
Journal of Robotics and Control (JRC)
Volume 5, Issue 3, 2024
ISSN: 2715-5072, DOI: 10.18196/jrc.v5i3.21713 667

Enhance Deep Reinforcement Learning with
Denoising Autoencoder for Self-Driving Mobile

Robot
Gilang Nugraha Putu Pratama 1*, Indra Hidayatulloh 2, Herman Dwi Surjono 3, Totok Sukardiyono 4

1,2 Department of Electrical and Electronics Engineering, Universitas Negeri Yogyakarta, Indonesia
3,4 Department of Electronics and Informatics Engineering Education, Universitas Negeri Yogyakarta, Indonesia

Email: 1 gilang.n.p.pratama@uny.ac.id
*Corresponding Author

Abstract—Over the past years, self-driving mobile robots have
captured the interest of researchers, prompting exploration into
their multifaceted implementation. They have the potential to
revolutionize transportation by mitigating human error and re-
ducing traffic accidents. The process of deploying self-driving
mobile robots can be divided into several steps, such as algorithm
design, simulation, and real-world application. This research paper
presents a simulation using DonkeyCar on the Mini Monaco
track, employing a Soft Actor-Critic (SAC) alongside a denoising
autoencoder. At this point, it is limited to the simulation, serving
as a proof of concept for further research with hardware im-
plementation. The simulation verifies that relying solely on SAC
for the convergence of policy is not sufficient; it yields a mean
episode length of only 28.82 steps and a mean episode reward of
0.7815. The simulation ended after 3557 steps due to the inability
of SAC alone to converge, without completing a single lap. Later,
by integrating the denoising autoencoder, convergence of policy
can be achieved. It enables DonkeyCar to adeptly track the lane
of the circuit. The denoising autoencoder plays an important role
in accelerating the convergence of transfer learning. Notably, the
mean reward per episode reached 2380.4387, with an average
episode length of 771.71 and a total of 114357 steps taken.
DonkeyCar manages to complete several laps. These results affirm
the effectiveness of SAC with a denoising autoencoder in enhancing
the performance of self-driving mobile robots.

Keywords—Self-Driving Mobile Robot; Deep Reinforcement
Learning; Donkeycar Simulation; Soft Actor-Critic; Denoising Au-
toencoder.

I. INTRODUCTION

In recent years, research on autonomous systems has grown
rapidly with many breakthroughs and innovations, ranging from
autonomous cars, underwater vehicles, to unmanned aerial vehi-
cles [1]–[5]. One of the topics that captures our attention is self-
driving mobile robots, which hold great potential for addressing
transportation problems and revolutionizing them [6]–[8]. They
have the capability to mitigate human errors that lead to traffic
accidents [9]–[11]. Self-driving mobile robots integrate deep
reinforcement learning to further advance their capabilities
[12]–[14]. There are various deep reinforcement algorithms,
some of which are Deep Q-Network (DQN) [15]–[17], Deep

Deterministic Policy Gradients (DDPG) [17]–[20], Policy Gra-
dient Method [21]–[23], Proximal Policy Optimization (PPO)
[24]–[27], Deep Deterministic Policy Gradient (DDPG) [28]–
[30], Twin Delayed DDPG (TD3) [31]–[33], ans Soft Actor-
Critic [34]–[36]. Among the various algorithms for deep rein-
forcement learning, Soft Actor-Critic (SAC) has proven to be
a fast-converging and robust solution for training autonomous
agents in complex and dynamic environments [37]–[42].

Some notable studies in robotics that utilize SAC are as
follows. Wong et al. prevail in implementing SAC for motion
planning of dual-robotic arms. Each arm is designed with 7
degrees of freedom (DoF), capable of avoiding self-collision
at the same moment keeping the arms from singularities
[38]. Meanwhile, Mustafa et al. introduce deep reinforcement
learning for speed control of ultrasonic motors. It provides a
Lyapunov-based reward function for SAC to verify the stability
of those ultrasonic motors [39]. Lastly, Hong et al. conduct
a simulation for stabilizing Furuta pendulum using SAC with
cosine reward function. After obtaining the satisfactory results,
then they transfer it to the real world. It can be justified that the
transfer learning is a success, the real Furuta pendulum can be
stabilized and robust enough against external disturbances [40].
Chisari et al. have devised a simulation for self-driving mobile
robots utilizing SAC, which outperforms alternative algorithms
like Model Predictive Control [43]. Those results prove that
SAC can be employed for autonomous agents and various
robotics applications. The rationale for choosing SAC lies in
its suitability for tasks with continuous action spaces, enabling
effective handling of complex and high-dimensional action
spaces. Additionally, SAC typically exhibits greater sample
efficiency compared to other algorithms, resulting in compara-
ble performance with fewer samples. Using SAC (Soft Actor-
Critic) can be beneficial for self-driving mobile robots that
rely on camera data, especially when dealing with continuous
action spaces. SAC is particularly well-suited for problems
with continuous action spaces, such as steering and throttle

Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id



Journal of Robotics and Control (JRC) ISSN: 2715-5072 668

control in self-driving tasks. This algorithm can effectively
handle the complexity of continuous actions and learn policies
that enable smooth and accurate control of the vehicle based
on the input from the camera. Therefore, employing SAC can
be advantageous for self-driving mobile robots that operate in
environments where continuous data from cameras are crucial
for navigation and decision-making. Moreover, we also include
pre-trained data using a denoising autoencoder (DAE) to en-
hance policy convergence.

An autoencoder is a type of artificial neural network used
for unsupervised learning and dimensionality reduction [44]–
[46]. It is designed to encode input data into a compressed
representation and then decode it back to the original form.
The primary objective of an autoencoder is to learn a compact
and meaningful representation of the input data [47]–[49].
Specifically, a denoising autoencoder (DAE) is one kind of
neural network that learns efficient data representations by
training on purposely corrupted input data [50]. Similar to
a typical autoencoder, the DAE consists of an encoder and
a decoder, minimizing the reconstruction error between the
original input and output. During training, input data are
intentionally corrupted with noise, encouraging the model to
focus on essential features resilient to such distortions. This
unique training objective makes DAE particularly effective for
tasks like image denoising and feature learning [51]. Later, by
emphasizing robustness, the DAE can enhance generalization
and find applications in various domains where data may exhibit
noise or imperfections [52]–[54].

Adding a DAE to SAC enhances policy convergence in self-
driving mobile robot by reducing noise, learning important fea-
tures from input data, reducing dimensionality, and leveraging
transfer learning. The DAE preprocesses noisy sensor data, such
as camera images, by reducing noise and extracting relevant
features. This results in more accurate state representations
and faster learning. Additionally, pre-trained DAE can trans-
fer knowledge from large datasets, further improving policy
convergence and overall performance. The research contribu-
tions include the enhancement of performance in self-driving
robot simulations through the integration of DAE with SAC,
demonstration of the effectiveness of the combined approach in
successfully navigating the track, and highlighting the potential
for real-world application of SAC and DAE in self-driving
technology.

