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 Abstract—Nowadays, controlling a Twin Rotor MIMO 

System (TRMS) is a considerable challenge for engineers due to 

its high non-linear attributes. The controller's design goals are 

to achieve the appropriate pitch and yaw angles when there is 

cross-coupling between its main and tail rotors while 

minimizing both the angular position error and controller 

effort. Performance measures can be utilized to evaluate the 

performance of the controller including integral square error, 
total variation, and integral absolute control action. In this 

paper, a Nonlinear Model Predictive Control (NMPC) is 

proposed to control TRMS rotors, which refer to the vertical 

and horizontal planes. Fick’s Law Algorithm (FLA) has been 

utilized to offline obtain the best selection for NMPC 

parameters. That includes best weighting matrices, shorter time 

steps, and shorter prediction horizons, by minimizing a novel 

penalty function called robust integral square error. FLA is 

used due to its flexibility, the ability to avoid suboptimal regions, 

and simplicity of implementation. The effectiveness of the 

proposed controller is examined using simulation-based tests 

conducted with MATLAB, which makes use of the CasADi 

Toolbox. In comparison to Cross Coupled PID (CC-PID) 

controller, the simulation results prove that FLA-based-NMPC 

has better performance and can track trajectories (step, square, 

and sine) even when there is ±𝟑𝟎% in TRMS parameters 

perturbation.  This work has come up with new contributions 

such as the new tuning strategy, extra state variable 

consideration, and a new FLA engineering application.   

Keywords—TRMS; Nonlinear Model Predictive Control 

(NMPC); Trajectory Tracking; Parameters Uncertainty; Robust 

Control; FLA; CasADi Toolbox; Cross Coupled PID. 

I. INTRODUCTION 

Control engineers have faced never-before-seen 

challenges with multivariable systems because of their 

coupled dynamics, or interactions between output and input 

variables. It is customary to regulate each output/input pair 

independently, ignoring the consequences of cross-coupling 

for simplicity. On the other hand, if the coupling effects are 

ignored, the system dynamics may be approximated, 

reducing control performance [1][2]. A Twin Rotor Multi-

Input Multi-Output System (TRMS) is a benchmark instance 

of a multivariable system. Feedback Instruments Ltd. created 

the TRMS laboratory test rig, which is used for control tests 

[3]. It is a helicopter prototype that still has cross-coupled 

modes and system nonlinearities, among other fundamental 

helicopter characteristics. Similar to helicopters, it is 

composed of both the main rotor and tail rotor, which are 

mounted on the beam and supported by a counterbalance. 

However, in contrast to the majority of flying helicopters, the 

rotors' angle of attack is fixed, and the motor speeds are used 

to regulate the aerodynamic forces. 

Due to the simultaneous occurrence of highly nonlinear 

and coupled dynamics, as well as the reality that actuation 

torques are gained through the aerodynamics of rotor blades 

instead of straight (as it occurs for example in robot 

manipulators and mobile robots [4]-[7]), the TRMS control 

has proven difficult. For these reasons, control techniques are 

frequently tested on the TRMS control, for example, in [8]–

[15]. Mainly because of the intrinsically coupled dynamics of 

TRMS, controllers designed for SISO systems cannot be 

easily transferred to them; instead, suitable controllers that 

consider the coupling effects of TRMS must be developed 

[16]. 

Many  research efforts have been paid for trajectory 

tracking of TRMS. In [17]-[21], PID and FOPID controllers 

were proposed to control vertical and horizontal rotation 

TRMS. The proposed controllers have enhanced closed-loop 

performance. However, the key difficulty of using the PID 

controller for the MIMO system is parameter tuning. In 

[22][23], LQR has been used. In comparison with the PID 

controller, the LQR controller showed better performance in 

both transient and steady-state error with minimum control 

effort. Though, the LQR controller may not work with 

constraints. In [24]-[28], a sliding mode controller (SMC) has 

been employed to control TRMS, which is robust against 

model disturbances and uncertainties. Nevertheless, the 

major drawback of the SMC is the chattering effect resulting 

from discontinuous control. Backstepping control is proposed 

in [29] for TRMS control. It allows for the incorporation of 

adaptive control techniques, which can adapt to uncertain 

system parameters and disturbances, offering robustness 

against modeling errors and uncertainties. But, every step of 

the backstepping control process relies on the designer's 

capacity to supply a legitimate Lyapunov function upon 

which a control rule may be constructed. Adaptive fuzzy 

control, Type-2 fuzzy backstepping sliding mode controller, 

and fuzzy PID control have been applied in [30-33] to control 

the TRMS. Applied fuzzy logic to these controllers improved 

the stability analysis of the control system, and minimized 

chattering problems in SMC.  However, the main drawback 

of fuzzy logic is the difficulty of tuning fuzzy controls’ 

parameters such as the type of the membership functions and 

the number of rules. The TRMS in its nonlinear structure is 

stabilized by the development of a multistage feedback 

linearization-based controller [34][35]. The control rules are 

derived while maintaining the coupling effects. However, 
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because the authors use output feedback linearization, any 

disturbances that influence the TRMS will have a significant 

impact on how it responds. 

To avoid the aforementioned problems, one approach is 

to utilize Model Predictive Control (MPC) which was 

developed in the late seventies and has since shown to be a 

successful control strategy for handling physical system 

constraints and multivariable interactions inside the 

optimization framework [36]-[39]. MPC can simultaneously 

control every output and take into consideration input-output 

interactions. MPC provides preview features similar to feed-

forward control. The fundamental concept behind MPC is to 

predict the future behavior of the system using an explicit 

model and then to continuously compute a series of control 

signals using an optimization technique that minimizes the 

difference between the desired reference trajectory and the 

predicted system trajectory within a certain time horizon 

[40]-[42]. MPC can provide robustness, closed-loop stability, 

and superior tracking performance. The MPC algorithm's 

intricacy, which takes longer than that of other controllers, is 

a disadvantage. But this issue is resolved by the recent 

invention of microprocessors, which have increased 

computing capability. In the control community, MPC has 

grown in popularity due to the aforementioned advantages. 

The finest TRMS control outcomes in recent years have 

been obtained using a variety of MPC adjustments.  The 

authors of the studies in [43]-[48] discuss the use of linearized 

models in MPC design to provide trajectory tracking or point 

stabilization for TRMS in coupled form. These techniques 

reduce the control problem to a set of straightforward, quick, 

and reliable matrix algebra computations. However, their 

insufficient accuracy for altered operating conditions is the 

primary drawback of utilizing such linearized models for 

highly nonlinear plants close to an operational point. By 

utilizing nonlinear models in the control application; NMPC; 

the inadequate accurateness of MPC with linearized models 

is addressed, but can increase computing cost [49]. 

