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Abstract—Friction stir welding (FSW) is defined as a solid-state
welding method that is required to be accurate, especially for its
motion. This requirement can be satisfied by implementing an
accurate controller. The aim of this research was to develop an
accurate control system based on a fuzzy-proportional integral
derivative (PID) controller for parallel manipulator FSW robots.
In order to achieve a higher accuracy in motion control, the tuning
optimisation process for a fuzzy-PID controller was conducted
using a genetic algorithm (GA) and particle swarm optimisation
(PSO). The optimisation algorithms were applied to simultane-
ously tune the fuzzy rules and output of the membership function
from the fuzzy inference system (FIS). The PID controller was
designed and tuned using a MATLAB® PID Tuner to obtain
the desired response. It was then developed into a fuzzy-PID
controller with Sugeno type-1 FIS with 2 inputs and 1 output. The
tuning optimisation of the fuzzy-PID controller using GA and PSO
was performed to achieve the global minimum integral absolute
error (IAE) of the angular velocity. MATLAB® Simulink® was
employed to test and simulate the controllers for three motors
in the FSW robot model. The IAE values of the PID controller
implemented for each motor were 0.03644, 0.04893, and 0.04893.
The IAEs of the implemented fuzzy-PID-GA (output and rules)
controller were 2.061, 2.048, and 2.048; of the implemented fuzzy-
PID-GA (output) controller were 0.03768, 0.05059, and 0.05059;
of the fuzzy-PID-PSO (output and rules) controller were 0.01886,
0.0253, and 0.02533; and of the fuzzy-PID-PSO (output) controller
were 0.03767, 0.05059, and 0.05059. Therefore, the fuzzy-PID-PSO
(output and rules) controller gave the most accurate results and
outperformed the others.

Keywords—Angular Velocity; Control System; Friction Stir Weld-
ing; Fuzzy-Pid, Genetic Algorithm; Motion; Motor; Parallel Manip-
ulator; Particle Swarm Optimisation.

I. INTRODUCTION

Friction stir welding (FSW) is defined as a solid-state weld-
ing method that has to be accurate, precise, and rigid. FSW
has rapidly advanced, and numerous studies have demonstrated
its practical use for joining various materials used in the auto-
motive, maritime, railway, and construction industries [1]–[3].
However, robot stiffness, rigidity, and motion control system
accuracy are commonly expressed concerns since they can

contribute to welding defects. One of the well-known issues
in the realm of robotics is the motion control of robot ma-
nipulators, particularly for systems with unknown disturbances
[4]–[11]. The identical issue occurred during the development
of a parallel robot manipulator for FSW. In this work, the FSW
robot refers to a prior work [12], where the motion of the
FSW robot was generated by an actuator, specifically a DC
motor at each actuated limb. The motion generated by the DC
motor directly defined the pose and position of the robot’s end-
effector, as described in the three-prismatic-universal-universal
(3-PUU)-based FSW robot system subsection. The position of
the robot’s end-effector is important because the FSW tool is
located in that exact position. Thus, motion control is important
for robot manipulators, specifically for FSW robots.

Numerous strategies have been developed for the control of
robot manipulators, including the adaptive proportional integral
derivative (PID) approach [4], [13]–[18], hybrid position/force
[1], deflection/temperature control [19], artificial neural network
(ANN)-based [20]–[26], sliding mode control [27]–[30], and
radial basis function neural network (RBFNN) [31]. However,
despite the achieved accuracy, these aforementioned methods
are complex and expensive in terms of computational cost.
On the other hand, in recent years, a traditional controller,
such as the PID controller, has been developed to the next
level to enable it to achieve a higher level of accuracy with
a less complex and less expensive computational cost. A PID
controller is the most basic and exact approach for real-world
robotic control problems compared to other ways [4], [32],
[33]. Due to the high accuracy required by FSW robots, it is
important to improve the existing accuracy level of conventional
PID controllers.

One promising solution is to combine the PID controller with
fuzzy logic, to be later indicated as a fuzzy-PID controller.
In other previous research, in order to combine fuzzy logic
and PID, the fuzzy logic receives inputs and error changes in
the fuzzification process and outputs, (KP ,KI), and (KD).
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Furthermore, the membership function parameters and fuzzy
logic rule base are identified, and therefore, the error input and
output from the fuzzy system are compatible with the entire
system [53]–[55]. Additionally, the Mamdani fuzzy logic with
triangular membership function type is utilised [52]. In this
work, in order to compensate for the lack of expert knowledge
in generating a fuzzy rule base, a different approach was
implemented. Here, fuzzy logic was employed as the control
input regulator. Therefore, for different input combinations of
error ((E)) and error change (∆(E)) different outputs were
produced appropriately.

Furthermore, prior research was done by [34], [35] and [36]–
[39], [41]–[44] to explore the application of a PID controller
with fuzzy logic for motion control. Previously, the research
compared the performance of a PID controller and a combina-
tion of fuzzy logic with a traditional PID controller in regulating
the speed of a DC motor [45]–[47]. It was found that the fuzzy-
PID controller was better able to control the speed of the DC
motor compared to systems with conventional PID controllers.
In fuzzy logic, the fuzzy inference system (FIS) parameters
need to be tuned to get a response with the minimum feasible
error, and thus, higher accuracy. There are several options for
tuning optimisation methods, such as genetic algorithm (GA)
and particle swarm optimisation (PSO).

Previously, Demidova et al. conducted research on a fuzzy
PID-based adaptive control system with GA auto-tuning [48]–
[51]. In those aforementioned studies, the results showed an
improvement in the accuracy of the control system. The GA
method itself offers several advantages. Firstly, it excels in
global optimisation. Secondly, it is inherently robust, less sensi-
tive to noise and uncertainties, and adapts well to environmental
changes, making it suitable for real-world applications [49],
such as for FSW robots. It has been shown that the fuzzy-PID-
GA is appropriate for solving control problems in a dynamic
motion system [48].