The rest of this paper is structured as follows: Section II
provides an overview of the methods employed in this study, in-
cluding the DAE and SAC. Moving forward, Section III delves
into the results obtained from the experiments. This section not
only presents the outcomes but also details the environment
setup and the simulations conducted, both with SAC alone and
with the integration of SAC and DAE. Lastly, the conclusion of
this paper is presented in Section IV, summarizing the findings
and discussing the implications of the study.

II. METHODS

Here, we will delve into two subjects. Subsection II-A
presents the concept of autoencoder, including denoising
autoencoder. Meanwhile, subsection II-B provides a brief
overview of SAC.

A. Denoising Autoencoder

Before explaining further about DAE, let us briefly explain
the autoencoder. Autoencoder is a of kind artificial neural
network used for unsupervised learning, which is mainly used
for dimensionality reduction, feature learning, and data com-
pression [55]–[58]. It has two main parts, namely an encoder
and a decoder as depicted in Fig. 1.

Fig. 1. Architecture of autoencoder.

The encoder (E) takes the input data and maps it into a
lower-dimensional representation. It can be achieved through a
series of hidden layers, typically fully connected layers, where
each layer extracts increasingly abstract features from the input
data denoted as x. The output of the encoder, denoted as z, is
referred to as the latent space or bottleneck layer. It contains a
compressed representation of the input data. This representation
ideally captures the most important features of the input data
[59]. Mathematically, the relationship between the encoder that
being parameterized by α, input data, and latent space can be
defined as

z = Eα(x). (1)

The later part is the decoder (D), which takes the compressed
representation from the latent space and attempts to reconstruct
the original input data. It performs the reverse operation of
the encoder by mapping the latent representation back to the
reconstructed input space using parameter β [60]. It can be
formulated as

x̂ = Dβ(z), (2)

Gilang Nugraha Putu Pratama, Enhance Deep Reinforcement Learning with Denoising Autoencoder for Self-Driving Mobile
Robot



Journal of Robotics and Control (JRC) ISSN: 2715-5072 669

where x̂ is the reconstructed data. The decoder typically mirrors
the structure of the encoder but in reverse, with each layer
expanding the dimensions back to the original input size.

Usually, both are multilayer perceptrons. A single layer
encoder Eα can be defined as

Eα(x) = δ(Wx+ b), (3)

where x ∈ x, W is a weighted matrix, and b is bias. Meanwhile
δ is an activation function that usually either a sigmoid function
or a rectified linear unit.

It yearns to to minimize the reconstruction error between the
input data x and the output data x̂, therefore the autoencoder
should be trained. In order to evaluate it, we need a task based
on the reference probability distribution and reconstruction
quality function. Let µref be a probability distribution over x
and d : x × x → [0,∞] be a reconstruction function. Hence,
we can measure how much x̂ differs from x based on d(x, x̂).
After obtaining µref and d, then we can define the loss function
such as

L(α, β) = Ex∼µref [d(x,Dβ(Eα(x)))] , (4)

where E is the expected value operator.
After explaining the preliminaries, now we can discuss the

DAE. it is originally called robust autoassociative network [61].
Technically, the main difference between a typical autoencoder
and DAE is the input data. Despite using the original data to
yield the latent space like a typical autoencoder, DAE uses
intentionally corrupted data [62]. It makes sense since the
aim is to learn a representation of the original data that is
robust against noise, by training on corrupted input data and
reconstructing the original [63]. Let us define the noise process
based on the probability distribution µT over T : x→ x̃. Here,
T is a function that maps the original data x ∈ x to corrupted
one x̃ ∈ x̃.

Simply, by substituting the original input data (x) with the
corrupted one (x̃) in equation (1), we have the latent space for
DAE as

z = Eα(x̃). (5)

Furthermore, by considering the equation (2) and (5) we can
define the reconstructed data x̂ for DAE such as

x̂ = Dβ(Eα(x̃)). (6)

Meanwhile, the training process can be done by solving the
optimization problem such as

min
α,β
L(α, β) = Ex∼µx,T∼µT

[d(x, (Dβ ◦ Eα ◦ T )(x))] , (7)

Those steps allow DAE to effectively remove noise from
input data during the reconstruction process [64]. Essentially,

DAE differs from typical autoencoders by reconstructing cor-
rupted input, removing noise, and focusing on resilient features.
This is particularly advantageous for self-driving mobile robots,
where noisy sensor data can affect perception accuracy. DAE
enhances perception by cleaning noisy inputs and extracting
relevant features, thus improving the ability to interpret data
and make informed decisions in complex environments.

B. Soft Actor-Critic

SAC, renowned for reinforcement learning tasks with con-
tinuous action spaces, is an off-policy optimization method
designed for stochastic policies [65]–[67]. The policy undergoes
training aimed at maximizing the balance between anticipated
returns and entropy, which quantifies policy randomness and
is directly tied to the exploration-exploitation dilemma. As
entropy rises, the model is encouraged to explore more, po-
tentially accelerating the learning process [68]. This approach
also safeguards against premature convergence to suboptimal
solutions [69]. In general, SAC can be described as in algorithm
1 Soft Actor-Critic.

Algorithm 1 Soft Actor-Critic

Initialize parameter vectors ψ, ψ̄, θ, ϕ
for each iteration do

for each environment step do
at ∼ πϕ(at | st)
st+1 ∼ p(st+1 | st, at)
D ← D ∪ {st, at, r(st, at), st+1}

end for
for each gradient step do
ψ ← ψ − λV ∇̂ψJV (ψ)
θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2}
ϕ← ϕ− λpi∇̂ϕJpi(ϕ)
ψ̄ ← τψ + (1− τ)ψ̄

end for
end for

Initially, parameters such as ψ, ψ̄, θ, ϕ are initialized.
Subsequently, it iteratively collects data from the environment,
updates the parameters of the value network, Q-functions, and
policy network using stochastic gradient descent methods, and
performs soft updates on the target value network. These steps
collectively enable the SAC algorithm to learn an optimal policy
for reinforcement learning tasks involving continuous action
spaces [70]–[72].

SAC features an objective function that integrates both a
reward component and an entropy term denoted as H, weighted
by the parameter α such as

J (π) =
∑T

t=0
E(st,at)∼ρπ [r (st, at) + αH (π (· | st))] . (8)

Gilang Nugraha Putu Pratama, Enhance Deep Reinforcement Learning with Denoising Autoencoder for Self-Driving Mobile
Robot



Journal of Robotics and Control (JRC) ISSN: 2715-5072 670

It simultaneously learns through three networks, namely
the state value function, the soft Q-function, and the policy
function. Each of these networks - the state value function
V , the soft Q-function Q, and the policy function π - is
parameterized with ψ, θ, and ϕ respectively [34].