The quality of the TRMS model is important while 

developing NMPC. Due to significant fluctuations in the 

operating environment, parametric uncertainty affects the 

system dynamics in the majority of real-time control 

applications. An optimized-based NMPC can be employed as 

a control strategy for this kind of system, providing good 

results even when there are ongoing uncertainties. The 

appropriate selection of the NMPC parameters is crucial to 

the design's success, especially when implementing NMPC 

on quickly changing systems like TRMS, because these 

parameters significantly impact control effort, reaction time, 

stability, and computational load. The parameters of NMPC, 

including the control input weighting factor (𝑅), tracking 

error weighting factor (𝑄), time step ∆𝑇, and prediction 

horizon (𝑁), all have a significant impact on the NMPC 

performance.   

In this work, NMPC is proposed to control a nonlinear 

TRMS model, which guarantees a specific control 

performance versus model uncertainties (0, ±30%). The 

tuning law for the selection of NMPC parameters is derived 

by minimizing a penalty function (i.e. Integral Squared Error 

(𝐼𝑆𝐸)) penalty function using Fick’s Law Algorithm (FLA), 

which is a physical-inspired population algorithm [50]. FLA 

has been employed in this work due to several features such 

as the ability to manage nonlinear optimization problems, 

flexibility, simplicity of implementation, and the ability to 

avoid suboptimal regions. For three reference trajectories 

(step, sine, and square), the controller's performance is 

compared to that of the Cross-Coupled PID (CC-PID) 

controller. To assess the effectiveness of the suggested 

strategy, a simulation is run using MATLAB R2023a and 

makes use of the CasADi Toolbox [51] with the Interior Point 

OPTimizer (IPOPT) solver [52].  The following is a list of 

this work's contributions: 

● New tuning strategy for NMPC parameters that includes 

four parameters which are ∆𝑇, 𝑁, 𝑄, and 𝑅, with a novel 

penalty function called Robust Integral Square Error 

(𝑅𝐼𝑆𝐸). 

● Adding an extra state variable (𝜉) that includes the 

coupling effect, which is advantageous. 

● Suggest a new FLA engineering application to optimize 

the parameters of the NMPC. 

The remainder of this paper is organized as follows: The 

NMPC theory and TRMS nonlinear modeling are presented 

in Section 2. Section 3 provides a detailed explanation of the 

control law's tuning strategy. Section 4 presents the 

simulation results, and Section 5 shows the study 

conclusions. 

II. TRMS MODELING AND CONTROLLER THEORY 

A. TRMS Kinematic Model 

A benchmark instance of a multivariable aero-dynamical 

system that mimics a typical helicopter setup through flexible 

maneuvering is the TRMS. Modeling and control design are  

faced with significant difficulties due to the system 

characteristics, which include nonlinearities and substantial 

cross-coupling between the horizontal and vertical axes. Fig. 

1 displays a schematic diagram of the TRMS. TRMS is 

equipped with two DC motor-driven propellers at either end 

of a beam that is articulated to connect it to the base. The 

beam's articulation enables rotation so that its ends can travel 

on spherical surfaces. Whereas the tail rotor permits the beam 

to move horizontally (yaw angle), the main rotor generates 

the lifting force that regulates the beam's location in the 

vertical plane (pitch angle). A stable equilibrium position is 

achieved by balancing the angular momentum with a 

counterweight that is anchored to the beam. The pitch angle 

is only marginally impacted by the tail motor's revolution, 

whereas yaw and pitch angles are significantly impacted by 

the main motor's rotation. The cross-coupling effect is 

explained by this. The TRMS's control inputs are the tail and 

main motors' DC voltages, (𝑢𝑡) and (𝑢𝑚), respectively. A 

variation in the voltage level causes the propeller's rotation 

speed to alter, which alters the beam's location accordingly. 

The TRMS's outputs are the beam locations, or the pitch (𝜃) 

and yaw (∅) angles. These yaw and pitch angles can be 

counted by using encoders connected to the TRMS setup. 

Along the pitch and yaw axis, the corresponding angular 

velocity and angular acceleration are noted by 𝜃,̇  �̈�, ∅̇, ∅̈ 

respectively. Table I lists the TRMS's distinctive parameters 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 696 

 

Omar Y. Ismael, Fick’s Law Algorithm Based-Nonlinear Model Predictive Control of Twin Rotor MIMO System 

[3]. The following equations are utilized to create a 

mathematical model of the TRMS. The subscripts "𝑚" and 

"𝑡" in these equations stand for the main and tail rotors, 

respectively. 

 

Fig. 1. Twin rotor MIMO system 

The momentum equation for the vertical plane motion is 

specified as: 

𝐼1�̈� = 𝑀1 − 𝑀𝐺 − 𝑀𝐵𝜃 − 𝑀𝐹𝐺  (1) 

where, the following roughly represents the nonlinear main 

propeller thrust (non-linear static characteristics): 

 𝑀1 = 𝑎1𝜏𝑚
2 + 𝑏1𝜏𝑚 (2) 

where 𝜏𝑚 is the momentum of the main motor. The 

Gyroscopic momentum is: 

𝑀𝐺 = 𝑘𝑔𝑦𝑀1∅̇cos (𝜃) (3) 

friction force momentum: 

𝑀𝐵𝜃 = 𝐵1𝜃�̇� − 𝐵2𝜃sin (2𝜃)�̇�2 (4) 

and gravity momentum: 

𝑀𝐹𝐺 = 𝑀𝑔sin (∅)  (5) 

The Momentum (𝜏𝑚) of the main rotor (main DC motor 

dynamics) has been approximated by the succeeding 

1𝑠𝑡 order transfer function: 

𝜏𝑚 =
𝑘1

𝑇11𝑠 + 𝑇10

𝑢𝑚 (6) 

The transfer function in (6) can be represented in the time 

domain as: 

�̇�𝑚 =
𝑘1

𝑇11

𝑢𝑚 −
𝑇10

𝑇11

𝜏𝑚 (7) 

Similarly, the momentum equation for the movement of 

the horizontal plane can be obtained as: 

𝐼2∅̈ = 𝑀2 − 𝑀𝑅 − 𝑀𝐵∅ (8) 

where the following roughly represents the nonlinear tail 

propeller thrust (non-linear static characteristics): 

𝑀2 = 𝑎2𝜏𝑡
2 + 𝑏2𝜏𝑡 (9) 

