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Abstract—This paper introduces a new method of 

controlling uncertain robot using robust adaptive iterative 

learning control (RAILC) to track the trajectory in iterative 

operation mode. This method uses a PD controller combined 

with gain switching and forward learning techniques to predict 

the desired torque of the actuator. Using the Lyapunov method, 

this paper presents an RAILC control scheme for an uncertain 

robot system with structural and unstructured properties while 

ensuring the stability of the closed-loop system in the domain 

repeat. This study believes that this new control method can 

advance the field of robot control, especially in dealing with 

structured and unstructured uncertainties. It can help improve 

the flexibility and performance of robotic systems in real-world 

applications, such as automated manufacturing, transportation 

services, or healthcare. At the same time, providing simulation 

and test results demonstrates the effectiveness of the new control 

method in deicing high voltage power lines for robots. 

Keywords—PD Control; Learning Control; De-Icing Robot 

Manipulator; Adaptive Iterative Learning Control. 

I. INTRODUCTION 

Nonlinear adaptive control (AC) technology plays an 

important role in addressing the challenges of uncertain and 

variable-parameter dynamic systems [1]–[4]. However, the 

adaptive of AC depends heavily on the design of the learning 

rule and initial parameters. This creates many difficulties in 

designing a controller that can be applied to many different 

nonlinear objects. When the disadvantages of AC became a 

matter of concern for many scientists, the estimation method 

applied adaptive learning rule design to handle uncertain 

parameters and it became an effective means. In cases where 

the system does not meet the required conditions, iterative 

learning control (ILC) is a flexible solution. This is a 

particularly useful technique when dealing with processes 

that repeat tracking tasks at fixed intervals. ILC uses 

information from previous trials to shape subsequent control 

inputs, continuously improving tracking accuracy. Uniquely, 

ILC can be applied not only to reference trajectories that 

remain constant between trials but can also be adjusted to 

meet a more general goal without requiring tracking of a 

single target–specific static [5]. In general, the applications of 

ILC are not limited to specialized cases such as robots [6]–

[7], high–speed trains [8]–[9], and subways [10]–[11 ], but 

can also be extended to apply to a wide range of nonlinear 

and parametrically variable dynamic systems. This opens 

opportunities to develop more flexible and precise control 

methods in various fields. 

Since the 1980s, research on ILC algorithms in robot 

control has developed significantly, mainly based on the 

contraction mapping method [12]–[14]. ILC has proven 

effective in handling repetitive tasks within limited periods 

[15]–[20]. In the recent decade, the growing interest in robot 

manipulator adaptive ILC has made the field diverse. In some 

research, Tayebi [21] proposed three simple ILC schemes to 

solve robot trajectory tracking problems. Chien and 

colleagues [22] developed an adaptive learning rule 

combining the time domain and iteration domain to estimate 

uncertainty in robot control. He et al. proposed an adaptive 

ILC algorithm based on impulse neural networks to achieve 

high tracking performance for uncertain robotic systems [23]. 

In [24], Cao et al. developed an adaptive boundary ILC 

scheme for a two–link flexible controller. Li and colleagues' 

research [25] focuses on iterative learning impedance control 

for rehabilitation robots. Although the above ILC algorithms 

have achieved much progress, the original problem of ILC 

still needs to be solved. In practice, the required error–free 

initial reset in each iteration cycle is difficult due to the 

limitations of the actual reset mechanism. Studies have 

attempted to address this issue [26], and only a few results 

have been reported [27]–[29], including time–varying 

boundary layer, initial corrective, error–tracking, and more. 

Jin [30] used initial disciplinary action to face this problem, 

while Ouyang Zhang and colleagues [31] worked on 

designing error–tracking ILC for robots with initial errors 

depending on the idea. 

Under certain conditions, artificial neural networks can 

approximate various nonlinear functions to any designed 

precision. Neural network controllers can perform well in 

cases where system dynamics information is known [32]–

[36]. There have been many suitable results on adaptive 

neural network control for robotic systems through many 

years of effort and development [37]–[41]. In adaptive ILC, 

unknown parameter learning is performed in a finite period, 

and traditional adaptive neural networks are not suitable for 

direct application to such situations. To overcome the 

difficulty, neural networks based on adaptive differential 

learning have been developed to estimate uncertainties in 

finite–time operating systems [42]. In [42], Sun et al. propose 

a neural adaptive ILC scheme for continuous systems with 

arbitrary initial errors. 

Under specific conditions, artificial neural networks are a 

powerful tool capable of approximating nonlinear functions 

accurately to any designed precision. Neural network–based 
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controllers can perform better in the case of detailed system 

dynamics information [32]–[36]. Many studies have 

demonstrated the effectiveness of adaptive neural network 

control in robotics over the years [37]–[41]. However, in 

adaptive ILC, unknown parameter learning is usually 

performed in a finite period. Traditional adaptive neural 

networks are often not suitable for direct application in such 

situations. To overcome this challenge, a new approach has 

been developed that uses neural networks based on adaptive 

learning to estimate uncertainties in systems operating over 

finite periods [42]. In the work of Sun and colleagues [42], 

they proposed a neural network–based adaptive ILC scheme 

for a class of continuous systems with arbitrary initial errors. 

This represents a significant advance in applying artificial 

neural networks and ILC to face the challenges of dynamic 

systems with substantial uncertainties and require parameter 

tuning over short timescales. 

ILC was initially developed as a direct feeding operation 

into open–loop systems [43]. Many research papers have 

proposed adaptive ILC methods to handle uncertain 

parameters and disturbances by adjusting the cybernetic gain 

[44]–[50]. In recent literature, many studies [51]–[57] have 

focused on iterative learning control design to track the 

trajectory of uncertain systems without requiring initial 

repositioning. Meanwhile, [56]–[57] developed a method to 

improve position–tracking accuracy through a minimum 

number of iterations. The notable point is that in [58], to 

achieve fast convergence of trajectory tracking in the initial 

iterations, it is impossible to increase the switching 

coefficient arbitrarily due to the limitation of the impact 

force, especially when the system has modeling errors or 

nonlinearities. The effectiveness of ILC depends on two 

factors. First, the design of the ILC must include a balance 

between accuracy and adaptability. Second, the ILC method 

is limited to large and complex problems. This depends on 

the updated ILC law, which has many elements that need 

improvement. 