Let us denote the distribution of the replay buffer as D, then
we can train the value network V to minimize the squared
residual error using an objective function such as

JV (ψ) = Est∼D

[
1
2

(
Vψ(st)− Eat∼πϕ

[Qθ(st, at)− log πϕ(at | st)]
)2]

, (9)

Later, by utilizing an unbiased estimator, we can estimate
the gradient of the objective function for the residual error
in (9), allowing us to update the parameters of the network
accordingly. The estimator can be described as

∇̂ψJV (ψ) = ∇ψVψ(st)(Vψ(st)−Qθ(st, at)
+ log πϕ(at | st)), (10)

where the actions are sampled based on the present policy rather
than the replay buffer.

The soft Q-function Q is trained by minimizing the soft
Bellman residual such that

JQ (θ) = E(st,at)∼D

[
1

2

(
Qθ (st, at)− Q̂ (st, at)

)2
]
, (11)

where

Q̂ (st, at) = r (st, at) + γEst+1∼p
[
Vψ̄ (st+1)

]
. (12)

Just like before, it is also optimized with stochastic gradients
such as

∇̂θJQ(θ) = ∇θQθ(at, st)(Qθ(st, at)
−r(st, at)−γVψ̄(st+1)). (13)

Finally, the policy parameters can be determined by minimiz-
ing the expected Kullback-Leibler divergence using an objective
function such as

Jπ (ϕ) = Est∼D

[
DKL

(
πϕ (· | st) ∥

exp (Qθ (st, ·))
Zθ (st)

)]
. (14)

Let denote ϵt as an input noise vector, then policy function
π can be reparametrized by using a neural network transfor-
mation such as the addition of noise or the incorporation of
deterministic features.

at = fϕ (ϵt; st) , (15)

Henceforth, the objective in equation (14) can be rewritten as

Jπ(ϕ) = Est∼D,ϵt∼N [log πϕ (fϕ (ϵt; st) | st)−Qθ (st, fϕ (ϵt; st))] (16)

The gradient of equation (16) can be approximated with

∇̂ϕJπ(ϕ) = ∇ϕ log πϕ (at | st)
+ (∇at log πϕ (at | st)−∇atQ (st, at))∇ϕfϕ (ϵt; st) (17)

where at is evaluated at fϕ (ϵt; st) [34].

III. RESULTS AND DISCUSSION

This section discusses three key topics. Firstly, Subsection
III-A elaborates on the environment setup, including an ex-
planation of the reward policy. Next, Subsection III-B delves
into simulating DonkeyCar for the self-driving mobile robot
using solely the SAC algorithm, shedding light on the intricate
processes involved. Lastly, Subsection III-C explores simulat-
ing DonkeyCar for the self-driving mobile robot with SAC
enhanced by DAE, highlighting their combined effectiveness
in autonomous driving simulation.

A. Environment Setup

The simulation setup for the self-driving mobile robot in-
volves several components. It uses Stable-Baselines3, a rein-
forcement learning library, with the DonkeyCar simulator and
OpenAI Gym environment. The simulation environment runs
on a Linux Ubuntu 22 operating system, with 8GB of RAM.
Graphics processing is performed by an NVIDIA GeForce
RTX 3050, with CUDA Version 12.2 providing accelerated
computation. The chosen system specifications are aimed at
facilitating efficient processing of the DonkeyCar simulation
with SAC and DAE. This hardware setup offers ample memory
and computational capacity to ensure smooth operation and
expedited training of the neural network models utilized in the
algorithms.

Stable Baselines3 is a Python library built upon the PyTorch
framework, designed to provide users with highly efficient im-
plementations of reinforcement learning algorithms [73]. This
library places a strong emphasis on simplicity, extensibility,
and high performance, aiming to streamline the process of
developing and deploying reinforcement learning models. As
a successor to the original Stable Baselines library, Stable
Baselines3 inherits a wide array of features and capabilities.
These include access to state-of-the-art reinforcement learning
algorithms, comprehensive support for both continuous and
discrete action spaces, and seamless integration with OpenAI
Gym environments. With its robust set of tools and function-
alities, Stable Baselines3 serves as a versatile and powerful
resource for researchers and practitioners alike, facilitating
the exploration and implementation of advanced reinforcement
learning techniques in various domains.

Gilang Nugraha Putu Pratama, Enhance Deep Reinforcement Learning with Denoising Autoencoder for Self-Driving Mobile
Robot



Journal of Robotics and Control (JRC) ISSN: 2715-5072 671

DonkeyCar is an open-source DIY (Do It Yourself) self-
driving platform designed for small-scale robotic vehicles,
typically constructed from remote-controlled cars or similar
models. It offers a framework for building, customizing, and
experimenting with autonomous driving algorithms and hard-
ware setups such as cameras and lidars [74]–[76]. Additionally,
the DonkeyCar Simulator, depicted in Fig. 2, plays a vital role
in the DonkeyCar platform, providing users with a virtual envi-
ronment for testing and training autonomous driving algorithms
without the need for physical hardware [76]–[78].

Fig. 2. DonkeyCar on simulation.

In this research, we use the Mini Monaco track. Initially,
we need to gather image data for this track on the DonkeyCar
Simulator, using the teleoperated system for DonkeyCar. Our
goal is to collect 10000 images from various driving scenarios
on the track. This image dataset is important for training the
denoising autoencoder, as it constitutes the essential input for
developing resilient and insightful environment representations.
The sample for collected image can be seen in Fig. 3.

Fig. 3. Captured image for Mini Monaco track.

In this environment, if the self-driving mobile robot (Donkey-
Car) collides with any obstacles such as walls or other objects,
the simulation will automatically reset, and the DonkeyCar
will be returned to the starting point. It is crucial to establish
policies for SAC to ensure that the self-driving mobile robot
can navigate the track effectively. Deviating from the track is

not desirable behavior for the self-driving car, so the policy
must discourage such actions. Therefore, such a reward system,
applicable to both SAC and SAC enhanced with DAE, is
designed as

g =

{
−20− 2× τ, when off the track,
1− ω × τ, when on the track.

(18)

Let g represent the reward, ω denote the off-center lane
ratio of the track, and τ signify the throttle. The off-center
lane ratio indicates the distance of the mobile robot from the
center of the lane. If the off-center lane ratio increases, the
mobile robot moves further away from the center, and vice
versa. Consequently, each time the robot veers off the track,
the reward will be decreased. A multiplier constant of 20 is
used to amplify the reduction in accumulated reward, guiding
the robot to avoid further deviation. Conversely, as long as the
robot stays on the track, the reward will gradually increase.
This incentivizes the self-driving car to maintain its position
within the lane and navigate the track accurately.

B. Self-Driving Mobile Robot with SAC

The parameters used to evaluate the performance of SAC
for self-driving mobile robots on the DonkeyCar simulation,
particularly on the Mini Monaco track, are determined by
observing the mean episode length and mean episode reward.
Higher values of these parameters are indicative of better
performance.

