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Abstract—In the evolving field of Content-Based Image 

Retrieval (CBIR), we introduce a novel approach that integrates 

deep learning models—NASNetMobile, DenseNet121, and 

VGG16—with ensemble methods to enhance retrieval accuracy 

and relevance. This study uniquely combines NASNetMobile's 

adaptability, DenseNet121's feature extraction, and VGG16's 

robustness through hard and soft voting techniques, aiming to 

effectively bridge the semantic gap in CBIR systems. Our 

comparative analysis against existing CBIR algorithms using 

diverse online datasets demonstrates superior performance, 

with our approach achieving up to 98% in accuracy, precision, 

recall, and F1-score, thereby redefining performance 

benchmarks. This advancement proves particularly impactful 

in medical imaging and surveillance, where precise image 

retrieval is crucial. Our research contributes to CBIR by (1) 

demonstrating the integrated deep learning ensemble's ability to 

narrow the semantic gap and (2) providing a comparative 

performance analysis, underscoring our method's improvement 

over current technologies. The combination of these models 

marks a significant step forward in CBIR, offering a more 

accurate and efficient solution for image retrieval challenges. 

Keywords—Content-Based Image Retrieval (CBIR); Deep 

Learning; Ensemble Learning; NASNetMobile; DenseNet121; 

VGG16; Image Retrieval Accuracy. 

I. INTRODUCTION 

In the realm of Content-Based Image Retrieval (CBIR), 

the exponential growth in digital image creation and storage 

has underscored the urgent need for developing efficient and 

accurate systems capable of managing and retrieving these 

vast quantities of images. Traditionally, CBIR systems have 

harnessed techniques focused on the extraction of local and 

global image features such as color, shape, and texture. 

Feature descriptors like Speeded Up Robust Features (SURF) 

and Scale-Invariant Feature Transform (SIFT) have been at 

the forefront of these efforts, facilitating the retrieval of 

images by comparing these fundamental features [1][2]. 

Despite the effectiveness of these manually crafted features, 

they often falter when tasked with scaling to the larger, more 

diverse datasets of the modern era, highlighting an imperative 

need for solutions that are both more adaptive and scalable. 

Reflecting on the history of CBIR, systems have 

predominantly relied on manually defined features and 

descriptors, such as SURF and SIFT, to correlate images 

based on texture, shape, or color similarities [1][2]. While 

these methodologies have demonstrated efficacy with smaller 

datasets, they increasingly fall short in the face of the size and 

diversity expansion characteristic of contemporary digital 

image collections. This discrepancy signals a pressing 

demand for innovation within CBIR methodologies to keep 

pace with technological advancements [3]. 

The advent of deep learning has introduced a pivotal shift 

in the CBIR landscape, presenting novel avenues to surmount 

the constraints of traditional methods. Recent works, such as 

the twin-bottleneck hashing (TBH) model proposed by Shen 

et al. [61], illustrate the dynamic potential of deep learning to 

enhance CBIR systems. The TBH model, bridging between 

encoder and decoder networks, utilizes binary and continuous 

bottlenecks collaboratively, setting a new standard in image 

retrieval efficiency. Additionally, Forcen et al. [62] leveraged 

the last convolution layer of CNN representations, modeling 

the co-occurrences from deep convolutional features to 

address image retrieval challenges. The deep position-aware 

hashing (DPAH) model introduced by [63] in 2020, 

emphasizing the significance of distance constraints between 

data samples and class centers, further exemplifies the 

innovative applications of deep learning in CBIR. 

Convolutional Neural Networks (CNNs), in particular, 

have gained prominence for their proficiency in learning 

detailed image representations, significantly enhancing 

retrieval accuracy [4]-[6]. This advancement is underscored 

by the transition from static, manually crafted features to 

dynamic, learned representations that better capture the 

complexity of images. The integration of these models within 

CBIR systems is not devoid of challenges, notably the 

necessity for expansive training datasets and the complexity 

surrounding auto-correlation in feature extraction [7][8]. 

Furthermore, the leap from employing deep learning for mere 

image classification to its application in specific image 

retrieval tasks further compounds these challenges, 

necessitating models capable of not only recognizing but also 

precisely identifying distinct images, thereby enhancing the 

specificity and relevance of retrieved results [9]. 

Deep learning's influence extends well beyond the 

domain of image retrieval, with its applicability demonstrated 

across a broad spectrum of artificial intelligence applications. 

Its success in fields such as object detection, speech 

recognition, human pose estimation, and natural language 

processing attest to its adaptability and potency in 

deciphering intricate patterns and signals [14]-[17]. This 

interdisciplinary triumph bolsters the potential of deep 

learning to fundamentally transform the CBIR field. Deep 

learning's application in CBIR is particularly beneficial for its 
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adeptness at recognizing spatial and texture attributes, 

essential for the accurate classification and indexing of vast 

image repositories. The nuanced understanding of image 

content facilitated by deep learning techniques, particularly 

CNNs, marks a significant advancement in addressing the 

semantic gap—bridging the divide between computational 

image features and human visual interpretation [18]-[20]. 

Our research introduces a pioneering deep learning-based 

approach to CBIR, employing an ensemble of cutting-edge 

models to navigate the current challenges and fully leverage 

deep learning's capabilities for enhancing semantic relevance 

and retrieval efficiency. The core innovation of our 

methodology is the strategic amalgamation of an ensemble of 

leading deep learning models, such as NASNetMobile, 

DenseNet121, and VGG16, utilizing their synergistic 

strengths to achieve unparalleled accuracy, precision, and 

recall in image retrieval tasks. This approach is designed to 

significantly narrow the semantic gap and boost system 

scalability, marking a noteworthy advancement in the CBIR 

field. By drawing upon the successes of deep learning in 

various related areas, we aim to cultivate a CBIR system that 

not only aligns with but also profoundly understands human 

visual perception, offering a retrieval process that is both 

more intuitive and effective. 