The other promising tuning optimisation method is PSO,
which can provide solutions of the same high quality but with
less effort. PSO itself is a basic method that can be utilised
to solve optimisation issues across a wide range of functions
[56]. Furthermore, a study with regard to fuzzy-PID based on
PSO was carried out by Wang et al. Based on this research
on real value functions, simulated results were achieved where
the fuzzy-PID-PSO was superior to the basic PSO (SAPSO),
chaotic PSO (CLSPSO), and hybrid PSO (BreedPSO) regarding
convergence speed and search capabilities. So, it can be inferred
that compared to the SAPSO, CLSPSO, and BreedPSO, the
fuzzy-PID-PSO offers benefits in terms of search time and
accuracy [57]. Another research by Liu et al. revealed that
an improved controller using fuzzy-PID-PSO considerably in-
creases the response speed, tracking accuracy, and follower
characteristics of a system. It can be concluded that the fuzzy-
PID-PSO controller gives a better performance compared to the

fuzzy-PID controller without tuning optimisation [58].
To the best of the authors’ knowledge, fuzzy-PID-based

controllers with GA and PSO tuning optimisations for FSW
robots have yet to be synthesised. Thus, in this work, tuning
optimisations were performed on two different configurations:
(1) the output of the FIS, and (2) the output and rule base
of the FIS. Each configuration was tuned using GA and PSO
optimisation methods by minimizing the integral absolute error
(IAE) of the desired angular velocity. Hence, there were four
novel controllers. The design, tuning, testing, and simulation
processes were done with MATLAB® Simulink®. The results
were compared with those of a traditional PID controller to
obtain the best results between those controllers. The develop-
ment of a fuzzy-PID control system was proposed to acquire a
highly accurate control system for a 3-PUU-based FSW robot.
Thus, this study dealt with the fuzzy rules based on the output
and error. Moreover, the GA and PSO were applied for the
optimisation procedure to produce the best suitable fuzzy rules.

The several contributions of this presented work include:
(1) The adoption of the GA tuning optimisation on the output

of the FIS in the fuzzy-PID controller for the FSW robot.
(2) The adoption of the GA tuning optimisation on the output

and rules of the FIS in the fuzzy-PID controller for the FSW
robot.

(3) The adoption of the PSO tuning optimisation on the
output of the FIS in the fuzzy-PID controller for the FSW robot.

(4) The adoption of the PSO tuning optimisation on the
output and rules of the FIS in the fuzzy-PID controller for the
FSW robot.

(5) The evaluation of the performance of the controller and
its comparison with existing controllers based on the IAE.

II. METHOD

The overall method for this work is described in the flowchart
shown in Fig. 1, Based on the flowchart, the overall work
process is described step-by-step as follows:

(1) Modelling the mechanical system of the FSW robot based
on a 3-PUU parallel manipulator to derive the initial high order
transfer function (HOTF) of that system.

(2) Generating a first-order plus dead time (FOPDT) transfer
function based on the initial HOTF.

(3) Modelling the system with MATLAB® Simulink® and
implementing the PID controller. The initial values are set
accordingly for KP ,KI , and KD.

(4) Tuning the PID using a MATLAB® PID Tuner. If the IAE
≤ 0.1 rad/s, then continue the process with the tuned KP ,KI ,
and KD.

(5) Designing the Fuzzy-PID controller.
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(6) a. Optimising the tuning of the fuzzy-PID using GA for
the FIS output. b. Optimising the tuning of the fuzzy-PID using
GA for the FIS output and rules.

(7) a. Optimising the tuning of the Fuzzy-PID using PSO
for the FIS output. b. Optimising the tuning of the Fuzzy-PID
using PSO for the FIS output and rules.

(8) Comparing the results and choosing the best.

Fig. 1. Flowchart of the overall research process

The detailed method will be explained in the following
subsections. Additionally, to avoid the research topic from be-
coming too broad, the research limitations were as follows: (a)
the pitch, yaw, and roll angle of the FSW robot moving platform
was equal to zero, (b) the welding path was a linear horizontal
line, (c) the research was only in the form of MATLAB®
Simulink® simulations, and (d) the tuning configuration of the
FIS utilised the default setting of MATLAB® Simulink®.

A. 3-PUU Based FSW Robot System

The 3-PUU parallel manipulator in this paper had to perform
a translation motion with 3 degrees of freedom (DoF) and carry
a heavy motor load of the FSW tool. Therefore, the structure
of the manipulator had to have good controllability features.
The 3-PUU parallel manipulator under study was composed
of three identical limbs consisting of a prismatic joint (P) and
two universal joints (U) in Fig. 2. Each limb was constructed
of an actuated prismatic joint (P) that moved along the X-
axis of the displacement, qi, and two universal joints (U). The
first universal joint (U) was attached to the prismatic joint (P)
denoted by point Ai, and the second universal joint (U) was
mounted on the moving platform denoted by point Bi.

Fig. 2. FSW robot based on 3-PUU parallel manipulator

The moving platform was an equilateral triangle of circum-
radius b. The distance between the prismatic joint of the second
and third limbs to the X-axis was denoted by a. The link length
between points Ai and Bi was defined by l.

The position vectors in this paper were described by a
homogeneous coordinate system. The detailed representations
of vector points Ai and Bi with respect to the fixed and moving
coordinates were respectively written as follows:

A1 = [q1, 0, 0, 1]
T

A2 = [q2, a, 0, 1]
T

A3 = [q3,−a, 0, 1]T
(1)

b1 = [−b, 0, 0, 1]T

b2 = [
1

2
b,
1

2
b
√
3, 0, 1]T

b3 = [
1

2
b,−1

2
b
√
3, 0, 1]T

(2)

In this paper, the transformation of the global coordinates was
carried out utilizing a four-by-four homogeneous transformation
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matrix, T. Moreover, those values were employed for the further
computation and analysis of the kinematics. The homogeneous
matrix T was written as follows:

T =

[
R d

01×3 1

]
(3)

where,

R =

CφCθ CφSθSψ − SθCψ CφSθCψ + SφCψ
SφCθ SφSθSψ + CφCψ SφSθCψ − CθSψ
−Sθ CθSψ CθCψ


(4)

d = [X,Y, Z]T (5)

φ = θ = ψ = 0 (6)

Cosine and sine were respectively denoted by C and S. The
homogeneous transformation that was performed to point bi
yielded Bi as follows:

Bi = T bi, i = 1, 2, 3 (7)

The moving platform was unable to rotate as the rotational
angles were maintained as φ = θ = ψ = 0 as shown in Eq. (6).
Hence, the moving platform only achieved translations with 3-
DOF. The translation displacement of the middle point of the
moving platform was denoted by d.