Unfortunately, the SAC experiment for the DonkeyCar sim-
ulation on the Mini Monaco track does not produce the desired
outcomes. Despite multiple efforts, the deep reinforcement
learning (DRL) approach using SAC failed to converge as
anticipated. Throughout the simulation, the DonkeyCar con-
sistently collided with the walls, resulting in its return to the
starting point. This suggests that the DonkeyCar was unable to
successfully complete a single lap on the Mini Monaco track.

The mean episode length decreases over time due to the
frequent resets, causing the DonkeyCar to return to its initial
position. This trend is illustrated in Fig. 4, which illustrates
the gradual decline in the mean episode length throughout the
experiment.

It terminated at 3557 simulation steps, with a mean episode
length of 28.82 steps. Similarly, Fig. 5 illustrates a downward
trend in the mean episode reward throughout the simulation,
with the final mean episode reward being 0.7815

These findings suggest that the SAC approach for self-driving
mobile robots in the DonkeyCar simulation on the Mini Monaco
track does not achieve the desired performance and fails to
converge during the experiment.

Gilang Nugraha Putu Pratama, Enhance Deep Reinforcement Learning with Denoising Autoencoder for Self-Driving Mobile
Robot



Journal of Robotics and Control (JRC) ISSN: 2715-5072 672

Fig. 4. Mean episode length SAC.

Fig. 5. Mean episode reward SAC.

C. Self-Driving Mobile Robot with DAE and SAC

After concluding that SAC alone is insufficient to achieve
convergence for the self-driving mobile robot in DonkeyCar on
the Mini Monaco track, we decide to integrate DAE with SAC.

The architecture of the DAE, as depicted in Fig. 6, comprises
the encoder and decoder, both sharing similarities in structure
and operation. Both employ sequential layers from the first to
the fourth layer with convolutional operations.

Fig. 6. Architecture of DAE.

The encoder comprises four convolutional layers followed by
ReLU activation functions. Each layer applies a 2D convolution

operation with specified kernel size and stride. Output channels
increase from 16 to 128, indicating feature map depth. Kernel
size and stride are set to 4 and 2, reducing spatial dimensions
while increasing depth. ReLU introduces non-linearity, aiding
in learning complex patterns [79]–[81]. Meanwhile, the decoder
includes four transpose convolutional layers followed by ReLU
activation functions and a final sigmoid activation function.
These layers upsample the encoded latent space to reconstruct
the original input image. Output channels decrease from 128
to match the input dimension, aiding in reconstruction. The
sigmoid activation function scales output pixel values to the
range [0, 1] for representing image intensities [80]–[82].

After explaining the architecture, we can discuss the training
process. The DAE is trained using 10, 000 images from the Mini
Monaco track over 200 iterations, utilizing the Adam optimizer.
This optimizer offers benefits such as adaptive learning rates
and momentum, enabling efficient convergence by dynamically
adjusting step sizes for each parameter [83]–[85]. Its combi-
nation of adaptive gradient and momentum methods makes it
particularly effective for optimizing complex, high-dimensional
models with sparse gradients. The training process consistently
reduces the loss function over time, starting from an initial
value of 7.9253 and decreasing to 1.2678 after 200 iterations,
indicating successful convergence as depicted in Fig. 7.

Fig. 7. Training loss DAE.

The decreasing trend in training loss indicates that the DAE
is converging towards a solution. As the number of iterations
increases, the model becomes more adept at reconstructing
clean images from corrupted inputs. This improvement suggests
that the DAE is steadily capturing more intricate details and
features of the input data, leading to better reconstruction
results.

After obtaining the best model of the DAE, we integrate it
into our simulation of DonkeyCar on the Mini Monaco track
using SAC. Enhancing SAC with DAE yields better results than
solely relying on SAC. Throughout the simulation, spanning up
to 114357 steps, the DonkeyCar successfully completes a full

Gilang Nugraha Putu Pratama, Enhance Deep Reinforcement Learning with Denoising Autoencoder for Self-Driving Mobile
Robot



Journal of Robotics and Control (JRC) ISSN: 2715-5072 673

lap on the Mini Monaco track. As a result, the mean episode
length is recorded at 771.71 steps at the 114357th simulation
step, as illustrated in Fig. 8.

Fig. 8. Mean episode length DAE-SAC.

Additionally, the reward tends to increase over time, with the
mean episode reward reaching 2380.4387 at 114357 simulation
steps, as shown in Fig. 9.

Fig. 9. Mean episode reward DAE-SAC.

The findings suggest that incorporating DAE into SAC can
notably improve performance. Specifically, this integration fa-
cilitates rapid convergence, indicating the combined method’s
effectiveness in learning the inherent data patterns and struc-
tures. The comparison results for SAC and SAC with DAE are
depicted in Table I.

TABLE I. COMPARISON OF SAC AND DAE-SAC

Metric SAC DAE-SAC
Number of Steps 3557 114357

Mean Episode Reward 0.7815 2380.4387
Mean Episode Length 28.82 771.71

A significant aspect of utilizing a DAE in conjunction with
the SAC algorithm for self-driving mobile robots lies in the
preprocessing of sensor data. The DAE is trained to reconstruct
clean representations of noisy sensor inputs, such as camera
images, by learning to remove noise and extract relevant
features.

After training, the DAE effectively cleanses the sensor data,
offering SAC algorithm with clearer and more insightful in-
puts. This preprocessing stage boosts the capability to develop
precise and resilient policies for navigation and control tasks.
Utilizing denoised sensor data in SAC enhances the learning
process, allowing SAC to concentrate on extracting essential
information from the input data without being obstructed by
noise.

IV. CONCLUSIONS

In conclusion, the simulation of the self-driving car using
DonkeyCar on the Mini Monaco track involved two methods,
SAC and SAC enhanced with DAE. Initially, SAC alone failed
to converge, displaying a mean episode length of only 28.82
steps and a mean episode reward of 0.7815. The simulation
ended after 3557 steps due to the inability of SAC alone to
converge.

However, after integrating DAE with SAC, significant im-
provements were observed. The DAE was trained for 200
iterations and achieved convergence, with the best model having
a loss of 1.2678. The combined SAC with DAE approach
successfully converged, exhibiting a mean episode length of
771.71 steps and a mean episode reward of 2380.4387. The
simulation ran for an extended period, reaching 114357 steps
before being terminated.

These results highlight the effectiveness of integrating DAE
with SAC for enhancing the performance of the self-driving
car simulation on the Mini Monaco track. The combined
approach not only overcame the convergence issues faced by
SAC alone but also significantly improved the mean episode
length and mean episode reward, demonstrating its capability
to navigate the track successfully and achieve higher rewards.
As this study is solely based on simulation, future endeavors

Gilang Nugraha Putu Pratama, Enhance Deep Reinforcement Learning with Denoising Autoencoder for Self-Driving Mobile
Robot



Journal of Robotics and Control (JRC) ISSN: 2715-5072 674

could involve transitioning towards hardware implementation
for real-world applications. Since, the integrated SAC and DAE
approach holds promise for broader applicability across various
autonomous driving tasks and environments, underscoring its
potential for seamless real-world implementation.