The primary objectives of this study are delineated as 

follows: 

• To showcase the superior capability of deep learning 

techniques, especially our ensemble approach, in bridging 

the semantic gap inherent in CBIR systems. 

• To assess the ensemble model's efficacy in elevating 

image retrieval accuracy, precision, and efficiency, 

thereby setting a new benchmark in the field. 

• To compare our approach with existing traditional and 

deep learning methods, aiming to demonstrate the 

superior performance of our proposed technique in terms 

of accuracy and relevance of retrieved images. 

In conclusion, our proposed integration of deep learning 

techniques into the CBIR framework seeks to establish new 

standards for image retrieval. This initiative is poised to 

unlock new dimensions and capabilities that promise to 

augment both the efficiency and accuracy of CBIR systems 

significantly. Through this endeavor, we are committed to 

contributing to the ongoing evolution of CBIR technology, 

effectively addressing both the extant challenges and paving 

the way for future breakthroughs. 

II. RELATED WORK 

The authors in various studies have advanced the field of 

content-based image retrieval (CBIR) through diverse 

approaches. In one study [21], the researchers highlight the 

extraction of a comprehensive set of robust features including 

color signatures, shape, and texture features from an image 

database to improve CBIR system efficiency. This approach 

employs a unique similarity evaluation method that integrates 

a metaheuristic algorithm, enhancing the retrieval 

performance based on color, shape, and texture analyses. 

Another study [22] presents a technique focusing on feature 

extraction and reduction, utilizing discrete wavelet 

transformation on RGB channels and incorporating a 

dominant rotated local binary pattern as a texture descriptor. 

This method emphasizes computational efficiency and 

rotational invariance, aiming to enhance image classification 

accuracy by applying particle swarm optimization for feature 

selection. 

Further, an innovative hashing method called deep fuzzy 

hashing network (DFHN) is proposed [23], which leverages 

fuzzy logic and deep neural networks (DNN) to generate 

effective binary codes for image retrieval, addressing the 

limitations of traditional and deep hashing methods in 

capturing underlying data structures and measuring image 

similarities. Another research [24] introduces a visual 

saliency guided complex image retrieval model, employing a 

multi-feature fusion paradigm and addressing image 

complexity through cognitive load and classification, thereby 

offering a novel approach to image retrieval in complex 

scenarios. 

The field also sees contributions from deep learning 

techniques, with studies employing convolutional neural 

networks (CNNs) for image retrieval and place recognition 

[25], demonstrating the potential of deep learning in 

enhancing feature extraction and description accuracy. This 

includes a deep learning technique [26] that integrates auto-

correlation, gradient computation, and localization with 

CNNs, achieving high accuracy in image retrieval across 

various datasets. 

Moreover, the exploitation of deep texture features for 

image retrieval is explored through a method [27] that 

combines classical texture features and deep features, 

offering a compact and discriminative representation for 

image retrieval. The challenge of depicting picture 

information accurately in computational science and 

engineering is addressed by transforming images to vectors 

using CNN-assisted deep learning [28], enhancing image 

classification and description. 

In the medical field, a novel framework for content-based 

whole-slide image (WSI) retrieval is proposed [29], utilizing 

clustering-guided contrastive learning for robust and accurate 

WSI-level image retrieval, showcasing significant 

improvements in retrieving histopathological images. A 

study [30] presents a methodology to predict microalgae 

chlorophyll content using linear regression and artificial 

neural networks, highlighting the efficiency and cost-

effectiveness of prediction models in estimating chlorophyll 

concentration. 

The advancements in multimedia streaming applications 

(MAS) have presented challenges in speed, flexibility, and 

efficiency, leading to the development of an automated 

annotation model utilizing a Multi-modal Active Learning 

(MAL) approach with a Convolutional Recurrent Neural 

Network (CRNN) and Deep Reinforcement Learning (DRL) 

to enhance retrieval accuracy by bridging the gap between 

high-level semantics and low-level feature representation 

[31]. In the realm of autonomous driving and robotics, 

accurate and robust perception systems are crucial for 

understanding the 3-D driving environment, with deep 

learning-based methods like depth estimation addressing the 

lack of 3-D information from camera sensors [32]. 
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Information retrieval (IR) systems have evolved to 

address the vocabulary gap between user queries and 

document indexing through a novel hybrid semantic 

document indexing method combining machine learning and 

domain ontology, which significantly improves accuracy and 

F-measure over traditional methods [33]. Image 

segmentation, a cornerstone of computer vision and pattern 

recognition, has been extensively reviewed, highlighting the 

dominance of neural network-based approaches in medical 

image processing, machine vision, and object identification 

[34]. 

In mechanical engineering, a method for retrieving 

similar components based on geometrical similarity, 

employing deep learning to extract feature vectors from 

converted surface meshes to point clouds, showcases the 

potential in enhancing product development efficiency [35]. 

The integration of Convolutional Neural Networks (CNN) 

with Content-Based Image Retrieval (CBIR) systems and 

Relevance Feedback (RF) mechanisms demonstrates 

significant improvements in bridging the semantic gap 

between user-perceived and computed similarities, 

optimizing image retrieval processes [36]. 