TABLE I.  TRMS PARAMETERS 

Symbol Description Value 

𝐼1 Moment of inertia of vertical rotor 0.068 𝑘𝑔 𝑚2 

𝐼2 Moment of inertia of horizontal rotor 0.028 𝑘𝑔 𝑚2 

𝑎1 Parameter of static characteristic  0.0135 

𝑏1 Parameter of static characteristic  0.0924 

𝑎2 Parameter of static characteristic  0.02 

𝑏2 Parameter of static characteristic  0.09 

𝑀𝑔 Gravity momentum 0.32 𝑁𝑚 

𝐵1𝜃 Function parameter of friction 

momentum  
0.006 𝑁 𝑚 𝑠/𝑟𝑎𝑑 

𝐵2𝜃 Function parameter of friction 
momentum  

0.001 𝑁 𝑚 𝑠/𝑟𝑎𝑑 

B𝜙 Function parameter of friction 

momentum  
0.1 𝑁 𝑚 𝑠/𝑟𝑎𝑑 

𝑘𝑔𝑦 Parameter of gyroscopic momentum 0.05 𝑠/𝑟𝑎𝑑 

k1 Gain of main Motor 1.1 

k2 Gain of tail Motor 0.8 

𝑇11 Denominator parameter of main motor 1.1 

𝑇10 Denominator parameter of main motor 1 

𝑇21 Denominator parameter of tail motor 1 

𝑇20 Denominator parameter of tail motor 1 

𝑇𝑝 Parameter of cross-reaction 
momentum  

2 

𝑇0 Parameter of cross-reaction 

momentum  
3.5 

𝑘𝑐 Gain of cross-reaction momentum  −0.2 

where 𝜏𝑡 is the Momentum of the tail motor. The friction 

forces momentum is: 

𝑀𝐵∅ = 𝐵∅∅̇ (10) 

and approximation of cross-reaction momentum 

𝑀𝑅 = 𝑘𝑐

(𝑇𝑜𝑠 + 1)

𝑇𝑝𝑠 + 1
𝑀1 (11) 

The cross-feedback term 𝑀𝑅 in time-domain can be 

expressed as: 

𝑀𝑅 =
1

𝑇𝑝

(1 − 𝑘𝑐

1 + 𝑇𝑜

𝑇𝑝

) 𝜉 + 𝑘𝑐

1 + 𝑇𝑜

𝑇𝑝

𝑀1 

𝜉̇ = −
1

𝑇𝑝
𝜉 + 𝑀1  

(12) 

where 𝜉 is a variable used to represent the cross-reaction 

momentum in the time domain. Similar to (6), the Momentum 

(𝜏𝑡) of the tail-rotor (tail DC motor dynamics) can be 

expressed as: 

𝜏𝑡 =
𝑘2

𝑇21𝑠 + 𝑇20

𝑢𝑡  (13) 

In the time domain, the transfer function in (13) can be 

written as (14). 
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�̇�𝑡 =
𝑘2

𝑇21

𝑢𝑡 −
𝑇20

𝑇21

𝜏𝑡  (14) 

The accuracy and realism of the TRMS kinematic model 

may be impacted by a number of assumptions and 

simplifications that are made in this section. Furthermore, 

ignoring some dynamical or nonlinear effects like structural 

flexibilities or aerodynamic variations could reduce the 

model's resilience and predictive power in real-world control 

applications. However, this research investigates the NMPC 

design for controlling TRMS under consideration of model 

uncertainty where the TRMS parameters are perturbated from 

their nominal values, which makes the control system robust. 

To design the NMPC controller, it is to represent the 

mathematical model of the TRMS time domain state space 

form. The DC voltages of the main and tail motors are the 

TRMS control inputs and are expressed by: 

𝑢 =  [𝑢𝑚 𝑢𝑡]
𝑇 ∈  ℝ2 (15) 

where 𝑢 is the control input vector. The designated state 

variables are the TRMS beam vertical position (𝜃), pitch rate 

(�̇�), the TRMS beam horizontal position (𝜙), yaw rate (�̇�), 

main rotor Momentum (𝜏𝑚), tail rotor Momentum (𝜏𝑡), and 

(𝜉) as an extra state variable to account for the effect of cross-

coupling. Consequently, the augmented state vector is written 

as: 

 𝑥 = [𝜃 �̇� 𝜙 �̇� 𝜏𝑚 𝜏𝑡  𝜉]
𝑇

∈  ℝ7  (16) 

and can be expressed as: 

�̇�1 = �̇� 

�̇�2 = �̈� = (
𝑎1

𝐼1
− 𝑘𝑔𝑦

𝑎1

𝐼1
�̇�𝑐𝑜𝑠𝜃) 𝜏𝑚

2 +
𝑏1

𝐼1
𝜏𝑚 

−𝑘𝑔𝑦

𝑏1

𝐼1
�̇�𝑐𝑜𝑠𝜃𝜏𝑚 −

𝐵1𝜃

𝐼1
�̇� 

+
𝐵2𝜃

𝐼1
�̇�2𝑠𝑖𝑛2𝜃 −

𝑀𝑔

𝐼1
𝑠𝑖𝑛𝜃 

�̇�3 = �̇� 

�̇�4 = �̈� =
𝑎2

𝐼2
𝜏𝑡

2 +
𝑏2

𝐼2
𝜏𝑡 −

𝐵𝜙

𝐼2
�̇� 

−
1

𝑇𝑝

(1 − 𝑘𝑐

1 + 𝑇𝑜

𝑇𝑝

) 𝜉 

−𝑘𝑐

1 + 𝑇𝑜

𝑇𝑝

(𝑎1𝜏𝑚
2 + 𝑏1𝜏𝑚) 

�̇�5 = �̇�𝑚 =
𝑘1

𝑇11

𝑢𝑚 −
𝑇10

𝑇11

𝜏𝑚 

�̇�6 = �̇�𝑡 =
𝑘2

𝑇21

𝑢𝑡 −
𝑇20

𝑇21

𝜏𝑡 

�̇�7 = 𝜉̇ = −
1

𝑇𝑝

𝜉 + 𝑎1𝜏𝑚
2 + 𝑏1𝜏𝑚 

(17) 

The output vector of the TRMS is: 

  𝑦 = [𝜃 ∅] = [𝑥1 𝑥3] ∈  ℝ2  (18) 

B. NMPC Theory 

NMPC describes a class of control strategies that forecast 

the future trajectory of the system's states and outputs using 

an explicit nonlinear system model. This prediction ability 

enables the online solution of optimum control problems, 

wherein, potentially subject to constraints on the states, 

outputs, and inputs, the control input and the error between 

the reference trajectory and the anticipated output are 

minimized over a finite horizon. The process of optimization 

produces an optimum control sequence, whereby the system 

receives input from just the first element in the sequence. The 

horizon is shifted and the entire optimization process is 

carried out again at the following sample interval. This 

process, known as Receding Horizon Control (RHC), is 

primarily used because it compensates for disturbances that 

cannot be measured and modeling mistakes, leading to 

system outputs that differ from the nonlinear model's 

predictions. Consider a nonlinear system as follows: 

𝑥(𝑘 + 1) = ℎ(𝑥(𝑘), 𝑢(𝑘)) 

𝑦(𝑘) = 𝑔(𝑥(𝑘)) 

𝑥(0) =  𝑥0 

(19) 

where 𝑥(𝑘) ∈ ℝ7, 𝑢(𝑘) ∈ ℝ2, and 𝑦(𝑘) ∈ ℝ2 are the state, 

inpu, and output vectors, respectively. If 𝐾 = ∞, then for all 

𝑘 ∈ ℕ0; if not, then for 𝑘 = 0, 1, . . . , 𝐾 − 1 . We write 

𝑥(𝑘, 𝑥0) whenever we wish to highlight the reliance on the 

initial value.  

