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Abstract—Driven by the unprecedented amount of 

data generated in the last few decades, data storage and 

communication are becoming more challenging. 

Although many approaches in data compression have 

been developed to alleviate these challenges, more efforts 

are still needed, especially for lossless image compression, 

which is a promising technique when critical information 

loss is not allowed. In this paper, we propose a new 

algorithm called the Lossless Image Compression 

Algorithm using a Column Subtraction model (LICA-

CS). LICA-CS is efficient, low in complexity, decreases 

the image bit-depth, and enhances state-of-the-art 

performance. LICA-CS first implements a color 

transformation method as a pre-processing phase, which 

strategically minimizes inter-channel correlations to 

optimize compression outcomes. After that, a novel 

subtraction method was developed to compress the image 

data column-wise. We tackle the similarity and proximity 

of pixel values within adjacent columns, which offers a 

distinct advantage in reducing image size observing a 

significant size reduction of 71%. This is achieved 

through the subtraction of neighboring columns. The 

conducted experiments on colored images show that 

LICA-CS outperforms existing algorithms in terms of 

compression rate. Moreover, our method exhibited 

remarkable enhancements in execution time, with 

compression and decompression processes averaging 1.93 

seconds. LICA-CS advances the state-of-the-art in lossless 

image compression, promising enhanced efficiency and 

effectiveness in image compression technologies. 

Keywords—Lossless Compression; Reversible Color 

Transformation; Column Subtraction Compression; Data 

Compression; Color Transformation Method. 

I. INTRODUCTION  

Most of our everyday activities are now dominated by 

social media, e-commerce, and other digital resources, 

allowing Big Data to pave its way to further growth in the 

future. When it comes to images and videos, data gets more 

challenging to handle due to its large size and the number of 

pixels it contains, leading to exponential growth in the data 

generated. With the proliferation of smartphones equipped 

with high-resolution digital cameras, extra metadata such as 

location, date, and time has to be saved. These smartphones 

can capture motion images with a 16-bit depth and a size of 

50.3 megabytes. It has been reported [1] that 2500 petabytes 

of data are generated daily. Moreover, with the advances in 

network technology, a large number of images are generated 

and shared over the network [2], [31]-[35]. However, this 

image explosion is exacerbating its storage and transmission 

due to the limited storage capacity and network bandwidth 

[3], [4], [36], [37]. Thus, it is crucial to have efficient image 

compression techniques. 

The process of image compression involves reducing the 

size of the image data, while retaining the essential 

information and preserving its visual quality. Images are 

commonly encoded by lossless or lossy compression 

methods. Firstly, lossy methods eliminate redundant and 

irrelevant data by allowing it to be decrypted with a particular 

amount of degradation using different techniques (i.e., Vector 

Quantization, Block truncation coding, Fractal Coding, Sub 

band coding, and Transformation Coding). Vector 

Quantization is effective in reducing data redundancy, but it 

suffers from high computational complexity and memory 

requirements, making it impractical for real-time 

applications. Block truncation coding tends to produce 

blocky artifacts, especially in regions with sharp transitions, 

limiting its ability to preserve fine details and textures in 

compressed images. Fractal coding, while it is theoretically 

powerful, it is often requiring extensive computational 

resources and parameter tuning, rendering it less practical for 

real-world applications. Subband coding is capable of 

achieving high compression ratios, but it may struggle with 

preserving image quality, particularly in terms of preserving 

fine details or textures.  

Transformation coding is widely used, but may introduce 

artifacts such as blurring or ringing, especially around sharp 

edges, impacting the visual quality of compressed images. 

These limitations underscore the need for innovative and 

efficient compression techniques to address the challenges 

posed by diverse image content and achieve optimal 

compression performance. Secondly, lossless methods fully 

reconstruct the original image using other techniques (i.e., 

Run-length encoding, LZW coding, Huffman encoding, and 
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Area coding). Each compression technique has its own set of 

drawbacks. Run-length encoding is effective for images with 

long sequences of identical pixels, but it may struggle to 

compress images with irregular patterns or complex textures 

efficiently. LZW coding can achieve high compression ratios, 

often involves significant computational complexity in 

managing the codebook, which can potentially hinder 

performance. Huffman encoding, though efficient for images 

with uniform pixel distributions, may not be as effective for 

images with uneven frequency distributions, leading to 

suboptimal compression results.  

