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Abstract—Modern challenges in climate prediction 

necessitate the adoption of advanced deep learning 

architectures for enhanced precision in temperature 

forecasting. This study undertakes a comparative evaluation of 

various neural network designs, particularly focusing on Deep 

Recurrent Neural Networks (DRNN) and their extension with 

Gated Recurrent Units (DRNN-GRU), chosen for their proven 

efficacy in sequential data analysis and long-term dependency 

capture. Leveraging a comprehensive meteorological dataset, 

collected from 1961 to 2023, which includes atmospheric 

temperature, pressure, and precipitation levels, the research 

unfolds a nuanced understanding of the climate variability. The 

evaluation framework rigorously applies Mean Absolute Error 

(MAE), Mean Squared Error (MSE), and Root Mean Squared 

Error (RMSE) metrics to quantify model performance. The 

DRNN and DRNN-GRU architectures are distinguished for 

their superior predictive accuracy, suggesting their high 

potential for real-world forecasting applications. These findings 

are not merely academic; they imply substantial practical 

implications, particularly for geographic information systems 

where they can enhance climate monitoring and resource 

management. The paper culminates with recommendations for 

dataset expansion and diversified analytical techniques, which 

are critical for refining the predictive prowess of these models. 

This research thereby sets a benchmark for future explorations 

in the field and directs towards innovative avenues to augment 

the scientific understanding of climate dynamics. 

Keywords—Deep Learning; Neural Networks; Temperature 

Forecasting; Meteorological Data; DRNN. 

I. INTRODUCTION  

Air temperature forecasting holds significant strategic 

and applied importance in today's world due to several pivotal 

factors that directly or indirectly impact humanity and the 

planet's ecosystem [1]. In this context, temperature prediction 

becomes an indispensable tool for scientific research and 

practical applications. 

Temperature conditions are a crucial component of 

climatic dynamics, and accurate forecasting of temperature 

variations allows for the analysis of the influence of climatic 

factors on the planet [2]. Studying climate changes based on 

long-term air temperature data provides scientists with the 

opportunity to devise adaptation and mitigation strategies 

against climatic anomalies [3]. Temperature forecasting finds 

direct application in sectors where temperature conditions are 

pivotal, such as agriculture [4]. Knowledge of future 

temperatures enables agricultural producers to make 

informed decisions regarding planting, irrigation, and harvest 

timings, thereby optimizing food production [5]. 

Social aspects also play a significant role, as accurate 

temperature forecasts allow adaptation to extreme 

temperature conditions, including heatwaves and cold snaps 

[6]. Effective planning and response to such events contribute 

to the reduction of human casualties and material losses. 

In the energy and resource supply sector, temperature 

forecasting plays a notable role [7], [8]. For instance, 

managing power systems requires considering the impact of 

temperature on electricity consumption [9]. Analyzing 

temperature data is also integral to managing heating and 

water supply [10]. 

Existing air temperature forecasting methods have their 

inherent challenges and limitations, crucial to consider in the 

context of developing and refining predictive models [11], 

[12], [13]. A primary issue is the limited ability of traditional 

methods to account for the intricate and continually changing 

interrelations between various factors influencing 

temperature conditions [3]. Such methods often struggle to 

adapt to rapidly changing climatic conditions and account for 

nonlinear dynamics [14], [15]. Another significant issue is 

the limited spatial and temporal resolution of traditional 

forecasting methods. In most cases, they operate with 

restricted data, complicating accurate temperature prediction 

on fine spatial and temporal scales. This is especially critical 

when forecasting extreme events like frosts, heatwaves, and 

floods [16], [17]. 

Traditional methods are also susceptible to limitations in 

accounting for the complex interrelations between various 

natural processes influencing temperature conditions [3]. For 

instance, they might underestimate the impact of land-use 

change on temperature, critically important for understanding 

global climate changes [18], [19], [20]. Moreover, traditional 

methods might exert limited influence on enhancing the 

accuracy and reliability of forecasts, especially when 

analyzing large data volumes with high variability. Methods 

like statistical and empirical models often have a restricted 

ability to capture intricate nonlinear dependencies. 

The challenges and limitations associated with traditional 

temperature forecasting methods underscore the imperative 

need for the development and application of more advanced 

and precise forecasting techniques, particularly those based 
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on state-of-the-art deep neural network architectures. 

Approaches leveraging these architectures can represent a 

significant advancement in the domain of temperature 

condition forecasting. 

The significance and relevance of employing deep neural 

networks, including Long Short-Term Memory (LSTM) and 

Gated Recurrent Unit (GRU), in the context of air 

temperature forecasting are underpinned by several 

fundamental factors. Foremost, deep neural networks possess 

the capability to automatically extract intricate hierarchical 

dependencies from data, becoming good tools in time series 

analysis [21], [22], [23]. This is especially pivotal when 

working with meteorological data, characterized by 

interrelations and nonlinear dependencies among various 

meteorological variables. 

A key aspect underscoring the importance of deep neural 

networks is their aptitude to account for long-term 

dependencies in data. LSTM and GRU, as recurrent neural 

network architectures, are designed to retain and update 

information over extended temporal intervals, enabling them 

to capture long-term patterns and trends in temperature data 

[21], [24]. This becomes especially crucial when forecasting 

climatic changes and extreme weather events with long-term 

results. 

Deep neural networks also enhance forecast accuracy 

through their inherent adaptability to evolving conditions. 

Their capacity to train on vast data volumes allows them to 

discern minute details in weather variations [25], [26]. 

Furthermore, their ability to process data of diverse natures, 

encompassing climate change information, land-use 

alterations, and other factors, renders them promising in 

integrating multifarious information sources for more 

accurate predictions. 

It's noteworthy that deep neural networks can 

substantially mitigate the impacts of spatial and temporal data 

resolution constraints. Their memory and analysis 

capabilities across numerous time steps facilitate predictions 

with high sensitivity to changes on temporal and spatial 

scales [21]. This opens new avenues for enhancing the 

precision and predictive power of models. 

Recent advances in deep learning have markedly 

improved air temperature forecasting, offering nuanced 

insights into the accuracy and applicability of various models. 

For instance, studies such as the [27] and [28] illustrate the 

efficacy of deep learning approaches in capturing complex 

climatic patterns. These studies underscore the significance 

of employing models like U-Net and artificial intelligence 

algorithms for forecasting, emphasizing their potential in 

improving predictive accuracy over traditional statistical 

methods. However, while these works have laid a solid 

foundation, the presented study introduces a novel 

comparative analysis focusing on the specific efficacy of 

deep recurrent neural networks (DRNN) and DRNN with 

Gated Recurrent Unit (DRNN-GRU) models against those 

incorporating attention mechanisms for air temperature 

forecasting. This comparative insight is particularly novel in 

identifying the DRNN and DRNN-GRU models as not only 

highly accurate but also more contextually adaptable for real-

world applications in sectors like agriculture, energy 

management, and environmental monitoring. By directly 

comparing these models within the framework of air 

temperature forecasting, this research fills a critical gap, 

offering both a methodological advancement in forecasting 

technology and practical recommendations for its application 

across various sectors affected by climatic conditions. This 

unique contribution, set against the backdrop of existing 

machine learning approaches to climate forecasting, 

highlights the practical implications of choosing specific 

deep learning architecture based on their performance and 

applicability to real-world scenarios. 

The dataset used in this study is derived from the 

meteorological station affiliated with the Institute of Earth 

Sciences at Southern Federal University, covering an 

extensive period from 1961 to 2023. This dataset's temporal 

span is particularly noteworthy, offering a rich historical 

record that captures a wide range of climatic variability. Such 

a comprehensive dataset is crucial for training deep learning 

models to recognize and predict complex patterns over long 

temporal scales, which is often a challenge with shorter or 

less diverse datasets. The inclusion of variables such as 

atmospheric air temperature, partial pressure, and 

atmospheric precipitation levels adds to the dataset's 

uniqueness, providing a multifaceted view of the climatic 

conditions that influence air temperature. These 

characteristics make the dataset an ideal candidate for 

exploring the efficacy of deep neural network architectures in 

forecasting air temperature with high precision. 

