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Abstract—Parallel robot systems are increasingly important 

and widely applied due to their superior advantages such as high 

speed and accuracy. To improve the accuracy of these systems, 

recent research has focused on developing advanced control 

methods. However, this remains a significant challenge due to 

the complex mathematical model of parallel robots. This study 

introduces a control system based on a fuzzy cerebellar model 

articulation controller (FCMAC) to control parallel robots. The 

proposed control system includes FCMAC as the main tracking 

controller used to estimate the ideal control. A robust controller 

is employed to compensate for the error between FCMAC and 

the ideal controller. The parameters of FCMAC are adjusted 

online based on adaptive laws derived from Lyapunov 

functions. Finally, a five-bar parallel robot is selected to 

experiment with the FCMAC algorithm to demonstrate the 

effectiveness of the proposed controller. The results show that 

the accuracy of FCMAC is better than that of other algorithms. 

Keywords—Cerebellar Model Articulation Controller; 

Adaptive Control; Fuzzy; Fuzzy Cerebellar Model Articulation 

Controller; Five-Bar Parallel Robot. 

I. INTRODUCTION 

In recent years, there has been a growing interest in 

dynamic control systems like robots [1]–[8]. However, 

traditional control methods such as PID controllers and 

sliding mode control often fall short when dealing with 

complex nonlinear systems that are multi-variable. On the 

other hand, model-based controllers tend to be more accurate 

than model-free ones, especially when the system has an 

accurate dynamic model [9]–[21]. Yet, achieving this 

accuracy is challenging due to uncertainties like model errors, 

parameter disturbances, and deviations from the intended 

trajectory. To address these uncertainties, various methods 

have been developed, including adaptive controllers [9]–[10], 

model predictive controllers [11]–[13], robust controllers 

[14]–[17], Lyapunov-based controllers [18]–[19], and sliding 

mode controllers [20]–[21]. While all these methods aim for 

high accuracy, they still grapple with uncertainty during 

system operation, highlighting the need for further research 

to enhance controller quality for nonlinear systems. 

Combining the sliding control structure with neural 

networks has emerged as a potential way to boost robot 

performance [22]–[26]. However, achieving precise and 

reliable models presents significant challenges, often 

resulting in less-than-desirable precision [27]. To overcome 

this hurdle, researchers have turned to artificial neural 

networks (ANNs) to compensate for uncertainties in 

mathematical models, aiming to mimic ideal sliding mode 

control (SMC) systems [28]. These efforts address the 

significant challenge posed by uncertain and nonlinear 

system components, particularly when conventional methods 

struggle.  

Using Artificial Neural Networks (ANN) in robot motion 

control poses two significant challenges. Firstly, ANN in 

robot controllers must ensure sufficient nonlinear learning 

capability to approximate ideal controllers effectively 

through online learning rules. An efficient method is to 

employ the Cerebellar Model Articulation Controller 

(CMAC), which is widely applied in various applications due 

to its fast learning ability and simple structure [29]–[30]. 

CMAC not only adapts quickly but also mitigates 

unwarranted drawbacks [31]. However, these studies often 

focus solely on capturing errors from the output of neural 

network-based controllers to assess the learning process and 

update network weights. This may limit the evaluation of the 

robot's quality during parameter adjustment.  

The second challenge in using ANN is ensuring it 

contains enough adjustable parameters to eliminate the 

system's uncertain components. Facing this issue, studies in 

intelligent control have proposed methods directly 

integrating human expertise into neural networks [32]–[37]. 

Recently, fuzzy inference systems have been successfully 

applied as adaptive controllers for robots [38]–[42], one of 

the most successful applications of fuzzy logic systems [43]–

[46]. The flexibility of fuzzy controllers helps address 

uncertain system components, enabling the robot's adaptive 

behavior in dynamic environments. Although neural 

networks have been developed in various ways to cope with 

uncertain components [47]–[51], the limitations of adjustable 

parameters may lead to decreased controller accuracy [52].  

In recent years, the CMAC control model has 

demonstrated its ability to achieve fast convergence and good 

generalization in identifying and controlling complex 

dynamic systems [53]. The structure of CMAC is built from 

a network of associative memories with partially connected 

input fields and overlapping spaces. It has been proven that 

CMAC can approximate a nonlinear function with any degree 

of accuracy [54]. Gradient descent algorithms, like 
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backpropagation (BP), are used to minimize approximation 

errors by searching for the parameter weights of the network 

model [55]–[56]. BP is considered a fundamental method for 

training CMAC models in control system applications. 

However, the main drawbacks of BP are its slow convergence 

rate and inability to achieve global minima [57]. 