Additionally, Area coding's reliance on dividing images 

into fixed-size regions limits its adaptability to images with 

diverse content, potentially resulting in reduced compression 

performance when dealing with varied textures or complex 

structures. These limitations highlight the necessity for 

innovative approaches in image compression to effectively 

tackle the challenges posed by diverse image content and 

achieve optimal compression efficiency. [5], [38]-[41]. When 

high-quality images are desired and data loss is not an option 

as in some important applications, loss-less compression is 

required [6], [7], where the decompressed image should be a 

bit-for-bit perfect match with the source one. Such 

applications include medical, satellite, scientific, military, 

aerospace imaging, and many more domains. In addition, 

lossless compression is also essential for preserving the 

integrity of digital images during transmission and storage. 

Traditional lossless-based methods apply prediction or 

integer transforms [7], [44]. In a prediction technique [8], [9], 

a raster scan order is used to scan and encode an image. Then, 

the next pixel to be compressed is predicted from the 

previously compressed ones. As for the integer transform 

technique [10], [42], [43], integer-to-integer transforms are 

used to convert the image to a transform domain using an 

invertible feature. In recent years, the authors in [1], [11], 

[45], [46] have introduced a flow-based method, which learns 

rich transformations on high-dimensional data, while the 

authors in [12] have proposed Bit-Swap method for 

Asymmetric Numeral Systems [47], [48]. On the other hand, 

deep learning-based image compression techniques have also 

gained attention, leveraging the power of neural networks 

(NN) to learn efficient image representations and 

compression schemes. Some works [13], [14], [49] predict 

the coefficients of image transformation using NN, whereas 

others [15], [16] rely on self-organizing map networks. 

Existing compression techniques such as Vector 

Quantization, Block Truncation Coding, Fractal Coding, 

Subband Coding, and Transformation Coding always lack 

concerns or become impractical due to their high 

computational complexity and the ever-increasing burden on 

large images storage. In other words, such techniques have 

shown promising results by presenting good compression 

performance, at the expense of speed. Furthermore, the high 

correlation between neighboring pixels in natural images 

makes it challenging to achieve a high compression ratio.  

To address the mentioned challenges, this paper proposes 

a novel method called LICA-CS for Lossless Image 

Compression Algorithm using Column Subtraction. LICA-

CS takes us a step further in reducing the compression 

complexity and execution time by combining a simple color 

transformation method with a reversible compression 

technique. The color transformation method designed in this 

paper takes advantage of the high correlation between the 

three main colors in the RGB color space in natural images 

(e.g., images from digital cameras).  

By producing a new color space that is less correlated, the 

proposed method produces matrices with smaller pixel values 

and is invertible with integer arithmetic. Particularly, some 

integer subtractions are performed in the forward phase with 

some other addition and subtraction operations performed at 

the inverse phase. Next, a reversible compression technique 

is formulated to decrease the size of the transformed image. 

The compression technique, called Column Subtraction 

Compression (CSC), takes advantage of the remaining 

correlation between neighboring pixels, and decreases the 

image intensities by subtracting each column from the nearest 

column. The resulting values are saved in the first column 

starting from the left side of each matrix, reducing the size of 

the transformed image.  

The main contribution of this paper is to present a novel 

approach to lossless image compression, offering several 

unique features and innovations. Firstly, we introduce a 

simple and efficient reversible color transformation method 

that decreases the correlation between image components in 

the RGB color space by generating a new color space that is 

less correlated and has smaller pixel values, this method 

enhances the compression efficiency without sacrificing 

image quality. Secondly, we propose a a novel lossless 

compression model based on subtraction, leveraging the 

inherent correlation between neighboring pixels to achieve 

higher compression ratios while reducing the execution time 

compared to the standard and state-of-the-art works. Lastly, 

extensive experimental evaluation demonstrates the 

superiority of our proposed method, LICA-CS, over existing 

works by significantly reducing storage and transmission 

loads, particularly in the context of large-scale image data 

generated daily across various domains. 

These distinctive features position LICA-CS as a 

promising solution to the challenges posed by the exponential 

growth of image data and the limitations of existing 

compression techniques. Through comprehensive 

experimentation and evaluation, our paper aims to 

demonstrate the effectiveness and superiority of LICA-CS in 

addressing the identified challenges and advancing the state-

of-the-art in image compression technology. 