REFERENCES

[1] T. Morita and S. Managi, “Autonomous vehicles: Willingness to pay
and the social dilemma,” Transportation Research Part C: Emerging
Technologies, vol. 119, 2020, doi: 10.1016/j.trc.2020.102748.

[2] A. Chowdhury, G. Karmakar, J. Kamruzzaman, A. Jolfaei and R. Das,
“Attacks on Self-Driving Cars and Their Countermeasures: A Survey,”
in IEEE Access, vol. 8, pp. 207308-207342, 2020, doi: 10.1109/AC-
CESS.2020.3037705.

[3] A. S. M. Al-Obaidi, A. Al-Qassar, A. R. Nasser, A. Alkhayyat, A. J.
Humaidi, and I. K. Ibraheem, “Embedded design and implementa-
tion of mobile robot for surveillance applications,” Indonesian Journal
of Science and Technology, vol. 6, no. 2, pp. 427–440, 2021, doi:
10.17509/IJOST.V6I2.36275.

[4] Y. Weng, J. Pajarinen, R. Akrour, T. Matsuda, J. Peters and T. Maki,
“Reinforcement Learning Based Underwater Wireless Optical Commu-
nication Alignment for Autonomous Underwater Vehicles,” in IEEE
Journal of Oceanic Engineering, vol. 47, no. 4, pp. 1231-1245, 2022,
doi: 10.1109/JOE.2022.3165805.

[5] J. Wang, Y. Sun, B. Wang and T. Ushio, “Mission-Aware UAV Deploy-
ment for Post-Disaster Scenarios: A Worst-Case SAC-Based Approach,”
in IEEE Transactions on Vehicular Technology, vol. 73, no. 2, pp. 2712-
2727, 2024, doi: 10.1109/TVT.2023.3319480.

[6] A. Nagahama, T. Saito, T. Wada and K. Sonoda, “Autonomous Driv-
ing Learning Preference of Collision Avoidance Maneuvers,” in IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 9, pp.
5624-5634, 2021, doi: 10.1109/TITS.2020.2988303.

[7] S. Ono, Y. Okazaki, K. Kanetsuna, and M. Mizumoto, “Egocentric, altru-
istic, or hypocritic?: A cross-cultural study of choice between pedestrian-
first and driver-first of autonomous car,” IEEE Access, vol. 11, pp.
108716–108726, 2023, doi: 10.1109/ACCESS.2023.3320041.

[8] B. Zhang, R. Sengoku, and H.-O. Lim, “Adaptive motion control for an
autonomous mobile robot based on space risk map,” IEEE Access, vol. 11,
pp. 69553–69562, 2023, doi: 10.1109/ACCESS.2023.3292999.

[9] L. A. Dennis and M. Fisher, “Verifiable Self-Aware Agent-Based Au-
tonomous Systems,” in Proceedings of the IEEE, vol. 108, no. 7, pp.
1011-1026, 2020, doi: 10.1109/JPROC.2020.2991262.

[10] S. Kitajima, H. Chouchane, J. Antona-Makoshi, N. Uchida and J. Tajima,
“A Nationwide Impact Assessment of Automated Driving Systems on
Traffic Safety Using Multiagent Traffic Simulations,” in IEEE Open
Journal of Intelligent Transportation Systems, vol. 3, pp. 302-312, 2022,
doi: 10.1109/OJITS.2022.3165769.

[11] H. Muslim, et al., “Cut-Out Scenario Generation With Reasonability Fore-
seeable Parameter Range From Real Highway Dataset for Autonomous
Vehicle Assessment,” in IEEE Access, vol. 11, pp. 45349-45363, 2023,
doi: 10.1109/ACCESS.2023.3268703.

[12] Y. Miyaki and H. Tsukagoshi, “Self-Excited Vibration Valve That In-
duces Traveling Waves in Pneumatic Soft Mobile Robots,” in IEEE
Robotics and Automation Letters, vol. 5, no. 3, pp. 4133-4139, 2020,
doi: 10.1109/LRA.2020.2978455.

[13] M. Aladem and S. A. Rawashdeh, “A Single-Stream Segmentation and
Depth Prediction CNN for Autonomous Driving,” in IEEE Intelligent
Systems, vol. 36, no. 4, pp. 79-85, 2021, doi: 10.1109/MIS.2020.2993266.

[14] K. Qu, W. Zhuang, Q. Ye, W. Wu and X. Shen, “Model-Assisted
Learning for Adaptive Cooperative Perception of Connected Autonomous
Vehicles,” in IEEE Transactions on Wireless Communications, 2024, doi:
10.1109/TWC.2024.3354507.

[15] N. Kodama, T. Harada, and K. Miyazaki, “Traffic signal control system
using deep reinforcement learning with emphasis on reinforcing success-
ful experiences,” IEEE Access, vol. 10, pp. 128943–128950, 2022, doi:
10.1109/ACCESS.2022.3225431.

[16] T. Osa and M. Aizawa, “Deep reinforcement learning with adversarial
training for automated excavation using depth images,” IEEE Access,
vol. 10, pp. 4523–4535, 2022, doi: 10.1109/ACCESS.2022.3140781.

[17] K. Ohashi, K. Nakanishi, Y. Yasui, and S. Ishii, “Deep adversarial
reinforcement learning method to generate control policies robust against
worst-case value predictions,” IEEE Access, vol. 11, pp. 100798–100809,
2023, doi: 10.1109/ACCESS.2023.3314750.

[18] G. E. Setyawan, P. Hartono, and H. Sawada, “Cooperative multi-robot
hierarchical reinforcement learning,” International Journal of Advanced
Computer Science and Applications, vol. 13, no. 9, pp. 35–44, 2022, doi:
10.14569/IJACSA.2022.0130904.

[19] S. Kotera, B. Yin, K. Yamamoto, and T. Nishio, “Lyapunov optimization-
based latency-bounded allocation using deep deterministic policy gradient
for 11ax spatial reuse,” IEEE Access, vol. 9, pp. 162337–162347, 2021,
doi: .

[20] K. Naya, K. Kutsuzawa, D. Owaki, and M. Hayashibe, “Spiking neural
network discovers energy-efficient hexapod motion in deep reinforce-
ment learning,” IEEE Access, vol. 9, pp. 150345–150354, 2021, doi:
10.1109/ACCESS.2021.3126311.

[21] M. G. Khoshkholgh and H. Yanikomeroglu, “Faded-Experience Trust Re-
gion Policy Optimization for Model-Free Power Allocation in Interference
Channel,” in IEEE Wireless Communications Letters, vol. 10, no. 3, pp.
659-663, 2021, doi: 10.1109/LWC.2020.3045005.