To address the limitations of CMAC, research [58] has 

combined it with fuzzy logic to create a fuzzy cerebellar 

model articulation controller (FCMAC). In another study, 

[59] simulated the system model using FCMAC to create a 

robust controller for a robot controller. To identify the 

dynamic model of a fractional-order chaotic system, research 

[60] designed a Type-2 FCMAC. Several other studies 

related to FCMAC can be found in [61]. FCMAC has 

extraordinary capabilities in controlling and improving 

system accuracy. Therefore, it has been used to control 

uncertain components of nonlinear systems. Subsequently, an 

adaptive robust controller is proposed to enhance the control 

system's quality. The combination of CMAC and fuzzy logic 

in FCMAC provides a flexible network structure with good 

adaptability in multivariable environments. This increases 

accuracy and adaptability to challenges in controlling robots 

and other complex dynamic systems. 

This paper contributes significantly in three main aspects: 

●  Firstly, it employs the Fuzzy Cerebellar Model 

Articulation Controller (FCMAC) to estimate uncertain 

components, thereby enhancing control capability and 

adaptability to uncertain factors.  

● Secondly, it introduces an additional robust controller 

coordinated with FCMAC to achieve high accuracy in the 

control process.  

● Lastly, the paper provides theoretical analysis and 

conducts experiments to validate the proposed controller, 

enabling the evaluation of its accuracy and effectiveness 

under actual conditions. 

The article is structured as follows: Part 2 presents the 

detailed mathematical model of the five-bar parallel robot. 

Then, in Section 3, the FCMAC model theory is introduced. 

Part 4 delves into the robot's control system and demonstrates 

how to analyze stability using Lyapunov. The process of 

testing the FCMAC algorithm is presented in Part 5. At the 

end of the article, Part 6 summarizes and draws conclusions 

based on the information presented. 

II. DYNAMIC EQUATION DESCRIPTION 

The dynamics of a five-bar parallel robot system 

expressed in the Lagrange following form: 

𝑀′(𝑞′)�̈�′ + 𝐶′(𝑞′, �̇�′)�̇�′ + 𝑔′(𝑞′) = 𝜏 (1) 

Where 𝑞′ = (𝑞1, 𝑞2, 𝑞3, 𝑞4)
𝑇 represents the robot's general 

coordinates. 𝑞′, �̇�, �̈� ∈ 𝑅4×1 are the position, velocity, and 

joint acceleration vectors; 𝑀′(𝑞′) ∈ 𝑅4×4 is the moment of 

inertia matrix; 𝐶′(𝑞′, �̇�′)  ∈ 𝑅4×4 are the centripetal force and 

the Coriolis force; 𝑔′(𝑞′) ∈ 𝑅4×1 is the gravity vector; 𝜏 is 

the control variable. This study uses a robot model with five-

bar parallel, as shown in Fig. 1, to evaluate the kinematic 

characteristics. The relationship between 𝑞3 and 𝑞4 expressed 

based on 𝑞1 and 𝑞2is expressed as Eq. (2) and (3). 
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Fig. 1. Structure diagram of five-bar parallel robot 

𝑞4 = 𝑎𝑟𝑐𝑡𝑎𝑛 [
±√𝒜2(𝑞1, 𝑞2) + ℬ2(𝑞1, 𝑞2) − 𝒞2(𝑞1, 𝑞2)

𝒞(𝑞1, 𝑞2)
]

+  𝑎𝑟𝑐𝑡𝑎𝑛 [
ℬ(𝑞1, 𝑞2)

𝒜(𝑞1, 𝑞2)
] − 𝑞2 

(2) 

𝑞3 = 𝑎𝑟𝑐𝑡𝑎𝑛 [
𝜇(𝑞1, 𝑞2) + 𝑙4𝑠𝑖𝑛(𝑞2 + 𝑞4)

𝜆(𝑞1, 𝑞2) + 𝑙4𝑠𝑖𝑛(𝑞2 + 𝑞4)
] − 𝑞1 (3) 

𝒜(𝑞1, 𝑞2) = 2𝑙4𝜆(𝑞1, 𝑞2) 

ℬ(𝑞1, 𝑞2) = 2𝑙4𝜇(𝑞1, 𝑞2) 

𝒞(𝑞1, 𝑞2) = 𝑙3
2 − 𝑙4

2 − 𝜆2(𝑞1, 𝑞2) − 𝜇2(𝑞1, 𝑞2) 

𝜆(𝑞1, 𝑞2) = 𝑙2 𝑐𝑜𝑠(𝑞2) − 𝑙1 𝑐𝑜𝑠(𝑞1) + 𝑙5 

𝜇(𝑞1, 𝑞2) = 𝑙2 𝑠𝑖𝑛(𝑞2) − 𝑙1 𝑠𝑖𝑛(𝑞1) 

Moment of inertia matrix:  

𝑀′(𝑞′) =

[
 
 
 
𝑚11

′ 0 𝑚13
′ 0

0 𝑚22
′ 0 𝑚24

′

𝑚31
′ 0 𝑚33

′ 0

0 𝑚42
′ 0 𝑚44

′ ]
 
 
 

 (4) 