The remaining paper is organized to address the identified 

issues in the introduction as follows. In section 2, we go over 

some relevant existing works and discuss their limitations. In 

section 3, we describe the new proposed model by presenting 

its encoding and decoding methods and illustrating them 

through an example. Next, section 4 shows the conducted 

experiments with their results and substantiates claims of 

improved performance with quantitative comparisons from 

experiments or benchmarks, followed by a conclusion in 

section 5. 
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II. RELATED WORK  

Various lossless image compression techniques have 

been proposed in the literature, including predictive coding, 

entropy coding, and transform coding. These techniques 

achieve high compression ratios by exploiting the statistical 

redundancies present in the image data. However, each 

technique has its limitations and trade-offs, and selecting the 

most appropriate technique depends on the application 

requirements. In this section, we review the relevant efforts 

targeting Color Transformation along with Compression 

methods. 

A. Color Transformation 

The authors in [17] reviewed the most common color 

transform, which converts RGB to YCrCb space. They also 

showed YCoCg transform with its reversible form and how it 

can enhance the coding gain against YCrCb. Additionally, a 

new 4-channel transform, called CMYK, was proposed in the 

work and it was shown to achieve a significant enhancement 

in coding gain.  The author in [18] proposed new simple 

transformations called RDgDb and LDgEb. The former 

performs two integer subtractions for each pixel, whereas the 

latter is based on analog transformations in human vision 

system. Both transformations showed good results compared 

to the traditional RCT, YCoCg-R, and KLT [50]. The 

limitations of RGB to YCrCb and YCoCg transform lie in 

their susceptibility to introduce color artifacts and 

inefficiency in handling extreme color variations, while 

RDgDb may face challenges in accurately representing image 

details due to its less efficient decorrelation of color channels. 

Traditional RCT, YCoCg-R, and KLT may suffer from 

increased computational complexity and reduced adaptability 

to varying image characteristics, limiting their effectiveness 

in achieving optimal compression performance. 

The work in [19], [51], [52] focused on a new transform 

method, which is based on lifting technique, showing better 

decorrelation performance. Particularly, the lifting process 

relies on two integers representing the scalar gains and the 

update steps in the lifting butterfly. This is followed by a 

compression method that is based on hierarchical coding of 

chrominance channel pixels. In [20], the authors targeted 

whole-slide images and proposed a transformation method 

based on mosaic optimization method. First, the image is 

divided into representative blocks using an efficient heuristic 

technique. Then, a mosaic of the extracted blocks undergoes 

an optimization process for further enhancement [53], [54] 

Such color transformations may suffer from limited 

effectiveness in reducing computational complexity due to 

constraints in accurately preserving color information and 

handling complex image structures.  

The authors in [21] proposed a new method for secure 

image transmission by transforming a secret image into a 

mosaic one. The process starts by fitting tile images into 

target blocks, followed by color characteristic 

transformation. Next, the tile image is rotated into directions 

with minimum RMSE value, and finally relevant information 

are embedded for future recovery. One of its limitations in 

handling complex image structures or colors, and challenges 

in achieving high compression ratios without significant loss 

of visual quality. 

B. Compression Methods 

Lucas et al. [22] proposed a new method, called 3D-MRP, 

for lossless compression that targets medical images. 3D-

MRP is based on the of minimum rate predictors algorithm 

and uses: (1) 3D-shaped predictors, which leverage the 

spatial and interframe dependencies of the image, (2) 

Volume-based optimization, where the predictors depend on 

a set of frames rather than an individual one, (3) Hybrid 3D-

block classification, where consecutive frames can have 

multiple neighboring blocks assigned to the same class, and 

(4) Extension to 16 bit-depth images rather than the 8 bit-

depth originally designed by MRP [55], [56]. Ton et al. [23] 

encodes images using Set Partitioning in Hierarchical Trees, 

SPIHT. The latter is based on integer wavelet transform, 

divided into Split, Predict, and Update steps. some of the 3D-

MRP limitations are the potential difficulty in effectively 

managing extensive datasets due to computational 

complexity. Additionally, it may struggle to attain significant 

compression ratios for specific data types without sacrificing 

compression speed or memory efficiency.  

The interpolating wavelet transform with the form CDF is 

the one used in this work. The authors in [24] proposed a 

compression method in spatial domain. The proposed 

algorithm partitions the image into blocks and employs 

variable bit allocation to store the pixel values of each block. 