Developing ILC based on Lyapunov synthesis has 

introduced many advanced control technologies, such as 

robust or adaptive control, in the field of iterative learning 

control. A notable trend is the application of AC to design 

ILCs and vice versa to improve the dynamic quality of 

adaptive transitions [59]–[60]. Combining these two methods 

gave rise to adaptive iterative learning control (RAILC) 

theory, which overcomes characteristics that are difficult to 

achieve with a single control scheme. Therefore, RAILC is 

becoming a potential and promising research field in the 

future. 

This article makes two important contributions: 

• New control method: The paper has developed a new 

method that combines the advantages of several different 

control methods to create a new hybrid method to 

optimize tracking performance in repetitive tasks again. 

The proposed control method is not different from a 

conventional PD controller. Still, it has an adjustable ratio 

conversion technique and a forward learning term to 

predict the desired torque of the active mechanism. Using 

the Lyapunov method, a tuned iterative learning control 

scheme is introduced, ensuring the overall stability of the 

closed-loop system in the iterative domain. 

• New mathematical model of robot controller: This article 

proposes a new mathematical model for deicing robot 

controllers and proves its effectiveness through 

experiments in industrial laboratories. This opens new 

perspectives in applying and improving robot control 

systems for repetitive tasks. 

This paper is organized as follows: Section II describes a 

dynamic model of an n–link robot manipulator. In section III, 

RAILC is presented and its features are discussed. Lyapunov 

method is used to prove the asymptotic convergence of the 

proposed controller. Numerical simulation and experiment 

results of a three–link De–icing robot manipulator under the 

possible occurrence of uncertainties are provided to 

demonstrate the tracking control performance of the proposed 

RAILC system in section IV. Finally, conclusions are drawn 

in section V. 

II. ROBOTIC DYNAMIC 

In general, the dynamic of an n–link robot manipulator 

may be expressed in the following Lagrange form: 

𝐷(𝑞𝑖(𝑡))𝑞̈𝑖(𝑡) + 𝐶(𝑞𝑖(𝑡), 𝑞̇𝑖(𝑡))𝑞̇𝑖(𝑡) + 𝐺(𝑞𝑖(𝑡), 𝑞̇𝑖(𝑡))
+ 𝜏𝑎(𝑡) = 𝜏

𝑖(𝑡) 
(1) 

With 𝑡 ∈ [0, 𝑡𝑓] denotes the time and 𝑖 ∈ 𝑁 denotes the 

iteration, 𝑞𝑖(𝑡) ∈ 𝑅𝑛 , 𝑞̇𝑖(𝑡) ∈ 𝑅𝑛 and 𝑞̈𝑖(𝑡) ∈ 𝑅𝑛 are the joint 

position, joint velocity, and joint acceleration variables vector 

respectively; 𝐷(𝑞𝑖(𝑡)) ∈ 𝑅𝑛×𝑛 is the inertia matrix, 

𝐶(𝑞𝑖(𝑡), 𝑞̇𝑖(𝑡)) ∈ 𝑅𝑛 the coriolis–centripetal matrix; 

𝐺(𝑞𝑖(𝑡), 𝑞̇𝑖(𝑡)) ∈ 𝑅𝑛 the gravity vector plus friction force 

vector, Bounded unknown disturbances are denoted by 

𝜏𝑎(𝑡) ∈ 𝑅
𝑛 and the control input torque is 𝜏𝑖(𝑡) ∈ 𝑅𝑛 . In this 

paper, a new three–link De–icing robot manipulator, as 

shown in Fig. 1, is utilized to verify dynamic properties given 

in section IV. 
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Fig. 1. Architecture of three–link De–icing robot manipulator 

Property 1: The inertia matrix 𝐷(𝑞𝑖(𝑡)) is symmetric and 

positive definite. It is also bounded as a function of 𝑞: 𝑚1𝐼 ≤
𝐷(𝑞𝑖(𝑡)) ≤ 𝑚2𝐼. 𝑚1,  𝑚2 > 0 
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Property 2: 𝐷̇(𝑞𝑖(𝑡)) − 2𝐶(𝑞𝑖(𝑡), 𝑞̇𝑖(𝑡)) is a skew 

symmetric matrix. Therefore, 

 𝑦𝑇[𝐷̇(𝑞𝑖(𝑡)) − 2𝐶(𝑞𝑖(𝑡), 𝑞̇𝑖(𝑡))]𝑦 = 0 where 𝑦 is a 𝑛 × 1 

nonzero vector. 

Assumption 1: The given desired joint trajectory 𝑞𝑑(𝑡) 
belongs to 𝐶2[0 , 𝑡𝑓], where 𝐶2[0 , 𝑡𝑓] is the set of twice 

continuously differentiable functions on𝑡 ∈ [0, 𝑡𝑓]. 

Assumption 2: We also assume that time 𝑡 is reset to zero 

at the starting point of each iteration. We assume that 𝑞𝑖(0) =
𝑞𝑑(0) and 𝑞̇𝑖(0) = 𝑞̇𝑑(0) for all 𝑖 ≥ 1. 