𝑚11
′ = 𝑚1𝜏1

2 + 𝑚3(𝑙1
2 + 𝜏3

2 + 𝑙1𝜏3𝑐𝑜𝑠(𝑞3 + 𝛿3)) + 𝐽1 + 𝐽3 

𝑚13
′ = 𝑚3(𝜏3

2 + 𝑙1𝜏3𝑐𝑜𝑠(𝑞3 + 𝛿3)) + 𝐽3 

𝑚31
′ = 𝑚13

′  

𝑚22
′ = 𝑚2𝜏2

2 + 𝑚4(𝜏2
2 + 𝜏4

2 + 𝑙2𝜏4𝑐𝑜𝑠(𝑞4 + 𝛿4)) + 𝐽2 + 𝐽4 

𝑚24
′ = 𝑚4(𝜏3

2 + 𝑙2𝜏4𝑐𝑜𝑠(𝑞4 + 𝛿4)) + 𝐽4 

𝑚42
′ = 𝑚24

′  

𝑚33
′ = 𝑚3𝜏3

2 + 𝐽3 

𝑚44
′ = 𝑚4𝜏4  

2 + 𝐽4 

Centripetal force is expressed as: 

𝐶′(𝑞′, �̇�′) = [

𝛾1�̇�3 0 𝛾1(�̇�1 + �̇�3) 0

0 𝛾2�̇�4 0 𝛾2(�̇�2 + �̇�4)

−𝛾1�̇�1 0 0 0
0 −𝛾2�̇�2 0 0

] (5) 

𝛾1 = −𝑚3𝑙1𝜏3𝑠𝑖𝑛(𝑞3 + 𝛿3) 

𝛾2 = −𝑚4𝑙2𝜏4𝑠𝑖𝑛(𝑞4 + 𝛿4) 

Gravity matrix (6). 
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𝑔′(𝑞′) = 9.81 × [

𝑔1

𝑔2

𝑔3

𝑔4

] (6) 

𝑔1
′ = (𝑚1𝜏1 + 𝑚3𝑙1)𝑐𝑜𝑠(𝑞1 + 𝛿1) + 𝑚3𝜏3𝑐𝑜𝑠(𝑞1 + 𝑞3 + 𝛿3) 

𝑔2
′ = (𝑚2𝜏2 + 𝑚4𝑙2)𝑐𝑜𝑠(𝑞2 + 𝛿2) + 𝑚4𝜏4𝑐𝑜𝑠(𝑞2 + 𝑞4 + 𝛿3) 

𝑔3
′ = 𝑚3𝜏3𝑐𝑜𝑠(𝑞1 + 𝑞3 + 𝛿3) 

𝑔4
′ = 𝑚4𝜏4𝑐𝑜𝑠(𝑞2 + 𝑞4 + 𝛿4) 

However, the five-bar parallel robot system has only two 

control positions, represented by 𝑞 = (𝑞1, 𝑞2)
𝑇. The 

relationship between 𝑞 and 𝑞′ can be deduced as follows: 

𝑞 = [
1 0 0 0
0 1 0 0

] 𝑞′ = 𝛼(𝑞′) (7) 

𝑞′ = 𝜎(𝑞) (8) 

Based on equations (7), (8), the system's dynamic model 

is determined in [62]: 

𝑀(𝑞′)�̈� + 𝐶(𝑞′, �̇�′)�̇� + 𝐵𝑚�̇� + 𝑔(𝑞′) = 𝜏 (9) 

�̇�′ = 𝜌(𝑞′)�̇� (10) 

𝑞′ = 𝜎(𝑞) (11) 

Here, 𝐵𝑚 = (𝑏𝑚1, 𝑏𝑚2) represents the viscosity of the 

motor in the system. The system has only two control input 

values denoted 𝜏 = [𝜏1, 𝜏2]
𝑇. The components of the matrix 

in equation (9) are calculated as follows: 𝑀(𝑞′) =
𝜌𝑇(𝑞′)𝑀′(𝑞′)𝜌(𝑞′);  𝐶(𝑞′, �̇�′) = 𝜌𝑇(𝑞′)𝐶′(𝑞′)𝜌(𝑞′); 

𝑔(𝑞′) = 𝜌𝑇(𝑞′)𝑔′(𝑞′). 

In the nonlinear system, the state vector equation of the 

robot arm system is expressed: 

�̈�(𝑡) = −
𝐶(𝑞′, �̇�)�̇� + 𝐵𝑚�̇� + 𝑔(𝑞′)

𝑀(𝑞′)
+

𝐾𝜏𝐼𝑚
𝑀(𝑞′)

= 𝑓(𝑥, 𝑡) + 𝑔(𝑥, 𝑡)𝐾𝜏𝐼𝑚 

 (12) 

In which, 𝑓(𝑥, 𝑡) = −
𝐶(𝑞′,�̇�)�̇�+𝐵𝑚�̇�+𝑔(𝑞′)

𝑀(𝑞′)
 and 𝑔(𝑥, 𝑡) =

1

𝑀(𝑞′)
 are nonlinear dynamic functions that are difficult to 

determine. Therefore, it is impractical to design a controller 

based on an exact mathematical model of the object. For 

example, if the actual values of 𝑓(𝑥, 𝑡), 𝑔(𝑥, 𝑡) were known 

exactly and were denoted by 𝐹0(𝑥, 𝑡), 𝐺0(𝑥, 𝑡) respectively. 