The paper proposes a framework for content-based fine-

grained image retrieval (CB-FGIR) using CNN, addressing 

the challenges of retrieving similar images from databases 

with small inter-class variance, showing superior results on 

the Oxford flower-17 dataset compared to handcrafted and 

state-of-the-art methods [37]. Addressing the rapid increase 

in graphical data, a CBIR technique utilizing CNN for object 

detection and SIFT for keypoints extraction is developed to 

enhance image search efficiency in various sectors [38]. 

The surge in multimedia content has made image retrieval 

a challenging task, with CBIR techniques employing deep 

learning approaches to bridge the semantic gap between 

image features and user queries, indicating promising 

directions for future research [39]. Lastly, a study combines 

deep learning with CBIR to distinguish lung cancer from 

nodular/mass atypical tuberculosis in CT images using a 

convolutional Siamese neural network (CBIR-CSNN), 

achieving remarkable performance and demonstrating the 

potential for accurate medical diagnosis [40]. 

Recent advancements in content-based image retrieval 

(CBIR) aim to address the challenges posed by the massive 

influx of images on the cyberspace, demanding automated 

solutions for efficient content management. A variety of 

feature-classifier combinations have been explored to 

enhance retrieval performance in both single and multi-class 

scenarios. However, challenges such as semantic similarity 

among different classes and class imbalance have led to 

performance degradation, especially in multi-class search 

environments. A novel approach employing a hybrid features 

descriptor with genetic algorithm (GA) and SVM classifier 

has shown promise in addressing these challenges, 

demonstrating superior performance across standard datasets 

like WANG, Oxford Flower, CIFAR-10, and Kvasir [41]. 

The application of convolutional neural networks (CNN) 

has significantly improved the accuracies in feature 

extraction and classification, leading to high-performance 

image retrieval systems. A proposed model using CNN has 

achieved remarkable accuracies on the Cifar10 and Mnist 

datasets, showcasing the effectiveness of intelligent models 

in this domain [42]. Furthermore, the development of CBIR 

systems for specific applications such as medical image 

retrieval has been explored, with systems like CBMIR 

demonstrating substantial improvements in the early 

detection and classification of lung diseases [43]. 

Efforts to overcome the semantic gap issue in CBIR have 

led to the introduction of innovative methods utilizing sparse 

complementary features, optimal feature selection, and 

robust classification techniques, significantly enhancing 

retrieval performance across various image datasets [44]. The 

integration of deep learning frameworks, particularly CNN 

and SVM, has been proposed to build efficient CBIR systems 

capable of handling large image databases, demonstrating the 

potential of these technologies in improving retrieval 

accuracy and efficiency [45]. 

Challenges related to the dependency on large labelled 

training samples for deep learning models have been 

addressed through techniques like data augmentation, 

showing the potential of CNN-based CBIR systems to 

achieve high accuracy and reduce retrieval loss [46]. The 

exploration of deep learning algorithms for CBIR has led to 

the development of models employing CNN, LSTM, and 

GRU, achieving high image retrieval accuracy across 

different databases [47]. 

Addressing the challenges in content-based medical 

image retrieval, new methods based on salient regions and 

deep learning have been proposed, indicating significant 

improvements in precision and recall values for medical 

image quality [48]. The proposal of lightweight neural 

network models for image retrieval on resource-constrained 

mobile devices, such as the Attention-based Lightweight 

Network (ALNet), offers a promising solution to the trade-

off between retrieval performance and model size [49]. 

The exploration of artificial intelligence frameworks, 

deep learning techniques, and innovative methodologies in 

CBIR systems highlights the ongoing efforts to enhance 

feature extraction, representation, and similarity estimation. 

These advancements aim to bridge the semantic gap, improve 

retrieval efficiency, and address the challenges posed by the 

vast volumes of images generated in the digital era [50]. 

Recent advancements in content-based image retrieval 

(CBIR) leverage deep learning to refine the retrieval process, 

though challenges remain in terms of computational cost and 

adaptability to user feedback in real-time. A novel interactive 

CBIR system utilizing variable compressed convolutional 

info neural networks (VCCINN) has been proposed, 

optimizing neural network weights through a variable info 

algorithm and achieving high retrieval performance on 

standard datasets [51]. The classify, differentiate, and retrieve 

(CDR) method introduces a multi-stage approach using deep 

neural networks and stacked Siamese Neural networks 

(SSiNN) to encode images and differentiate their latent space 

representations, showing superiority over current best 

practices [52]. 

Shuffled-Xception-DarkNet-53 enhances DarkNet-53 by 

incorporating a Shuffled-Xception module for more refined 
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feature extraction, outperforming conventional and CNN-

based CBIR methods across various datasets [53]. In the 

medical domain, a CNN-based feature extraction method for 

CBIR enables automated classification and retrieval of 

pathological images, achieving state-of-the-art performance 

on MRI brain image datasets [54]. Another approach to CBIR 

in medical imaging employs a deep learning-based CNN 

model with Modified Cosine Similarity (MCS) for matching, 

aiming to improve accuracy and efficiency in retrieving 

similar medical images [55]. 

Learning-based CBIR methods, including a novel 

Opponent Class Adaptive Margin (OCAM) loss for triplet-

wise learning, offer improvements in image similarity 

assessment and generalization performance across various 

medical datasets [56]. An efficient query-sensitive co-

attention mechanism for large-scale CBIR tasks addresses the 

limitations of traditional spatial weighting modules, 

enhancing retrieval results under challenging conditions [57]. 

An innovative approach combining color and texture features 

through an extended version of local neighborhood difference 

patterns (ELNDP) and optimized color histogram features 

demonstrates higher retrieval performance compared to state-

of-the-art methods [58]. 