B. Hardware and Instrumentation

The schematic representation of the FSW robot testing sys-
tem is shown in Fig. 3.

Fig. 3. Schematic of FSW robot testing system

The actuator assembly consisted of a Maxon® DCX 22L
precious metal brushes DC motor with a diameter of 22 mm.
To enable the translation movement of the limb, a set of ball
screws was utilised for each limb. The ball screw employed
in this work was a rolled ball screw block nut with a lead
screw of 5 mm. There were a total of three DC motors, each
of which controlled the rotation of the ball screws. Thus, a
translation motion could be achieved in each prismatic joint (P).

A potentiometer was used to regulate the resistance, voltage,
and electric current. Furthermore, a torsion bar and load cell
were used to measure the force caused by the motion of the
overall system. The detailed specifications of the DC motor and
ball screws are shown in Table I and II.

TABLE I. SPECIFICATIONS OF MAXON DCX 22L

Value Value
Torque constant 9.73 mNm/A
Stator inductance 0.035 mH
Stator resistance 0.343 Ω
Rotor inertia 9.06 g.cm2

Back electromotive constant 0.00102 V/RPM

TABLE II. SPECIFICATIONS OF MISUMI ROLLED BALL SCREWS BLOCK NUT

Value Unit
Stroke length 150-2000 mm
Friction factor (f) 0.15
Lead screw (l) 5 mm
Diameter screw (dm) 15 mm

C. Modelling the System

1) Initial transfer function: The transfer function plant was
utilised to model the entire system. It was known that this
transfer function plant would be modelled in the FOPDT form
[59], [60]. To model a system in this form, it was necessary to
know the gain (C), time constant (T ), and time delay (L) of
the entire system. This subsection explores how the values for
these parameters were obtained. Before modelling the transfer
function in the FOPDT form, it was necessary to know the
initial transfer function model in the initial higher-order form.
Previously, it was known that the form of the transfer function
plant could be described in Eqs. (8) and (10) as follows:

C(s) =
G(s)

1−G(s)H(s)
(8)

G(s) =
Km

(Ls+R)(Js+Kf )
(9)

J = Jr + Jl (10)

where C(s) is the closed-loop initial HOTF, G(s) denotes the
open loop initial HOTF, and H(s) is the back electromotive
force of the motor. Additionally, Km, L,R, J and Kf denote
the torque constant, stator inductance, stator resistance, total
inertia, and viscous damping of the motor, respectively. Fur-
thermore, Jr denotes the inertia of the rotor, and Jl the load
applied in the motor. Those parameters were obtained from the
specifications of the screw and motor shown in Tables I and II.
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Based on the desired trajectory and the previous computation
[12], the average angular velocity was 0.2667 rad/s. Thus, the
torque on the ball screw was obtained by employing Eq.(11).

Fe =
2τb
dm

(
πdm + fl

l − πfdm
) (11)

The Eq. (11) was employed to obtain the torque by taking into
account the leverage of the ball screw mechanism, where Fe

is the average translation force, τbs the average torque on the
ball screw, dm the screw diameter, l denotes the lead screw, ω
the angular velocity, and f the friction factor of the mechanism
[58]. The equation shows that the average torque for generating
the average translational force was τbs = 0.406. Kf in the
system was computed using Eq. (12) follows:

mean(τbs)

mean(ω)
=

0.4060

0.2667
= 2.3882 (12)

The total inertia of the system consisted of the inertia of the
limbs and moving platform. The inertia matrix is described in
Eqs. (13) and (14):

Ip =

0.041 0 0
0 0.014 0
0 0 0.055

 (13)

Il =

0.132 0 0
0 0.132 0
0 0 0.006

 (14)

Based on Eqs. (8) - (14), the closed-loop initial HOTF of the
system was obtained using Eq. (15) The response based on that
transfer function is presented in Fig. 4

C(s) =
0.00973

0.000002142s2 + 0.02108s+ 0.8192
(15)

Fig. 4. Step response of the close loop initial higher-order transfer function without
tuned controller

2) First-order plus dead time (FOPDT) transfer function:
Once the closed loop of the initial HOTF is known, the FOPDT
transfer function modelling can be carried out. This modelling
method was chosen due to the accuracy of the model in
mimicking the initial transfer function response, despite its
lower-order transfer function [60]. Moreover, a lower-order
transfer function made it easier to design a control system with
higher accuracy. Thus, this method was implemented in this
work. First-order plus dead time (FOPDT) modelling is known
to be carried out using the Karim and Riggs model, where the
FOPDT equation is [61].

C ′(s) =
Ce−Ls

Ts+ 1
(16)

Ce =
1

r(tf )− y(tf )
(17)

Cd = min(T,
L

2
× Ce) (18)

C0 =
1

CCe(τc +
L
2 )

(19)

C1 = max(T,
L

2
)× C0 (20)

where, C ′(s) and (C) denote the FOPDT transfer function
and the system gain, respectively; Ce and Cd denote the scaling
factors to normalise the (E) and ∆E; C0 and C1 denote the
scaling factors to map the fuzzy logic controller output into the
system’s input; C,L, T , and τc are the system gain, dead time
or time delay, time constant, and closed loop time constant,
respectively; and r(tf ) and y(tf ) denote the reference and
system output, respectively at time tf .

Based on the response in Fig. 4, manual calculations could
be carried out when it was known that without a controller, the
system would move constantly at an angular speed of 0.01188
rad/s. Then, the time required for the system to fulfil a steady-
state response of 0.02826 s was 0.01050 s. With this data,
the C,L, and T values were obtained as 0.001188, 0.000352,
and 0.02537, respectively. Furthermore, the FOPDT transfer
function modelling was carried out using Eq. (21), Eq. (16)–
(20). The responses based on that transfer function are presented
in Fig. 5.