A fundamental characteristic of the trajectories is: given 

a control 𝑢 ∈ 𝑈𝑁, an initial value 𝑥0 ∈ 𝑋, horizon length 𝑁 ≥
2, and 𝑘1, 𝑘2 ∈ {0, … , 𝑁 − 1} with 𝑘1 ≤ 𝑘2 as time instants 

the trajectory of the solution meets: 

𝑥(𝑘2, 𝑥0) = 𝑥(⋅+𝑘1)(𝑘2 − 𝑘1, 𝑥(𝑘1, 𝑥0)) (20) 

The shifted control sequence in this case, 

𝑢(⋅ +𝑘1) ∈ 𝑈𝑁−𝑘1 , is provided by: 

𝑢(⋅ +𝑘1)(𝑘) ≔ 𝑢(𝑘 + 𝑘1), 

𝑘 ∈ {0, … , 𝑁 − 𝑘1 − 1} 
(21) 

In other words, if the sequence 𝑢 comprises 𝑁 elements 

such as 𝑢(0), 𝑢(1), . . . , 𝑢(𝑁 − 1), then the sequence 
�̃� = 𝑢(⋅ +𝑘1) comprises 𝑁 − 𝑘1 elements such as 

�̃�(0) = 𝑢(𝑘1), �̃�(1) = 𝑢(𝑘1 + 1), … , �̃�(𝑁 − 𝑘1 − 1) =
𝑢(𝑁 − 1). With this definition, it is simple to show the 

identity (2) via induction with the help of (1) [53]. 

Within a set of constraints, the control aim is to track 

reference trajectories with the least amount of error and 

effort. The formulation of the cost function reflecting the 

control objective as follows [54][55]: 

𝐽𝑁𝑖
(�̃�𝑖(𝑘), 𝑢𝑙(𝑘)) = ∑  

𝑘+𝑁𝑖
𝑖=𝑘+1 �̃�𝑖

𝑇𝑄�̃�𝑖  (23) 
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                                    +∑  
𝑘+𝑁𝑖−1
𝑙=𝑘 𝑢𝑙

𝑇𝑅𝑢𝑙  

where 𝑅 ∈ ℝ2×2 and 𝑄 ∈ ℝ7×7 are the diagonal positive 

definite weighting matrices for the state and control input 

variables, and 𝑁𝑖 is the value of the prediction horizon at each 

𝑖th step. The TRMS control input vector at time 𝑙 is 

represented by 𝑢𝑙𝑢𝑒(𝑘) = 0 ∈ ℝ2, and �̃�𝑖 ∈ ℝ7, is different 

between the TRMS variables of predicted state of the system 

(�̂�𝑖) and its reference state (𝑋𝑖
∗) at each instant, as expressed: 

�̃�𝑖 = �̂�𝑖 − 𝑋𝑖
∗ (24) 

A realistic system must, in general, operate under some 

physical limitations that are imposed as output and system 

state constraints. The constraints for every input and output 

of a MIMO system are defined separately, as elucidated 

below: The following constraints apply to each control 

signal's amplitude in the TRMS: 

𝑢𝑣𝑚𝑖𝑛
≤ 𝑢𝑣(𝑘) ≤ 𝑢𝑣,𝑚𝑎𝑥

 

𝑢𝑡𝑚𝑖𝑛
≤ 𝑢𝑡(𝑘) ≤ 𝑢𝑡,𝑚𝑎𝑥

 
(25) 

and the following constraints on the output: 

𝜃𝑚𝑖𝑛 ≤ 𝜃(𝑘) ≤ 𝜃𝑚𝑎𝑥  

∅𝑚𝑖𝑛 ≤ ∅(𝑘) ≤ ∅𝑚𝑎𝑥  
(26) 

The physical constraints imposed by hardware 

limitations, actuator saturation, or safety considerations can 

be adequately captured by the given constraints on motor 

voltages and TRMS angles. 

Equation (23) defines the objective function, whereas 

(25), and (26) provide possible constraints that utilize the 

quadratic programming algorithm to solve the optimization 

problem. Reducing the performance metric in (23) results in 

a series of control actions. The remaining samples in the 

series are ignored and just the first samples are used to create 

the incremental optimum control, by the receding horizon 

concept. A new process outputs measurement takes place at 

the following sampling moment (𝑘 + 1), and the entire 

process is repeated with the prediction horizon being moved 

ahead by one step and having the same length, 𝑁. 

When the TRMS is controlled using the standard NMPC 

mode, the prediction horizon gain value will look like this: 

𝑁𝑖+1 = 𝑁𝑖 = 𝑁𝑖−1, 𝑖 = 1, … , 𝑁𝑡 (24) 

where 𝑁𝑡  is the total number of time steps in the solution. 

Whereas, in this work, the prediction horizon gain is offline 

retrieved separately and independently from the FLA. 

C. Stability of the Proposed Controller 

To move the system formulation to the equilibrium 

position indicated by 𝑢𝑒(𝑘) = 0, 𝑥𝑒(𝑘) = 0, the control's 

goal is to compute an admissible command input, 𝑢(𝑘). 

According to this description, 𝑢𝑒 represents the error between 

the system's control input and its reference vector, and 𝑥𝑒 

represents the errors between the system's state vector and its 

reference vector. It was shown that the usage of terminal 

equality constraints guaranteed the stability of predictive 

control [56]. According to [57], the NMPC's stability can be 

proven by applying the two presumptions that follow: 

1) For an appropriate control value 𝑢𝑟 ∈ 𝑈, there is an 

equilibrium point represented by a state vector such as, 

𝑥𝑟 ∈ 𝑋 ∈ ℝ7. Where 𝑋 is the state space set for the state 

vector �̃�𝑖(𝑘) and 𝑥𝑟  is the reference state vector. 

2) The function 𝑓(𝑥𝑟 , 𝑢𝑟) = 0 that 𝑢𝑟 ∈ 𝑈 is obtained by 

applying the running cost function as ℎ: 𝑋 × 𝑈 → ℝ0
+.  

Assumption 1, can be verified using system (17) as a 

guide. Additionally, the second supposition is met given that 

the cost function ℎ has the quadratic form shown in (23). 

Since Algorithm I indicates that the data needed to train the 

network has been gathered from (25), and the controller is 

stable, then stability is guaranteed. 