[22] I. K. Ozaslan, H. Mohammadi and M. R. Jovanović, “Computing Sta-
bilizing Feedback Gains via a Model-Free Policy Gradient Method,” in
IEEE Control Systems Letters, vol. 7, pp. 407-412, 2023, doi: 10.1109/LC-
SYS.2022.3188180.

[23] S. Takakura and K. Sato, “Structured Output Feedback Control for
Linear Quadratic Regulator Using Policy Gradient Method,” in IEEE
Transactions on Automatic Control, vol. 69, no. 1, pp. 363-370, 2024,
doi: 10.1109/TAC.2023.3264176.

[24] R. F. J. Dossa, S. Huang, S. Ontañón, and T. Matsubara, “An em-
pirical investigation of early stopping optimizations in proximal policy
optimization,” IEEE Access, vol. 9, pp. 117981–117992, 2021, doi:
10.1109/ACCESS.2021.3106662.

[25] Y. Gu, Y. Cheng, C. L. P. Chen and X. Wang, “Proximal Policy
Optimization With Policy Feedback,” in IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 52, no. 7, pp. 4600-4610, 2022, doi:
10.1109/TSMC.2021.3098451.

[26] S. Siboo, A. Bhattacharyya, R. N. Raj, and S. H. Ashwin, “An empirical
study of ddpg and ppo-based reinforcement learning algorithms for
autonomous driving,” IEEE Access, vol. 11, pp. 125094–125108, 2023,
doi: 10.1109/ACCESS.2023.3330665.

[27] O. Aydogmus and M. Yilmaz, “Comparative analysis of reinforcement
learning algorithms for bipedal robot locomotion,” IEEE Access, vol. 12,
pp. 7490–7499, 2024, doi: 10.1109/ACCESS.2023.3344393.

[28] S. Bhattacharjee, S. Halder, Y. Yan, A. Balamurali, L. V. Iyer and N.
C. Kar, “Real-Time SIL Validation of a Novel PMSM Control Based on
Deep Deterministic Policy Gradient Scheme for Electrified Vehicles,” in
IEEE Transactions on Power Electronics, vol. 37, no. 8, pp. 9000-9011,
2022, doi: 10.1109/TPEL.2022.3153845.

[29] A. Candeli, G. d. Tommasi, D. G. Lui, A. Mele, S. Santini, and
G. Tartaglione, “A deep deterministic policy gradient learning approach to
missile autopilot design,” IEEE Access, vol. 10, pp. 19685–19696, 2022,
doi: 10.1109/ACCESS.2022.3150926.

[30] E. H. H. Sumiea, S. J. Abdulkadir, M. G. Ragab, S. M. Al-Selwi, S. M.
Fati, A. AlQushaibi, and H. Alhussian, “Enhanced deep deterministic
policy gradient algorithm using grey wolf optimizer for continuous
control tasks,” IEEE Access, vol. 11, pp. 139771–139784, 2023, doi:
10.1109/ACCESS.2023.3341507.

[31] N. Abo Mosali, S. S. Shamsudin, O. Alfandi, R. Omar, and N. Al-
Fadhali, “Twin delayed deep deterministic policy gradient-based target
tracking for unmanned aerial vehicle with achievement rewarding and
multistage training,” IEEE Access, vol. 10, pp. 23545–23559, 2022, doi:
10.1109/ACCESS.2022.3154388.

[32] J. Khalid, M. A. Ramli, M. S. Khan, and T. Hidayat, “Efficient load
frequency control of renewable integrated power system: A twin delayed
ddpg-based deep reinforcement learning approach,” IEEE Access, vol. 10,
pp. 51561–51574, 2022, doi: 10.1109/ACCESS.2022.3174625.

Gilang Nugraha Putu Pratama, Enhance Deep Reinforcement Learning with Denoising Autoencoder for Self-Driving Mobile
Robot



Journal of Robotics and Control (JRC) ISSN: 2715-5072 675

[33] O. E. Egbomwan, S. Liu and H. Chaoui, “Twin Delayed Deep Determin-
istic Policy Gradient (TD3) Based Virtual Inertia Control for Inverter-
Interfacing DGs in Microgrids,” in IEEE Systems Journal, vol. 17, no. 2,
pp. 2122-2132, 2023, doi: 10.1109/JSYST.2022.3222262.

[34] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in 35th International Conference on Machine Learning, ICML
2018, vol. 5, pp. 2976–2989, 2018.

[35] A. Surriani, O. Wahyunggoro, and A. I. Cahyadi, “A trajectory control
for bipedal walking robot using stochastic-based continuous deep rein-
forcement learning,” Evergreen, vol. 10, no. 3, pp. 1538–1548, 2023, doi:
10.5109/7151701.

[36] H. Yong, J. Seo, J. Kim, M. Kim and J. Choi, “Suspension Control
Strategies Using Switched Soft Actor-Critic Models for Real Roads,” in
IEEE Transactions on Industrial Electronics, vol. 70, no. 1, pp. 824-832,
2023, doi: 10.1109/TIE.2022.3153805.

[37] E. Prianto, M. Kim, J.-H. Park, J.-H. Bae, and J.-S. Kim, “Path planning
for multi-arm manipulators using deep reinforcement learning: Soft ac-
tor–critic with hindsight experience replay,” Sensors, vol. 20, no. 20, pp.
1–23, 2020, doi: 10.3390/s20205911.

[38] C.-C. Wong, S.-Y. Chien, H.-M. Feng, and H. Aoyama, “Motion planning
for dual-arm robot based on soft actor-critic,” IEEE Access, vol. 9, pp.
26871–26885, 2021, doi: 10.1109/ACCESS.2021.3056903.

[39] A. Mustafa, T. Sasamura and T. Morita, “Robust Speed Control of
Ultrasonic Motors Based on Deep Reinforcement Learning of a Lya-
punov Function,” in IEEE Access, vol. 10, pp. 46895-46910, 2022, doi:
10.1109/ACCESS.2022.3170995.

[40] M. R. Hong, et al., “Optimizing Reinforcement Learning Control Model
in Furuta Pendulum and Transferring it to Real-World,” in IEEE Access,
vol. 11, pp. 95195-95200, 2023, doi: 10.1109/ACCESS.2023.3310405.

[41] K. Kasaura, S. Miura, T. Kozuno, R. Yonetani, K. Hoshino and Y.
Hosoe, “Benchmarking Actor-Critic Deep Reinforcement Learning Algo-
rithms for Robotics Control With Action Constraints,” in IEEE Robotics
and Automation Letters, vol. 8, no. 8, pp. 4449-4456, 2023, doi:
10.1109/LRA.2023.3284378.

[42] H. Sekkat, O. Moutik, L. Ourabah, B. ElKari, Y. Chaibi, and T. A.
Tchakoucht, “Review of reinforcement learning for robotic grasping:
Analysis and recommendations,” Statistics, Optimization and Information
Computing, vol. 12, no. 2, pp. 571–601, 2024, doi: 10.19139/soic-2310-
5070-1797.