Addressing the vulnerability of DNN-based CBIR 

systems to adversarial examples, a certified defense 

mechanism defines new robustness criteria, proposing 

verification algorithms and training objectives to enhance 

CBIR's resilience against adversarial attacks [59]. Lastly, the 

use of multiple deep learning architectures for CBIR in 

healthcare shows that fine-tuning and consistent decision 

layer parameters across models like VGG-16, Xception, and 

others can significantly improve the precision and mean 

average precision (mAP) in identifying similar chest X-rays, 

including rotational invariant cases [60]. These studies 

underscore the ongoing efforts to bridge the semantic gap, 

reduce computational burdens, and enhance the precision and 

adaptability of CBIR systems across various domains. 

III. METHODOLOGY 

The methodology of our research is explained in detail in 

this section, with a visual representation of the methodology 

architecture presented in Fig. 1. The subsections that follow 

will provide an overview of the key steps involved in our 

research methodology. 

A. Dataset 

In our study, we utilized a CBIR 50 dataset sourced from 

Kaggle, a platform known for its rich repository of datasets 

that cater to diverse machine learning tasks. The dataset, 

designed specifically for Content-Based Image Retrieval 

(CBIR) applications, comprises a wide array of image 

classes. For the scope of our research, we concentrated on a 

subset of these classes that are emblematic of both natural and 

man-made entities. The selected categories encompass a 

spectrum of subjects ranging from animals like 'Horse', 

'Elephant', 'Sheep', 'Kangaroo', 'Shark', 'Butterfly', and 'Cat' to 

objects such as 'Wine', 'Ship', 'Mobile', 'Television', 'Shoes', 

'Car', and 'SoccerBall'. Additionally, the dataset includes 

representations of landmarks and architectural marvels such 

as 'IndiaGate', 'TajMahal', 'EiffelTower', as well as diverse 

scenes and items like 'Desert', 'Watermelon', 'Waterfall', and 

'Jeans'. 

Each class in the dataset is well-represented, ensuring that 

the machine learning models have a rich feature set to learn 

from. However, when working with datasets for CBIR, it is 

crucial to consider the potential biases or limitations that 

might affect the research outcomes.  

It's important to note that the chosen categories, while 

diverse, do not encompass the full gamut of possible image 

classes, which introduces a scope limitation in our CBIR 

system. In particular, the exclusion of human subjects such as 

'BarackObama' and 'NarendraModi' from our chosen 

categories was a deliberate decision to avoid the complexities 

and ethical considerations associated with facial recognition 

and personal privacy. 

By selecting a range of classes and focusing on these 

during our research, we aim to construct a CBIR system that 

is robust across varied but specific domains. In 

acknowledging these biases and limitations, we aim to be 

transparent about the dataset's representational scope and the 

consequent generalizability of our research findings. Our 

future work aims to address these limitations by expanding 

the diversity of the dataset, implementing more rigorous data 

augmentation techniques, and exploring advanced models 

that are better equipped to handle feature overlap and class 

variability. 

B. Preprocessing 

The preprocessing step in our Content-Based Image 

Retrieval (CBIR) approach is meticulously crafted to 

condition the dataset, ensuring that the images are optimally 

primed for the subsequent deep learning models. This phase 

is critical as it directly influences the efficiency and 

effectiveness of feature extraction, which is the cornerstone 

of accurate image retrieval. 

Initially, the preprocessing begins with rigorous data 

cleaning to ensure the integrity and quality of our dataset. 

This process involves removing duplicate images, which 

could bias the training, and eliminating any corrupt or 

irrelevant files that might adversely affect the model's 

learning process. Such meticulous cleaning is pivotal in 

ensuring that the dataset truly represents the variability and 

diversity inherent in real-world visual data. 

Subsequently, we normalize the images to bring 

uniformity to the dataset. Normalization is an essential step 

where pixel values are rescaled to a standard range, typically 

between 0 and 1. This step is crucial as it reduces the 

numerical discrepancies between pixels, thereby allowing the 

model to converge faster during training and to operate more 

efficiently. By normalizing the images, we also mitigate the 

issue of varying lighting conditions and color distributions, 

which, if unaddressed, could lead to inconsistencies in image 

retrieval performance. 

Another significant preprocessing step is the resizing of 

images. This step ensures that all images fed into the model 

have the same dimensions, which is a requirement for many 

convolutional neural network architectures. Uniform image 

sizes guarantee that the model's learned filters apply 
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consistently across all inputs, allowing for accurate and 

invariant feature mapping regardless of the original image 

size. 

We also slice the images into smaller segments, a 

technique that aids in focusing the deep learning models on 

localized features within an image. This method is 

particularly useful for identifying unique attributes that might 

be lost if the model only processed the image as a whole. By 

training the models on these detailed features, we enhance 

their capability to discern and retrieve images based on 

specific, fine-grained visual cues. 

In addition to these techniques, we implement a 

systematic split of the data into training and testing sets. By 

doing so, we not only facilitate a robust training environment 

but also establish a reliable evaluation framework to 

accurately gauge the model's performance and its 

generalizability to unseen data. 

Through these preprocessing steps, we lay a strong 

foundation that enables the deep learning models to operate 

with enhanced precision, leading to a CBIR system that 

stands out in terms of retrieval accuracy and reliability. Each 

preprocessing action is deliberately chosen and executed to 

contribute significantly to the model's ability to discern and 

retrieve relevant images, addressing the central challenges of 

CBIR. 