This research explores the utility of advanced deep 

learning architectures, including Deep Recurrent Neural 

Networks (DRNN) and DRNN with Gated Recurrent Unit 

(DRNN-GRU), in the domain of air temperature forecasting. 

Deep learning, a subset of machine learning, excels in 

identifying complex patterns in large datasets, making it 

particularly suitable for climate data characterized by 

nonlinear relationships and high-dimensional variability. The 

chosen architectures, DRNN and DRNN-GRU, are renowned 

for their ability to process sequential data, capturing temporal 

dependencies that are critical in forecasting tasks. 

The DRNN model, with its multiple layers of recurrent 

units, is designed to model time series data efficiently, 

making it well-suited for analyzing the temporal sequences 

found in meteorological data. The addition of Gated 

Recurrent Units (GRU) in the DRNN-GRU model enhances 

the network's ability to remember long-term dependencies, 

addressing one of the critical challenges in temperature 

forecasting: capturing the influence of past climatic 

conditions on future temperatures. This capability is pivotal 

for improving the accuracy of long-term forecasts, as it 

allows for a more nuanced understanding of climatic trends 

and patterns. 

The deployment of these deep learning methodologies 

aligns closely with the study's objectives to enhance the 

accuracy and reliability of long-term air temperature 

forecasts. By harnessing the predictive power of DRNN and 

DRNN-GRU models, this research aims to overcome the 

limitations of traditional forecasting methods, which often 

struggle with the complex dynamics of climate systems. The 

anticipated outcome is not only methodological advancement 
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in the field of climate science but also a practical tool for 

stakeholders in agriculture, energy, and urban planning to 

make informed decisions based on accurate and reliable 

temperature forecasts. 

II. MATERIALS AND METHODS 

For the subsequent analysis and training of the forecasting 

models, a series of preprocessing steps were undertaken. The 

foundational data consisted of climatic observations, 

encompassing information on temperature, precipitation, and 

atmospheric pressure. 

In the initial phase, the parameters of the data sequence, 

essential for neural network training, were delineated. The 

length of the step sequence (sequence_length), was 

determined to be 7 steps. Additionally, the number of features 

(num_features), was established to be 3, encompassing 

temperature, precipitation, and pressure. Subsequently, data 

normalization was executed utilizing the Min-Max Scaling 

method [27]-[35]. This procedure facilitated the scaling of all 

features to a uniform range, thereby enhancing the 

convergence efficiency of the neural network training 

process. Post-normalization, sequences and their 

corresponding target labels were generated. By iterating 

through the normalized data and forming sequences of a 

length of 7-time steps, the foundational data was transformed 

into a format appropriate to training. Each sequence 

encapsulated information on temperature, precipitation, and 

pressure over 7-time steps, while the corresponding target 

label represented the temperature for the ensuing time step. 

The derived sequences and labels were then converted 

into numpy arrays for further utilization. To evaluate the 

efficacy of the models, the data was divided into training and 

testing datasets. The training dataset constituted 80% of the 

total data, whereas the testing dataset was employed to assess 

the proficiency of the trained models. 

A. Architecture of the Models 

The Deep Recurrent Neural Network. One of the neural 

network architectures created is a variation of the deep 

recurrent network, termed the “Deep Recurrent Neural 

Network” (DRNN) [36]-[45]. This architecture is created to 

accommodate the peculiarities of temporal data, such as 

climatic observations, and is designed to analyze sequences 

of variable lengths. 

The DRNN encompasses multiple Long Short-Term 

Memory (LSTM) layers, each endowed with a distinct 

number of hidden units. This configuration empowers the 

model to discern intricate temporal dependencies and 

interrelationships among various climatic data features. Each 

LSTM layer relates to a Dropout layer, with a dropout rate of 

0.2. This inclusion aids in mitigating the model's 

susceptibility to overfitting. Such an approach ensures a 

harmonious balance between the model's complexity and its 

generalization capability. In its final phase, the DRNN ends 

with a fully connected Dense layer, equipped with a single 

output unit. This is purposed for forecasting the temperature 

for the subsequent time step. For the model's training phase, 

the “Adam” optimizer was employed in conjunction with the 

Mean Squared Error loss function. This combination 

facilitates the minimization of the mean squared error 

between the model's temperature predictions and the actual 

temperature values. 

The Deep Recurrent Network with Gated Recurrent Unit. 

The second neural network architecture presented in this 

research is characterized as the “Deep Recurrent Network 

with Gated Recurrent Unit” (DRNN-GRU). This architecture 

is created for the task of air temperature forecasting, 

leveraging temporal data amassed from a meteorological 

station [46]-[51]. 

The DRNN-GRU encompasses multiple Gated Recurrent 

Unit (GRU) layers, each endowed with a distinct number of 

hidden units. The GRU is a variant of recurrent neural 

networks, purposed for processing temporal sequences. They 

are distinguished by their capability to model long-term 

dependencies in data, a pivotal facet in the analysis of 

climatic time series. Each GRU layer relates to a Dropout 

layer, with a dropout rate of 0.2. This inclusion aids in 

mitigating the model's susceptibility to overfitting, thereby 

enhancing its generalization capability. In its final stage, the 

DRNN-GRU ends in a fully connected Dense layer with a 

singular output unit.  As an optimizer model used “Adam” 

and loss function, based on MSE. 

The Long Short-Term Memory with Attention 

Mechanism (LSTM-Attention). The third neural network 

architecture analyzed in this research called “Long Short-

Term Memory with Attention Mechanism” (LSTM-

Attention). 

The model initiates with an input layer, representing 

temporal data sequences, considering the predefined 

sequence length and the number of features. After this, the 

architecture incorporates an LSTM layer with 64 units, which 

returns sequences. The LSTM is a variant of recurrent neural 

networks, renowned for their capability to model long-term 

dependencies in data. Main feature of this architecture is the 

attention mechanism. This mechanism furnishes the model 

with the capacity to focus on specific segments of the data. 

Such a capability can be critically pivotal in enhancing 

forecasts, especially in scenarios inundated with interrelated 

variables. 

The outputs from the LSTM layer and the attention 

mechanism are concatenated into a unified sequence. This 

amalgamation empowers the model to discern both short-

term and long-term dependencies within the data. The 

architecture ends with a fully connected Dense layer with a 

singular output unit, purposed for the task of temperature 

forecasting. The LSTM-Attention architecture also employs 

the "Adam" optimizer and the MSE loss function during 

training, facilitating the minimization of discrepancies 

between the forecasted and actual temperature values. 

Robust Stacked LSTM (RSLSTM). The fourth neural 

network architecture delineated in this research is 

characterized as the “Robust Stacked LSTM” (RSLSTM). 

The model initiates with an input layer, designed to accept 

input data in the form of temporal sequences, considering the 

predefined sequence length and the number of features. After 

this, the architecture incorporates a primary LSTM layer with 

128 units, which returns sequences. At this juncture, 

methodologies such as Dropout (with a coefficient of 0.2) and 
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Batch Normalization are employed. The Dropout helps in 

mitigating the risk of model overfitting, while Batch 

Normalization contributes to the stabilization of the training 

process. 

Following this, the architecture integrates a secondary 

LSTM layer with 64 units, also augmented with Dropout 

(0.2) and Batch Normalization. While additional layers can 

be incorporated at the discretion of the researcher, in this 

architecture, only an output Dense layer is presented with a 

single unit, purposed for the task of temperature forecasting. 

The RSLSTM architecture also employs the “Adam” 

optimizer and the MSE loss function during training, 

facilitating the minimization of discrepancies between the 

forecasted and actual temperature values. 