C ′(s) =
0.01188

0.02537s+ 1
e−0.000352s (21)

As seen in Fig. 4 and Fig. 5, the two responses were
similar, even with different order transfer functions. In Fig. 5,
the red line describes the behaviour of the FOPDT system,
while the blue one describes the behaviour of the initial high-
order system. Thus, the FOPDT transfer function was able to
accurately depict the behaviour of the system.
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Fig. 5. Step response of the close loop FOPDT versus initial higher-order transfer
function without tuned controller

D. Designing the Proportional Integral Derivative (PID) Con-
troller

The PID controller was tuned using the PID Tuner add-on in
MATLAB®. The PID Tuner performs tuning automatically by
linearizing the plant. Fig. 6 shows the response from the system
after the implementation of a PID controller that had been tuned
accordingly, thus minimising the IAE. The red line represents
the PID-tuned response and the blue one represents the initial
step response without the PID tuning. The level of robustness
and the response time were set at the intermediate level.
Based on the tuning process using the PID parameters via the
PID Tuner toolbox, the PID control parameters obtained were
KP =110.483, KI=8573.405, KD=0.15003, and N=736.3952.

Fig. 6. Comparison between the step system response before and after the PID
controller tuned

E. Designing the Fuzzy-Proportional Integral Derivative
(PID)-Genetic Algorithm (Fuzzy-PID-GA) Controller

The fuzzy-PID controller was tuned based on the output, and
the rule plus the output. The three DC motors (actuators 1, 2,
and 3) used in the system were tuned so that they could respond

to the input pulses with minimal IAE. The use of pulses as the
input itself was based on the expected behaviour of the system,
where the system could respond to transient changes in the
input with minimal error [62].

Before tuning the FIS, the gain scaling factor, with which to
normalise the PI and PD control phases, had to be calculated.
This was accomplished using Eq. (21). As such, the gain scaling
factors were Ce=1, Cd=0.000176, C0=8271.90, and C1=209.86.

Next, an initial system was needed to start the tuning process
on the FIS. The initial FIS used was the FIS Sugeno Type-1. It
consisted of two inputs in the form of the error (E) and delta
error (∆E), with each having three membership functions in
the form of negative (N , zero (Z), and positive (P ), and one
output in the form of U, which symbolised the angular speed
with five member functions in the form of negative big (NB),
negative medium (NM ), zero (Z), positive medium (PM ), and
positive big (PB), and consisting of nine rules (Table III).

The initial FIS was the FIS Sugeno type-1 with default
settings. Moreover, the triangular membership function, default
configuration of membership functions, and rule base were
according to the reference [59]. These configurations gave
good results for the tuning optimisation process. The initial
FIS was tuned to meet the needs of the system using the
fuzzy logic designer feature in MATLAB®. The tuning process
was conducted twice. The first tuning process was conducted
to determine the membership function output parameters and
rules, while the second tuning process was conducted to only
determine the membership function output parameters. As
previously mentioned, the fuzzy-PID controller was tuned to
the input pulse using a custom cost function. The custom cost
function used was the IAE, with an initial value of 0.1 rad/s.
For its implementation on MATLAB® Simulink®, the custom
cost function was configured, as shown in Fig. 7, from which
was determined the cost of a system with untuned fuzzy-PID
after running the input pulse for a certain period. The tuning
process moved from this number, where the GA tried to obtain
a cost value that was smaller than the value above by changing
the working parameters of the initial fuzzy-PID according to
the prediction.

Fig. 8 illustrates the GA tuning process. Genetic algorithm
(GA) was chosen for this tuning optimisation process as it
strives to obtain the global optimum result from all of the gen-
erations. They are inspired by the process of natural selection
and genetics and mimic the concept of evolution by iteratively
evolving a population of potential solutions through selection,
crossover, and mutation operations, later known as genetic
operators. Genetic algorithms (GAs) employ a population-based
search strategy; thus, they maintain a population of potential
solutions and iteratively evolve them over generations. The se-
lection, crossover, and mutation operations drive the exploration
and exploitation of the search spaces, with exploration and
exploitation being emphasised simultaneously.
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TABLE III. FIS RULE BASE

E/∆E N Z P
N R1

Z : U = NB = −1 R2
Z : U = NM = −0.5 R3

Z : U = Z = 0
Z R4

Z : U = NM = −0.5 R5
Z : U = Z = 0 R6

Z : U = PM = 0.5
P R7

Z : U = Z = 0 R8
Z : U = PM = 0.5 R9

Z : U = PB = 1

Fig. 7. Custom Cost Function IAE implemented in the Matlab Simulink

Fig. 8. Flowchart of the GA optimization process with IAE as the cost function

The genetic operators enable exploration by introducing
new genetic material, while selection favours exploitation by
propagating promising solutions to the next generation. To
initialise the tuning process, the ”Mersenne twister generator
with seed zero for reproducible sequences” was utilised as a
random seed generator to tune the FIS process using GA. When
the seed is set to zero, the random number generator will start
from the same initial state every time to necessarily produce
the same sequence of random numbers since consistent and
reproducible random sequences are required.

The first tuning process was carried out for the output param-
eters and rules for the fuzzy-PID controller. Fig. 9 illustrates the
result of the process of searching for the smallest cost solution
by GA for the FIS with the output and rule base as the tuneable

parameters. The initial value of the IAE was 0.1 rad/s, and thus,
the IAE obtained from the tuning process had to be equal to or
smaller than this value. The overall tuning was completed after
68 generations when the average change in the fitness value
was smaller than the function tolerance set as the default. From
the search that was carried out, the FIS was obtained with a
new parameter set with a cost of 0.03131 when undergoing
the configured input pulse. The new parameter set for the FIS
consisted of NB=-1, NM=-0.99751, Z=0, PM=1, and PB=1.