III. TUNING THE NMPC PARAMETERS 

The selection of NMPC parameters such as 𝑁, 𝑅, 𝑄, and 

∆𝑇 significantly influences the response features. It is 

important to understand how these parameters affect the 

system response to select an appropriate value for them. A 

greater horizon is ensured by higher values of 𝑁, which 

improves control by producing more accurate forecasts. 

Nonetheless, these values must be selected in a way that 

makes the design workable for actual use. Increased 

computing load caused by large values of 𝑁 prevents the 

control from being updated in system dynamics. The 

responses get slower as 𝑅 rises because the controller is 

tighter. Because the controllers are overacting, the responses 

exhibit considerable oscillation at lower levels of 𝑅. 

Naturally, greater control effort is required to lower tracking 

error as 𝑄 increases. Therefore, in order to determine 

appropriate values of the aforementioned NMPC parameters, 

FLA is utilized to minimize a 𝑅𝐼𝑆𝐸 penalty function. 

A. Tuning NMPC Parameters with 𝑅𝐼𝑆𝐸 

To have robust NMPC parameters (∆𝑇, 𝑁, 𝑄, and 𝑅) 

tuning, this work proposed a novel robust penalty function 

named Robust Integral Square Error (𝑅𝐼𝑆𝐸) which is 

calculated from the following equation: 

𝑅𝐼𝑆𝐸 = ∑  (

𝑐

𝑖=1

𝐼𝑆𝐸+30% + 𝐼𝑆𝐸0% + 𝐼𝑆𝐸−30%) (25) 

where 𝐼𝑆𝐸 = ∑  (
𝑐

𝑖=1
𝜃𝑒𝑖

2 + 𝜙𝑒𝑖
2) is the Integral Square 

Error of the TRMS output (𝑦)  , 𝐼𝑆𝐸+30% is the 𝐼𝑆𝐸 of 𝑦 when 

there are +30% increase in TRMS parameters in Table I, 

𝐼𝑆𝐸0% denotes that there is no change in the TRMS 

parameters while calculating the 𝐼𝑆𝐸 of 𝑦, and 𝐼𝑆𝐸−30% refers 

to -30% decrease in parameters of the TRMS. The NMPC 

parameters are then offline adjusted by using FLA to provide 

responses that are consistent with the contributions of this 

study. 

B. Implementation of FLA 

The inspiration for FLA follows Fick diffusion equations. 

These equations refer to the mathematical equations that 
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characterize the tendency of particles, in thermal motion, to 

move from a higher-density area to a lower-density area. 

Normal propagation, often known as Fick, is a diffusion that 

follows the Fick laws. This law stipulates that the flow of 

diffusion is proportional to the density gradient as follows: 

𝐹 = −𝐷𝛻𝐶 (26) 

where 𝐶 is the diffusing particles concentration, 𝐹 is the 

diffusion flux (𝑘𝑔/[𝑚2 𝑠]), and 𝐷 is the diffusion constant 

(cm2 per second). Fick’s diffusion law reduces to the 

following for one-dimensional problem: 

𝐹 = −𝐷
𝑑𝐶

𝑑𝑥
 (27) 

where 𝐷 = effective diffusivity (𝑚2 of coal control surface 

area/[s]) diffusion flux, 𝑑𝐶/𝑑𝑥 = density gradient ([𝑚3 of 

gas]/ [𝑚3 of coal]/ [m length along gradient]), and 𝐶 is in [𝑚3 

of gas]/ [𝑚3 of coal]. 

The FLA algorithm simulates Fick's law to determine 

molecules' stable locations. Three phases of operators are 

provided including: i) Equilibrium Operator (EO), ii) 

Diffusion Operator (DO), and iii) Steady-State Operator 

(SSO). In the first phase, it is considered that there is a high 

difference in concentration between two areas at the 

beginning of the experiment which makes particles travel 

across different regions particles move from one region to 

another depending on concentration. In the EO phase, the 

concentration of two regions is About the same which makes 

particles reach equilibrium status. Finally, the particles 

change their locations in the region due to the best stable 

locations in the region which refers to the SSO phase. The 

FLA is mathematically provided as follows: 

Step 1: FLA initialization, the process of optimization 

begins according to the candidate solutions set (𝑋), as shown 

in equation (28). These solutions are produced at random, 

with each iteration yielding the best result that is almost 

optimal. 

𝑋 = 

[
 
 
 
 
 

𝑥1,1 ⋯ 𝑥1,𝑗  ⋯ 𝑥1,𝐷−1 𝑥1,𝐷

𝑥2,1

⋯
⋮

𝑥𝑁−1,1

𝑥𝑁,1

⋯
⋯
⋮
⋯
⋯

𝑥1,𝑗
⋯
⋮

𝑥𝑁−1,𝑗

𝑥𝑁,𝑗

⋯
⋯
⋮
⋯
⋯

𝑥2,𝐷−1
⋯
⋮

𝑥𝑁−1,𝐷−1
𝑥𝑁,𝐷−1

𝑥2,𝐷
⋯
⋮

𝑥𝑁−1,𝐷
𝑥𝑁,𝐷 ]

 
 
 
 
 

 (28) 

where 𝑁 is the no. of solutions (population size), 𝐷 is the no. 

of variables (dimension of problem), and 𝑗 refers to the 𝑗𝑡ℎ 

decision variable. 

Step 2: Clustering, two population equal groups are 

divided into N1 and N2. 

Step 3: Transfer Function (𝑇𝐹), the exploitation to 

exploration transition and conversely is the cornerstone of 

any algorithm's success. a nonlinear TF is proposed for this 

purpose and defined as equation (29): 

𝑇𝐹𝑡 = 𝑠𝑖𝑛ℎ(𝑡/𝑇)𝐶1  (29) 

where 𝑡 denotes to the no. of iterations 𝑇 is the total number 

of iterations, and 𝐶1 =0.5. 

Step 4: Update particle position, in this context, three 

phases of the aforementioned operators are presented 

including 𝐷𝑂, 𝐸𝑂, and 𝑆𝑆𝑂. The transition between these 

three phases follows equation (30): 

𝑋𝑖
𝑡 = {

𝐷𝑂   𝑇𝐹𝑡 < 0.9
𝐸𝑂    𝑇𝐹𝑡 ≤ 1   
𝑆𝑆𝑂  𝑇𝐹𝑡 > 1   

 (30) 

Every population-based algorithm seeks to find the 

optimal answer for a particular optimization problem since 

obtaining the best answer requires more than one run. 

Nonetheless, a significant amount of obtaining the global 

optimal solution for a specific issue is made more likely by 

random solutions and optimization iterations [58, 59]. 