Robust Stacked LSTM with Attention Mechanism. The 

fifth neural network architecture presented in this research is 

termed Robust Stacked LSTM with Attention” (RSLSTM-

Attention). The model commences with an input layer, 

designed to accommodate temporal data sequences, factoring 

in the predetermined sequence length and the number of 

features. After this, the architecture integrates three 

sequential LSTM layers: the primary LSTM layer with 128 

units, which returns sequences; the secondary LSTM layer 

with 64 units, also returning sequences; and the tertiary 

LSTM layer with 32 units, which too returns sequences. 

These layers are pivotal in extracting temporal dependencies 

and key features from the input data. Following this, an 

attention mechanism is embedded between the last LSTM 

layer and the input. This mechanism endows the model with 

the capability to focus on the most pertinent segments of the 

input data, considering their respective weights [52]-[55]. 

After this, a concatenation of the outputs from the last 

LSTM layer and the attention mechanism is executed, 

combining the information. Additionally, a Flatten layer is 

incorporated to transform the output into a two-dimensional 

format. The RLSTM-Attention architecture employs the 

“Adam” optimizer and the MSE loss function during its 

training phase, with the overarching objective of minimizing 

discrepancies between the forecasted and actual temperature 

values. 

The selection of these architectures was guided by their 

theoretical capabilities and empirical successes in processing 

sequential and time-series data, which are critical in 

forecasting tasks such as air temperature prediction. 

The choice of DRNNs was motivated by their design to 

handle sequential data, making them particularly apt for time-

series forecasting tasks like air temperature prediction. 

DRNNs can learn from the temporal dependencies of data, 

which is crucial for understanding the dynamics of climate 

variables over time. Theoretically, DRNNs can maintain 

information in “memory” over long sequences, enabling the 

model to leverage past climate data effectively when making 

predictions. This characteristic addresses a fundamental 

challenge in meteorological forecasting — the need to 

incorporate historical climate conditions to accurately 

forecast future temperatures. Empirically, DRNNs have 

shown promising results in various time-series forecasting 

applications, ranging from financial market predictions to 

energy demand forecasting. Their ability to capture temporal 

dynamics and adapt to time-dependent data variance has been 

well-documented, providing a strong foundation for their 

application in air temperature forecasting. 

The integration of Gated Recurrent Units (GRU) into 

DRNN architectures represents a targeted enhancement 

aimed at overcoming some of the limitations associated with 

traditional RNNs, particularly in handling long-term 

dependencies. GRUs introduced a gating mechanism that 

regulates the flow of information, allowing the model to 

better retain relevant information over longer sequences 

without the vanishing gradient problem that often plagues 

standard RNNs. The selection of DRNN-GRU was further 

reinforced by empirical evidence demonstrating their 

effectiveness in similar environmental and climatic 

forecasting scenarios. Studies have highlighted GRU-based 

models' superior performance in capturing complex, 

nonlinear relationships inherent in climatic data, offering 

significant improvements in predictive accuracy and 

reliability. The theoretical advantages of GRUs, coupled with 

their empirical success in managing sequential data with 

long-term dependences, underscored their suitability for the 

objectives of this study. By adopting DRNN-GRU, we aimed 

to leverage these attributes to achieve more accurate and 

reliable long-term temperature forecasts, contributing 

valuable insights into the domain of climate change 

forecasting. 

LSTM models are renowned for their ability to capture 

long-term dependencies, addressing a significant limitation 

of traditional RNNs through a sophisticated gating 

mechanism. The addition of the Attention Mechanism allows 

the LSTM-Attention model to focus on specific parts of the 

input sequence that are most relevant for the prediction, 

enhancing the model's interpretability and performance. This 

selective focus is particularly useful in meteorological 

forecasting, where certain historical patterns may be more 

indicative of future conditions than others. Theoretical 

insights into attention mechanisms' capacity to weigh inputs 

dynamically, coupled with empirical evidence of their 

success in enhancing prediction tasks in natural language 

processing and sequence modeling, motivated their inclusion 

in our study. 

The RSLSTM architecture builds on the strengths of 

LSTM models by stacking multiple LSTM layers, which 

allows for a more nuanced representation of data by capturing 

a broader range of dependencies across different scales. This 

multilayer approach is particularly beneficial for complex, 

nonlinear time-series data like climatic records, enabling the 

model to learn from the intricacies of the data more 

effectively. 

Incorporating an Attention Mechanism into the RSLSTM 

architecture (RSLSTM-Attention) further refines the model's 

ability to prioritize crucial information within the input 

sequence. This architecture is designed to not only leverage 

the deep, stacked structure for capturing complex patterns but 

also to apply focused attention on elements of the sequence 

that significantly impact forecasting accuracy. This dual 

strategy of depth and focus aims to address the challenges of 

forecasting in the highly variable and complex domain of 

climate science. 
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The choice of these architectures was motivated by their 

alignment with the core challenges of long-term air 

temperature forecasting. Theoretical advantages, such as the 

ability of LSTM and GRU units to handle long-term 

dependencies and the attention mechanism's capability to 

enhance model focus and interpretability, are complemented 

by empirical evidence from their application in similar 

forecasting scenarios. Together, these architectures represent 

a comprehensive approach to addressing the multifaceted 

nature of climatic data and its prediction, underscoring our 

methodology's potential to advance the accuracy and 

reliability of air temperature forecasts. 

B. Data Description 

The dataset employed for this research was procured from 

a meteorological station operating under the Institute of Earth 

Sciences of the Southern Federal University. The data 

embodies temporal sequences spanning from January 1961 to 

2023 (see in Fig. 1). This extensive temporal span facilitates 

the analysis of long-term trends and seasonal fluctuations. 

The observations encapsulate the following variables [40]-

[50]: 

● Date. A chronological marker for each observation. The 

date format adheres to the standard representation 

YYYY-MM-DD HH:MM:SS. 

● Temperature. Measured in degrees Celsius, this stands as 

the pivotal dependent variable in presented deep learning 

models. 

● Precipitation. Expressed in millimeters, this variable can 

serve as an indicator of humidity and rainfall. 

● Pressure. Recorded in hectopascals (hPa), this parameter 

can be associated with atmospheric conditions and 

high/low-pressure systems. 

 

Fig. 1. Distribution of the dataset variables over time 

Data collection was processed via a specialized 

meteorological station situated at the Institute of Earth 

Sciences of the Southern Federal University. The 

instrumentation of the meteorological station underwent 

myriad calibration and validation stages, ensuring the 

precision and reliability of measurements. These procedures, 

in turn, fortify the empirical foundation of the research and 

augment the gravitas of its conclusions [55]-[60]. 

Prior to integration into machine learning models, the data 

underwent a series of preliminary processing stages. Initially, 

a data audit was conducted to outliers, missing values, and 

other anomalies. These facets were critically imperative to 

ensure statistical validity and avert model result distortions. 

Subsequently, the data was normalized to enhance its 

statistical properties and ensure the convergence of learning 

algorithms. These measures are instituted to improve data 

quality and elevate the accuracy of predictive models. 

C. Data Preprocessing 

In this study, the preprocessing of the dataset is crucial for 

the success of the applied deep learning models. Our 

preprocessing strategy encompasses several critical steps: 

outlier detection and management, data normalization, and 

sequence generation, each tailored to the unique 

characteristics of the dataset spanning from 1961 to 2023. 

Given the long-term nature of the dataset, outlier 

detection was paramount to ensure data integrity and model 

reliability. We employed an IQR (Interquartile Range) 

method to identify and scrutinize outliers [30]. This method 

calculates the IQR as the difference between the 75th and 

25th percentiles and designates data points falling outside 1.5 

times the IQR above the 75th percentile and below the 25th 

percentile as outliers. This approach was chosen due to its 

robustness in handling large datasets with potential non-

Gaussian distributions. Upon identification, outliers were 

assessed with respect to historical climatic events and 

measurement anomalies. Outliers corresponding to known 

extreme weather events were retained, recognizing their 

importance in training models to predict under varying 

conditions. 