Where 𝐹0(𝑥, 𝑡), 𝐺0(𝑥, 𝑡) are nominal components that do not 

change and 𝐿(𝑥, 𝑡) is defined as the sum of the Uncertain 

components exist in the system. The state vector 𝑥(𝑡) =

[𝑥𝑇   �̇�𝑇   …   𝑥(𝑛−1)𝑇] are the components of the state vector 

of the joint. Therefore, equation (12) is rewritten as follows: 

�̈�(𝑡) = 𝐹0(𝑥, 𝑡) + 𝐺0(𝑥, 𝑡) + 𝐿(𝑥, 𝑡) (13) 

Control in nonlinear systems poses an important 

challenge. The error 𝑒(𝑡) ∈ 𝑅𝑛×1 must be continuously 

monitored, defined by subtracting the desired value 𝑞𝑑(𝑡) 

from the actual value of the system 𝑞(𝑡). The system's 

tracking error is described as follows: 

𝑒(𝑡) = 𝑞𝑑(𝑡) − 𝑞(𝑡) (14) 

The tracking error of the system is represented in vector 

form as follows: 

𝑒(𝑡) = [𝑒𝑇  �̇�𝑇 , … , 𝑒(𝑛−1)𝑇]
𝑇
 (15) 

The sliding surface is defined as: 

𝑠 (𝑒(𝑡)) = 𝑒(𝑛−1)(𝑡) + 𝜁1𝑒
(𝑛−2)(𝑡) + ⋯+ 𝜁𝑛−1𝑒(𝑡) + 𝜁𝑛 ∫ 𝑒(𝑡)𝑑t

𝑡

0

 

 (16) 

Here, 𝑠 = [𝑠1 𝑠2 … 𝑠𝑘]
𝑇  and 𝜁𝑖 = 𝑑𝑖𝑎𝑔(𝜁𝑖1 , 𝜁𝑖2 , … , 𝜁𝑖𝑘

) with 

𝑖 = 1,2,3, … , 𝑛. The 𝜁𝑖  is assumed to satisfy the Hurwitz 

polynomial. Differentiating 𝑠 (𝑒(𝑡)) with respect to time and 

applying (9) leads to: 

�̇� (𝑒(𝑡)) = �̈� − 𝑀−1[𝜏 − 𝐶�̇� − 𝐵𝑚�̇� − 𝑔] + 𝐾𝑇𝑒(𝑡) (17) 

Where 𝐾 = [𝜁𝑛 𝜁𝑛−1 … 𝜁1]
𝑇  denotes the feedback gain 

matrix. If assume that the components 𝐹0(𝑥, 𝑡), 𝐺0(𝑥, 𝑡) and 

the sum of the unknown components 𝐿(𝑥, 𝑡) has been 

determined, then the ideal controller can be designed as 

follows: 

𝜏𝐼𝐷𝐸𝐴𝐿 = 𝐺0
−1 [�̈�𝑑 − 𝐹0(𝑥) − 𝐿(𝑥) + 𝐾𝑇𝑒 + 𝜚𝑠𝑔𝑛 [𝑠 (𝑒(𝑡))]] (18) 

Where 𝜚𝑠𝑔𝑛 [𝑠 (𝑒(𝑡))] represents the learning law of the 

sliding surface generator and 𝜚 > 0. However, the problem is 

that it is impossible to accurately determine the parameters of 

the component 𝐿(𝑥, 𝑡). Therefore, the study proposes a 

control system described in detail in section 4. 

𝜏𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 = 𝜏𝐹𝐶𝑀𝐴𝐶 + 𝜏𝑅𝐶 = �̂�𝑇T + 𝜏𝑅𝐶  (19) 

In this control structure, 𝜏𝐹𝐶𝑀𝐴𝐶  is the main controller to 

approximate the ideal controller. The goal is to keep 𝜏𝐹𝐶𝑀𝐴𝐶  

as close as possible to 𝜏𝐼𝐷𝐸𝐴𝐿 . Besides, to compensate for the 

appearing approximation errors, a robust controller 𝜏𝑅𝐶  is 

incorporated. This way, 𝜏𝑅𝐶  helps maintain system stability 

and adaptability, ensuring peripheral errors do not affect 

control performance. 

III. CONTROLLERS 

A. Definition of FCMAC controller 

FCMAC is a rule class presented as follows: 

𝑅𝑙: if 𝑋1 is 𝜇1𝑗𝑘  and 𝑋2 is 𝜇2𝑗𝑘, ..., 𝑋𝑛𝑖
 is 𝜇𝑖𝑗𝑘  then 𝑂𝑗𝑘 =

𝑤𝑗𝑘  

For 𝑖 = 1,2,… , 𝑛𝑖 , 𝑗 = 1,2,… , 𝑛𝑗 , 𝑘 = 1,2,… , 𝑛𝑘  and 

𝑙 = 1,2,… , 𝑛𝑘𝑛𝑗 

(20) 

Here, 𝑛𝑖’refers to the number of input dimensions, 𝑛𝑗 is 

the number of layers for each input dimension, 𝑛𝑘 is the 

number of blocks for each layer, 𝑙 = 𝑛𝑘𝑛𝑗 is a number of 

fuzzy rules, and 𝜇𝑖𝑗𝑘 is the fuzzy set corresponding to the 𝑖th 

input, the 𝑗th layer, and the 𝑘th block. 𝑤𝑗𝑘  represents the 

output weight of the consequence part. 