III. RAILC DESIGN 

By linearzing the system (1) along the desired trajectory 

𝑞𝑑(𝑡), 𝑞̇𝑑(𝑡), 𝑞̈𝑑(𝑡) at the 𝑖𝑡ℎ iterative, we obtain the 

following linear time–varying system according [21–22]: 

𝐷(𝑡)𝑒̈𝑖(𝑡) + [𝐶(𝑡) + 𝐶1(𝑡)]𝑒̇
𝑖(𝑡) + 𝑅(𝑡)𝑒𝑖(𝑡)

+ 𝑛(𝑒̈𝑖, 𝑒̇𝑖 , 𝑒𝑖 , 𝑡) − 𝜏𝑎(𝑡)
= 𝑆(𝑡) − 𝜏𝑖(𝑡) 

(2) 

Where: 

𝐷(𝑡) = 𝐷(𝑞𝑑(𝑡)) 

𝐶(𝑡) = 𝐶(𝑞𝑑(𝑡), 𝑞̇𝑑(𝑡)) 

𝐶1(𝑡) =
∂𝐶

∂𝑞̇
|
𝑞𝑑(𝑡),  𝑞̇𝑑(𝑡)

𝑞̇𝑑(𝑡) +
∂𝐺

∂𝑞̇
|
𝑞𝑑(𝑡),  𝑞̇𝑑(𝑡)

 

𝑅(𝑡) =
∂𝐷

∂𝑞
|
𝑞𝑑(𝑡)

𝑞̈𝑑(𝑡) +
∂𝐶

∂𝑞
|
𝑞𝑑(𝑡), 𝑞̇𝑑(𝑡)

𝑞̇𝑑(𝑡) +
∂𝐺

∂𝑞
|
𝑞𝑑(𝑡)

 

𝑆(𝑡) = 𝐷(𝑞𝑑(𝑡))𝑞𝑑̈(𝑡) + 𝐶(𝑞𝑑(𝑡), 𝑞𝑑̇(𝑡))𝑞𝑑(𝑡)

+ 𝐺(𝑞𝑑(𝑡)) + 𝜏𝑎(𝑡) 

𝑒(𝑡) = 𝑞𝑑(𝑡) − 𝑞(𝑡) 

The term 𝑛(𝑒̈𝑖,  𝑒̇𝑖 ,  𝑒𝑖,  𝑡) contains the higher order of 

terms 𝑒̈𝑖(𝑡), 𝑒̇𝑖(𝑡) and 𝑒𝑖(𝑡), and it can be negligible. The 

control problem is to find a control law so that the position 

𝑞(𝑡) can track specific commands 𝑞𝑑(𝑡). We construct 

controller as follows: 

𝜏𝑖 = 𝜏𝑒
𝑖 + 𝐻𝑖  (3) 

Where the first term 𝜏𝑒
𝑖 = 𝐾𝑝

𝑖(𝑒𝑖(𝑡)) + 𝐾𝑑
𝑖 (𝑒̇𝑖(𝑡)) is feedback 

PD control law with the following gain switching rule in [20]: 

{

𝐾𝑝
𝑖+1 = 𝛽(𝑖)𝐾𝑝

𝑖

𝐾𝑑
𝑖+1 = 𝛽(𝑖)𝐾𝑑

𝑖

𝛽(𝑖 + 1) > 𝛽(𝑖)

             𝑖 = 0,  1,  2, ⋯ ,  𝑁 (4) 

Where 𝐾𝑝
𝑖 , 𝐾𝑑

𝑖  are the initial proportional and derivative 

control gain matrices that diagonal positive definite, 𝐾𝑝
𝑖+1, 

𝐾𝑑
𝑖+1 are the control gains of the 𝑖𝑡ℎ iterative, 𝛽(𝑖) > 1 is the 

gain switching factor. The gains adaptive laws in (4) are used 

to adjust the PD gains from iterative to iterative. And 𝐻𝑖  is 

the initial predicted feed–forward control input to be 

computed at each iterative by a learning rule. 

As it has been demonstrated in [20], the feedback PD 

control law with the gain switching factor in (4) plus the 

feed–forward learning control law with the input force 

profile, the convergence of system (2) is guaranteed. 

However, for the trajectory tracking convergence is fast in 

some initial iterative, we cannot increase the switching factor 

arbitrarily large because actuator forces are limited, 

especially when the system has modelling errors or 

nonlinearity. Hence, to deal this problem, we propose feed–

forward control input 𝐻𝑖(𝑡) with a learning rule so that 𝐻𝑖(𝑡) 
converges to 𝑅(𝑡) for all 𝑡 ∈ [0, 𝑡𝑓] as follow: 

𝐻𝑖+1(𝑡) = 𝐻𝑖(𝑡) + 𝛼𝜏𝑒
𝑖  (5) 

At the initial stage of learning, the 𝐻𝑖(𝑡)’s are set to zero.  

𝛼 is a positive constant often called a training factor. 

Therefore, for the 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ iterations, applying the 

input (3) and (5) to system (2), we obtain an error equation as 

follows: 

𝐷(𝑡)𝑒̈𝑖(𝑡) + [𝐶(𝑡) + 𝐶1(𝑡)]𝑒̇
𝑖(𝑡) + 𝑅(𝑡)𝑒𝑖(𝑡)

= 𝑆(𝑡) − 𝜏𝑒
𝑖 − 𝐻𝑖  

(6) 

𝐷(𝑡)𝑒̈𝑖+1(𝑡) + [𝐶(𝑡) + 𝐶1(𝑡)]𝑒̇
𝑖+1(𝑡)

+ 𝑅(𝑡)𝑒𝑖+1(𝑡)
= 𝑆(𝑡) − 𝜏𝑒

𝑖+1 − 𝐻𝑖 − 𝛼𝜏𝑒
𝑖  

(7) 

To simplify the proof of stability, let 𝐾𝑝
𝑖 = 𝑎𝐾𝑑

𝑖  for the 

initial iteration, and define the filter errors as follow: 

𝑥̃𝑖(𝑡) = 𝑒̇𝑖(𝑡) + 𝑎𝑒𝑖(𝑡) (8) 

Also, define 𝛿𝑥̃𝑖 = 𝑥̃𝑖+1 − 𝑥̃𝑖 and 𝛿𝑒𝑖 = 𝑒𝑖+1 − 𝑒𝑖. Then, 

from (8) 

𝛿𝑥̃𝑖 = 𝛿𝑒̇𝑖 + 𝑎𝛿𝑒𝑖 (9) 

From (4)–(8) and (9), one can obtain the following 

equation: 

𝐷𝛿𝑥̇̃𝑖 + (𝐶 + 𝐶1 − 𝑎𝐷 + 𝐾𝑑
𝑖+1)𝛿𝑥̃𝑖 + (𝑅 − 𝑎(𝐶

+ 𝐶1 − 𝑎𝐷))𝛿𝑒
𝑖

= −(𝐾𝑑
𝑖+1 + (𝛼 − 1)𝐾𝑑

𝑖 )𝑥̃𝑖 

(10) 

The following theorem can be proved. 