Normalization is vital for aligning the scales of the 

various meteorological measurements, thus enhancing model 

training efficiency. We utilized Min-Max Scaling to adjust 

the features into a [0, 1] range, ensuring that no single 

variable would dominate the model's learning process due to 

scale differences [31]. 

The generation of input sequences for the deep learning 

models was based on a fixed-length sliding window 

approach, reflecting the sequential nature of time-series data. 

Each sequence, set to a length of 7, was constructed to predict 

the temperature on the following time. This sequence length 

was determined empirically, balancing the need to capture 

relevant temporal dynamics without introducing excessive 

complexity that could hinder model performance. 

III. RESULTS 

A. Comparison of Different Architecture Performances 

The research was conducted on an ASUS Vivobook Pro 

14X laptop, equipped with an 11th Gen Intel(R) Core(TM) 

i7-11370H processor from the H-series and an NVIDIA 

GeForce RTX 3050 graphics card. The system operated 

under the Windows 11 Pro operating system, version 22H2. 
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The device boasted RAM capacity of 16.0 GB and was 

equipped with a 64-bit operating system with an x64-based 

processor. These technical specifications ensured high 

performance and efficiency during the execution of the air 

temperature forecasting study using deep neural networks.  

Several pivotal libraries, specifically created for data 

processing and analysis in the realm of scientific research, 

were employed in this study. Pandas (version 2.1.1) provides 

efficient tools for data manipulation and analysis, facilitating 

ease of interaction with diverse data types, NumPy (version 

1.25.2) offers functionalities for computational operations on 

multidimensional data arrays, TensorFlow (version 2.14.0) is 

a robust tool for the creation and training of deep neural 

networks and its versatile functionalities cater to a broad 

spectrum of machine learning tasks, Scikit-learn (version 

1.3.1) provides an extensive range of machine learning 

algorithms and tools for their effective implementation, 

enabling the resolution of a myriad of forecasting and 

classification tasks, keras (version 2.14.0) serves as a high-

level interface for neural network construction, scienceplots 

(version 2.1.0) offers a suite of stylized graphical elements 

optimized for scientific data representation, enhancing the 

visual clarity of research outcomes and Matplotlib (version 

3.8.0) as an instrumental tool for data visualization and chart 

creation. 

The consolidation of these libraries, in conjunction with 

the technical infrastructure, provided a robust foundation for 

the research, ensuring precision, efficiency, and 

reproducibility in the study's outcomes. 

The analysis of the results from the five different 

experiments, which determined the corresponding values of 

MAE, MSE, and RMSE for each of the models, reveals 

insightful patterns in the predictive accuracy of the deep 

learning architectures employed. The results are presented in 

Table I. 

TABLE I.  RESULTS OF THE DIFFERENT DEEP LEARNING ARCHITECTURES 

PERFORMANCE IN THE TASK OF AIR TEMPERATURE PREDICTION 

Model MAE MSE RMSE 

DRNN 0.07 0.006 0.08 

DRNN-GRU 0.06 0.005 0.08 

LSTM-Attention 0.22 0.06 0.25 

RSLSTM 0.28 0.12 0.34 

RSLSTM-Attention 0.27 0.11 0.33 

 

From the data presented, it is observable that the DRNN 

model exhibits a low MAE value (0.07), indicating relatively 

minor errors in its forecasts. Additionally, the MSE and 

RMSE for this model remain at a considerably low level 

(0.006 and 0.08 respectively), signifying a high accuracy in 

predictions. The DRNN-GRU model also demonstrates 

commendable results with an MAE of 0.06 and an MSE of 

0.005. The RMSE remains at 0.08. These metrics indicate a 

low degree of error in the forecasts for this architecture. 

However, the LSTM-Attention model exhibits higher values 

of MAE (0.22), MSE (0.06), and RMSE (0.25). These results 

suggest more significant errors in the forecasts, which could 

be attributed to the architecture's insufficient adaptation to the 

specific data set. The RSLSTM and RSLSTM-Attention 

models also display intermediate MAE values (0.28 and 0.27 

respectively) and higher MSE and RMSE values (0.12 and 

0.34 for RSLSTM, 0.11 and 0.33 for RSLSTM-Attention). 

This indicates relatively larger errors in the forecasts for these 

architectures. 

Based on the analysis, it can be concluded that the DRNN 

and DRNN-GRU models achieved the best results in 

assessing the accuracy of air temperature forecasts, 

possessing lower values of MAE, MSE, and RMSE. These 

models can be considered the most effective in this context 

and may be found in tasks related to forecasting climatic 

changes and studying natural systems [37]-[45]. 

B. Comparison of the Temperature Prediction 

The analysis of temperature forecasting results using 

different models and their juxtaposition with actual data 

reveals intriguing aspects and facilitates a comparative 

evaluation. 

Based on the presented graphs (Fig. 2 and Fig. 3.) 

examining temperature anomalies by various neural 

networks, several conclusions can be drawn concerning their 

efficacy. The DRNN model, a relatively simple recurrent 

network, performs commendably throughout the entire time 

series. The fluctuations in the predicted anomalies range from 

-5 to 5 degrees. However, by 2023, these fluctuations 

escalate, reaching an amplitude of approximately 8 degrees. 

 

Fig. 2.  Prediction of the temperature by different architectures 

 

Fig. 3.  Comparison of temperature anomalies from prediction of different 

models 

The DRNN-GRU model, which integrates GRU elements 

into the DRNN architecture, exhibits slightly more stability. 

The fluctuations in predictions throughout the entire time 

series range from -3 to 3 degrees, but by 2023, the 

discrepancy between the predicted and actual data expands to 
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6 degrees. Despite its complexity and the incorporation of an 

attention mechanism, the LSTM-Attention model does not 

yield satisfactory results. During specific periods, especially 

in 2022, deviations from actual data exceed 15 degrees, 

representing a significant error for such tasks. Both the 

RSLSTM and RSLSTM-Attention models represent the 

highest efficacy. Specifically, the RSLSTM-Attention model 

displays anomaly fluctuations merely within 2-3 degrees of 

the actual data, attesting to its high predictive accuracy. In 

contrast, the RSLSTM model exhibits fluctuations around 5 

degrees. In summation, based on quantitative assessment, the 

RSLSTM-Attention model boasts the highest accuracy, while 

the LSTM-Attention model yielded the least precise results. 

Within our study, we employed Local Interpretable 

Model-agnostic Explanations (LIME) to demystify the 

decision-making processes of our models. 

The plot (Fig. 4) for a specific prediction made by the 

DRNN architecture reveals a nuanced interplay of features 

across the temporal sequence. Notably, “Pressure” at the 

initial timestep (Timestep 0) appears to be a significant driver 

of the model's output, indicating that early atmospheric 

pressure readings weigh heavily in the model's predictive 

synthesis.  

 

Fig. 4. Feature importance for DRNN architecture 

Additionally, “'Precipitation” at Timestep 4 emerges as a 

substantial positive contributor, suggesting that mid-

sequence precipitation levels are critically informative for the 

prediction at hand. Conversely, “Temperature” at Timestep 6 

exhibits a strong negative influence on the prediction. This 

may imply a temporal relationship where temperature 

readings toward the end of the sequence serve as a corrective 

mechanism within the model's architecture, potentially 

overriding earlier cues to refine the prediction. 

From the plot (Fig. 5) provided for the DRNN-GRU 

model, we observe a detailed attribution of feature 

importance across the sequences. 

