaction of MATLAB® and Simulink® support by ROS to develop the
SMC-NDO-NSO controller for autonomous navigation of UMR

The ROS publisher will establish a connection with Device
2 and identify the robot type and its Topic shown in Fig. 14.

Block Parameters: Publish X

ROS Publish (mask) (link)
Send messages to a ROS network.

The Msg block input accepts a ROS message (bus signal).

To select from a list of topics available in an active ROS network, set
the Topic source parameter to "Select from ROS network” and use the
"Select..." button. You must be connected to a ROS network to get a
list of active topics. The message type for the selected topic is set
automatically.

To enter a custom topic without an active ROS connection, set Topic
source to "Specify your own". Use the Topic parameter to specify the
name, and the "Select..." button to select the message type.

Configure network addresses

Main  Code Generation
Topic source: |Select from ROS network ~
Topic: |/emd_vel Select ...
Message type: geometry_msgs/ Twist
Cancel Help Apply

Fig. 14. ROS published: minilab robot

Fig. 15 represents a scenario in which MATLAB-SIMULINK
and Gazebo/RVIZ communicate successfully, which is facili-
tated by the ROS framework to start moving and creating its
map using SLAM algorithm.

Code Generation Report for 'Robot’

Model Information

Author The MathWorks, Inc.
Last Modified By utente
Model Version 78

Tasking Mode SingleTacking

Configuration settings at time of code genaration

Code Information

System Target File ert.tlc

Generic->Unspecified (assume 32-bit Generic)
9.8 (R2022h) 13-May-2022

Tue Jun 613:34:20 2023

Dreskt

Hardware Device Type
Simulink Coder Version
Timestamp of Generated Source Code
Location of Generated Source Code AL
Modal

robotMap:

_ert_rtw

Type of Build
Objectives Specified

Additional Information

Code Generation Advisor Mat run

ROS Device Connection T8

» Build and run

Fig. 15. Successful connection

We conclude that controlling and implementing the robot is
straightforward.

Robot Navigation Tools:

1) ROS: Framework for robot control algorithms.

2) Gazebo: Realistic simulation and visualization.

3) GMapping: SLAM algorithm for mapping.

4) RVIZ: Observation and tracking tool for navigation.

To launch Gmapping we use the following command:

roslaunch minilab_demo_simulation
minilab_demo_gmapping.launch

1) Simulation results in Gazebo simulator Number I:Test
scenario with the MiniLab_robot based on SMC-NDO-NSO
control: As illustrated in Fig. 16, the robot, which uses an
estimated state vector based on SMC-NDO-NSO, maintains a
straight path compatible with the reference trajectory through-
out the test duration. Furthermore, the robot continues its
normal course even after colliding with an obstacle, maintaining
accurate values and output. Subsequently, it proceeds without
deviation, navigating with unwavering precision from its initial
position to its connection with the wall, guided by the SMC-
NDO-NSO control system and empowered by SLAM-based 2D
mapping in RVIZ, using a laser scanner.

The robot moves in a straight line, depending on the position
of the scanner see Fig. 17, which is characterized by the
organization of its precisely determined movement in its axis
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Fig. 16. MiniLab_robot in Gazebo and its map generation process based on SMC-NDO-
NSO control

00c2982e13c/spawn_robot1-4+.log

Lase 6.60314e-05 0.08292 1.57

[spawn_sdf-5] process has finishe
d cleanly
log file: /home/user/.ros/log/48465d98-d4ch-11ee-b50f-000c2982¢13c/spann_sdf-5*.log
Laser

ser Pose= -0.0691491 2.11055 1.6203
Registering Scan

Fig. 17. Position of the laser scanner while turning the MiniLab_robot Based on SMC-
NDO-NSO

(z,y,0). Moreover, once the wall is removed, the robot remains
stable.

2) Simulation results in Gazebo simulator Number 2: Test
scenario with the MiniLab_robot based on SMC-NDO control:
Fig. 18 shows that the robot, using a state vector based on
the SMC-NDO control, deviates from the reference trajectory
in a real environment as displayed in the Gazebo and RVIZ
interface. The points scanned by the robot are wrong and
unstable. Therefore, the robot navigates with deviations in its
trajectory.

In Fig. 19 shows that the robot moves along a non-straight
line because the location of the robot, according to the values
(z,y,0), is disorganized and unstable throughout the runtime
and depends on the position of the scanner. Strong disturbances
prevent the robot from accurately tracking its reference path.

3) Simulation results in Gazebo simulator Number 3: Test
scenario with the Hysky_robot based on SMC-NDO-NSO con-

Eile panels Help

|#4: mova camera | iy intoraer  [“]select 20 PocoEsmate 7 20NavGeal

= Maasure EE

. . |

| Reset | Lert-Click: Rotate. iove X/Y. Wheel:: Zoam, Shift: More optiens. 31 fps

Fig. 18. MiniLab_robot in Gazebo and its map generation process based on SMC-NDO

00c2982e13c/spawn_robot1-4*.log
Lase

d cleanly
log file: /home/user/.ros/log/bb9ee318-dach-11ee-b5af-008c2982e13¢/spawn_sdf-5+.log
RN
Se= -0.00645129 1.10054

20373
Registering

38367 2.694 -0.0

Regi

102345670910

11 12 13 14 15 16 17 20 21

ing Particles and

Fig. 19. Position of the laser scanner while turning the MiniLab_robot Based on SMC-
NDO

trol.: The ROS publish configuration makes it easy to change
the robot type for testing SMC-NDO-NSO control by modify-
ing the topic source and message type.