Fig. 9. Total generation of training convergence for output and rule base tuning in GA
optimization
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In the second tuning process, the results obtained from the
tuning process with tuneable parameters were only the member-
ship functions of the output represented in the image. Tuning
was completed after 88 generations when the average change
in fitness value was smaller than the function tolerance set as
the default. From the search that was carried out, the FIS was
obtained with a new parameter set with a cost of 0.04071 when
undergoing the configured input pulse. The new parameter set
for the FIS consisted of NB = −1, NM = −0.99966, Z = 0,
PM = 1 and PB = 1. The training of the tuning process is
shown in Fig. 10.

Fig. 10. Total generation of training convergence for output in GA optimization

F. Designing the Fuzzy-Proportional Integral Derivative (PID)-
Particle Swarm Optimisation (PSO) Controller

The PSO tuning process is illustrated in Fig. 11. The reason
for choosing PSO for this tuning optimisation process was
similar to the reason for choosing GA, namely its behaviour,
which strives to obtain the global optimum result from all of
the generations. PSO is inspired by the collective behaviour of
flocks of birds or schools of fish.

It simulates a swarm of particles moving through a search
space, with each particle adjusting its position based on the
best solution found by itself and its neighbours. PSO utilises
a swarm-based search strategy. Each particle adjusts its posi-
tion and velocity based on its own experience and the best
solution found by its neighbours. The particles collectively
explore the search space while gradually converging towards
promising regions. PSO tends to emphasise exploitation more
than exploration. The particles are attracted towards the best
solution found so far, which leads to exploitation. Thus, in this

Fig. 11. Flowchart of the PSO optimization process with IAE as the cost function

work, the results from those two methods were compared. Here,
the initial IAE value was 0.1 rad/s. Furthermore, in the tuning
process using the PSO method, the smallest possible IAE value
was obtained by changing the working parameters of the initial
FIS.

Fig. 12 depicts the process carried out by the PSO method to
find the smallest cost solution for the initial FIS with tuneable
parameters in the form of output. The tuning process was
completed after 61 iterations when the average change in the
fitness value was smaller than the function tolerance set as the
default. The new parameter set for the FIS tuning based on
the output only consisted of NB=-1, NM=-1, Z=1.2086e -10,
PM=1, and PB=0.99993.

Based on convergence data from the tuning process that
was carried out, the FIS was obtained with a new set of
parameters with a cost of 0.0207 in running with the input
in the form of a pulse with a stop time of 6 s. Fig. 13 depicts
a graph of the process of finding the smallest cost solution
carried out by the PSO method for the initial FIS with tuneable
parameters in the form of rules and output. The tuning process
was completed after 110 iterations. The tuning process was
automatically completed because the average change in the
fitness value was smaller than the function tolerance set as the
default. Based on the convergence data from the tuning process
that was carried out, the FIS was obtained with a new set of
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parameters with a cost of 0.0154 when running with the input in
the form of a pulse with a stop time of 6 s. The new parameter
set for the FIS tuning based on the output and rules consisted
of NB=-1, NM=-1, Z=3.9925e -10, PM=0.3115, and PB=1.

Fig. 12. Total generation of training convergence for output in PSO optimization

Fig. 13. Total generation of training convergence for output and rules in PSO
optimization

III. RESULTS AND DISCUSSION

A. Simulation Results of the Fuzzy-Proportional Integral
Derivative (PID)-Genetic Algorithm (Fuzzy-PID-GA) Con-
troller

1) Simulation results with steps as inputs: The simulation
results of the suggested fuzzy-PID control systems optimised by
GA are presented in this section. In this work, the simulations
were performed under two different inputs. The first simulation
was performed using the step input so that the differences in
response could be easily spotted. The results of this simulation
are shown in Fig. 14.

The performance matrices utilised in this work were the rise
time, settling time, overshoot, and IAE. The rise time signified

the time taken by the system’s output to transition from a
specified low value to a specified high value. The settling time
was typically measured from the instant the system’s response
first entered the tolerance limit until it remained within that
limit. The overshoot was expressed as a percentage of the
amount by which the system’s response exceeded its final
steady-state value. The IAE signified the cumulative absolute
error between the system’s output and the desired response over
a specified period. In this simulation, the input, illustrated as
a green line, was the angular velocity in the step function.
Based on Fig. 14, the fastest rise time and settling time were
obtained by applying the values of 0.008932 s and 0.014 s,
respectively to the fuzzy-PID-GA (rule & output) controller.
The smallest overshoot was obtained by applying to the fuzzy-
PID-GA (output) controller the value of -0.52 %, with the
minus value indicating there was an undershoot instead of an
overshoot. The least IAE was obtained by applying the value
of 0.009782 rad/s to the fuzzy-PID-GA (output) controller.
The detailed results are shown in Table IV. The comparison

Fig. 14. Step responses comparison with implementing Fuzzy-PID-GA

between the previous design and the proposed controllers is
shown in Table V. In the previous work by Singh [63], the
rise time, settling time and overshoot are 0.1 s, 0.121 s, and
5.8466%, respectively. In another article by Chao [17], a better
performance was obtained with a rise time of 0.044 s, a settling
time of 0.054 s, and an overshoot of 2.23%. Additionally, the
performance of the PID controller was also given in this article,
with a rise time of 0.024914 s, a settling time of 0.125 s, and an
overshoot of 6.989%. Moreover, the proposed fuzzy-PID-GA
(rule & output) controller gave a slightly better performance
with a rise time of 0.022446 s, a settling time of 0.064 s, and
an overshoot of -0.52%. The other proposed controller based
on GA optimisation, which was the fuzzy-PID-GA (output)
controller, also gave a relatively good response, where the
rise time was 0.008932 s, settling time was 0.014 s, and the
overshoot was 1.83%. Thus, the best rise time and settling time
were achieved by implementing the fuzzy-PID-GA (output)
controller. Furthermore, the best overshoot could be obtained
by applying the fuzzy-PID-GA (rule & output) controller.