Fig. 2 describes the FCMAC network structure including 

Input space, Association memory space, Receptive-field 

space, Weight memory space, Output space. Details of the 

classes are described as follows:  
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1) Input space S: It is a continuous multidimensional 

input space. For each value 𝑆 = [𝑠1, 𝑠2]
𝑇 ∈ 𝑅𝑛, each input 

state variable 𝑠𝑖 needs to be divided into separate, defined 

elements in the given space. 

2) Association Memory Space A: Several elements can 

be accumulated to form a block. In this space, each block 

implements a receptive basis function. In this case, the 

Gaussian function is often used as the admittance basis 

function and can be expressed and depicted in Fig. 3. 
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Fig. 2. Architecture of a FCMAC 

𝜇𝑖𝑗𝑘(𝑠𝑖) = 𝑒𝑥𝑝 [
−(𝑠𝑖−𝑚𝑖𝑗𝑘)

2

𝜎𝑖𝑗𝑘
2 ]  (21) 

Where 𝑚𝑖𝑗𝑘 is a translation parameter and 𝜎𝑖𝑗𝑘 is dilation. 
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Fig. 3. Schematic of 2-D FCMAC 

3) Receptive-Field Space R: The information 

associated with each 𝑘th block and each 𝑗th layer is related to 

positions in receptive field space. Receptive spatial regions 

are formed by hypercubes, where each hypercube has 

multiple inputs. The information in Fig. 3 is presented as 

follows: 

𝑏𝑗𝑘 = ∏ 𝜇𝑖𝑗𝑘(𝑠𝑖)
𝑛𝑖
𝑖=1 = 𝑒𝑥𝑝 [∑

−(𝑠𝑖−𝑚𝑖𝑗𝑘)
2

𝜎𝑖𝑗𝑘
2

𝑛𝑖
𝑖=1 ]  (22) 

For 𝑖 = 1,2, … , 𝑛𝑖 , 𝑗 = 1,2, … , 𝑛𝑗 , 𝑘 = 1,2, … , 𝑛𝑘. 

Multidimensional receptive fields can be represented as 

vectors as follows: 

T = [𝑏1 … 𝑏2 …𝑏𝑛𝑘
]
𝑇
𝜖 𝑅𝑛𝑘 

4) Weight memory space W: In this layer, each position 

of 𝑇 adjusts to a specific value denoted by: 

𝑊 = [𝑤11 ⋯ 𝑤1𝑘 ⋯𝑤𝑗1 ⋯𝑤𝑗𝑘]  (23) 

5) Output space O: The output of FCMAC is the sum 

of the weights, each multiplied by the superblock's 

corresponding activation value. The mathematical 

representation of the output can be described as follows: 

𝑂 = ∑ ∑ 𝑊𝑗𝑘 ∏ 𝜇𝑖𝑗𝑘
𝑛𝑖
𝑖=1

𝑛𝑘
𝑘=1

𝑛𝑗

𝑗=1
  (24) 

For 𝑖 = 1,2, … , 𝑛𝑖 , 𝑗 = 1,2, … , 𝑛𝑗 , 𝑘 = 1,2, … , 𝑛𝑘. 

B. The Online Learning Rules 

FCMAC is described as in formula (24), in which the 

adaptation laws of FCMAC are designed as in formulas (25), 

(27), (28), and the robust controller is designed as in formula 

(26).  

1) The update rule for the weight layer is derived as 

follows: 

�̇̂� = −�̇̂�𝑤T𝑠(𝑒)  (25) 

𝜏𝑅𝐶 = (2𝑅2)−1[(𝐼 + 𝐻2)𝑅2 + 𝐼]𝑠𝑇(𝑒) (26) 

Where 𝑅 = 𝑑𝑖𝑎𝑔[𝜁1, 𝜁2] is the learning rate of the robust 

controller for the system to converge; �̇̂�𝑤’is positive learning 

rate for the output weight memory 𝑤𝑗𝑘 . 

2) The law for updating the parameters in the Gauss 

function is given as follows: 

�̇̂�𝑖𝑗𝑘 = �̇̂�𝑚s(𝑡)�̂�𝑖𝑗𝑘   (27) 

�̇̂�𝑖𝑗𝑘 = �̇̂�𝜎𝑠(𝑡)�̂�𝑖𝑗𝑘  (28) 

Where �̇̂�𝑚, �̇̂�𝜎 are positive learning rates for the translation 

�̂�𝑖𝑗𝑘 and dilation �̂�𝑖𝑗𝑘. 