Theorem: Consider an n–link robot manipulator 

dynamics represented by (1) satisfies property (1, 2) and 

assumption (1, 2). If the control laws of RAILC control 

system is designed as (3), the gain switching rule (4) and 

learning rule (5). The following should hold for all 𝑡 ∈
[0, 𝑡𝑓], we have 

𝑞𝑖(𝑡) 
 𝑖→∞ 
→      𝑞𝑑(𝑡) 

𝑞̇𝑖(𝑡) 
 𝑖→∞ 
→      𝑞̇𝑑(𝑡) 

If the controller gains are selected so that the following 

relationships hold: 

𝑙𝑝 = λ𝑚𝑖𝑛 ((2 − 𝛼)𝐾𝑑
𝑖 + 2𝐶𝑖 − 2𝑎𝐷) > 0 (11) 

𝑙𝑟 = λ𝑚𝑖𝑛 ((2 − 𝛼)𝐾𝑑
𝑖 + 2𝐶 +

2𝑅

𝑎
− 2𝐶1/𝑎̇ ) > 0 (12) 

𝑙𝑝𝑙𝑟 ≥ ‖
𝑅

𝑎
− (𝐶 + 𝐶1 − 𝑎𝐷‖

𝑚𝑎𝑥

2

 (13) 
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Where 𝜆𝑚𝑖𝑛 (𝐴) is the minimum eigenvalue of matrix 𝐴, and 

‖𝑀‖𝑚𝑎𝑥 = 𝑚𝑎𝑥‖𝑀(𝑡)‖ for 𝑡 ∈ [0, 𝑡𝑓]. Here, ‖𝑀‖ 

represents the Euclidean norm of 𝑀. 

Proof: We select a performance index 𝑉𝑖(𝑡)  as follow: 

𝑉𝑖 = ∫ 𝑒−𝜌𝜏
𝑡

0

𝑥̃𝑖
𝑇
𝑄𝑥̃𝑖𝑑𝜏 ≥ 0 (14) 

Thus 𝛽(𝑖) > 1 according (4) so we have 𝐾𝑑
𝑖+1 > 𝐾𝑑

𝑖  and 

𝛼 ≤ 1 is a positive constant, so 𝑄 = 𝐾𝑑
𝑖+1 + (𝛼 − 1)𝐾𝑑

𝑖 ) >
0. From the definition of 𝑉𝑖 , for the (𝑖 + 1)𝑡ℎ iteration, we 

can get 

𝑉𝑖+1 = ∫ 𝑒−𝜌𝜏
𝑡

0

𝑥̃𝑖+1
𝑇
𝑄𝑥̃𝑖+1𝑑𝜏 (15) 

Let Δ𝑉𝑖 = 𝑉𝑖+1 − 𝑉𝑖 then from (14), (15) and (10), we 

obtain: 

Δ𝑉𝑖 = ∫ 𝑒−𝜌𝜏
𝑡

0

(𝛿𝑥̃𝑖
𝑇
𝑄𝛿𝑥̃𝑖 + 2𝛿𝑥̃𝑖

𝑇
𝑄𝑥̃𝑖)𝑑𝜏

= ∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑥̃𝑖
𝑇
𝑄𝛿𝑥̃𝑖𝑑𝜏 − 2∫ 𝑒−𝜌𝜏

𝑡

0

𝛿𝑥̃𝑖
𝑇
𝐷𝛿𝑥̇̃𝑖𝑑𝜏

− 2∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑥̃𝑖
𝑇
((𝐶 + 𝐶1 − 𝑎𝐷 + 𝐾𝑑

𝑖+1)𝛿𝑥̃𝑖 + (𝑅

− 𝑎(𝐶 + 𝐶1 − 𝑎𝐷))𝛿𝑒
𝑖)𝑑𝜏 

 (16) 

By applying the partial integration, from assumption 2, 

and property 2, we have 

∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑥̃𝑖
𝑇
𝐷𝛿𝑥̇̃𝑖𝑑𝜏 = 𝑒−𝜌𝜏𝛿𝑥̃𝑖

𝑇
𝐷𝛿𝑥̃𝑖|

0

𝑡

−∫ (𝑒−𝜌𝜏
𝑡

0

𝛿𝑥̃𝑖
𝑇
𝐷)′𝛿𝑥̃𝑖𝑑𝜏

= 𝑒−𝜌𝜏𝛿𝑥̃𝑖
𝑇
(𝑡)𝐷(𝑡)𝛿𝑥̃𝑖(𝑡)

+ 𝜌∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑥̃𝑖
𝑇
𝐷𝛿𝑥̃𝑖𝑑𝜏 − ∫ 𝑒−𝜌𝜏

𝑡

0

𝛿𝑥̃𝑖
𝑇
𝐷𝛿𝑥̇̃𝑖𝑑𝜏

− 2∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑥̃𝑖
𝑇
𝐶𝛿𝑥̃𝑖𝑑𝜏 

 (17) 

Substituting (17) into (16) and 𝑄 = 𝐾𝑑
𝑖+1 + (𝛼 − 1)𝐾𝑑

𝑖 ) 
yields 

∆𝑉𝑖 = −𝑒−𝜌𝜏𝛿𝑥̃𝑖𝑇(𝑡)𝐷(𝑡)𝛿𝑥̃𝑖(𝑡)

− 𝜌∫𝑒−𝜌𝜏𝛿𝑥̃𝑖𝑇𝐷𝛿𝑥̃𝑖𝑑𝜏 − 2

𝑡

0

∫𝑒−𝜌𝜏𝛿𝑥̃𝑖𝑇
𝑡

𝑡

(𝑅

− 𝑎(𝐶 + 𝐶1 − 𝑎𝐷))𝛿𝑒
𝑖𝑑𝜏

− ∫𝑒−𝜌𝜏𝛿𝑥̃𝑖𝑇(𝐾𝑑
𝑖+1 − (𝛼 − 1)𝐾𝑑

𝑖 + 2𝐶1

𝑡

𝑡

− 2𝑎𝐷)𝛿𝑥̃𝑖𝑑𝜏 

 (18) 