The determination of the variable bit allocation is based on 

the pixel values within each block, taking advantage of the 

correlation between pixels. The authors in [25] leverage both 

the multi-scale and the pixel-wise approaches and proposed a 

multi-scale progressive statistical model. The limitation of 

multi-scale progressive statistical models lies in their 

susceptibility to increased computational complexity, 

especially when encoding or decoding high-resolution 

images, potentially leading to slower processing speeds or 

higher resource requirements.  

The main contribution of the work is to easily adjust the 

compression rate and compression speed. The authors in [26] 

employed soft compression and introduced a compressible 

indicator function for images. This function determines a 

threshold for the average number of bits needed to represent 

a location and serves as an illustrative tool for understanding 

the underlying principle [58]. The proposed work explored 

and analyzed the application of soft compression in binary 

images, grayscale images, and multi-component images 

using defined algorithms, while evaluating different 

compressible indicator values. The limitation of the highly 

reliable and low-complexity image compression scheme 

using the neighborhood correlation sequence algorithm could 

involve constraints in effectively handling diverse image 

content and achieving optimal compression ratios, 

particularly in scenarios with complex image structures or 

variations in data patterns. 

III. THE PROPOSED LICA-CS FOR NATURAL IMAGE 

COMPRESSION 

In this section, we first describe the overall proposed 

LICA-CS scheme. Then, we show its reversible encoding and 

decoding methods, which are composed of a color 

transformation and a Column Subtraction Compression. 
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A. Overview of the Proposed Scheme 

The proposed LICA-CS scheme is a versatile and 

effective method for lossless image compression that can be 

used in a wide range of applications. The algorithm is 

designed to work with any image format and can handle 

images of any resolution, from low-quality images to high-

definition photographs. LICA-CS can be used as a standalone 

compression technique or as a pre-processing step for other 

lossless or lossy compression methods. As illustrated in Fig. 

1, the LICA-CS image compression scheme consists of two 

main methods; the first method is the color transformation, 

and the second method is the CSC. Firstly, the color 

transformation method converts the input image into a new 

color space that is better suited for compression.  

Using color transform as a preprocessing phase with the 

proposed image compression algorithms offers several 

advantages; it enables efficient decorrelation of color 

channels, separating luminance from chrominance 

information, which often results in improved compression 

performance. This decorrelation reduces redundancy in the 

image data, allowing for more effective compression. 

Additionally, color transforms can help in adapting the image 

representation to better suit the characteristics of the 

compression algorithm, potentially enhancing compression 

efficiency. Moreover, employing color transforms can 

facilitate compatibility with various compression techniques 

and standards, enabling interoperability and versatility in 

compression workflows. Overall, integrating color 

transforms as a preprocessing step enhances the effectiveness 

and adaptability of image compression algorithms, leading to 

better compression ratios and preserved image quality. 

Secondly, The CSC method then compresses the 

transformed image by removing redundant information in the 

image’s columns. Indeed, one of the significant advantages 

of CSC compression algorithms is its ability to decrease 

computational complexity. CSC is relatively simple to 

implement and requires fewer resources compared to some 

other image compression algorithms. This reduction in 

computational demands translates into faster execution times, 

making CSC an attractive option for applications where 

speed is crucial, such as real-time image processing or 

systems with limited computing resources. By streamlining 

the computational workload, CSC contributes to quicker 

compression and decompression processes without 

compromising compression efficiency or image quality. 

The combination of these two lossless methods results in 

a highly compressed image that can be easily decompressed 

without any loss of quality. The LICA-CS decompression 

process reverses the compression steps to reconstruct the 

original image. The color transformation and CSC methods 

are applied in reverse order to restore the compressed image 

to its original form. 

B. LICA-CS Encoding & Decoding 

Let NI be a Natural Image, which is colored and 

represented by a three-color matrices (R, G, B). The three 

matrices have the same resolution (m×n), where m and n 

represent the number of rows and columns respectively. Each 

of the two encoding methods are described as follows: 

 

Fig. 1. LICA-CS image compression scheme 

Reversible Color Transform: In natural images, the three 

main colors in the RGB color space typically have high 

correlation, meaning that the information carried by at least 

two of the three main components is similar for the same 

pixel’s addresses. For instance, if a particular area of an 

image is bright in the red channel, then it is likely to be bright 

in the green and blue channels as well. However, high 

correlation between image components can make the 

compression of an image more challenging. Therefore, the 

aim of color transformation is to reduce the correlation 

between the image components by producing a new color 

space that is less correlated. The proposed Reversible Color 

Transform method achieves this by converting the input 

natural image NI(R,G,B) from an RGB color space into an 

RG`B` format. The latter format includes smaller pixel values 

than the original one, and the overall transformation process 

outputs an image with less correlated matrices. We denote by 

G` and B` the transformed Green and Blue matrices 

respectively, while the red matrix remains unchanged. The 

Transformed Image is denoted by TI and has the same 

dimension (m×n) as the input matrices.  