IV. CONTROL SYSTEM STRUCTURE 

Fig. 4 depicts an overview of the adaptive FCMAC 

scheme, which includes three parts: signed distance, FCMAC 

controller, and robust controller. uppose there exists an 

optimal 𝑢𝐹𝐶𝑀𝐴𝐶
∗  to estimate 𝜏𝐼 𝐷 𝐸 𝐴 𝐿 with a robust controller: 

𝜏𝐼 𝐷 𝐸 𝐴 𝐿 = 𝜏𝐹𝐶𝑀𝐴𝐶
∗ + 𝜀 = 𝑊∗𝑇T + 𝜀  (29) 

However, in practice such ideal parameters are not 

available. Therefore, another proposal is made by 

approximating the output: 

𝜏𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 = 𝜏𝐹𝐶𝑀𝐴𝐶 + 𝜏𝑅𝐶 = �̂�𝑇T + 𝜏𝑅𝐶  (30) 

The Lyapunov function of this structure has the form: 

𝐿(𝑠(𝑒), �̃�) =
1

2
𝑠𝑇(𝑒)𝑀𝑠(𝑒) +

1

2
𝑡𝑟[�̃�𝑇 �̇̂�𝑊

−1�̃�] (31) 

Set �̃� = 𝑊∗ − �̂�, apply equations (17), (18), (29), (30) 

and derivatives (26), (27): 
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�̇�(𝑠(𝑒), �̃�) = 𝑠𝑇(𝑒)𝑀�̇�(𝑒) + 𝑡𝑟 [�̃�𝑇 �̇̂�𝑊
−1�̇̂�] (32) 

= 𝑠𝑇(𝑒)𝑀 {𝑀−1[𝜏𝐼𝐷𝐸𝐴𝐿 − 𝜏𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟] − 𝜚𝑠𝑔𝑛 [𝑠 (𝑒(𝑡))]}

+ 𝑡𝑟 [�̃�𝑇 �̇̂�𝑊
−1�̇̂�] 

= 𝑠𝑇(𝑒)𝑀 {𝑀−1[𝑊∗𝑇T + 𝜀 − �̂�𝑇T − 𝜏𝑅𝐶] − 𝜚𝑠𝑔𝑛 [𝑠 (𝑒(𝑡))]}

+ 𝑡𝑟 [�̃�𝑇 �̇̂�𝑊
−1�̇̂�] 

= 𝑠𝑇(𝑒)𝑀 {𝑀−1[�̃�𝑇T + 𝜀 − 𝜏𝑅𝐶] − 𝜚𝑠𝑔𝑛 [𝑠 (𝑒(𝑡))]}

+ 𝑡𝑟 [�̃�𝑇 �̇̂�𝑊
−1�̇̂�] 

= 𝑠𝑇(𝑒)W̃𝑇T − 𝑡𝑟 [�̃�𝑇 �̇̂�𝑊
−1�̇̂�] + 𝑠𝑇(𝑒)(𝜀 − 𝜏𝑅𝐶) − 𝑠𝑇(𝑒) ∙ 𝑀

∙ 𝜚𝑠𝑔𝑛 [𝒔 (𝒆(𝑡))] 

≤  𝑠𝑇(𝑒)(𝜀 − 𝜏𝑅𝐶) 

= −
1

2
𝑠𝑇(𝑒) 𝑠(𝑒) −

1

2
[[

𝑠(𝑒)

𝜆
− 𝜆𝜀]

𝑇

[
𝑠(𝑒)

𝜆
− 𝜆𝜀]]  

≤ −
1

2
𝑠𝑇(𝑒) 𝑠(𝑒) +

1

2
𝜆2𝜀𝑇𝜀  (33) 

Integrating equation (33) from 𝑡 = 0 𝑡𝑜 𝑡 = 𝑇: 

𝐿(𝑇) − 𝐿(0)  ≤ −
1

2
∑ ∫ 𝑠𝑖

2(𝑡)𝑑𝑡
𝑇

0
𝑚
𝑖=1 +

1

2
∑ 𝜆𝑘

2 ∫ 𝜀𝑘
2(𝑡)𝑑𝑡

𝑇

0
𝑚
𝑘=1   (34) 

The system will completely reach steady state when: 

1

2
∑ ∫ 𝑠𝑖

2(𝑡)𝑑𝑡
𝑇

0
𝑚
𝑖=1 ≤  𝐿(0) +

1

2
∑ 𝜆𝑘

2 ∫ 𝜀𝑘
2(𝑡)𝑑𝑡

𝑇

0
𝑚
𝑘=1 =

1

2
𝑠𝑇 (𝑒(0))𝑀𝑠 (𝑒(0)) +

1

2
𝑡𝑟[�̃�𝑇(0)�̇̂�𝑊

−1�̃�(0)]  
(35) 

ijk

Sliding 

Surface

(eq. 16)

dq FCMAC

(eq. 30)

Se uFCMAC
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Gauss function 

parameter update rule
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Fig. 4. Structure diagram of FCMAC control system 

V. EXPERIMENT 

In this Section, we use a five-bar parallel robot platform 

to verify and compare the proposed approach to others. This 

selection stems from the inherent complexity of the 

mechanical structure of the system, making it challenging to 

establish an accurate mathematical model. During operation, 

the interactions among the joints introduce numerous 

uncertain parameters that cannot be precisely determined. 