 

Fig. 5. Feature importance for DRNN-GRU architecture 

The analysis underscores a substantial negative impact 

from the features “Pressure” at Timesteps 0, 1, and 6 and 

“Temperature” at Timesteps 2, 3, and 4. The temporal 

placement and influence of these features suggest that the 

DRNN-GRU model assigns significant predictive weight to 

atmospheric pressure at the start and end of the sequence and 

to mid-sequence temperatures, potentially alluding to a 

mechanistic understanding of the target phenomenon that 

penalizes certain conditions at key temporal junctures. 

Conversely, “Precipitation” at Timestep 1 and “Pressure” at 

Timestep 5 contribute positively, albeit to a lesser degree than 

the negative contributors. This hints at a model sensitivity to 

climatic variables that, when occurring at specific times, are 

deemed conducive to a rise in the predicted variable.  

The gated architecture of the DRNN-GRU, which 

facilitates selective memory retention and deletion, likely 

contributes to the distinct pattern of feature importance 

observed. It endows the model with the ability to modulate its 

focus across the temporal spectrum of the data, affording each 

input feature a different degree of influence depending on its 

timestep. Our findings through LIME suggest that the 

DRNN-GRU model’s predictions are not merely a function 

of the immediate input state but rather a composite reflection 

of the sequential data narrative. The gating mechanisms 

intrinsic to the GRU units appear to filter the temporal 

information flow, enabling the model to capture and prioritize 

complex, time-dependent relationships within the data. 

From the plot (Fig. 6) reveals the LSTM-Attention 

model's interpretative mechanisms at a granular level. certain 

variables such as “Pressure” and “Precipitation” at Timestep 

4, and “Temperature” at Timestep 1 have a positive effect on 

the output of the model. Notably, “Pressure” at Timestep 4 

has the most substantial positive impact, suggesting that the 

model has learned to associate the state of atmospheric 

pressure at this point in the sequence with an increase in the 

target variable. 

 

Fig. 6. Feature importance for LSTM-Attention architecture 

“Pressure” at Timestep 2 and “Temp” at Timestep 3 are 

among the features that lead to a decrease in the predicted 

value. This negative attribution implies that higher pressure 

at Timestep 2 or higher temperatures at Timestep 3 are 

interpreted by the model as signals to decrease the prediction 

outcome. The LSTM-Attention model integrates an attention 

mechanism, which allows the model to assign varying 

degrees of importance to different parts of the input sequence. 

The strong positive impact of “Pressure” at Timestep 4, for 

instance, could be a manifestation of the attention mechanism 

identifying a key moment in the sequence that is crucial for 
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prediction. In contrast to the DRNN and DRNN-GRU 

models, the LSTM-Attention architecture's interpretability is 

characterized by its ability to assign and visualize such 

differential weights to sequential data. This capability allows 

for a more nuanced understanding of temporal dependencies 

and the importance of sequential context in influencing the 

model's output. 

The plot for RSLSTM model (Fig. 7) offers insights into 

the specific influences of sequential input features on a single 

prediction.  

 

Fig. 7. Feature importance for RSLSTM architecture 

Here, “Pressure” at Timesteps 2 and 3, and “Temp” at 

Timestep 1, appear to significantly reduce the predicted 

value, suggesting that the model is sensitive to higher values 

of these features within the early to middle parts of the 

sequence. Conversely, “Temp” at Timestep 6, demonstrate a 

positive influence, although these effects are less pronounced 

compared to the negative ones. This pattern of feature 

attribution reflects the RSLSTM's ability to leverage both the 

direct input data and the residuals of this data over time, likely 

allowing it to capture complex temporal behaviors more 

effectively. 

In case of RSLSTM-Attention architecture (Fig. 8) we 

observe a predominant impact of “Pressure” at Timesteps 1 

and 2, along with “Temperature” at Timestep 1, which 

strongly elevate the prediction value.  

 

Fig. 8. Feature importance for RSLSTM-Attention architecture 

This suggests the model associates early timesteps' 

pressure and temperature with an increase in the output 

variable, indicating a model sensitivity to initial sequence 

conditions. Conversely, “Pressure” at Timestep 3 and 

“Precipitation” at Timestep 6, indicate negative 

contributions, albeit with a lesser influence than the positive 

ones. The integration of an attention mechanism likely refines 

the model’s focus, allowing it to selectively weigh these 

inputs and their residuals at pivotal timesteps, which aligns 

with the attentional dynamics that RSLSTM-Attention is 

designed to capture. The analysis thereby enhances 

interpretability by revealing how the model's attention-based 

processing differentially weighs temporal inputs to arrive at 

its forecasts. 

IV. DISCUSSION 

A. Study Results and Their Strategic Implications 

The interpretation of the results presented in this study 

extends beyond mere statistical analysis; it also holds 

strategic significance for various applied domains. 

Specifically, the DRNN and DRNN-GRU models, which 

showcased the best results based on metrics MAE (0.07 and 

0.06 respectively), MSE (0.006 and 0.005), and RMSE (0.08 

for both), are of particular interest for tasks related to climate 

change forecasting and the study of natural systems. These 

models can be integrated into Geographic Information 

Systems (GIS) for real-time resource monitoring and 

management, potentially influencing policies in sustainable 

development and environmental safety. 

Furthermore, given the high accuracy of these models, 

they can be employed in agriculture to optimize water 

resource management systems and regulate microclimates in 

both open and enclosed areas. In the medical realm, these 

models can be utilized to assess the impact of climatic 

conditions on the spread of infectious diseases. At the 

macroeconomic level, precise climate condition forecasts can 

underpin strategic planning in sectors like energy, logistics, 

and insurance. 

Models with high error values, such as the LSTM-

Attention with MAE 0.22, MSE 0.06, and RMSE 0.25, or the 

RSLSTM and RSLSTM-Attention with MAE 0.28 and 0.27 

respectively, as well as MSE 0.12 and 0.11 and RMSE 0.34 

and 0.33, offer valuable insights for the further refinement of 

machine learning algorithms. They highlight the need for 

additional research into the influence of various factors on 

predictive accuracy, including data structure, loss function 

characteristics, and optimization strategies. These models can 

be enhanced for more specialized applications where the 

consideration of additional parameters or conditions is 

required. 

B. Research Limitations and Opportunities of their 

Overcoming  

During this study, certain limitations were identified that 

need to be considered when interpreting the results and 

planning future research endeavors. Firstly, although the 

DRNN and DRNN-GRU models showcased exemplary 

results based on the MAE, MSE, and RMSE metrics, these 

models were trained and tested solely on data obtained from 

a single meteorological station. This constrains the 

generalizability of the results and their applicability across 

diverse geographical and climatic conditions. To overcome 

this limitation, it is recommended to expand the dataset by 

incorporating data from multiple meteorological stations 

distributed across various climatic zones. 

The second limitation pertains to the choice of evaluation 

metrics. While the use of MAE, MSE, and RMSE is a 

standard approach, they do not always fully encapsulate the 
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nuances of forecasting tasks in the context of climate change. 

For instance, these metrics do not account for potential 

nonlinear dependencies and data asymmetries. For a more 

comprehensive analysis, the application of additional metrics 

and evaluation methods, such as cross-validation or bootstrap 

analysis, might be beneficial. 

The third limitation is related to the network architectures 

employed. While the study encompasses diverse 

architectures like DRNN, DRNN-GRU, and LSTM with 

attention mechanisms, it does not explore other approaches 

like convolutional neural networks or GANs that might also 

be effective for forecasting tasks. To address this limitation, 

the research can be expanded to include these and other 

contemporary architectures. 

Lastly, the study focuses exclusively on temperature 

forecasting, neglecting other crucial climatic parameters such 

as humidity, wind speed, or pollutant concentration. 

Incorporating these parameters could significantly influence 

the accuracy and reliability of forecasts, especially in the 

context of intricate ecosystems. In summary, these limitations 

highlight avenues for future research and offer opportunities 

for both methodological enhancements and the precision 

improvement of predictive models. 