C. Model Selection 

In our research, the selection of deep learning models and 

the implementation of ensemble methods are instrumental 

steps, designed with the intention of enhancing the feature 

extraction capabilities essential for an effective Content-

Based Image Retrieval (CBIR) system. We meticulously 

chose VGG16, NASNetMobile, and DenseNet121 as our 

primary models, each renowned for its unique strengths in the 

field of computer vision. 

VGG16 is a model celebrated for its depth and the 

robustness of its architecture. It excels in extracting low-level 

features and textures due to its multiple convolutional layers, 

which is fundamental for recognizing various image contents 

within the CBIR framework. NASNetMobile, on the other 

hand, is lauded for its efficiency, owing to the Neural 

Architecture Search (NAS) framework it employs. This 

model balances performance and computational load, making 

it suitable for applications where resource constraints are a 

consideration. DenseNet121 stands out for its feature 

propagation and reuse mechanisms, which enable the model 

to learn highly discriminative features, essential for fine-

grained image retrieval tasks. 

The rationale for selecting these particular models is 

rooted in their complementary natures; where one model may 

focus on texture, another may excel in recognizing shapes or 

complex patterns. This synergistic combination allows for a 

more robust and comprehensive feature analysis, thereby 

bolstering the CBIR system's accuracy and efficiency. 

To amplify the benefits of individual models, we 

implemented ensemble methods—specifically, hard and soft 

voting techniques. Hard voting aggregates the predictions by 

selecting the class with the majority vote from the models for 

each image, thereby providing a prediction that reflects a 

consensus among the models. This method is advantageous 

in that it can potentially reduce the influence of any one 

model's bias or variance on the final decision, leading to a 

more stable and reliable prediction. 

Soft voting, in contrast, averages the predicted 

probabilities from each model before selecting the class, 

which effectively incorporates the confidence of each model 

into the final prediction. This can be particularly beneficial 

when the models are well-calibrated, as it allows the 

ensemble to make decisions based on a more nuanced 

understanding of the models' predictions. 

Despite the advantages of ensemble methods in boosting 

performance, they also introduce additional complexity and 

computational overhead. The requirement for multiple 

models to be trained and maintained can be resource-

intensive, and the ensemble's final decision may be less 

interpretable than that of a single model. 

 

 

Fig. 1. Proposed approach 
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Throughout our study, we have carefully documented the 

implementation of these ensemble methods to ensure 

transparency and reproducibility. We selected models based 

on their individual successes in image recognition tasks and 

integrated them using ensemble techniques that maximize 

their collective strengths. This strategic model selection and 

implementation of ensemble methods significantly contribute 

to the refinement of CBIR systems and hold the potential to 

set new benchmarks in the retrieval performance. 

D. Evaluation 

Evaluation metrics are fundamental to ascertaining the 

efficacy of Content-Based Image Retrieval (CBIR) systems, 

allowing us to measure their performance in a quantifiable 

manner. In our study, we use accuracy, precision, recall, and 

F1-score as our primary metrics.  

 Accuracy is a critical evaluation metric used to determine 

the overall effectiveness of the CBIR system. It measures the 

proportion of total predictions that the model classifies 

correctly, both as relevant and irrelevant. Accuracy is 

particularly useful as a general indicator of model 

performance when the classes are well-balanced, but it can be 

misleading in the presence of class imbalances, where one 

class significantly outnumbers the others. The formula for 

accuracy is: 

Accuracy =
TP + TN

TP + FP + FN + TN
 

In this equation: 

− TP (True Positives) is the count of relevant images 

correctly identified by the model. 

− TN (True Negatives) is the count of non-relevant images 

correctly identified by the model. 

− FP (False Positives) is the count of non-relevant images 

incorrectly identified as relevant. 

− FN (False Negatives) is the count of relevant images 

incorrectly identified as non-relevant. 

Precision gauges the accuracy of the retrieval process by 

determining the proportion of relevant images that are 

correctly identified among all retrieved images. It is 

particularly crucial in contexts where the cost of false 

positives is high. Precision is defined by the equation: 

Precision =
TP

TP + FP
 

where TP represents the number of relevant images correctly 

retrieved, and FP denotes the number of irrelevant images 

that are incorrectly retrieved. 

Recall, also known as sensitivity, measures the model's 

ability to retrieve all relevant instances in the dataset. It is 

vital in scenarios where missing any relevant image is costly. 

The recall is computed as: 

Recall =
TP

TP + FN
 

where FN are the relevant images that the system failed to 

retrieve. 

The F1-score is the harmonic mean of precision and 

recall, providing a single metric that balances both the false 

positives and false negatives. It is especially useful when we 

need to find an equilibrium between precision and recall. The 

F1-score is calculated as: 

F1-score = 2 ×
Precision × Recall

Precision + Recall
 

These metrics collectively provide a robust framework to 

assess the CBIR system's performance, with accuracy, 

precision and recall focusing on the quality of the retrieved 

images and the F1-score offering a balance between them. 

High scores across these metrics are indicative of a system 

that can effectively satisfy user queries with relevant results, 

underpinning both the user experience and system utility. 

E. Experimental Setup 

In our experimental setup, we adopted a rigorous 

approach to ensure that our results are not only accurate but 

also reproducible, given the right computational resources 

and settings. For the hardware and software environment, we 

leveraged the collaborative power of Google Colab, which 

provides an accessible and powerful cloud-based service for 

machine learning research. The use of Python as our 

programming language, in tandem with Google Colab's 

seamless integration with various deep learning libraries, 

offered an optimal mix of flexibility and efficiency. 

For the deep learning models involved in our study—

VGG16, NASNetMobile, and DenseNet121—we 

standardized our approach by setting a consistent number of 

training epochs to 10 for each model. This number was 

determined to be a balance between adequate learning and 

computational efficiency. Each model was compiled with the 

'adam' optimizer, a choice motivated by its reputation for 

being effective across a wide range of deep learning tasks. 