According to the simulation results, the implementation of
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TABLE IV. IAE COMPARISON WITH IMPLEMENTING FUZZY-PID-GA CONTROLLER

Parameter PID Fuzzy-PID-GA (rule & output) Fuzzy-PID-GA (output)
IAE (rad/s) 0.020078 0.01035 0.009782

TABLE V. PERFORMANCES COMPARISON WITH IMPLEMENTING FUZZY-PID-GA CONTROLLER

Parameter Singh’s Fuzzy-GA [63] Chao’s Fuzzy-PID-GA [17] PID Fuzzy-PID-GA (output) Fuzzy-PID-GA (rule & output)
Rise time (s) 0.1 0.044 0.024914 0.022446 0.008932

Settling time (s) 0.121 0.054 0.125 0.064 0.014
Overshoot (%) 5.8466 2.23 6.989 -0.52 1.83

the fuzzy-PID-GA (output) controller gave a smooth response,
with a relatively small rise time and settling time, compared to
the conventional PID controller response. Due to the smooth
system response, there would not be any higher accumulated
IAE. Additionally, the fuzzy-PID-GA (rule & output) controller
gave a high oscillation response, and therefore, the accumulated
IAE could be larger over time.

Despite the oscillation response, the overshoot was still lower
than that of the conventional PID controller, which was less
than 0.02 rad/s. The oscillatory behaviour of this controller was
caused by the chosen value of the rules in the GA optimisation
process. The detailed and enlarged version of the comparison
of the controllers can be seen in Fig. 15. It can be said that
both the fuzzy-PID-GA controllers gave better results than
the conventional PID controller. The rise time and settling
time of the fuzzy-PID-GA (rule & output) controller were the
fastest compared to the conventional PID and fuzzy-PID-GA
(output) controllers. The FSW robot had to be precise and
rigid in its application. Thus, it was important for the system
response to be always stable and smooth, with less overshoot.
A high overshoot and high oscillation response can lead to the
formation of welding defects, such as flash. Moreover, it will
cause the seam welding result to be less accurate. Hence, for
the FSW application, a smooth and faster response from the
fuzzy-PID-GA (output) controller was preferable, even though
its settling time and rise time were slightly slower than those
of the fuzzy-PID-GA (rule & output) controller.

Genetic algorithm (GA) optimisation tends to be robust in
finding good solutions, even in the presence of noise or uncer-
tainties in the problem. The population-based nature of the GA
helps to maintain diversity and avoid getting trapped in local
optima. Unfortunately, it may converge prematurely, meaning
it may get stuck in local optima instead of finding the global
optimum. This can happen if the population size is too small or
if the genetic operators are not appropriately tuned. Since the
GA is required to evaluate the fitness of each individual in the
population, thus, it is computationally expensive for problems
with complex fitness functions or simulations. Hence, for a
system with a slightly slower response with the least IAE and
smooth response, the fuzzy-PID-GA (output) controller is the
best choice. If the system’s response needs to be faster and
the maximum oscillation is ≤ 1.85%, then the fuzzy-PID-GA
(rule & output) controller is the best option. Moreover, the

Fig. 15. Enlarge figure of the step responses comparison with implementing Fuzzy-PID-
GA

implementation of the fuzzy controller with GA optimisation
in the tuning process led to an improvement in the overall
performance of the system’s response. In future work, the
implementation of the proposed controller has to be done with
a real FSW robot system. Therefore, the real disturbance and
noise can be considered, and hence, it can directly impact the
system’s response.

2) Simulation results with trapezoidal trajectories as inputs:
The next simulation was performed using the trapezoidal input,
as stated in the previous work [12]. Here, the controller was im-
plemented for each DC motor separately, and the performance
of the controller was measured using only the IAE value. For
Motor #1, the smallest error obtained by implementing the PID
was 0.03664.

For Motor #2, the smallest error obtained by implementing
the PID was 0.04893. However, this result was not so different
from the implementation of the fuzzy-PID-GA (output) con-
troller. Lastly, for Motor #3, the result was the same as for
Motor #2 since the trajectory was similar. The details of the
IAE values for each motor are depicted in Table VI. Here,
the optimisation process using GA was implemented in the
fuzzification process, thus enabling the most suitable rules with
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the least error to be chosen. As seen in Fig. 14, the fuzzy-PID-
GA (rule & output) controller responded by oscillating, and
thus, the IAE was higher than for the other controllers, but
the settling time and rise time were faster. It is important to
understand the main goal of the desired system, whether it is
to be the fastest one or the one with the least IAE. The fuzzy-
PID-GA (rule & output) controller is the controller of choice if
the aim is to obtain the fastest response. Moreover, if the goal
is to obtain the least error or IAE, then the PID or fuzzy-PID-
GA (output) controller would be the best choice. The data in
Table V shows that the high IAE value of the fuzzy-PID-GA
(rule & output) controller can be affected by the accumulation
of errors due to the oscillation in the longer term since this
trajectory was simulated for 250 s.

TABLE VI. IAE COMPARISON WITH IMPLEMENTING FUZZY-PID-GA CONTROLLER
FOR 3 DC MOTORS OF 3-PUU

IAE Motor 1 Motor 2 Motor 3
PID 0.03644 0.04893 0.04893

Fuzzy-PID-GA (rule & output) 2.061 2.048 2.048
Fuzzy-PID-GA (output) 0.03768 0.05059 0.05059

B. Simulation Results of the Fuzzy-Proportional Integral
Derivative (PID)-Particle Swarm Optimisation (PSO) Con-
troller

1) Simulation results with steps as input: The simulation
results of the suggested control systems with fuzzy-PID opti-
mised by PSO are presented in this section. In this work, the
simulations were performed under two different inputs. The
first simulation was performed using the step input so that
the differences in the responses could be easily spotted. The
results of this simulation are shown in Fig. 16. The performance
matrices utilised in this work were the rise time, settling time,
overshoot, and IAE. The rise time signified the time taken by
the system’s output to transition from a specified low value to a
specified high value. The settling time was typically measured
from the instant the system’s response first entered the tolerance
limit until it remained within that limit. The overshoot was
expressed as a percentage of the amount by which the system’s
response exceeded its final steady-state value. The IAE signified
the cumulative absolute error between the system’s output and
the desired response over a specified period. Based on Fig. 16,
the fastest rise time and settling time obtained by applying
the fuzzy-PID-PSO (rule & output) controller were 0.01427
s and 0.04 s, respectively. The smallest overshoot obtained by
applying the fuzzy-PID- PSO (rule & output) controller was -
0.518%, the minus value indicating there was an undershoot
instead of an overshoot. The least IAE of 0.009 rad/s was
obtained by the fuzzy-PID-PSO (rule & output) controller. The
detailed results are shown in Table VIII.