Additionally, various parameters such as viscosity and 

friction coefficients undergo changes throughout operation, 

further complicating control efforts. Furthermore, the Fuzzy 

Cerebellar Model Articulation Controller (FCMAC) network 

structure, as outlined in part IV, is specifically tailored to 

accommodate such complexities. This network is designed to 

handle the uncertainties inherent in the system, providing 

adaptability to dynamic changes during operation. The 

mathematical model described in part II, comprising 

equations (9)-(15) and detailed parameters in Table I, serves 

as the foundation for understanding the system dynamics and 

for the subsequent application and validation of the FCMAC 

controller on the chosen robot platform. 

Table II talks about the network structure parameters 

when performing simulation experiments. 

TABLE I.  MODEL PARAMETERS WHEN SIMULATION 

Symbol Parameters 

𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5 0.127m 

𝑚1,𝑚2,𝑚3,𝑚4 0.065kg 

𝐵𝑚 [1,1] 

𝛿1, 𝛿2, 𝛿3, 𝛿4 1 

TABLE II.  FCMAC NETWORK STRUCTURAL PARAMETERS 

Symbol Parameters 

𝑛𝑘 5 

𝑛𝑗 11 

�̇̂�𝑤 , �̇̂�𝑚, �̇̂�𝜎 0.5 

𝑚 (-1 1) 

𝜎 0.6 

 

Fig. 5 depicts a robot system consisting of main 

components such as motors, joints, and encoders. The NI 

PCIe-6351 board was integrated into the computer to perform 

experiments and collect data, supporting Simulink on Matlab 

to control the robot arm. In this installation, the Fuzzy 

Cerebellar Model Articulation Controller (FCMAC) is the 

control system used. FCMAC was implemented to optimize 

the control performance of the robot arm, especially through 

learning from actual data. This optimization process allows 

FCMAC to adapt to changing conditions and requirements. 

The experiment evaluates important factors such as accuracy 

and mean square error. These metrics are intended to 

demonstrate the superiority of FCMAC over traditional 

control methods such as PID and RBF for Quanser's 2-DOF 

robot system, as depicted in Fig. 6. Expected results from 

This experiment will provide insight into the quality of 

FCMAC compared to other traditional methods, such as PID 

and RBF. The expected results from this test will demonstrate 

the quality of FCMAC compared to methods such as PID and 

RBF. 

Data Acquisition 

Interface Board

Link 1Link 3Link 4Link 2

 

Fig. 5. Experimental system 
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Fig. 6. Quanser's 2 DOF Robot model 

A. Experimental Results in the Absence of Uncertain 

Components 

Fig. 7 shows the difference between the actual position 

and the reference position of the robot joints. It is easy to see 

that FCMAC can stabilize and maintain a good position with 

the reference orbit. The RBF and PID algorithms are still 

capable of maintaining location and processing but are less 

efficient than FCMAC. 

 

 

Fig. 7. Actual position relative to the robot's 𝜽𝑨 and 𝜽𝑩 reference positions 

Fig. 8 shows the error used to evaluate the accuracy. The 

error reduction and stability of FCMAC compared to RBF 

and PID are a testament to its excellent performance in 

maintaining positions close to the reference position. 

Fig. 9 depicts the difference between the actual trajectory 

and the reference trajectory on the system, showing that 

FCMAC outperforms RBF and PID regarding trajectory 

tracking ability. Demonstrates the flexibility and high 

adaptability of the FCMAC algorithm. 

Table III depicts the performance of three different 

methods, FCMAC, RBF, and PID, without uncertainty 

components. For 𝑒𝐴, PID has the most significant value 

(6.18e-03), followed by RBF (5.77e-03) and FCMAC (2.24e-

03). When considering 𝑚𝑠𝑒𝐴, FCMAC continues to have the 

smallest value (1.160e-04), indicating the highest accuracy 

among the three methods. In the case of 𝑒𝐵 and 𝑚𝑠𝑒𝐵, 

FCMAC continues to have the smallest value. Shows higher 

accuracy compared to RBF and PID. In short, in the absence 

of uncertainty, FCMAC maintains good stability and 

accuracy. 