From (4), we have 

∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑥̃𝑖
𝑇
𝐾𝑑
𝑖+1𝛿𝑥̃𝑖𝑑𝜏 = 𝛽(𝑖 + 1)∫ 𝑒−𝜌𝜏

𝑡

0

𝛿𝑥̃𝑖
𝑇
𝐾𝑑
𝑖𝛿𝑥̃𝑖𝑑𝜏

≥ ∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑥̃𝑖
𝑇
𝐾𝑑
𝑖𝛿𝑥̃𝑖𝑑𝜏 

 (19) 

Substituting (9) into (18) and noticing (19), we obtain 

Δ𝑉𝑖 ≤ −𝑒−𝜌𝜏𝛿𝑥̃𝑖
𝑇
(𝑡)𝐷(𝑡)𝛿𝑥̃𝑖(𝑡) − 𝜌∫ 𝑒−𝜌𝜏

𝑡

0

𝛿𝑥̃𝑖
𝑇
𝐷𝛿𝑥̃𝑖𝑑𝜏

−∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑒̇𝑖
𝑇
((2𝛼)𝐾𝑑

𝑖 + 2𝐶1 − 2𝑎𝐷)𝛿𝑒̇
𝑖𝑑𝜏

− 2𝑎∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑒𝑖
𝑇
((2 − 𝛼)𝐾𝑑

𝑖 + 2𝐶1

− 2𝑎𝐷)𝛿𝑒̇𝑖𝑑𝜏 − 2∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑒̇𝑖
𝑇
(𝑅 − 𝑎(𝐶 + 𝐶1

− 𝑎𝐷)𝛿𝑒𝑖𝑑𝜏 − 𝑎2∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑒𝑖
𝑇
((2 − 𝛼)𝐾𝑑

𝑖 + 2𝐶1

− 2𝑎𝐷)𝛿𝑒𝑖𝑑𝜏 − 2𝑎∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑒𝑖
𝑇
(𝑅 − 𝑎(𝐶 + 𝐶1

− 𝑎𝐷)𝛿𝑒𝑖𝑑𝜏 

 (20) 

By applying the partial integration the again gives 

∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑒𝑖
𝑇
((2 − 𝛼)𝐾𝑑

𝑖 + 2𝐶1 − 2𝑎𝐷) 𝛿𝑒̇
𝑖𝑑𝜏

= 𝑒−𝜌𝜏𝛿𝑒𝑖
𝑇
((2 − 𝛼)𝐾𝑑

𝑖 + 2𝐶1 − 2𝑎𝐷)𝛿𝑒
𝑖|
0

𝑡

+ 𝜌∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑒𝑖
𝑇
((2 − 𝛼)𝐾𝑑

𝑖 + 2𝐶1 − 2𝑎𝐷)𝛿𝑒
𝑖𝑑𝜏

− ∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑒̇𝑖
𝑇
((2 − 𝛼)𝐾𝑑

𝑖 + 2𝐶1 − 2𝑎𝐷)𝛿𝑒
𝑖𝑑𝜏

+ 2∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑒𝑖
𝑇
(𝑎𝐷̇ − 𝐶̇1)𝛿𝑒

𝑖𝑑𝜏 

 (21) 

Therefore 

Δ𝑉𝑖 ≤ −𝑒−𝜌𝜏𝛿𝑥̃𝑖
𝑇
𝐷𝛿𝑥̃𝑖 − 𝜌∫ 𝑒−𝜌𝜏

𝑡

0

𝛿𝑥̃𝑖
𝑇
𝐷𝛿𝑥̃𝑖𝑑𝜏 − 𝑎𝑒−𝜌𝜏𝛿𝑒𝑖

𝑇
((2

− 𝛼)𝐾𝑑
𝑖 + 2𝐶1 − 2𝑎𝐷)𝛿𝑒

𝑖 − 𝜌𝑎∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑒𝑖
𝑇
((2

− 𝛼)𝐾𝑑
𝑖 + 2𝐶1 − 2𝑎𝐷)𝛿𝑒

𝑖𝑑𝜏 −∫ 𝑒−𝜌𝜏
𝑡

0

𝑤𝑑𝜏}

≤ −𝑒−𝜌𝜏𝛿𝑥̃𝑖
𝑇
𝐷𝛿𝑥̃𝑖 − 𝑎𝑒−𝜌𝜏𝛿𝑒𝑖

𝑇
𝑙𝑝𝛿𝑒

𝑖

− 𝜌∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑥̃𝑖
𝑇
𝐷𝛿𝑥̃𝑖𝑑𝜏

− 𝜌𝑎∫ 𝑒−𝜌𝜏
𝑡

0

𝛿𝑒𝑖
𝑇
𝑙𝑝𝛿𝑒

𝑖𝑑𝜏 − ∫ 𝑒−𝜌𝜏
𝑡

0

𝑤𝑑𝜏 

 (22) 

Where 

𝑤 = 𝛿𝑒̇𝑖
𝑇
((2 − 𝛼)𝐾𝑑

𝑖 + 2𝐶1 − 2𝑎𝐷) 𝛿𝑒̇
𝑖

+ 2𝑎𝛿𝑒̇𝑖
𝑇
(
𝑅

𝑎
− (𝐶 + 𝐶1 − 𝑎𝐷))𝛿𝑒

𝑖

+ 𝑎2𝛿𝑒𝑖
𝑇
((2 − 𝛼)𝐾𝑑

𝑖 +
2𝑅

𝑎
+ 2𝐶 −

2𝐶̇1
𝑎
)𝛿𝑒𝑖 

 (23) 

Let 𝑃 = 𝑅/𝑎 − (𝐶 + 𝐶1 − 𝑎𝐷). Then from (11) and (12), we 

obtain 

𝑤 ≥ 𝑙𝑝‖𝛿𝑒̇‖
2 + 2𝑎𝛿𝑒̇𝑇𝑃𝛿𝑒 + 𝑎2𝑙𝑟‖𝛿𝑒‖

2 (24) 

By applying the Cauchy–Schwartz inequality, we obtain 

𝛿𝑒̇𝑇𝑃𝛿𝑒 ≥ −‖𝛿𝑒̇‖‖𝑃‖𝑚𝑎𝑥‖𝛿𝑒‖ (25) 