[43] E. Chisari, A. Liniger, A. Rupenyan, L. V. Gool and J. Lygeros, “Learning
from Simulation, Racing in Reality,” 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 8046-8052, 2021, doi:
10.1109/ICRA48506.2021.9562079.

[44] F. Li et al., “Autoencoder-Enabled Potential Buyer Identification and
Purchase Intention Model of Vacation Homes,” in IEEE Access, vol. 8,
pp. 212383-212395, 2020, doi: 10.1109/ACCESS.2020.3037920.

[45] K. Sama et al., “Extracting Human-Like Driving Behaviors From
Expert Driver Data Using Deep Learning,” in IEEE Transactions
on Vehicular Technology, vol. 69, no. 9, pp. 9315-9329, 2020, doi:
10.1109/TVT.2020.2980197.

[46] P. Hartono, ”Mixing Autoencoder With Classifier: Conceptual Data
Visualization,” in IEEE Access, vol. 8, pp. 105301-105310, 2020, doi:
10.1109/ACCESS.2020.2999155.

[47] P. Cristovao, H. Nakada, Y. Tanimura and H. Asoh, “Generating In-
Between Images Through Learned Latent Space Representation Using
Variational Autoencoders,” in IEEE Access, vol. 8, pp. 149456-149467,
2020, doi: 10.1109/ACCESS.2020.3016313.

[48] K. Ohashi, K. Nakanishi, W. Sasaki, Y. Yasui and S. Ishii, ”Deep
Adversarial Reinforcement Learning With Noise Compensation by Au-
toencoder,” in IEEE Access, vol. 9, pp. 143901-143912, 2021, doi:
10.1109/ACCESS.2021.3121751

[49] K. Fujiwara, H. Iwamoto, K. Hori and M. Kano, “Driver Drowsiness
Detection Using R-R Interval of Electrocardiogram and Self-Attention
Autoencoder,” in IEEE Transactions on Intelligent Vehicles, vol. 9, no. 1,
pp. 2956-2965, 2024, doi: 10.1109/TIV.2023.3308575.

[50] F. N. Khan and A. P. T. Lau, “Robust and efficient data transmission
over noisy communication channels using stacked and denoising autoen-
coders,” in China Communications, vol. 16, no. 8, pp. 72-82, 2019, doi:
10.23919/JCC.2019.08.007.

[51] T. Yokota, H. Hontani, Q. Zhao and A. Cichocki, ”Manifold Modeling in
Embedded Space: An Interpretable Alternative to Deep Image Prior,” in
IEEE Transactions on Neural Networks and Learning Systems, vol. 33,
no. 3, pp. 1022-1036, 2022, doi: 10.1109/TNNLS.2020.3037923.

[52] R. Al-Hmouz, W. Pedrycz, A. Balamash and A. Morfeq, “Logic-
Oriented Autoencoders and Granular Logic Autoencoders: Developing In-
terpretable Data Representation,” in IEEE Transactions on Fuzzy Systems,
vol. 30, no. 3, pp. 869-877, 2022, doi: 10.1109/TFUZZ.2020.3043659.

[53] N. J. Zakaria, M. I. Shapiai, R. A. Ghani, M. N. M. Yassin, M. Z.
Ibrahim and N. Wahid, “Lane Detection in Autonomous Vehicles: A
Systematic Review,” in IEEE Access, vol. 11, pp. 3729-3765, 2023, doi:
10.1109/ACCESS.2023.3234442.

[54] B. Rabhi, A. Elbaati, H. Boubaker, U. Pal, and A. M. Alimi, “Multi-
lingual handwriting recovery framework based on convolutional denoising
autoencoder with attention model,” Multimedia Tools and Applications,
vol. 83, no. 8, pp. 22295–22326, 2024, doi: 10.1007/s11042-023-16499-z.

[55] T. Murata, K. Fukami, and K. Fukagata, “Nonlinear mode decomposition
with convolutional neural networks for fluid dynamics,” Journal of Fluid
Mechanics, vol. 882, 2020, doi: 10.1017/jfm.2019.822.

[56] W. -H. Lee, M. Ozger, U. Challita and K. W. Sung, “Noise Learning-
Based Denoising Autoencoder,” in IEEE Communications Letters, vol.
25, no. 9, pp. 2983-2987, 2021, doi: 10.1109/LCOMM.2021.3091800.

[57] H. El-Fiqi, M. Wang, K. Kasmarik, A. Bezerianos, K. C. Tan and
H. A. Abbass, “Weighted Gate Layer Autoencoders,” in IEEE Trans-
actions on Cybernetics, vol. 52, no. 8, pp. 7242-7253, 2022, doi:
10.1109/TCYB.2021.3049583.

[58] A. Nawaz, S. S. Khan and A. Ahmad, “Ensemble of Autoencoders
for Anomaly Detection in Biomedical Data: A Narrative Review,”
in IEEE Access, vol. 12, pp. 17273-17289, 2024, doi: 10.1109/AC-
CESS.2024.3360691.

[59] H. Anand, B. S. Sammuli, K. E. J. Olofsson and D. A. Humphreys,
“Real-Time Magnetic Sensor Anomaly Detection Using Autoencoder
Neural Networks on the DIII-D Tokamak,” in IEEE Transactions
on Plasma Science, vol. 50, no. 11, pp. 4126-4130, 2022, doi:
10.1109/TPS.2022.3181548.

[60] T. -W. Ban, “Compressed Feedback Using Autoencoder Based on
Deep Learning for D2D Communication Networks,” in IEEE Wire-
less Communications Letters, vol. 12, no. 4, pp. 590-594, 2023, doi:
10.1109/LWC.2023.3234574.

[61] M. Kramer, “Autoassociative neural networks,” Computers & Chemical
Engineering, vol. 16, no. 4, pp. 313–328, 1992, doi: 10.1016/0098-
1354(92)80051-A.

[62] Y. Qiu, Y. Yang, Z. Lin, P. Chen, Y. Luo and W. Huang, “Improved
denoising autoencoder for maritime image denoising and semantic seg-
mentation of USV,” in China Communications, vol. 17, no. 3, pp. 46-57,
2020, doi: 10.23919/JCC.2020.03.005.

[63] P. Singh and A. Sharma, ”Attention-Based Convolutional Denoising Au-
toencoder for Two-Lead ECG Denoising and Arrhythmia Classification,”
in IEEE Transactions on Instrumentation and Measurement, vol. 71, pp.
1-10, 2022, doi: 10.1109/TIM.2022.3197757.

[64] X. Li, Z. Liu and Z. Huang, “Deinterleaving of Pulse Streams
With Denoising Autoencoders,” in IEEE Transactions on Aerospace
and Electronic Systems, vol. 56, no. 6, pp. 4767-4778, 2020, doi:
10.1109/TAES.2020.3004208.