C. Future Research Directions 

Future research in the realm of temperature forecasting 

using deep learning could progress significantly by building 

upon the interpretability insights gained from current model 

architectures. One promising direction is the exploration of 

hybrid models that capitalize on the complementary strengths 

of diverse neural network designs. Envisioning a model that 

combines the nuanced spatial pattern recognition capabilities 

of convolutional neural networks with the intricate temporal 

dependencies captured by recurrent networks might yield a 

tool of enhanced predictive power and deeper climatic 

insight. Additionally, the field stands to benefit from an 

investigation into advanced attention mechanisms. Beyond 

the LSTM-Attention and RSLSTM-Attention models, 

delving into more sophisticated variants, such as multi-

headed attention, could provide a more granular 

understanding of which aspects of the data are most 

informative and when. This could lead to the development of 

attention mechanisms that adapt not just to different features 

within the data but also to different temporal scales, 

recognizing patterns that evolve over both short and extended 

periods. 

Another promising research trajectory involves 

augmenting deep learning models with domain-specific 

knowledge. Integrating principles from atmospheric science 

into the structure and training of neural networks might guide 

the learning process, resulting in models that not only 

perform well empirically but also align more closely with 

theoretical expectations and physical laws. Moreover, the 

pursuit of novel attention mechanisms that can dynamically 

adjust to changing atmospheric conditions could offer 

breakthroughs in how models handle abrupt climatic shifts or 

rare events. Such mechanisms would ideally provide the 

model with the capacity to discern and respond to the onset 

of significant weather phenomena, potentially improving 

forecasting accuracy and timeliness. 

In light of the interpretability analyses conducted, future 

research should also emphasize the importance of model 

trustworthiness and user comprehension. Ensuring that 

predictive models remain interpretable to human experts is 

crucial, as it underpins the models' practical applicability and 

the confidence with which their output can be utilized in 

decision-making processes. 

Altogether, these future research directions aim not just to 

enhance predictive accuracy but also to ensure that 

advancements in machine learning resonate with and are 

informed by the rich tapestry of knowledge in atmospheric 

science, leading to robust, reliable, and interpretable 

forecasting tools for meteorology. 

V. CONCLUSION 

Within the scope of the conducted research, a 

comparative analysis of the effectiveness of various deep 

neural network architectures for temperature forecasting 

based on meteorological station data was carried out. The 

results showcase significant disparities in forecast accuracy 

among the models examined. Specifically, the DRNN and 

DRNN-GRU models exhibited the highest accuracy 

according to the MAE, MSE, and RMSE metrics, while 

architectures with attention mechanisms (LSTM-Attention, 

RSLSTM-Attention) displayed a relatively high level of 

errors. These findings can serve as a foundation for the 

further advancement and optimization of machine learning 

methods in predicting climatic parameters. 

Based on the results obtained, several practical 

recommendations can be made. Firstly, the DRNN and 

DRNN-GRU models, which demonstrated high precision, 

can be recommended for integration into Geographic 

Information Systems (GIS) with the aim of monitoring and 

managing climatic resources. They may also find application 

in agriculture for optimizing water resource management and 

in medical research for analyzing the influence of climatic 

factors on disease spread. 

Secondly, there is a need for further research into 

architecture with attention mechanisms. Despite their relative 

inefficiency in the current study, these models possess the 

potential to process complex nonlinear dependencies and can 

be optimized for specific forecasting tasks. 

Additionally, the necessity to expand the initial dataset by 

incorporating data from multiple meteorological stations can 

be highlighted. This would enhance the generalizability of the 

results, rendering them more universal. 

FUNDING 

The research is partially funded by the Ministry of 

Science and Higher Education of the Russian Federation as 

part of the World-class Research Center program: Advanced 

Digital Technologies (contract No. 075-15-2022-312 dated 

20 April 2022). 

REFERENCES 

[1] K. E. Taylor, R. J. Stouffer, and G. A. Meehl, "An Overview of CMIP5 
and the Experiment Design," Bulletin of the American Meteorological 

Society, vol. 93, no. 4, pp. 485–498, 2012, doi: 10.1175/BAMS-D-11-
00094.1. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 715 

 

Denis Krivoguz, Enhancing Long-Term Air Temperature Forecasting with Deep Learning Architectures 

[2] C. Schultz, "Climate dynamics: Why does climate vary?,” Eos, 
Transactions American Geophysical Union, vol. 92, no. 34, pp. 285–

286, 2011, doi: 10.1029/2011EO340006. 

[3] K. Abbass, M. Z. Qasim, H. Song, M. Murshed, H. Mahmood, and I. 
Younis, “A review of the global climate change impacts, adaptation, 

and sustainable mitigation measures,” Environ. Sci. Pollut. Res., vol. 
29, no. 28, pp. 42539–42559, 2022, doi: 10.1007/s11356-022-19718-6. 

[4] R. G. Newell, B. C. Prest, and S. E. Sexton, “The GDP-Temperature 

relationship: Implications for climate change damages,” Journal of 
Environmental Economics and Management, vol. 108, p. 102445, 
2021, doi: 10.1016/j.jeem.2021.102445. 

[5] M. Javaid, A. Haleem, R. P. Singh, and R. Suman, “Enhancing smart 
farming through the applications of Agriculture 4.0 technologies,” 

International Journal of Intelligent Networks, vol. 3, pp. 150–164, 
2022, doi: 10.1016/j.ijin.2022.09.004. 

[6] K. Arbuthnott, S. Hajat, C. Heaviside, and S. Vardoulakis, “Changes in 

population susceptibility to heat and cold over time: assessing 
adaptation to climate change,” Environmental Health, vol. 15, no. 1, 
2016, doi: 10.1186/s12940-016-0102-7. 

[7] D. Cawthorne, A. R. de Queiroz, H. Eshraghi, A. Sankarasubramanian, 

and J. F. DeCarolis, “The Role of Temperature Variability on Seasonal 

Electricity Demand in the Southern US,” Frontiers in Sustainable 
Cities, vol. 3, 2021. 

[8] T. P. Agyekum, P. Antwi-Agyei, and A. J. Dougill, “The contribution 

of weather forecast information to agriculture, water, and energy 
sectors in East and West Africa: A systematic review,” Frontiers in 
Environmental Science, vol. 10, 2022. 

[9] S. Silva, I. Soares, and C. Pinho, “Climate change impacts on electricity 

demand: The case of a Southern European country,” Utilities Policy, 
vol. 67, p. 101115, 2020, doi: 10.1016/j.jup.2020.101115. 

[10] S. Halilovic, L. Odersky, and T. Hamacher, “Integration of groundwater 

heat pumps into energy system optimization models,” Energy, vol. 238, 
p. 121607, 2022, doi: 10.1016/j.energy.2021.121607. 

[11] P. Joe et al., “Predicting the Weather: A Partnership of Observation 

Scientists and Forecasters,” in Towards the “Perfect” Weather 
Warning: Bridging Disciplinary Gaps through Partnership and 

Communication, pp. 201–254, 2022, doi: 10.1007/978-3-030-98989-
7_7. 

[12] D. Fister, J. Pérez-Aracil, C. Peláez-Rodríguez, J. Del Ser, and S. 

Salcedo-Sanz, “Accurate long-term air temperature prediction with 

Machine Learning models and data reduction techniques,” Applied Soft 
Computing, vol. 136, p. 110118, 2023, doi: 
10.1016/j.asoc.2023.110118. 

[13] J. Jun and H. K. Kim, “Informer-Based Temperature Prediction Using 

Observed and Numerical Weather Prediction Data,” Sensors, vol. 23, 
no. 16, 2023, doi: 10.3390/s23167047. 

[14] A. G. Bhave, D. Conway, S. Dessai, and D. A. Stainforth, “Barriers and 

opportunities for robust decision making approaches to support climate 
change adaptation in the developing world,” Climate Risk 
Management, vol. 14, pp. 1–10, 2016, doi: 10.1016/j.crm.2016.09.004. 

