Abstract—In industrial processes, achieving an efficient flow is paramount as various loops are controlled through flow control. To optimize this flow, it is essential to monitor various influential components such as control valves, flow sensors, as well as input and output parameters to the valve. To maintain the desired flow rate at the outlet of the control valve, it's imperative that the valve's inflow remains higher than the desired output flow rate. In most applications, fluctuations in the inflow rate are typically not considered as a significant factor affecting changes in the output flow which is a key driving component leading to our research objective. This research paper's contribution is estimation of control valve's inlet flow rate without the need for physical sensors and validation of estimated flow rate. This estimator relies on an outflow measurement from an orifice flow meter and employs a first order process with dead time model to deduce the inflow to the control valve. The process model is formulated through data driven system identification, employing the input-output characteristics of the system. Furthermore, a pole-placementbased estimator is developed utilizing real-world data. The novelty of the approach is estimation of the flow rate at valve input which is overlooked by many researchers. To validate the performance of this estimator, it is deployed to compute the inflow in a real-life practical system. The results reveal a root mean square error of 0.029, signifying the accuracy and reliability of the designed estimator. The estimator performed better in terms of reduced root mean square error when compared to other methods.

Keywords—Control Valve; Estimation; Inflow; Soft Sensor; Flow; Pneumatic Actuator; Flow Rate; Pole Placement.

$$P(s) = \frac{0.615}{20s + 1}e^{-10s} + 0.00159$$

$$P(s) = \frac{0.0318s^3 + 0.6357s^2 - 0.364s + 0.0739}{20s^3 + 13s^2 + 3s + 0.12}$$

$$A = \begin{bmatrix} -0.65006 & -0.300012 & -0.0960038 \\ 0.5 & 0 & 0 \\ 0 & 0.125 & 0 \end{bmatrix}; B = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix};$$

 $C = [0.00768 \quad 0.00922 \quad 0.01476 \]; D = [0.00159]$

A. Inflow Estimation

$$P(s) = \frac{0.615}{20s + 1}e^{-10s}$$

 \hat{y} u y

B. Continuous Observer

$$\hat{x}(t) = A\hat{x}(t) + Bu(t) + L[y(t) - \hat{y}(t)]$$

$$\hat{y}(t) = C\hat{x}(t) + Du(t)$$

Input Current (mA)	Input Flowrate(lph) for 20-4mA	Input Flowrate(lph) for 4-20mA

$$g(x) = -4.928 \times 10^8 x^3 + 1.798 \times 10^7 x^2 - 1.44 \times 10^5 x + 378.9$$

$$f(x) = -2.835 \times 10^8 x^3 + 8.88 \times 10^6 x^2$$
$$-3.123 \times 10^4 x + 81.23$$

Input Current (mA)	Input Flowrate(lph) for 4-20 mA	Estimated Flowrate(lph) for g(x)	% error

Input Flowrate(lph) for 20-4mA	Estimated Flowrate(lph) for f(x)	% error
		1
	Flowrate(lph)	Flowrate(lph) Flowrate(lph)

Computers & Industrial Engineering

IEEE Transactions on Engineering Management

Control Engineering Practice

Procedia Computer

Science

Nano

Energy

Powder Technology

IEEE Access

Journal of

food engineering

Journal of Food Engineering

IEEE Access

Resources Policy

IEEE Access

AAPS

PharmSciTech,

et al

IEEE Transactions on Industrial Informatics

Measurement

Results in

Engineering

Sensors

Chemical Engineering Science

Fluid Flow Measurement: A Practical

Guide to Accurate Flow Measurement

et al

IEEE Access

Instrumentation

Flow Measurement and

IEEE Transactions on

Instrumentation and Measurement

Computers and Electronics in Agriculture

IEEE Access

Instrumentation

Flow Measurement

Journal

Research

Flow Measurement and Instrumentation

et al

Measurement

IEEE

Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

IEEE Photonics

Measurement

IETE Journal of Research

Principles of Measurement Systems

IETE Journal of

Chemical Engineering Journal

Journal of The Institution of Engineers (India): Series B

IETE Journal of Research

Sensors International

Journal of Lightwave Technology

IEEE Transactions on Instrumentation and

IEEE Transactions on

Industrial Informatics

Cogent

Engineering

Journal of Manufacturing

Processes

IEEE Transactions on Instrumentation and Measurement

Future Internet

Electronics Letters

UK: Springer

IEEE Sensors Journal

Journal of Petroleum Science and Engineering

Flow Measurement and Instrumentation

IEEE Sensors Journal

Sustainable Energy Reviews	Renewable and	in biology and	! medicine
Water Practice & Technology			Sensors and Actuators A: Physical
acta mechanica et automatica		Journal of Robotics and Control (JRC)	
Actuators,			Engineered Science
Machines		Languages	Proceedings of the ACM on Programming
Flow Measurement a	nd Instrumentation		
	Computers		