From (11)–(13) we obtain 
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𝑤 = 𝑙𝑝‖𝛿𝑒̇‖
2 − 2𝑎‖𝛿𝑒̇‖‖𝑃‖𝑚𝑎𝑥‖𝛿𝑒‖ + a

2lr‖𝛿𝑒‖
2

= 𝑙𝑝 (‖𝛿𝑒̇‖ −
𝑎

𝑙𝑝
‖𝑃‖𝑚𝑎𝑥‖𝛿𝑒‖)

2

+ 𝑎2(𝑙𝑝

−
1

𝑙𝑟
‖𝑃‖𝑚𝑎𝑥

2 )‖𝛿𝑒‖2 ≥ 0 

 (26) 

According to the properties 1 and (26), based on (22), it 

can be ensured that Δ𝑉𝑖 ≤ 0, therefore 𝑉𝑖+1 ≤ 𝑉𝑖. From the 

definition 𝐾𝑑
𝑖  is a positive definite matrix. From the definition 

of 𝑉𝑖 ,  𝑉𝑖 ≥ 0,  and 𝑉𝑖 is bounded. As a result, 𝑥̃(𝑡) → 0 

when 𝑖 → ∞. Because 𝑒𝑖(𝑡) and 𝑒̇𝑖(𝑡) are two independent 

variables, and 𝑎 is a positive constant. Thus, if 𝑖 →
∞, 𝑒𝑖(𝑡) → 0 and 𝑒̇𝑖(𝑡) → 0 for 𝑡 ∈ [0, 𝑡𝑓]. 

Finally, the following conclusions hold for 𝑡 ∈ [0, 𝑡𝑓] 

𝑞𝑖(𝑡) 
 𝑖→∞ 
→      𝑞𝑑(𝑡) 

𝑞̇𝑖(𝑡) 
 𝑖→∞ 
→      𝑞̇𝑑(𝑡) 

According to this analysis, we can be seen that the 

adaptive RAILC control method guarantee that the tracking 

errors converge arbitrarily close to zero as the number of 

iterations increases. The following case is demonstrated 

based on simulation and experimental results for this 

conclusion. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

A.  Simulation Results 

A three–link De–icing robot manipulator as shown in Fig. 

1 is utilized in this paper to verify the effectiveness of the 

proposed control scheme. The detailed system parameters of 

this robot manipulator are given as: link mass  𝑚1,  𝑚2,  𝑚3 
(kg), lengths 𝑙1,  𝑙2 (m), angular positions 𝑞1,  𝑞2 (rad) and 

displacement position 𝑑3 (m). The parameters for the 

equation of motion (1) can be represented as follows: 

𝐷(𝑞) = [

𝐷11 𝐷12 𝐷13
𝐷21 𝐷22 𝐷23
𝐷31 𝐷32 𝐷33

] 

𝐷11 =
9

4𝑚1𝑙1
+𝑚2 (

1

4𝑐2𝑙2
+ 𝑙1

2 + 𝑙2𝑙1(𝑐1
2 − 𝑠1

2)) +𝑚3(𝑐2𝑙2
2

+ 𝑙2
2 + 2𝑐2𝑙1𝑙2 

𝐷22 = 1/4𝑚2𝑙2
2 +𝑚3𝑙2

2 + 4/3𝑚1𝑙1
2 

𝐷23 = 𝑀32 = 𝑚3𝑐2𝑙2 

𝐷33 = 𝑚3 

𝐷12 = 𝐷13 = 𝐷21 = 𝐷31 = 0 

𝐶(𝑞̇) = [

𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23
𝐶31 𝐶32 𝐶33

] 

𝐶11 = −8𝑚2 𝑙1 𝑙2 𝑐1 𝑠1 (𝑞1 + (−1/(2𝑚2 𝑠2 𝑐2 𝑙2
2 )

+ 𝑚3 (−2𝑠2 𝑐2 𝑙2
2 − 2𝑠2 𝑙1 𝑙2)𝑞2̇  

𝐶21 = (−1/2𝑚2𝑠2𝑐2𝑙2
2 +𝑚3(−2𝑠2𝑐2𝑙2

2 − 2𝑠2𝑙1𝑙2)𝑞̇1 

𝐶22 = −𝑚3𝑠2𝑙2𝑑̇3 

𝐶23 = −2𝑚3𝑠2𝑙2𝑞̇2 

𝐶32 = −𝑚3𝑠2𝑙2𝑞̇2 

𝐶12 = 𝐶13 = 𝐶31 = 𝐶33 = 0 

𝐺(𝑞) = [

(1/2𝑐1𝑐2𝑙2 + 𝑐1𝑙1)𝑚2𝑔

(−1/2𝑠1𝑠2𝑙2𝑚2 + 𝑐2𝑙2𝑚3)𝑔
𝑚3𝑔

] (27) 

Where 𝑞 ∈ 𝑅3and the shorthand notations 𝑐1 = 𝑐𝑜𝑠( 𝑞1), 
𝑐2 = 𝑐𝑜𝑠( 𝑞2), 𝑠1 = 𝑠𝑖𝑛( 𝑞1) and 𝑠2 = 𝑠𝑖𝑛( 𝑞2) are used. 

For the convenience of the simulation, the nominal 

parameters of the robotic system are given such as 𝑚1 =
3(𝑘𝑔), 𝑚2 = 2(𝑘𝑔), 𝑚3 = 2.5(𝑘𝑔), 𝑙1 = 0.14 (𝑚), 𝑙2 =
0.32 (𝑚), and 𝑔 = 9.8 (𝑚 𝑠2⁄ ) and the initial conditions 

𝑞1(0) = 0, 𝑞2(0) = 1, 𝑑3(0) = 0, 𝑞̇1(0) = 0, 𝑞̇2(0) = 0, 

𝑑̇3(0) = 0. The desired reference trajectories are 𝑞𝑑1(𝑡) =
𝑠𝑖𝑛( 2𝑡), 𝑞𝑑2(𝑡) = 𝑐𝑜𝑠( 2𝑡) and 𝑑𝑑2(𝑡) = 𝑠𝑖𝑛( 2𝑡), 
respectively. 