 

 

Fig. 8. 𝜽𝑨 and 𝜽𝑩 error of the robot system during actual operation 

 

Fig. 9. Actual trajectory compared to reference trajectory when the 
robot system is in actual operation 

TABLE III.  THE ACTUAL OPERATION DATA SHEET DOES NOT INCLUDE 

ANY UNCERTAIN COMPONENTS 

Symbol FCMAC RBF PID 

𝒆𝑨 2.24e-03 5.77e-03 6.18e-03 

𝒎𝒔𝒆𝑨 1.160e-04 6.85e-04 3.04e-03 

𝒆𝑩 -8.15e -04 -2.05e-03 3.68-03 

𝒎𝒔𝒆𝑩 5.78e-03 1.51e-02 3.83e-02 

B. Experimental Results in Case of Inclusion of Uncertain 

Component 

In actual systems, uncertainty can arise from many 

different sources. Adding uncertainty components is 

necessary to evaluate the capabilities of the proposed 

FCMAC structure. Below is the definition of the uncertainty 

components added at time 𝑡 = 4𝑠: 

𝐿(𝒙, 𝑡) = 𝑡𝑙 + 𝑓𝑙 

Where 𝑡𝑙 = [0.05 ∗ cos(𝑡) ∗ 𝑠𝑖𝑔𝑛(𝑞1 ∗ 𝑞2);  −0.01 ∗ sin(𝑡)] 
and 𝑓𝑙 = [0.01 ∗ cos(𝑡) ;  −0.05 ∗ cos(𝑡) ∗ 𝑠𝑖𝑔𝑛(𝑞1 ∗ 𝑞2)]. 

Fig. 10 depicts the difference between the actual position 

and the reference position of the robot joints. FCMAC is 

stable and maintains well with the reference trajectory at the 

start. Notably, noise appeared at time t=4s and caused a 

significant difference in the system. FCMAC still 

demonstrates excellence in maintaining system control 

quality, outperforming other algorithms. 
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Fig. 10. Actual position relative to the robot's 𝜽𝑨 and 𝜽𝑩 reference 
positions 

Fig. 11 shows the fluctuation resistance of the control 

algorithm. FCMAC demonstrates the precise control and 

anti-uncertainty component ability of FCMAC in the actual 

environment at time 𝑡 = 4𝑠. 

 

 

Fig. 11. 𝜽𝑨 and 𝜽𝑩 error of the robot system during actual operation 

Fig. 12 shows the actual trajectory and reference 

trajectory on the system. From the figure, FCMAC is superior 

to RBF and PID in orbit tracking ability. Especially when 

faced with uncertain components, highlighting the 

adaptability of the FCMAC algorithm. 

Table IV depicts the performance of three methods, 

FCMAC, RBF, and PID, with uncertainty components. For 

𝑒𝐴, PID has the highest value (8.08e-03), followed by RBF 

(7.59e-03) and FCMAC (3.66e-03). When considering 𝑚𝑠𝑒𝐴, 

FCMAC retains the smallest value (1.270e-04), indicating a 

relatively higher accuracy than RBF and PID. For 𝑒𝐵, 

FCMAC (3.88e-04) and RBF (4.01e-04) have smaller values 

than PID (2.83e-03). FCMAC continues to have the smallest 

𝑚𝑠𝑒𝐵 value (1.43e-02), followed by RBF (2.01e-02) and PID 

(4.63e-02). FCMAC maintains good stability and accuracy 

even when uncertain components exist in the system. 

 

Fig. 12. Actual trajectory compared to reference trajectory when the 
robot system is in actual operation 

TABLE IV.  THE ACTUAL OPERATION DATA SHEET INCLUDE UNCERTAIN 

COMPONENTS 

Symbol FCMAC RBF PID 

𝒆𝑨 3.66e-03 7.59e-03 8.08e-03 

𝒎𝒔𝒆𝑨 1.270e-04 7.45e-04 3.24e-03 

𝒆𝑩 3.88e -04 4.01e-04 2.83-03 

𝒎𝒔𝒆𝑩 1.43e-02 2.01e-02 4.63e-02 

VI. CONCLUSION AND DISCUSSION 

This study presents and utilizes the Fuzzy Cerebellar 

Model Controller (FCMAC) algorithm to control the robot 

system along a time-based reference trajectory. The unique 

aspect of this research is the integration of Fuzzy's advantages 

into CMAC's capabilities to handle nonlinear systems, 

optimize fuzzy solutions, and manage uncertainties. This 

method is effective and practical. Lyapunov and robust 

controllers demonstrate the stability of FCMAC. 

Experimental results emphasize the benefits of the proposed 

method. This could be a steppingstone towards other practical 

applications such as robot control, engine control, UAVs, etc.  

However, the drawback of this controller lies in 

optimizing Gaussian function parameters, network structure 

learning speed, and robust control. It's noteworthy that 

FCMAC only addresses one of the two most significant 

drawbacks of CMAC: the ability to compute input parameters 

at the Associative Memory Space. The remaining drawback 

is CMAC's processing and adaptation capabilities with 

complex nonlinear systems. In the future, research aims to 

address the remaining shortcomings. It may involve 

integrating wavelet networks or using Type-2 fuzzy networks 

to enhance processing capabilities at the Associative Memory 

Space. Regarding drawbacks, further studies will explore 

various methods or combine them with Brain Emotion 

Learning networks to increase the overall integration 

capability and achieve higher accuracy. 
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