[65] A. Alajmi, W. Ahsan, M. Fayaz and A. Nallanathan, “Intelligent Resource
Allocation in Backscatter-NOMA Networks: A Soft Actor Critic Frame-
work,” in IEEE Transactions on Vehicular Technology, vol. 72, no. 8, pp.
10119-10132, 2023, doi: 10.1109/TVT.2023.3254138.

[66] Z. He, L. Dong, C. Song and C. Sun, ”Multiagent Soft Actor-Critic Based
Hybrid Motion Planner for Mobile Robots,” in IEEE Transactions on
Neural Networks and Learning Systems, vol. 34, no. 12, pp. 10980-10992,
2023, doi: 10.1109/TNNLS.2022.3172168.

[67] R. Ma, Y. Wang, S. Wang, L. Cheng, R. Wang and M. Tan, “Sample-
Observed Soft Actor-Critic Learning for Path Following of a Biomimetic
Underwater Vehicle,” in IEEE Transactions on Automation Science and
Engineering, 2023, doi: 10.1109/TASE.2023.3264237.

[68] S. Wang, R. Diao, C. Xu, D. Shi and Z. Wang, “On Multi-Event Co-
Calibration of Dynamic Model Parameters Using Soft Actor-Critic,” in
IEEE Transactions on Power Systems, vol. 36, no. 1, pp. 521-524, 2021,
doi: 10.1109/TPWRS.2020.3030164.

Gilang Nugraha Putu Pratama, Enhance Deep Reinforcement Learning with Denoising Autoencoder for Self-Driving Mobile
Robot



Journal of Robotics and Control (JRC) ISSN: 2715-5072 676

[69] A. R. Heidarpour, M. R. Heidarpour, M. Ardakani, C. Tellambura and
M. Uysal, “Soft Actor–Critic-Based Computation Offloading in Multiuser
MEC-Enabled IoT—A Lifetime Maximization Perspective,” in IEEE
Internet of Things Journal, vol. 10, no. 20, pp. 17571-17584, 2023, doi:
10.1109/JIOT.2023.3277753.

[70] M. Haklidir and H. Temeltaş, ”Guided Soft Actor Critic: A Guided
Deep Reinforcement Learning Approach for Partially Observable Markov
Decision Processes,” in IEEE Access, vol. 9, pp. 159672-159683, 2021,
doi: 10.1109/ACCESS.2021.3131772.

[71] N. Gholizadeh, N. Kazemi and P. Musilek, ”A Comparative Study of
Reinforcement Learning Algorithms for Distribution Network Reconfigu-
ration With Deep Q-Learning-Based Action Sampling,” in IEEE Access,
vol. 11, pp. 13714-13723, 2023, doi: 10.1109/ACCESS.2023.3243549.

[72] A. R. Sayed, X. Zhang, G. Wang, C. Wang and J. Qiu, “Optimal
Operable Power Flow: Sample-Efficient Holomorphic Embedding-Based
Reinforcement Learning,” in IEEE Transactions on Power Systems, vol.
39, no. 1, pp. 1739-1751, 2024, doi: 10.1109/TPWRS.2023.3266773.

[73] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-baselines3: Reliable reinforcement learning implementa-
tions,” Journal of Machine Learning Research, vol. 22, no. 268, pp. 1–8,
2021.

[74] H. Yun and D. Park, “Virtualization of self-driving algorithms by
interoperating embedded controllers on a game engine for a digital
twining autonomous vehicle,” Electronics, vol. 10, no. 17, 2021, doi:
10.3390/electronics10172102.

[75] A. Bayuwindra, L. Wonohito and B. R. Trilaksono, ”Design of DDPG-
Based Extended Look-Ahead for Longitudinal and Lateral Control of
Vehicle Platoon,” in IEEE Access, vol. 11, pp. 96648-96660, 2023, doi:
10.1109/ACCESS.2023.3311850.

[76] T. Uetsuki, Y. Okuyama and J. Shin, ”CNN-based End-to-end Au-
tonomous Driving on FPGA Using TVM and VTA,” 2021 IEEE
14th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), pp. 140-144, 2021, doi: 10.1109/MC-
SoC51149.2021.00028.

[77] N. K. Manjunath, A. Shiri, M. Hosseini, B. Prakash, N. R. Waytowich and
T. Mohsenin, ”An Energy Efficient EdgeAI Autoencoder Accelerator for
Reinforcement Learning,” in IEEE Open Journal of Circuits and Systems,
vol. 2, pp. 182-195, 2021, doi: 10.1109/OJCAS.2020.3043737

[78] A. Fatima, A. K. Gowda, C. C U, M. Tauseef and B. Y, “Imple-
mentation of Driverless Car,” 2023 International Conference on Ad-
vances in Electronics, Communication, Computing and Intelligent In-
formation Systems (ICAECIS), pp. 447-452, 2023, doi: 10.1109/ICAE-
CIS58353.2023.10170382.

[79] J. S. Hieber, “Nonparametric regression using deep neural networks with
relu activation function,” Annals of Statistics, vol. 48, no. 4, pp. 1875–
1897, 2020, doi: 10.1214/19-AOS1875.

[80] Y. Terada and R. Hirose, “Fast generalization error bound of deep learning
without scale invariance of activation functions,” Neural Networks, vol.
129, pp. 344–358, 2020, doi: 10.1016/j.neunet.2020.05.033.

[81] M. Tanaka, “Weighted sigmoid gate unit for an activation function of deep
neural network,” Pattern Recognition Letters, vol. 135, pp. 354–359, 2020,
doi: 10.1016/j.patrec.2020.05.017.

[82] T. Szandała, “Review and comparison of commonly used activation func-
tions for deep neural networks,” Studies in Computational Intelligence,
vol. 903, pp. 203–224, 2021, doi: 10.1007/978-981-15-5495-7.

[83] S. Bera and V. K. Shrivastava, “Analysis of various optimizers on
deep convolutional neural network model in the application of hy-
perspectral remote sensing image classification,” International Jour-
nal of Remote Sensing, vol. 41, no. 7, pp. 2664–2683, 2020, doi:
10.1080/01431161.2019.1694725.

[84] R. Llugsi, S. E. Yacoubi, A. Fontaine and P. Lupera, “Comparison
between Adam, AdaMax and Adam W optimizers to implement a Weather
Forecast based on Neural Networks for the Andean city of Quito,” 2021
IEEE Fifth Ecuador Technical Chapters Meeting (ETCM), pp. 1-6, 2021,
doi: 10.1109/ETCM53643.2021.9590681.

[85] R. M. Schmidt, F. Schneider, and P. Hennig, “Descending through a
crowded valley - benchmarking deep learning optimizers,” International
Conference on Machine Learning, vol. 139, pp. 9367–9376, 2021.

Gilang Nugraha Putu Pratama, Enhance Deep Reinforcement Learning with Denoising Autoencoder for Self-Driving Mobile
Robot