The most important parameters that affect the control 

performance of the robotic system are the bounded unknown 

disturbance 𝜏𝑎(𝑡) which consist of the external disturbance 

term 𝑓1(𝑡) the friction term𝑓2(𝑞̇), in simulation, the external 

disturbance situation occurring at fifth the iteration are 

considered. The disturbance situation is that external forces 

are injected into the robotic system, and their shapes are 

expressed as follows: 

𝑓1(𝑡) = [5 𝑠𝑖𝑛( 5𝑡) 5 𝑠𝑖𝑛( 5𝑡) 5 𝑠𝑖𝑛( 5𝑡)]𝑇 (28) 

In addition, friction forces are also considered in this 

simulation and are given as 

𝑓2(𝑞̇) = [20𝑞1̇ + 0.8𝑠𝑔𝑛(𝑞1̇)4𝑞2̇ + 2 𝑠𝑔𝑛(𝑞2̇)4𝑑3̇

+ 2 𝑠𝑔𝑛(𝑑3̇)]
𝑇
 

(29) 

In order to exhibit the superior control performance of 

RAILC system, the adaptive switching learning PD control 

system (ASL–PD) is represented in [20] for comparison. 

The simulation results of ASL–PD system, the responses 

of position at first and fifteenth iteration and tracking error 

from iteration to iteration are depicted in Fig. 3 (a), (b), (c), 

Fig. 4 (a), (b), (c) and Fig. 5 (a), (b), (c). Now, the proposed 

RAILC control system depicted in Fig. 2 is applied to control 

the three–link De–icing robot manipulator for comparison. 

The simulation results of position responses and tracking 

error from iteration to iteration are depicted in Fig. 6 (a), (b), 

(c) and Fig. 7 (a), (b), (c). Table I show that the tracking 

performance of the proposed system from the initial iteration 

to fifteenth is obvious. Therefore, the comparison of their 

method and our method demonstrated fast convergence rate 

with the proposed control method. 
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Fig. 2. Block diagram of proposed RAILC control system 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 751 

 

Thanh Quyen Ngo, Robust Adaptive Iterative Learning Control for De-Icing Robot Manipulator 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. Simulated position responses of the ASL–PD and proposed RAILC 

control system for joints 1, 2 and 3 at first iteration 

In two simulation situations, The PD control gain was set 

to be the same as follows: 

𝐾𝑝
𝑖 = 𝐾𝑑

𝑖 = 𝑑𝑖𝑎𝑔{30,  30,  30} 

𝐾𝑝
𝑖+1 = 2𝑖𝐾𝑝

𝑖 , 𝐾𝑑
𝑖+1 = 2𝑖𝐾𝑑

𝑖 , 

𝛽 = 0.75, 𝛼 = 0.8 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Simulated position responses of the ASL–PD control system for 

joints 1, 2 and 3 at fifteenth iteration 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Tracking error of ASL–PD control system from iteration to iteration 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Simulated position responses of the proposed RAILC control system 

for joints 1, 2 and 3 at fifteenth iteration 

TABLE I.  MAXIMUM TRACKING ERRORS FROM ITERATION TO ITERATION  

 Iterative 0 5 10 15 

A
S

L
–

P
D

 

Max|𝑒1
𝑖 | 0.0316 0.0007 0.0008 0.0007 

Max|𝑒2
𝑖 | 0.0437 0.0008 0.0005 0.0006 

Max|𝑒3
𝑖 | 0.1661 0.0040 0.0028 0.0023 

R
A

IL
C

 Max|𝑒1
𝑖 | 0.0316 0.0001 5.4x10–5 3.4x10–5 

Max|𝑒2
𝑖 | 0.0437 0.0002 2.5x10–5 1.3x10–5 

Max|𝑒3
𝑖 | 0.1661 0.0003 0.0001 5,6x10–5 

0 2 4 6 8 10
-2

0

2

Time(s)

L
in

k
 1

 (
ra

d
)

 

 
actual desired

0 2 4 6 8 10
-2

0

2

Time(s)

L
in

k
 2

 (
ra

d
)

 

 
actual desired

0 2 4 6 8 10
-2

0

2

Time(s)

L
in

k
 3

 (
m

)

 

 
actual desired

0 2 4 6 8 10
-2

0

2

Time(s)

L
in

k
 1

 (
ra

d
)

 

 
actual desired

0 2 4 6 8 10
-2

0

2

Time(s)

L
in

k
 2

 (
ra

d
)

 

 
actual desired

0 2 4 6 8 10
-2

0

2

Time(s)

L
in

k
 3

 (
m

)

 

 
actual desired

0 2.5 5 7.5 10 12.5 1515
0

0.02

0.04

Times

E
rr

o
r 

1

0 2.5 5 7.5 10 12.5 1515
0

0.03

0.060.06

Times

E
rr

o
r 

2

0 2.5 5 7.5 10 12.5 15
0

0.1

0.2

Times

E
rr

o
r 

3

0 2 4 6 8 10
-2

0

2

Time(s)

L
in

k
 1

 (
ra

d
)

 

 
actual desired

0 2 4 6 8 10
-2

0

2

Time(s)

L
in

k
 2

 (
ra

d
)

 

 
actual desired

0 2 4 6 8 10
-2

0

2

Time(s)

L
in

k
 3

 (
m

)

 

 
actaul desired



Journal of Robotics and Control (JRC) ISSN: 2715-5072 752 

 

Thanh Quyen Ngo, Robust Adaptive Iterative Learning Control for De-Icing Robot Manipulator 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Tracking error of proposed RAILC control system from iteration to 

iteration 

Based on the data in the Table I, we can see the detailed 

differences between ASL-PD and RAILC methods in 

minimizing errors from one iteration to another. 

• First, regarding the max tracking error rate (Max), ASL-

PD usually has a more considerable Max value than 

RAILC at each iteration. For example, in the second 

iteration, the maximum value of ASL-PD ranges from 

0.0008 to 0.0007, while RAILC only ranges from 5.4×10–

5 to 3.4×10–5. This means that RAILC tends to reduce 

errors more effectively than ASL-PD. 