The 'adam' optimizer is known for its adaptive learning rate, 

which aids in converging to the optimal set of weights more 

quickly and efficiently. The loss function selected was 

'categorical_crossentropy', which is standard for multi-class 

classification problems, reflecting our dataset's diverse 

classes. 

The training process was straightforward: models were 

trained exclusively on the training set, which allowed them to 

learn the various features present in the image data without 

any interference from the test set.  Following training, the 

models' performance was evaluated on a completely separate 

test set, ensuring that the assessment reflected the models' 

ability to generalize to new, unseen data. 

IV. RESULTS 

A. NASNetMobile 

The confusion matrix for the NASNetMobile model 

illustrated in Fig. 2 provides a wealth of information 

regarding the model's classification performance on our 

dataset. With an overview of the matrix, we can see a strong 

diagonal line of green boxes, indicating that the majority of 

the predictions align correctly with the true labels—this is a 

good sign of high overall accuracy. 
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Delving deeper into the details, we observe that certain 

classes like 'Wine', 'Elephant', and 'IndiaGate' are predicted 

with high precision as evidenced by the concentration of 

larger values in the corresponding diagonal cells (30, 47, and 

46 respectively). This suggests that the NASNetMobile 

model is adept at recognizing and differentiating features 

specific to these categories. 

However, we also notice instances of misclassification 

which provide critical insights into potential areas for model 

improvement. For example, the model appears to confuse 

'TrafficLight' with 'Horse', and 'Ship' with 'Mobile', as 

indicated by the off-diagonal entries in their respective rows. 

Although these misclassifications are few, their presence is 

significant enough to warrant a closer look into the features 

that may be causing the confusion. 

Particularly interesting is the misclassification of the 

'Sheep' category, where we observe a false positive prediction 

as 'Kangaroo'. Similarly, 'Butterfly' is occasionally mistaken 

as 'Shoes', and 'Cat' as 'EiffelTower'. These errors, while 

relatively low in frequency, highlight the complex nature of 

visual features that can lead to confusion between seemingly 

distinct classes. It may be due to similarities in color, texture, 

or shape elements that are not as distinctive in the dataset's 

representation within these classes. 

The analysis of the NASNetMobile's confusion matrix 

emphasizes the model's strengths in correctly classifying a 

wide array of images while also revealing specific instances 

of confusion between classes. To address these issues and 

improve the model's performance, further investigation into 

the characteristics of the misclassified images could be 

beneficial. This might involve examining the similarity of 

features within the misclassified pairs and implementing 

targeted enhancements in the feature extraction or 

classification stages. Understanding these patterns will be 

crucial for refining the NASNetMobile model to increase its 

reliability and accuracy in real-world CBIR applications. 

 

Fig. 2. NASNetMobile: confusion matrix 

B. DenseNet121 

In examining the confusion matrix for the DenseNet 

model, we encounter a detailed portrayal of classification 

successes and opportunities for refinement. The matrix in 

Fig. 3 presents a compelling concentration of high-value 

counts along its diagonal, indicating a commendable rate of 

correct classifications, particularly for classes such as 'Wine', 

'Elephant', and 'IndiaGate', where the model displays high 

precision in discerning the distinctive features of these 

categories. 

Nevertheless, the matrix also reveals instances of 

misclassification, although relatively sparse, that offer 

critical insights. For example, the model confounds 

'TrafficLight' with 'Horse' and misidentifies 'Ship' as 'Mobile'. 

Such inaccuracies, while few, are nonetheless significant and 

prompt a closer examination of the model's decision-making 

criteria. These patterns of confusion might stem from 

commonalities in the images' visual features such as shape, 

color, or textural components that are not being adequately 

distinguished by the model. 

Moreover, isolated errors such as the mislabeling of 

'Butterfly' as 'Shoes' and 'Cat' as 'EiffelTower' bring to light 

the more subtle challenges that the model faces. This suggests 

that certain intricate features or background contexts within 

the images may be misleading the classifier. 

To enhance the model's precision, a granular analysis of 

these misclassifications is warranted. Investigating the shared 

characteristics of erroneously classified images could 

illuminate specific attributes that lead to these errors. For 

instance, if images of 'TrafficLight' that are mistaken for 

'Horse' have a common backdrop or lighting condition, or if 

'Shoes' and 'Butterfly' share similar color palettes or patterns, 

these insights could be leveraged to refine the feature 

extraction process or to augment the training dataset in ways 

that bolster the model's discriminatory power. 

 

Fig. 3. DenseNet121: confusion matrix 

Analyzing the confusion matrix for the VGG model offers 

a discerning look at the model's classification capabilities. 

High counts along the diagonal confirm successful 

classifications for many classes, such as 'Wine' with 29 

correct predictions, indicating that the VGG model accurately 

processes and recognizes these images' distinct features. This 

level of performance is a testament to the model's strength in 

identifying various classes (Fig. 4). 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 870 

 

Shereen Saleem Sadiq, Improving CBIR Techniques with Deep Learning Approach: An Ensemble Method Using 

NASNetMobile, DenseNet121, and VGG12 

However, the matrix also exposes areas where the model's 

performance can be bolstered. Notable off-diagonal numbers 

reveal systematic misclassifications. For example, 'Horse' 

images are incorrectly identified as 'TrafficLight', and 'Ship' 

images as 'Mobile', albeit infrequently. These 

misclassifications hint at potential ambiguities in visual 

features that the model fails to differentiate effectively. 