[15] G. Fedele, C. I. Donatti, C. A. Harvey, L. Hannah, and D. G. Hole, 
“Transformative adaptation to climate change for sustainable social-

ecological systems,” Environmental Science & Policy, vol. 101, pp. 
116–125, 2019, doi: 10.1016/j.envsci.2019.07.001. 

[16] A. Rutgersson et al., “Natural hazards and extreme events in the Baltic 

Sea region,” Earth System Dynamics, vol. 13, no. 1, pp. 251–301, 2022, 

doi: 10.5194/esd-13-251-2022. 

[17] C. Raymond et al., “Understanding and managing connected extreme 

events,” Nat. Clim. Chang., vol. 10, no. 7, 2020, doi: 10.1038/s41558-
020-0790-4. 

[18] S. Jia, C. Yang, M. Wang, and P. Failler, “Heterogeneous Impact of 
Land-Use on Climate Change: Study From a Spatial Perspective,” 
Frontiers in Environmental Science, vol. 10, 2022. 

[19] J. Pongratz, C. Schwingshackl, S. Bultan, W. Obermeier, F. 
Havermann, and S. Guo, “Land Use Effects on Climate: Current State, 

Recent Progress, and Emerging Topics,” Curr. Clim. Change Rep., vol. 
7, no. 4, pp. 99–120, 2021, doi: 10.1007/s40641-021-00178-y. 

[20] N. M. Mahowald, D. S. Ward, S. C. Doney, P. G. Hess, and J. T. 

Randerson, “Are the impacts of land use on warming underestimated 
in climate policy?,” Environ. Res. Lett., vol. 12, no. 9, p. 094016, 2017, 
doi: 10.1088/1748-9326/aa836d. 

[21] S.-I. Ao and H. Fayek, “Continual Deep Learning for Time Series 
Modeling,” Sensors, vol. 23, no. 16, 2023, doi: 10.3390/s23167167. 

[22] S. F. Ahmed et al., “Deep learning modelling techniques: current 

progress, applications, advantages, and challenges,” Artif. Intell. Rev., 
vol. 56, no. 11, pp. 13521–13617, 2023, doi: 10.1007/s10462-023-
10466-8. 

[23] I. H. Sarker, “Deep Learning: A Comprehensive Overview on 

Techniques, Taxonomy, Applications and Research Directions,” Sn 

Comput. Sci., vol. 2, no. 6, p. 420, 2021, doi: 10.1007/s42979-021-
00815-1. 

[24] I. A. Araya, C. Valle, and H. Allende, “A Multi-Scale Model based on 

the Long Short-Term Memory for day ahead hourly wind speed 
forecasting,” Pattern Recognition Letters, vol. 136, pp. 333–340, 2020, 
doi: 10.1016/j.patrec.2019.10.011. 

[25] J. A. Weyn, D. R. Durran, and R. Caruana, “Improving Data-Driven 

Global Weather Prediction Using Deep Convolutional Neural 

Networks on a Cubed Sphere,” Journal of Advances in Modeling Earth 
Systems, vol. 12, no. 9, p. e2020MS002109, 2020, doi: 
10.1029/2020MS002109. 

[26] M. Safia, R. Abbas, and M. Aslani, “Classification of Weather 

Conditions Based on Supervised Learning for Swedish Cities,” 
Atmosphere, vol. 14, no. 7, 2023, doi: 10.3390/atmos14071174. 

[27] T. R. Andersson et al., “Seasonal Arctic sea ice forecasting with 

probabilistic deep learning,” Nat. Commun., vol. 12, no. 1, p. 5124, 
2021, doi: 10.1038/s41467-021-25257-4. 

[28] A. D. Kenne, M. Toure, L. Logamou Seknewna, and H. L. Ketsemen, 

“Subseasonal Prediction of Summer Temperature in West Africa Using 
Artificial Intelligence: A Case Study of Senegal,” International Journal 

of Intelligent Systems, vol. 2024, p. e8869267, 2024, doi: 
10.1155/2024/8869267. 

[29] D. Krivoguz, “Methodology of physiography zoning using machine 

learning: A case study of the Black Sea,” Russian Journal of Earth 
Sciences, vol. 20, no. 2, 2020, doi: 10.2205/2020ES000707. 

[30] A. Smiti, “A critical overview of outlier detection methods,” Computer 

Science Review, vol. 38, p. 100306, 2020, doi: 
10.1016/j.cosrev.2020.100306. 

[31] L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao, “Normalization 

Techniques in Training DNNs: Methodology, Analysis and 

Application,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 45, no. 8, pp. 10173–10196, 2023, doi: 
10.1109/TPAMI.2023.3250241. 

[32]  N. Abid et al., "Burnt Forest Estimation from Sentinel-2 Imagery of 

Australia using Unsupervised Deep Learning," 2021 Digital Image 
Computing: Techniques and Applications (DICTA), pp. 01-08, 2021, 
doi: 10.1109/DICTA52665.2021.9647174.  

[33] Y. Yuan, L. Mou, and X. Lu, "Scene Recognition by Manifold 
Regularized Deep Learning Architecture," in IEEE Transactions on 

Neural Networks and Learning Systems, vol. 26, no. 10, pp. 2222-2233, 
Oct. 2015, doi: 10.1109/TNNLS.2014.2359471 

[34] A. Srivastava, S. Neog, and K. Medhi, "An Efficient Deep Learning 

Architecture for Internet of Medical Things," 2023 4th International 
Conference on Computing and Communication Systems (I3CS), pp. 1-
6, 2023, doi: 10.1109/I3CS58314.2023.10127240. 

[35] D. J. Richter and R. A. Calix, "Using Double Deep Q-Learning to learn 

Attitude Control of Fixed-Wing Aircraft," 2022 16th International 

Conference on Signal-Image Technology & Internet-Based Systems 

(SITIS), pp. 646-651, 2022, doi: 10.1109/SITIS57111.2022.00102. 

[36] G. Zhong, K. Zhang, H. Wei, Y. Zheng, and J. Dong, "Marginal Deep 

Architecture: Stacking Feature Learning Modules to Build Deep 
Learning Models," in IEEE Access, vol. 7, pp. 30220-30233, 2019, doi: 
10.1109/ACCESS.2019.2902631. 

[37] A. C. Salian, S. Vaze, P. Singh, G. N. Shaikh, S. Chapaneri, and D. 

Jayaswal, "Skin Lesion Classification using Deep Learning 

Architectures," 2020 3rd International Conference on Communication 
System, Computing and IT Applications (CSCITA), pp. 168-173, 2020, 
doi: 10.1109/CSCITA47329.2020.9137810. 

[38] M. Alqahtani and L. Macheeri Ramaswamy, "A Layer Decomposition 
Approach to Inference Time Prediction of Deep Learning 

Architectures," 2022 21st IEEE International Conference on Machine 

Learning and Applications (ICMLA), pp. 855-859, 2022, doi: 
10.1109/ICMLA55696.2022.00141. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 716 

 

Denis Krivoguz, Enhancing Long-Term Air Temperature Forecasting with Deep Learning Architectures 

[39] M. Rothmann and M. Porrmann, "A Survey of Domain-Specific 
Architectures for Reinforcement Learning," in IEEE Access, vol. 10, 

pp. 13753-13767, 2022, doi: 10.1109/ACCESS.2022.3146518.  

[40] N. Prabhu, S. K. T, and J. G, "A Comprehensive Study of Web Phishing 
Detection Using Machine and Deep Learning Architecture," 2023 14th 

International Conference on Computing Communication and 

Networking Technologies (ICCCNT), pp. 1-14, 2023, doi: 
10.1109/ICCCNT56998.2023.10306583. 