Exploration and exploitation are the two stages of the 

optimization process, nevertheless of the differences in 

metaheuristic algorithms used in population-based 

optimization strategies. In the exploitation phase, solution 

accuracy is improved, whereas, in the exploration phase, 

search agents of an algorithm cover a significant area of the 

search space to avoid locally optimal solution. Because it can 

strike a balance between both stages, FLA is regarded as a 

strong and effective optimization algorithm that ensures that 

both exploration and exploitation are carried out fairly. The 

idea of Fick's laws of diffusion serves as the foundation for 

this approach. The suggested FLA steps are shown in 

Algorithm 1 [50]. The range of the five diffusing particles 

concentration variables are as follows: 𝐶1 =∈ {0.5, 1}, 𝐶2 =
∈ {0.5, 1,1.5,2,2.5}, 𝐶3 =∈ {0.1, 0.2}, 𝐶4 =∈ {0.1, 0.2}, 𝐶5 =
∈ {0.5, 1,2}. The diffusion constant  (𝐷) = 0.01. 

Algorithm 1: FLA  

1: Initialization Phase; 

2: Initialize parameters (𝐷,𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5); 

3: Initialize population 𝑋𝑖(𝑖 = 1,2,… . . 𝑁) randomly; 

4: Clustering: Divide population into two equal groups N1, and N2; 

5: for 𝑠 = 1: 2 do 

6: Compute the fitness function for each molecule in group Ns; 

7: Find the best molecule in each group and the global optimum; 
8: end for 

9: while 𝐹𝐸𝑆 ≤ 𝑀𝐴𝑋𝐹𝐸𝑆 do 

10: if 𝑇𝐹 <  0.9 then                               %Steady state operator (SSO) 

11: for 𝑜𝑝=1: nop do 

12: Calculate Diffusion rate factor using 𝐷𝑅𝐹𝑔
𝑡 = exp (−

𝐽𝑝,𝑠𝑠
𝑡

𝑇𝐹𝑡
) 

13: Calculate Motion step factor using 𝑀𝑆𝑝,𝑔
𝑡 = exp (−

𝐹𝑆𝑠𝑠
𝑡

(𝐹𝑆𝑝,𝑔
𝑡 +𝑒𝑝𝑠)

) 

14: Update individual position using 𝑋𝑝,𝑔
𝑡+1 = 𝑋𝑠𝑠

𝑡 + 𝑄𝑔
𝑡 × (𝑀𝑆𝑝,𝑔

𝑡 ×

𝑋𝑠𝑠
𝑡 − 𝑋𝑝,𝑔

𝑡 ) 

15: end for 

16: else if (𝑇𝐹 < 𝑟𝑎𝑛𝑑) then                    %Equilibrium Operator (EO) 

17: for 𝑜𝑝=1: nop do 

18: Calculate Diffusion rate factor using 𝐷𝑅𝐹𝐸𝑂,𝑔
𝑡 = exp (−

𝐽𝑝,𝐸𝑂
𝑡

𝑇𝐹𝑡
) 

19: Calculate group relative Quantity using 𝑄𝐸𝑂,𝑔
𝑡 = 𝑅1

𝑡 × 𝐷𝐹𝑔
𝑡 ×

𝐷𝑅𝐹𝐸𝑂,𝑔
𝑡  

20: Update individual position using 𝑋𝑝,𝑔
𝑡+1 = 𝑋𝐸𝑂,𝑝

𝑡 + 𝑄𝐸𝑂,𝑔
𝑡 × 𝑋𝑝,𝑔

𝑡 +

𝑄𝐸𝑂,𝑔
𝑡 × (𝑀𝑆𝑝,𝐸𝑂

𝑡 × 𝑋𝐸𝑂.𝑔
𝑡 − 𝑋𝑝,𝑔

𝑡 ) 

21: end for 
22: else                                                          %Diffusion Operator (EO) 

23: Calculate direction of flow using 𝐷𝑂𝐹 = exp(−𝐶2(𝑇𝐹𝑡 −

𝑟1)) , 𝐶2 = 2 

24: Determine number of molecules that will travel to region using 

𝑁𝑇𝑖𝑗 ≈ 𝑁𝑖 × 𝑟1 × (𝐶4 − 𝐶3) + 𝑁𝑖 × 𝐶3 
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25: Update individual position using 𝑋𝑝,𝑖
𝑡+1 = 𝑋𝐸𝑂,𝑗

𝑡 + 𝐷𝐹𝑝,𝑖
𝑡 × 𝐷𝑂𝐹 ×

𝑟2(𝐽𝑖,𝑗
𝑡 × 𝑋𝐸𝑂.𝑗

𝑡 − 𝑋𝑝,𝑖
𝑡+1) 

26: Update other molecules in region 𝑖 using 𝑋𝑝,𝑖
𝑡+1 =

{

𝑋𝐸𝑂,𝑖
𝑡

𝑋𝐸𝑂.𝑖
𝑡 + 𝐷𝑂𝐹 × (𝑟3 × (𝑈 − 𝐿) + 𝐿)

𝑋𝑝,𝑖
𝑡+1

    
𝑟𝑎𝑛𝑑 < .8
𝑟𝑎𝑛𝑑 < .9
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

27: Update molecules in region 𝑗 using 𝑋𝑝.𝑖
𝑡+1 = 𝑋𝐸𝑂,𝑗

𝑡 + 𝐷𝑂𝐹 × (𝑟4 ×

(𝑈 − 𝐿) + 𝐿) 

28: Update 𝐹𝐸𝑆 ← 𝐹𝐸𝑆 + 𝑁𝑃; 

29: end if 

30: end while 

31: Return best solution; 

IV. SIMULATION AND RESULTS 

The proposed NMPC scheme of TRMS is validated by 

simulation using MATLAB R2023b that utilizes CasADi 

Toolbox with IPOPT solver. The system model (17) and the 

optimum control problem are specified in the CasADi 

toolbox, where the NMPC is implemented. The IPOPT solver 

for nonlinear programming problems and the multiple 

shooting technique are used to solve the optimal control 

problem and achieve state integration. The maximum number 

of iterations is set at 2000, while the convergence criteria of 

IPOPT is maintained at 10−8. The Runge-Kutta fourth (RK4) 

order method is used to integrate the states. All simulations 

are performed on a personal computer with a 2.6 GHz CPU, 

a core i7-10750H processor, and 16 GB of RAM. The TRMS 

states initial conditions are taken to be zero in this work. 

The proposed NMPC is compared with the CC-PID 

controller in order to better grasp the benefits of the proposed 

control scheme. Through simulations, the TRMS's capability 

to track different reference signals is verified. The selected 

reference signals are Step, Sinusoidal, and Square. Both 

controllers’ parameters are offline tuned using FLA with 

𝑅𝐼𝑆𝐸 Penalty function. The FLA speed at finding an optimal 

solution and the likelihood of finding the global optimal are 

influenced by factors like the highest number of iterations and 

the search agents’ number. The choice of these parameters' 

values depends on the application. Because TRMS is 

a nonlinear MIMO system with a high likelihood of multi-

local optimal, choosing appropriate FLA parameters is more 

challenging. Given that the suggested work is a new 

implementation of the newly released FLA, experience and 

trial and error were used to determine the FLA parameters. 