The model's challenge in correctly classifying certain 

classes could be due to shared attributes in color, shape, or 

texture among the images of different categories. In 

particular, the misclassification of 'Butterfly' as 'Shoes' and 

'Cat' as 'EiffelTower' might suggest that certain patterns, 

perhaps in the background or the subject's positioning, are 

misleading the model. 

To enhance the model's accuracy, it is crucial to delve into 

these misclassifications. A detailed examination of the 

commonalities among wrongly classified images can provide 

valuable insights. For instance, exploring whether the images 

of 'TrafficLight' mistaken for 'Horse' share any unusual 

features, or if certain angles or lighting conditions lead to the 

'Cat' and 'EiffelTower' confusion, can inform strategies for 

model improvement. 

 

Fig. 4. VGG16: confusion matrix 

C. Ensemble Learning 

The confusion matrix for the soft voting ensemble model 

depicted in Fig. 5 showcases a robust predictive performance 

with high counts along the diagonal, suggesting a high 

accuracy rate across various classes. This matrix's diagonal, 

populated with correctly identified classifications, such as 

'EiffelTower' at 37 instances, exemplifies the ensemble's 

capability in harnessing the collective strengths of the 

underlying models. 

However, even with a strong ensemble method like soft 

voting, some misclassifications occur, signifying the 

importance of an in-depth review of these instances. For 

instance, we see occasional errors, such as images from the 

'TrafficLight' class being classified as 'Sheep' and 'Cat' 

images being mistaken for 'Shark'. These particular 

misclassifications can serve as focal points for improvement, 

implying a possible overlap in features recognized by the 

individual models within the ensemble. 

A detailed analysis of these misclassifications could 

unveil specific characteristics or attributes within the images 

that lead to confusion. Understanding whether these errors 

arise from common image features such as shapes or textures, 

or from more abstract similarities such as context or 

background patterns, could inform adjustments to the training 

process. Enhancements might include increasing the diversity 

of the training images for those classes where errors are more 

prevalent, employing data augmentation techniques to 

emphasize unique features, or refining the ensemble strategy 

to better handle classes with high confusion rates. 

The soft voting method combines the predictions of 

several models, considering the average probability of each 

class. This usually leads to a balanced decision that benefits 

from the diversity of the individual models, potentially 

reducing variance and improving generalizability. Despite its 

effectiveness, the soft voting ensemble may still inherit the 

biases and weaknesses of the individual models, as evidenced 

by the misclassifications. Investigating these models’ 

learning patterns can lead to a more finely tuned ensemble 

approach, perhaps by weighting the models differently or 

excluding certain models for specific classes. 

 

Fig. 5. EL soft Voting: confusion matrix 

The confusion matrix for the hard voting ensemble model 

illustrated in Fig. 6 demonstrates an impressive performance, 

with the majority of classifications correctly identified, as 

indicated by the high numbers along the diagonal. For 

instance, 'EiffelTower' and 'Kangaroo' classes have a high 

correct classification count of 38 and 43 respectively, 

showing the model's robustness in class discrimination. 

Despite the overall success, some notable 

misclassifications warrant further scrutiny. Specific classes 

such as 'Butterfly' and 'Shirt' have been confused with 'Shoes', 

and 'Car' with 'Cat'. These instances provide critical insight 

into the model's limitations, highlighting where the 

combination of model predictions may not be sufficient to 

discern closely related classes. 

A focused analysis of these misclassifications may reveal 

underlying causes such as shared features or attributes that 

cause the models to err. It could be the similarity in texture 

between the 'Butterfly' and 'Shoes' images or a common shape 

between 'Car' and 'Cat' that leads to confusion. Such insights 
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are crucial for refining the training set, possibly by 

incorporating more varied examples within these 

troublesome classes or enhancing feature extraction 

techniques to better capture distinctive characteristics. 

Hard voting, which typically chooses the class label that 

received the most votes from individual models, suggests a 

consensus approach that can be highly effective but may also 

inherit the collective biases of the underlying models. To 

mitigate this, a detailed review of the individual models' 

performances on these classes may be necessary, potentially 

adjusting the ensemble to either weigh certain model votes 

more heavily or to introduce methods that can handle 

ambiguity more gracefully. 

 

Fig. 6. EL hard Voting: confusion matrix 

V. COMPARISON 

Our investigation into Content-Based Image Retrieval 

(CBIR) systems reveals that ensemble methods, particularly 

soft voting, lead to the most accurate classifications. The 

enhanced accuracy of 98.33% achieved by our ensemble 

learning soft voting approach surpasses individual models 

like NASNetMobile and DenseNet121, which present similar 

performance metrics, and significantly outperforms the 

VGG16 model. This high accuracy rate is indicative of the 

robust feature learning and generalization capabilities that 

ensemble methods provide (Fig. 7). 

 

Fig. 7. Comparison of models 

The ensemble learning soft voting technique proves to be 

a superior method within our CBIR study by leveraging the 

diversity of multiple models to enhance prediction accuracy. 

Specifically, this method outperforms individual models like 

NASNetMobile, DenseNet121, and VGG16 in precision and 

overall accuracy, as outlined in Table I. The integration of 

various model predictions allows for a more robust system 

that effectively reduces the error rates associated with 

individual biases and variances. This holistic approach 

ensures that the strengths of one model compensate for the 

weaknesses of another, leading to a more reliable and 

accurate retrieval system. 