[41] F. Shuang, W. Junzheng, S. Wei, and C. Guangrong, "The research of 
loading model of eddy current dynamometer based on DRNN with 

double hidden layers," The 27th Chinese Control and Decision 

Conference (2015 CCDC), pp. 2485-2490, 2015, doi: 
10.1109/CCDC.2015.7162339. 

[42] Z. -h. Cen, J. -l. Wei, R. Jiang, and X. Liu, "Real-time fault diagnosis 

of satellite attitude control system based on sliding-window wavelet 
and DRNN," 2010 Chinese Control and Decision Conference, pp. 
1218-1222, 2010, doi: 10.1109/CCDC.2010.5498162. 

[43] S. Reddy, S. Goel, and R. Nijhawan, "Real-time Face Mask Detection 

Using Machine Learning/ Deep Feature-Based Classifiers For Face 

Mask Recognition," 2021 IEEE Bombay Section Signature Conference 

(IBSSC), pp. 1-6, 2021, doi: 10.1109/IBSSC53889.2021.9673170. 

[44] C. Tang, X. Zheng, X. Yu, C. Chen, and W. Zhu, "Design and Research 

of Intelligent Quantitative Investment Model Based on PLR-IRF and 
DRNN Algorithm," 2018 IEEE 4th Information Technology and 

Mechatronics Engineering Conference (ITOEC), pp. 1187-1191, 2018, 
doi: 10.1109/ITOEC.2018.8740741. 

[45] B. Li, X. Fan, C. Jiang, and G. Jiang, "Decoupling control of thickness 

and tension based on DRNN-PID in cold-rolling," Proceeding of the 
11th World Congress on Intelligent Control and Automation, pp. 1180-
1184, 2014, doi: 10.1109/WCICA.2014.7052886. 

[46] L. Xingjie, Z. Yanqing, M. Zengqiang, F. Xiaowei, and W. Junhua, 

"Direct multi-step prediction of wind speed based on chaos analysis 

and DRNN," 2009 International Conference on Sustainable Power 
Generation and Supply, pp. 1-5, 2009, doi: 
10.1109/SUPERGEN.2009.5348114. 

[47] Z. Zhou and S. Shi, "Research on discrete PR controller with LCL filter 
based on DRNN for photovoltaic grid-connected inverter," 2015 5th 

International Conference on Electric Utility Deregulation and 

Restructuring and Power Technologies (DRPT), pp. 2084-2088, 2015, 

doi: 10.1109/DRPT.2015.7432584. 

[48] K. S. Zaman, M. B. I. Reaz, S. H. Md Ali, A. A. A. Bakar, and M. E. 
H. Chowdhury, "Custom Hardware Architectures for Deep Learning 

on Portable Devices: A Review," in IEEE Transactions on Neural 

Networks and Learning Systems, vol. 33, no. 11, pp. 6068-6088, Nov. 
2022, doi: 10.1109/TNNLS.2021.3082304. 

[49] H. C. Kaskavalci and S. Gören, "A Deep Learning Based Distributed 

Smart Surveillance Architecture using Edge and Cloud 
Computing," 2019 International Conference on Deep Learning and 

Machine Learning in Emerging Applications (Deep-ML), pp. 1-6, 
2019, doi: 10.1109/Deep-ML.2019.00009. 

[50] M. Mahmud, M. S. Kaiser, A. Hussain, and S. Vassanelli, 

"Applications of Deep Learning and Reinforcement Learning to 
Biological Data," in IEEE Transactions on Neural Networks and 

Learning Systems, vol. 29, no. 6, pp. 2063-2079, June 2018, doi: 
10.1109/TNNLS.2018.2790388. 

[51] Y. Xie, K. Wang, and Y. Zhang, "Coordination control system study 

based on DRNN for marine power system," Proceedings of the 29th 

Chinese Control Conference, pp. 292-295, 2010. 

[52] Y.-H. Xie, K.-Q. Wang, and L.-K. Zhu, "Intelligent control system 
design based on DRNN for wood drying kiln," 2010 2nd International 

Conference on Industrial and Information Systems, pp. 514-517, 2010, 
doi: 10.1109/INDUSIS.2010.5565767. 

[53] Z. -q. Wei, Y. -k. Wang, X. -f. Qin, and J. Zheng, "Single Neuron PID 

Model Reference Adaptive Control for Filling Machine Based on 

DRNN Neural Network On-Line Identification," 2010 International 
Conference on Electrical and Control Engineering, pp. 5599-5602, 
2010, doi: 10.1109/iCECE.2010.1360. 

[54] H. P. S. D. Weerathunga and A. T. P. Silva, "DRNN-ARIMA Approach 

to Short-term Trend Forecasting in Forex Market," 2018 18th 

International Conference on Advances in ICT for Emerging Regions 
(ICTer), pp. 287-293, 2018, doi: 10.1109/ICTER.2018.8615580. 

[55] S. Smyl, G. Dudek, and P. Pelka, "ES-dRNN with Dynamic Attention 

for Short-Term Load Forecasting," 2022 International Joint 
Conference on Neural Networks (IJCNN), pp. 1-8, 2022, doi: 
10.1109/IJCNN55064.2022.9889791. 

[56] Y. Jin and C. Su, "Adaptive Model Predictive Control Using Diagonal 

Recurrent Neural Network," 2008 Fourth International Conference on 

Natural Computation, pp. 276-280, 2008, doi: 

10.1109/ICNC.2008.575. 

[57] S. Smyl, G. Dudek and P. Pełka, "ES-dRNN: A Hybrid Exponential 

Smoothing and Dilated Recurrent Neural Network Model for Short-
Term Load Forecasting," in IEEE Transactions on Neural Networks 
and Learning Systems, 2023, doi: 10.1109/TNNLS.2023.3259149. 

[58] S. Banerjee and S. Chakraborty, "Deepsub: A Novel Subset Selection 

Framework for Training Deep Learning Architectures," 2019 IEEE 

International Conference on Image Processing (ICIP), pp. 1615-1619, 
2019, doi: 10.1109/ICIP.2019.8803096. 

[59] R. A. Borgalli and S. Surve, "Deep Learning Framework for Facial 
Emotion Recognition using CNN Architectures," 2022 International 

Conference on Electronics and Renewable Systems (ICEARS), pp. 
1777-1784, 2022, doi: 10.1109/ICEARS53579.2022.9751735. 

[60] R. G. Tiwari, A. Misra, and N. Ujjwal, "Image Embedding and 

Classification using Pre-Trained Deep Learning Architectures," 2022 

8th International Conference on Signal Processing and 
Communication (ICSC), pp. 125-130, 2022, doi: 
10.1109/ICSC56524.2022.10009560. 

[61] V. Shankar and S. Chang, "Performance of Caffe on QCT Deep 

Learning Reference Architecture — A Preliminary Case Study," 2017 

IEEE 4th International Conference on Cyber Security and Cloud 
Computing (CSCloud), pp. 35-39, 2017, doi: 
10.1109/CSCloud.2017.49. 

[62] S. -M. Chiu et al., "Development of Lightweight RBF-DRNN and 
Automated Framework for CNC Tool-Wear Prediction," in IEEE 

Transactions on Instrumentation and Measurement, vol. 71, pp. 1-11, 
2022, doi: 10.1109/TIM.2022.3164063 

[63] H. Duan, H. Xie, and Y. Lu, "Transformer On-line Monitoring and 

Fault Diagnosis System Based on DRNN and PAS," 2019 IEEE 9th 
International Conference on Electronics Information and Emergency 

Communication (ICEIEC), pp. 1-4, 2019, doi: 
10.1109/ICEIEC.2019.8784584. 

[64] C. Ni and T. Zhao, "Decoupling Control for a Class of Dynamic 

Nonlinear Coupling Systems via ADRC based on DRNN," 2020 
Chinese Control And Decision Conference (CCDC), pp. 5374-5379, 
2020, doi: 10.1109/CCDC49329.2020.9164477.

 