As a result, 50, 15, and 7 are selected as the maximum 

iteration, search agent count, and number of variables (D) 

respectively, in the FLA parameters. For every controller, the 

FLA is executed several times for only the square reference 

signal in order to determine the minimal 𝑅𝐼𝑆𝐸 cost function 

with the best system performance and meet controller design 

requirements. Table II displays the NMPC and CC-PID 

controllers’ tuned parameters. 

The control design can be significantly impacted by 

uncertainties in parameters value. To guarantee that the 

controller can function correctly throughout the whole range 

of possible parameter values, the design should often take the 

"worst situation" into account. In this paper, some parameters 

of the system are varied from their nominal values at the 

running time in order to examine the impact of the proposed 

controller's parameter uncertainty.  The parameters 

perturbation is taken as +30% and −30% from their nominal 

values. This work considers the tracking performance of the 

proposed NMPC in the presence and absence parameters 

perturbation for both subsystems that are horizontal and 

vertical. Three performance measures are utilized including: 

● Integral Square Error (𝐼𝑆𝐸): the square of the error is 

integrated over time using 𝐼𝑆𝐸. Due to the larger square 

of a significant error, 𝐼𝑆𝐸 will penalize large errors more 

than smaller ones. Large errors are often eliminated fast 

by control systems designed to minimize 𝐼𝑆𝐸, while tiny 

errors may remain for a long time. This frequently results 

in quick reactions but significant, low-amplitude 

oscillation. 

● Total Variation (TV): TV is used to show how smoothly 

the pitch and yaw angles are going. 

● Integral absolute control action (‖𝑢‖2): the control effort 

is integrated over time that indicate the controller energy 

consumption.  

TABLE II.  CONTROLLER PARAMETERS 

Controller Parameter Value 

NMPC 

𝑄 

[
 
 
 
 
 
 
9𝑒5 0 0 0 0 0 0
0 7𝑒6 0 0 0 0 0
0 0 3.4 0 0 0 0
0 0 0 5𝑒5 0 0 0
0 0 0 0 6𝑒6 0 0
0 0 0 0 0 7.7 0
0 0 0 0 0 0 3𝑒5]

 
 
 
 
 
 

 

𝑅 [
0.0015 0

0 1.5𝑒 − 4
] 

𝑁 7 

∆𝑇 0.137 

𝑢𝑚(𝑚𝑖𝑛), 

𝑢𝑚(𝑚𝑖𝑛) 
−2.5 𝑣 

𝑢𝑡(𝑚𝑎𝑥), 

𝑢𝑡(𝑚𝑎𝑥) 
2.5 𝑣 

CC-PID 

𝐾𝑃𝑖 

(𝑖
= 1,…4) 

[94, 98,90,91] 

𝐾𝐼𝑖 

(𝑖
= 1,…4) 

[94,88,94,95] 

𝐾𝐷𝑖 

(𝑖
= 1,…4) 

[97,88,100,97] 

A. Step Signal Tracking 

The TRMS model's horizontal and vertical subsystems 

receive two desired step inputs, 𝑟1(𝑡) = 0.5 (𝑟𝑎𝑑), and 

𝑟2(𝑡) = 0.5 (𝑟𝑎𝑑), concurrently for pitch and yaw angles 

tracking for 10 𝑠𝑒𝑐 period. The initial values of these angles 

are set to [0, 0].   

1) Tracking Performance 

The proposed NMPC's tracking performance compared 

with the CC-PID controller is illustrated in Fig. 2 and Fig. 3 

for both subsystems that are horizontal and vertical and with 

and without TRMS parameters perturbation. It may be 

observed that while the CC-PID controller is capable of 

managing parametric uncertainty, it is unable to manage the 

overshoot for all cases (more than 15%). Also, the settling 

time for the CC-PID controller is more than twice NMPC. On 

the other hand, the proposed NMPC can track the reference 

trajectory with a settling time of less than 3 𝑠𝑒𝑐 and no 
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overshoot without experiencing any steady-state error even 

when the parametric uncertainty is present. To evaluate the 

proposed NMPC superiority over the CC-PID controller for 

both pitch and yaw angles, the performance indices in Table 

III are utilized. As compared to the CC-PID controller, the 

proposed NMPC offers a lower ISE and TV for pitch and yaw 

angles.  

 

Fig. 2. Step response for pitch angle 

 

Fig. 3. Step response for yaw angle 

TABLE III.  PERFORMANCE ANALYSIS FOR STEP INPUT SIGNAL 

Controller ISE TV ||u||2 

Pitch angle 

NMPC 1.39 0.49 104.03 
NMPC (+30) 1.39 0.5 103.80 
NMPC ( -30) 1.38 0.49 104.135 

CC-PID 18.19 0.76 3970 
CC-PID (+30) 18.34 1.07 4140 
CC-PID ( -30) 19.00 0.77 3910 

Yaw angle 

NMPC 1.03 0.49 111.15 
NMPC (+30) 1.00 0.49 103.08 
NMPC ( -30) 1.07 0.49 115.23 

CC-PID 18.19 0.75 4910 
CC-PID (+30) 17.32 0.99 4960 
CC-PID ( -30) 18.22 0.77 4950 

 

2) Control Signal Analysis 

The control signal analysis in Fig. 4 and Fig. 5, and Table 

II also shows that, in comparison to the CC-PID controller, 

the proposed NMPC offers a lower ‖𝑢‖2 value for main and 

tail control inputs. Therefore, under parametric uncertainty, 

the suggested NMPC is more energy-efficient than the CC-

PID controller.  

3) NMPC Computational Efficiency 

The computed average computing time for the suggested 

NMPC is 0.017 𝑠𝑒𝑐. 

 

Fig. 4. Step response main rotor control signal and limits 

 

Fig. 5. Step response tail rotor control signal and limits 

B. Sine Signal Tracking 

A sine wave with amplitude of 0.2 𝑟𝑎𝑑 and frequency of 

1/30 𝐻𝑧 is used as the reference for the pitch angle, while a 

sine wave with amplitude of 0.3 𝑟𝑎𝑑 and frequency of 

1/30 𝐻𝑧 is used for the yaw angle, each of period of 45 𝑠𝑒𝑐. 