The comparison between the previous design and the pro-
posed controllers is shown in Table VII. In the previous work
by Liu [58], the rise time, settling time, and overshoot were 0.5

Fig. 16. Step responses comparison with implementing Fuzzy-PID-PSO

s, 1.4 s, and 0%, respectively. Additionally, in this article, the
performance of the PID controller was also determined with
a rise time of 0.024914 s, a settling time of 0.125 s, and an
overshoot of 6.989%. Moreover, the proposed fuzzy-PID-PSO
(rule & output) controller gave a slightly better performance
with a rise time of 0.01427 s, a settling time of 0.04 s, and an
overshoot of -0.518%. The other proposed controller based on
PSO optimisation, which was the fuzzy-PID-PSO (output), also
gave a relatively good response with a rise time of 0.022416 s,
a settling time of 0.071 s, and an overshoot of -0.52%. Thus,
the best rise time, settling time, and overshoot were achieved
by implementing the fuzzy-PID-PSO (rule & output) controller.

According to the simulation results, the implementation of
both controllers gave a smooth response, with a relatively
smaller rise time and settling time compared to the response
of the conventional PID controller. The rise time and settling
time of the fuzzy-PID-PSO (rule & output) controller were the
fastest compared to the conventional PID and fuzzy-PID-PSO
(output) controllers. The FSW robot needs to be precise and
rigid in its application. The high overshoot and high oscillated
response could lead to the formation of welding defects such
as flash. Moreover, it would cause the seam welding result to
be less accurate. Therefore, for the FSW application, a smooth
and faster response from the fuzzy- PID-PSO (rule & output)
controller was preferable.

Hence, the fuzzy-PID-PSO (rule & output) controller is the
best choice for a system that needs a faster response, the least
IAE, and a smooth response. Moreover, the implementation
of the fuzzy controller with PSO optimisation in the tuning
process led to an overall improvement in the performance of
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TABLE VII. PERFORMANCE COMPARISON WITH IMPLEMENTING FUZZY-PID OPTIMIZED BY PSO CONTROLLER

Parameter Liu’s Fuzzy-PID-PSO [58] PID Fuzzy-PID-PSO (output) Fuzzy-PID-PSO (rule & output)
Rise time (s) 0.5 0.024914 0.022416 0.01427

Settling time (s) 1.4 0.125 0.071 0.04
Overshoot (%) 0 6.989 -0.52 -0.518

TABLE VIII. IAE COMPARISON WITH IMPLEMENTING FUZZY-PID-PSO CONTROLLER

PID Fuzzy-PID-PSO (rule & output) Fuzzy-PID-PSO (output)
IAE (rad/s) 0.020078 0.009 0.01397

the system’s response. In future work, the implementation of the
proposed controller has to be done with an actual FSW robot
system so that the real disturbance and noise can be considered.
Hence, this can directly impact the system’s response.

2) Simulation results with trapezoidal trajectories as inputs:
The next simulation was performed using a trapezoidal input,
as stated in [12]. In this simulation, the controller was imple-
mented for each DC motor separately. Here, the performance of
the controller was measured using the value of the Integral of
Absolute Error (IAE). For Motor #1, the smallest error obtained
by implementing the fuzzy-PID-PSO (rule & output) controller
was 0.01866. For Motor #2, the smallest error obtained by
implementing the fuzzy-PID-PSO (rule & output) controller
was 0.0253. Lastly, for Motor #3, the smallest error obtained
was the same as Motor #2. The detailed IAE value for each
motor is depicted in Table IX.

TABLE IX. IAE COMPARISON WITH IMPLEMENTING FUZZY-PID-PSO CONTROLLER
FOR 3 DC MOTORS OF 3-PUU

IAE Motor 1 Motor 2 Motor 3
PID 0.03644 0.04893 0.04893

Fuzzy-PID-PSO (rule & output) 0.01886 0.0253 0.02533
Fuzzy-PID-PSO (output) 0.03767 0.05059 0.05059

In this work, the optimisation process using PSO was im-
plemented in the fuzzification process so that the most suitable
rules with the least error could be chosen. It is important to
understand what is the main goal of the desired system. Overall,
the fuzzy-PID-PSO (rule & output) controller gave the fastest
response with the lowest IAE and percentage of overshoot.

C. Sensitivity Analysis

The sensitivity analysis of the proposed control system is
an important step in assessing the system’s robustness and
performance. It helps to determine the sensitivity changes and
characteristics of the control system, and thus, the potential
areas of improvement can be identified. In this work, the Bode
diagram, which consists of a phase and magnitude plot, was
utilised as the analysis tool. To perform the sensitivity analysis
using those tools, several aspects had to be evaluated, namely,
the phase sensitivity, and gain sensitivity.

A phase-frequency diagram provides insights into the phase
response of a control system at different frequencies. It illus-

trates how the system introduces phase shifts as the input varies.
Hence it shows the critical frequency ranges and regions where
the phase shift is sensitive to variations in the parameters. This
tool evaluates how the phase response of a control system
is affected by changes to the parameters. Large shift phases
lead to instability. Therefore, it is important to assess the
phase sensitivity and ensure that the system remains within the
acceptable range of limits. The phase-frequency diagram for all
the controllers is shown in Fig. 17.
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Fig. 17. Phase vs frequency diagram for all controller

Based on that figure, the phase of the fuzzy-PID-GA (output),
fuzzy-PID-PSO (output), and fuzzy-PID-PSO (rule & output)
controllers shifted smoothly between 90-0◦. For comparison,
the phase in the PID controller tended to increase in frequency
at 80 rad/s and exceeded the phase of 90◦, before shifting
towards 0◦. Additionally, there was no phase change with
the fuzzy-PID-GA (rule & output) controller. This means that
changes in the system parameters would not affect the phase
shift introduced by the system, which could be beneficial for
system stability and performance.