• Second, the fluctuations between iterations are also worth 

noting. While RAILC reduces error consistently with 

each iteration, ASL-PD can exhibit significant volatility. 

For example, in the third iteration, the maximum value of 

ASL-PD increases from 0.0005 to 0.0040, while RAILC 

only increases from 2.5×10–5 to 5.6×10–5. This means 

ASL-PD may not be stable and may need tuning to 

achieve better performance. 

• Finally, the convergence speed is also a notable point. 

RAILC tends to converge faster than ASL-PD, as shown 

by the rapid and stable error reduction over iterations. 

Meanwhile, ASL-PD may require more iterations to 

achieve similar error reduction. 

In summary, RAILC is a more stable and effective 

method for minimizing errors from one iteration to another. 

B. Experimental Results 

The experimental parameters of the proposed RAILC 

control system are selected: 

𝐾𝑝
𝑖 = 𝐾𝑑

𝑖 = 𝑑𝑖𝑎𝑔{100,  100,  100} 

𝐾𝑝
𝑖+1 = 2𝑖𝐾𝑝

𝑖 , 𝐾𝑑
𝑖+1 = 2𝑖𝐾𝑑

𝑖  

𝛽 = 0.75, 𝛼 = 0.8 

In this section, the control objective is to control the each 

joint angles of a three–link De–icing robot manipulator to 

move periodically for a periodic step commands and the 

initial conditions of system are given as 𝑞1(0) = 0(𝑟𝑎𝑑), 
𝑞2(0) = 0(𝑟𝑎𝑑), 𝑑3(0) = 0(𝑚). Finally, the experimental 

position and tracking error responses results of the proposed 

RAILC control system from first iteration to fifth iteration are 

depicted in Fig. 8 (a), (b) and (c), Fig. 9 (a), (b), and (c). 

According to these experimental and simulation results of 

proposed RAILC control system due to sinusoidal and 

periodic step reference commands indicate that the high 

accuracy tracking position responses can be achieved by 

using the proposed RAILC control system for difference 

reference commands and tracking errors responses of the 

RAILC scheme decrease with the increase of the iteration 

number under wide range of external disturbance. 
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Fig. 8. Experimental position responses and tracking error of the proposed 

RAILC control system at joints 1, 2 and 3 at first iteration 
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Fig. 9. Experimental position responses and tracking error of the proposed 

RAILC control system at joints 1, 2 and 3 at fifth iteration 

The hardware block diagram of the control system is 

implemented to verify the effectiveness of the proposed 

methodologies and is shown in Fig. 10(a). Each joint of 

manipulator is derived by the “EC─**” type MAXON DC 

servo motors, which is designed by Switzerland Company, 

and each this motor contains an encoder. Digital filter and 

frequency multiplied by circuits are built into the encoder 

interface circuit to increase the precision of position 

feedback. The DCS303 is a digital DC servo driver developed 

with DSP to control the DC servo motor. The DCS303 is a 

micro–size brush DC servo drive. It is an ideal choice for this 

operating environment. Two DC servo motor motion control 

cards are installed in the industrial personal computer, in 

which, a 6–axis DC servo motion control card is used to 

control the joint motors and a 4–axis motion control card is 

used to control the drive motors. Each card includes multi–

channels of digital/analog and encoder interface circuits. The 

name of model is DMC2610 with a PCI interface connected 

to the IPC. The DMC2610 implements the proposed program 

and execute in the real time. Considering that the control 

sampling rate 𝑇𝑠 =  1 ms is too demanding for the hardware 

implementation, 𝑇𝑠 =  10 ms is thus considered here. 
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Fig. 10. IPC–based De–icing robot position control system a) Block diagram 
of three–link De–icing robot manipulator control system, b) image of 

practical control system, c) image of special robot laboratory of power 

industry 

An image of a practical experiment control system for 

De–icing robot consists of three manipulators and is shown 

in Fig. 10(b). The left and right manipulators have three–link 

with two revolute joints and a prismatic joint. End–effectors 

of each manipulator have attached the motion structure to 

move the De–icing robot on the power line and the snow 

cleaning device. During normal operating conditions, the left 

and right manipulators are only in operation. The between 

manipulator has only two joints with a revolute joint and a 

prismatic joint. It only works when the De–icing robot voids 

obstacles on the power line. In general, the operation of De–

(a)

a 

(b) 

(c) 
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icing robot is very complex. In this paper, we consider only 

the three–link De–icing robot manipulator for proposed 

methodologies while the other manipulator is the same. 

V. CONCLUSION 

This paper has successfully implemented an RAILC 

scheme to control the position of three–link De–icing robot 

manipulator for achieving desired position control. All the 

dynamically system may be unknown. A new control method 

is a combination of advantages some other method into a 

hybrid one as explained above. By using Lyapunov theorem, 

the asymptotic convergence of the closed–loop control 

system can be ensured whether or not the uncertainties occur. 

Simulation and experimental results of a three–link De–icing 

robot manipulator via various existing control methods 

including ASL–PD and ILC control were also applied in this 

paper to compare and display the manipulative performance 

of the proposed control system. According to the these result, 

it is shown that the desired position tracking and tracking 

errors response of the RAILC scheme decrease with the 

increase of the iteration number under wide range of external 

disturbance. The main purpose of the paper is to construct a 

simple scheme, easy implementation, fast convergence. 

In de-icing robotics, using RAILC offers excellent 

potential to improve the performance and stability of systems. 

Because the variable and complex actual of the ice 

environment in overhead power lines poses significant 

challenges, RAILC can help autonomous robots adapt, learn, 

and improve over time. However, RAILC still has the 

disadvantage of having fixed learning parameters. This 

means that each area of the robot needs to choose reasonable 

and suitable parameters for the changing conditions in that 

area. In the future, research and development in this field 

should focus on combining RAILC with control methods and 

parameter learning capabilities to enhance the effectiveness 

and reliability of de-icing robots. This will play an important 

role in developing intelligent automation systems that operate 

in harsh environments and contribute to the industry's 

sustainable development. 
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