1) Tracking Performance 

Fig. 6 and Fig. 7, respectively, illustrate the comparative 

tracking performance of the NMPC controller versus the 

CCPID controller for the TRMS system with and without 

parameters perturbation for the vertical and horizontal 

subsystems. It is noted that the +30% parameters 

perturbation has a considerable impact on the sinusoidal 

response for pitch and yaw angles for the CC-PID controller 

with unacceptable large overshoot, steady state error, and 

settling time while the NMPC successfully handles this 

perturbation. For the zero and −30% parameters 
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perturbation, NMPC maintains control while offering 

resilience against parametric uncertainty while the CC-PID 

consists of continuous deviation (steady sate error) from the 

reference signal. Additionally, a comparison analysis is 

conducted using a few performance metrics for NMPC and 

the CC-PID controller for pitch and yaw angles. The results 

are shown in Table IV. Comparing the proposed control 

approach to the CC-PID controller, it is noted that the former 

yields lower 𝐼𝑆𝐸, and TV for pitch and yaw angles. 

 

Fig. 6. Sine response for pitch angle 

 

Fig. 7. Sine response for yaw angle 

TABLE IV.  PERFORMANCE ANALYSIS FOR SINE INPUT SIGNAL 

Controller ISE TV ||u||2 

Pitch angle 

NMPC 0.22 1.19 137.65 
NMPC (+30) 0.22 1.18 136.97 
NMPC ( -30) 0.23 1.18 138.13 

CC-PID 349.95 1.25 2210 
CC-PID (+30) 336.86 1.68 5840 
CC-PID ( -30) 347.57 1.24 2290 

Yaw angle 

NMPC 0.47 1.18 168.57 
NMPC (+30) 0.47 1.18 159.31 
NMPC ( -30) 0.47 1.19 177.29 

CC-PID 810.7 1.92 2770 
CC-PID (+30) 789.15 2.06 5910 
CC-PID ( -30) 807.23 1.91 2720 

 

2) Control Signal Analysis 

Table IV, and Fig. 8 and Fig. 9 show that, in comparison 

to the CC-PID controller, the proposed NMPC offers a lower 
‖𝑢‖2 value for main and tail control inputs. Therefore, in the 

presence and absence of parameters perturbation, the 

proposed NMPC has greater energy efficiency than the CC-

PID algorithm. 

 

Fig. 8. Sine response main rotor control signal and limits 

 

Fig. 9. Sine response tail rotor control signal and limits 

3) NMPC Computational Efficiency 

For the proposed NMPC, the computed average 

computation time is 0.014 𝑠𝑒𝑐. 

C. Square Signal Tracking 

A Square wave with amplitudes of 0.2 𝑟𝑎𝑑 and 

frequencies of 1/30 𝐻𝑧 are used to reference pitch angles, 

and square waves with amplitudes of 0.3 𝑟𝑎𝑑 and frequencies 

of 1/30 Hz are used to reference yaw angles, each of period 

45 𝑠𝑒𝑐. One may observe that low frequencies are used in the 

selection of the excitation signals (square and sine). This 

makes sense given the system's dynamics [60]. 

1) Tracking Performance 

The tracking performance of the NMPC controller and the 

CCPID controller for the TRMS system in the presence and 

absence of parameter perturbation for both subsystems that 

are horizontal and vertical are illustrated in Fig. 10 and Fig. 

11, respectively. The selection of the parameters of MPC 

allows the controller to track the reference trajectory with a 

settling time of less than 3 𝑠𝑒𝑐 and no overshoot without 

encountering any steady-state error. Conversely, though, it 

can be seen that the CC-PID controller cannot handle 

parametric uncertainty and cannot control overshoot (greater 
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than 25%). The CC-PID controller's settling time is much 

longer than that of NMPC. 

 

Fig. 10. Square response for pitch angle 

 

Fig. 11. Square response for yaw angle 

2) Control Signal Analysis 

Table V, Fig. 12 and Fig. 13 demonstrate that the 

proposed NMPC delivers a lower ‖𝑢‖2 value for the main 

and tail control inputs when compared to the CC-PID 

controller. Consequently, the suggested NMPC control 

algorithm uses less energy than the CC-PID method, both 

with and without a parametric uncertainty.  

TABLE V.  PERFORMANCE ANALYSIS FOR SQUARE INPUT SIGNAL 

Controller ISE TV ||u||2 

Pitch angle 

NMPC 3.28 1.07 332.31 
NMPC (+30) 3.26 1.07 331.50 
NMPC ( -30) 3.29 1.07 333.38 

CC-PID 65.02 2.63 5680 
CC-PID (+30) 73.92 4.29 7670 
CC-PID ( -30) 82.06 3.82 6300 

Yaw angle 

NMPC 6.21 1.07 389.12 
NMPC (+30) 6.05 1.07 372.64 
NMPC ( -30) 6.44 1.07 414.80 

CC-PID 98.03 3.43 6480 
CC-PID (+30) 107.88 4.85 7870 
CC-PID ( -30) 121.05 4.70 6800 

 

Fig. 12. Square response main rotor control signal and limits 

 

Fig. 13. Square response tail rotor control signal and limits 

3) NMPC Computational Efficiency 

A 0.013 𝑠𝑒𝑐 is the computed average computation time 

for the proposed NMPC. 

V. CONCLUSION 

In this paper, a nonlinear model predictive controller 

(NMPC) has been proposed to control the horizontal and 

vertical plane of the highly nonlinear TRMS system. A 

comparative study with the CC-PID controller was performed 

to show the superiority of the proposed controller. Both 

controllers’ parameters were tuned by utilizing a Fick’s Law 

of diffusion inspired algorithm. Using the CasADi Toolbox 

with IPOPT solver, a simulation was run in MATLAB. Three 

reference trajectories (step, sine, and square) were followed 

by both controllers. Both with and without TRMS parameters 

perturbation. Three performance criteria, including 𝐼𝑆𝐸, TV 

and ‖𝑢‖2, were used to assess the effectiveness of the NMPC. 

The NMPC has shown respectable real-time performance 

based on the previously described metrics during numerical 

simulations of TRMS setpoint tracking compared to the CC-

PID controller. The proposed NMPC offered a lower 𝐼𝑆𝐸, 

TV, and ‖𝑢‖2 for pitch and yaw angles for all the three 

reference signals in the presence and absence of TRMS 
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parameters perturbation. Therefore, under TRMS parametric 

uncertainty, the suggested NMPC was more energy-efficient 

than the CC-PID controller. As part of this research's future 

work, the proposed NMPC can be practically implemented 

on an actual TRMS test rig.   The following suggestions may 

be considered for the practical implementation in the future: 

● To reduce the hardware's time delay, a U2D2 interface 

can be used. In this sense, the TRMS receives controlling 

information straight from MATLAB; the laptop and this 

interface connect via the USB port. 

● The TRMS may need to run in practical slower than the 

simulation in order to reduce the dynamic impacts that the 

kinematic model does not consider. To quantify model 

disturbances, the proposed controller may be combined 

with observer-based controllers, as outlined in references 

[38], by estimating certain features of the environment. 
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