Topic:/husky_velocity_controller/cmd_vel
Messagetype:geometry_msgs/Twist.

As shown in both Fig. 20 and the laser pose in Fig. 21, the
robot follows its linear path precisely.

4) Simulation results in Gazebo simulator Number 4: Test
scenario with the Hysky_robot based on SMC-NDO control:
At the time of implementation, the results of Laser Pose showed
that the robot had lost its way for the first time. It started moving
and then flipped over (see Fig. 22 and Fig. 23). In case of
danger, we can stop the program.
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Fig. 22. Hysky_robot in Gazebo and its map generation process based on SMC-NDO

Jopt/ros/melodic/share/husky_navigation/launch/gmapping_demo.launch http://192.168.137.2:11311

File Edit View Search Terminal Tabs Help
/opt/ros/melodic/share/husky_gaz... * | /opt/ros/melodic/share/husky_viz... * & -
0.400404 1

21 2

Fig. 21. Position of the laser scanner while turning the Hysky_robot Based on SMC-
NDO-NSO

Fig. 24 exhibits the development of robust and intelligent
control strategies for robots, with a particular focus on address-

3 . : Fig. 23. Position of the laser scanner while turning the Hysky_robot Based on SMC-
ing challenges posed by random and non-linear disturbances. npo

The primary purpose consists of ensuring robot stability, en-
hancing performance, rejecting the noise disturbances encoun-
tered, and improving the adaptability of an autonomous robot
in dynamic environments.

3) Our findings showed that by incorporating NSO into the
SMC-NDO automatic control, velocities are accurately

1) The simulation of a kinematic model and a dynamic estimated (see Fig. 6, Fig. 7). Moreover, random and
model (see section II large perturbations imposed on the robot are suppressed

2) We simulated kinematic control and a sliding mode (see Fig. 10), to guarantee system stability. Moreover,
controller with a disturbance observer (see section III). our SMC controller; named SMC-NDO-NSO has been
Next, we proposed to integrate NSO in SMC-NDO (see successfully tested in Gazebo simulation (see Fig. 16,
Section IV, V) Fig. 18).
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MATLAB-SIMULINK
2022h

Implementation in Linux/Ubuntu 20.04
ROS LTS
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robot

Fig. 24. Workflow chart

The proposed SMC-NDO-NSO control is characterized by
two major terms in the world of autonomous robotics:

o Compatibility: The migration of the proposed work from
the mini-lab robot to the Husky robot was seamless and
error-free way, which underscored the success of the
implementation process. The successful transfer confirmed
flexibility and ensured a smooth transition, as it demon-
strated compatible and adaptable communication between
MATLAB/Simulink and the Gazebo simulator via ROS.

« Effectiveness: The robot’s efficiency is attributed to its
ability to move on a variety of surfaces. This diversity
of mobility helps the robot to work successfully in diverse
environments. A robust and intelligent robot controller was
designed to enable the robot to move smoothly, either on
smooth floors or uneven surfaces.

The robustness of the proposed controller consists of re-
jecting random disturbances and estimating non-measurable
angular velocity in order to ensure robot trajectory stabil-
ity. We have also highlighted the possibility of setting up
simultaneous simulations between Simulink and Gazebo to
send commands and receive data from Gazebo for real-world
assessment. This technology can be applied to mobile robots
carrying heavyweights, found notably in Industries 4.0, such
as automated guided vehicles (AGVs), robotic forklifts, and
sensitive environments, like military operations.

Testing the controller on non-terrestrial robots such as sub-
marines and drones is essential due to the different environmen-
tal pressures they face. Submarines have to deal with water
pressure at different depths, while drones navigate through
changes in air pressure at different altitudes. Validating the

controller’s performance under these conditions is essential to
ensure its reliability and efficiency in real-world applications.

VII. CONCLUSION

This paper introduces a novel robot-control method that com-
bines Adaptive Sliding Mode Control, a Nonlinear Disturbance
Observer, and a Neural State Observer. The NSO enhances the
performance of the SMC-NDO controller.

This improvement ensures the system stability by minimizing
error factors that could lead to malfunctions, especially in
facing forced white noise disturbances and unmeasured state
vectors that affect the robot trajectory. Thanks to its two-
layer artificial neural network capability, the state observer
was trained using an error-adjusted back propagation-learning
algorithm and provided some correction terms to the Neural
Network weights in order to improve the robustness of the
NSO. Furthermore, it contains an adaptive matrix observation
calculated by the YALMIP problem optimizer.

Two tests were used to evaluate our proposed control laws.
Firstly, simulations using MATLAB/Simulink 2022b demon-
strated the robustness of the proposed SMC-NDO-NSO con-
troller architecture against strong internal and external dis-
turbances. Furthermore, it outperformed both the SMC-NDO
and SMC controllers in terms of response and performance.
Secondly, by connecting MATLAB® to Gazebo via the ROS in-
terface and experimenting with realistic scenarios, we came up
with the conclusion that the SMC-NDO-NSO controller showed
more responsiveness, compared to the SMC-NDO controller.
SMC-NDO-NSO can be implemented in various types of robots
on two kinds of surfaces (smooth and rough surfaces). However,
when the force of white disturbances increases, the SMC
controller exhibits disturbances after following the reference.

Our future works will put special focus on improving the
neural network technique proposed in the state observer, such
as modifying the activation function, replacing the neural net-
work with Radial basis function (RBF) networks, or utilizing
a Kalman Filter in the proposed controller to reduce more
powerful external influences and disturbances.

We are currently working on improving this research as we
aspire to inspire further exploration and innovation.
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