The sensitivity gain is directly related to the response of
the control system to changes in the amplification factor or
gain. The system’s change in gain with various frequencies was
examined using a magnitude plot. The significant fluctuations
and deviations in the gain at certain frequencies signified that
the system was more sensitive to variations in the gain at those
specific frequencies. A higher sensitivity to gain variations may
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lead to a degraded performance. The magnitude diagram for
the proposed controllers is illustrated in Fig. 18. Based on that
figure, the magnitude shifted smoothly from -60 to 0 dB for the
fuzzy-PID-GA (output), fuzzy-PID-PSO (output), and fuzzy-
PID-PSO (rule & output) controllers. As a comparison, the
magnitude of the PID controller converged smoothly from -60
to 0 dB, but at a frequency of 80 rad/s, the magnitude exceeded
0 dB and indicated a fluctuation. Moreover, for the fuzzy-PID-
GA (rule & output) controller, the magnitude remained constant
at 0 dB.
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Fig. 18. Magnitude vs frequency diagram for all controller

The above results were concise with the step responses in
Fig. 14 and 16. Based on those figures, the responses of the
fuzzy-PID-GA (output), fuzzy-PID-PSO (output), and fuzzy-
PID-PSO (rule & output) controllers were smooth and stable.
These results were achieved due to the small shift phases and
lowered sensitivity to gain variations. On the other hand, the
fuzzy-PID-GA (rule & output) controller responded by oscil-
lating constantly over time and was on the verge of instability
due to its constant shift phase and gain in magnitude. A white
noise disturbance was implemented in each of them to compare
the robustness of the proposed controller. The computed IAE
of each controller is illustrated in Table X.

TABLE X. IAE COMPARISON WITH APPLIED WHITE NOISE

Controller IAE
PID 0.020078

Fuzzy-PID-GA (output) 0.01398
Fuzzy-PID-GA (rule & output) 0.0882

Fuzzy-PID-PSO (output) 0.01397
Fuzzy-PID-PSO (rule & output) 0.009502

Based on this data, the lowest IAE (0.009502) was achieved
by the fuzzy-PID-PSO (rule & output) controller. Hence, by
considering the IAE and other performance matrices from
the previous section, the best controller proposed was the
fuzzy-PID-PSO (rule & output) controller. For future work,
the proposed controller should be applied to a real system in
the experimental phase to take into consideration the actual
disturbance.

IV. CONCLUSION

The current study sought to obtain a robust control system for
an FSW robot based on the 3-PUU parallel robot mechanism.
Here, the controlled parameter was the angular velocity of the
motor. The system was simplified using FOPDT. The controllers
were designed by combining a fuzzy PID with optimisation
algorithms (GA and PSO) for the FIS tuning process. The
performance matrices utilised in this work were the rise time,
settling time, overshoot, and IAE. The following aspects were
derived from the present paper:

• A kinematic model of the FSW robot was formulated
based on the 3-PUU parallel manipulator.

• The transfer function of the FSW system was derived by
utilising the Maxon® DCX 22L and Misumi rolled ball
screw block nut.

• The simplification of the transfer function based on
FOPDT was performed by introducing several parameters,
namely, T, L and C.

• A PID controller was derived based on the FOPDT transfer
function of the 3-PUU FSW robot, and thus the gain in
the KP ,KI , and KD could be obtained.

• Controllers based on the fuzzy PID and tuning optimisa-
tion algorithms (GA and PSO) were designed by utilising
the gain from the former PID controller.

• Four proposed controllers were derived in this work;
(a) fuzzy-PID-GA (output), (b) fuzzy-PID-GA (rule &
output), (c) fuzzy-PID-PSO (rule), and (d) fuzzy-PID-PSO
(rule & output) controllers.

• To evaluate the proposed technique, a comparative simula-
tion was carried out between the PID, fuzzy-PID-GA, and
fuzzy-PID-PSO controllers based on various conditions,
with and without white noise disturbance.

• From the simulation without the introduction of white
noise disturbance, the least rise time and settling time
were achieved by implementing the fuzzy-PID-GA (rule &
output) controller, while the least overshoot and IAE were
obtained by implementing the fuzzy-PID-PSO (rule &
output) controller. The proposed controllers clearly showed
a superior performance compared to the conventional PID
controller.

• The simulation with disturbances was performed to eval-
uate the robustness of the proposed controllers. From the
simulation with the step function as the trajectory and with
the introduction of white noise disturbance, the least IAE
was achieved by implementing the fuzzy-PID-PSO (rule
& output) controller, which was the most robust among
the controllers.

• The FSW robot has to be precise and rigid in its appli-
cation. The high overshoot and high oscillation response
can lead to the formation of welding defects and lower
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accuracy. Therefore, for the FSW application, a smooth
and moderately fast response from the fuzzy-PID-PSO
(rule & output) controller was preferable.

• The sensitivity analysis that was performed showed that
the responses of the fuzzy-PID-GA (output), fuzzy-PID-
PSO (output), and fuzzy-PID-PSO (rule & output) con-
trollers were smooth and stable. These results were
achieved due to the small shift phases and lower sensitivity
to gain variations. On the other hand, the response from the
fuzzy-PID-GA (rule & output) controller was to oscillate
constantly over time and to be on the verge of instability,
due to its constant phase shift and gain in magnitude.

• These proposed controllers were limited by the high com-
putational cost during the tuning processes.

• Since the tuning processes were performed separately
before the implementation of the proposed controllers, the
computational load was relatively low when the FSW robot
was working.

In conclusion, the proposed controller design was confirmed
to be effective in the simulation phase of the FSW robot based
on a 3-PUU parallel manipulator. As a next step, the proposed
controller design should be implemented in a real system to
take into consideration actual environmental conditions and
disturbances. Moreover, in future work, FSW robots can also be
combined with image processing for advanced visual sensing.
As for the tuning process, an advanced algorithm such as ANN
is highly recommended.
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