The elevated precision achieved by the ensemble model, 

however, does not come without a trade-off. A noticeable dip 

in recall indicates a more conservative retrieval stance, 

suggesting that while the system is highly precise in the 

images it retrieves, it may exclude a broader range of relevant 

images. Such a trade-off is strategic in scenarios where the 

cost of false positives — irrelevant images being retrieved — 

is high. In medical imaging, for example, the precision of 

retrieval can be critical, making the slight loss in recall an 

acceptable compromise. 

Despite the precision-oriented focus, the ensemble 

model's balanced F1-score indicates that it doesn't overly 

sacrifice recall for precision. The F1-score remains high, 

showing that the model maintains a harmonious balance 

between precision and recall, making it highly suitable for 

real-world applications where both retrieving relevant images 

and avoiding irrelevant ones are crucial. 

The superior accuracy of the ensemble models, standing 

at 98.33% for soft voting and 98.12% for hard voting, 

reinforces the efficacy of combining multiple models over 

single-model approaches. It suggests that the ensemble 

method can deliver more accurate and dependable results for 

image retrieval tasks, potentially revolutionizing CBIR 

systems' capabilities in various industries and applications. 

TABLE I.  SUMMARY OF MODELS' PERFORMANCE 

Model ACC% PREC% REC% F1-S% 

NASNetMobile 96.98 96 96 96 

DenseNet121 97.29 96 96 96 

VGG16 91.58 93 93 93 

EL Soft 98.33 98 91 98 

EL Hard 98.12 98 80 98 

 

When juxtaposed with existing works, our ensemble 

model showcases superior performance. For instance, 

GoogleNet's implementation on various datasets 

demonstrates high accuracy but doesn't achieve the same 

level of performance in more comprehensive databases like 

Caltech 256 (Table II). This comparison suggests that while 

individual models like GoogleNet and Inception-ResNet-V2 

are effective, our ensemble model is more adept at navigating 

extensive and diverse image sets, making it a significant 

advancement in the CBIR domain. 

However, our study does have limitations, primarily in its 

lack of a broader generalizability analysis and detailed 

examination of model complexities, such as computational 

requirements and scalability in practical scenarios. To 

address these limitations and to extend the research, future 

work should aim to validate these findings across diverse 

image databases and real-world applications. Such efforts 

should include optimization of hyperparameters, exploration 
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of newer and possibly more computationally efficient 

architectures, and the application of transfer learning to adapt 

to different visual domains. 

Moreover, the insights from our study should propel 

future investigations to not only improve the accuracy and 

efficiency of CBIR systems but also to enhance their user-

centricity, perhaps through the integration of user feedback 

mechanisms or the development of interactive retrieval 

processes. This will ensure that CBIR systems are not only 

technically proficient but also aligned with user expectations 

and needs. 

TABLE II.  COMPARISON WITH EXISTING WORKS 

Ref Model Dataset Result 

[64] GoogleNet 
corel 1K 

corel 50K 

Caltech 256 

97% 
97% 

44% 

[65] 
Inception-ResNet-V2 
Convolutional Neural 

Network (CNN), 

Clinical 
Imagery 

Database 

88.15% 

[66] DRnet+PCA 
Cifar100 

Caltech101 
67.48% 
92.85% 

Our 

Model 
EL soft voting CBIR 50 98.33% 

 

In the "Image retrieval" section, we tried "horse" (Fig. 8). 

Our technique was tested by evaluating the query image's 

distance from our dataset photographs. 42671.66 was the best 

distance between the query image and dataset photos. This 

distance measure revealed how well our algorithm found 

query-relevant photos from the dataset. 

 

Fig. 8. Image retrieval 

VI. CONCLUSION 

In conclusion, this research successfully demonstrates a 

significant enhancement in content-based image retrieval 

(CBIR) accuracy through the implementation of an ensemble 

learning methodology. We quantitatively showcase the 

performance gains over traditional CBIR approaches, with 

ensemble methods achieving up to 98.33% accuracy. This 

substantial increase is pivotal, as it directly contributes to 

closing the semantic gap, a fundamental challenge in CBIR, 

by effectively aligning computational image analysis with 

nuanced human visual perception. 

The exploration of individual models—NASNetMobile, 

DenseNet121, and VGG16—has illuminated their respective 

strengths and weaknesses, contributing differentially to the 

ensemble's success. VGG16, while robust, exhibited 

limitations in feature diversity, whereas NASNetMobile and 

DenseNet121, leveraging more complex architectures, 

offered comprehensive feature representation, showcasing 

the evolution of deep learning in enhancing CBIR systems. 

The generalizability of our approach is noteworthy, 

offering promising implications for a variety of domains 

beyond the confines of the experimented dataset. The 

robustness and adaptability of the methodology suggest its 

potential applicability in diverse scenarios, from medical 

diagnostics to digital asset management. 

Future research directions could encompass the 

exploration of novel deep learning architectures and the 

refinement of ensemble methods. Investigating further into 

hyperparameter optimization, the utility of additional 

datasets, and real-world validations could substantially push 

the boundaries of current CBIR systems. 

The impact of this research is manifold, extending the 

frontier of CBIR technologies and contributing to various 

fields where precise and reliable image retrieval is critical. 

Our findings serve as a testament to the significant strides 

made in bridging the gap between traditional image retrieval 

methods and the dynamic capabilities of deep learning, laying 

the groundwork for subsequent innovation. 

Finally, while our results are promising, we acknowledge 

the limitations of our study, such as dataset specificity and 

model interpretability. Future research can build upon these 

findings to develop even more sophisticated CBIR systems 

that are both interpretable and efficient across varied and 

more extensive datasets. We believe that our contribution 

offers a substantial basis for ongoing research and 

development within the domain of CBIR and artificial 

intelligence. 
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