Inspired by a popular existing transformation method 

presented by Starosolski [18], our proposed forward and 

inverse transformations are defined as follows: 
 

R = R  R = R 

(1) G`= R - G  G =R - G` 

B`= B - G  B = G + B` 

Fig. 2 illustrates an input sample of 8×8 block for the 

RGB matrices, where the transformation equations are 

applied. Overall, the Reversible Color Transform method 

reduces the correlation between the image components, 

making it easier to compress the image without losing 

important information. The method is reversible, meaning 

that the original RGB image can be reconstructed from the 

transformed image without loss of information. 

CSC: Image compression aims to reduce the amount of 

data required to represent an image, which makes it easier to 

store, transmit, and process. One way to achieve image 

compression is by taking advantage of the high correlation 

between neighboring pixels in an image. In other words, each 

pixel value is similar or very close to the value of its adjacent 

pixels [18]. To achieve high compression ratio using the 

similarity of nearby pixels, we developed CSC to decrease 

the image intensities by subtracting each column from the 

nearest column and saving the resulting value in the first 

column starting from the first column from the left side of 

each matrix. Thus, CSC decreases the size of the transformed 

image TI by converting it into a Compressed Image 
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CI(RcG`cB`c) Where RcG`cB`c represent the compressed 

Red, Green, and Blue channels respectively. Formally, the 

compression equations are defined as follows: 

𝑅𝑐(𝑖, 𝑗) =  𝑅(𝑖, 𝑗) −  𝑅(𝑖, 𝑗 + 1) 

 1 ≤  𝑖 ≤ 𝑚 & 1 ≤  𝑗 ≤ 𝑛 − 1 
(2) 

𝐺`𝑐(𝑖, 𝑗) =  𝐺`(𝑖, 𝑗)–  𝐺`(𝑖, 𝑗 + 1) 

 1 ≤  𝑖 ≤ 𝑚 & 1 ≤  𝑗 ≤ 𝑛 − 1 
(3) 

𝐵`𝑐(𝑖, 𝑗) =  𝐵`(𝑖, 𝑗)–  𝐵`(𝑖, 𝑗 + 1) 

 1 ≤  𝑖 ≤ 𝑚 & 1 ≤  𝑗 ≤ 𝑛 − 1 
(4) 

 

Fig. 2. Sample of 8×8 block before and after transformation phase 

To reconstruct the compressed image CI, the three 

matrices RcG`cB`c are loaded to the decompression 

algorithm, which applies the reversible CSC equations for 

each of the three matrices as follows: 

𝑅(𝑖, 𝑗 − 1) =  𝑅𝑐(𝑖, 𝑗) +  𝑅𝑐(𝑖, 𝑗 − 1) 

 1 ≤  𝑖 ≤ 𝑚 & 𝑛 − 1 ≤  𝑗 ≤ 2 
(5) 

𝐺`(𝑖, 𝑗 − 1) =  𝐺`𝑐(𝑖, 𝑗)–  𝐺`𝑐(𝑖, 𝑗 − 1) 

 1 ≤  𝑖 ≤ 𝑚 & 𝑛 − 1 ≤  𝑗 ≤ 2 
(6) 

𝐵`(𝑖, 𝑗 − 1) =  𝐵`𝑐(𝑖, 𝑗)–  𝐵`𝑐(𝑖, 𝑗 − 1) 

 1 ≤  𝑖 ≤ 𝑚 & 𝑛 − 1 ≤  𝑗 ≤ 2 
(7) 

Fig. 3 shows the matrices obtained using the proposed 

CSC method. LICA-CS, which consists of the Reversible 

Color Transform and CSC, is simple and fast, with a time 

complexity of O(n2) for the encoding and decoding phases. 

In addition to its application for color images, the proposed 

LICA-CS method can also be effectively utilized for 

greyscale images. When compressing greyscale images, the 

compression phase involves the use of Eq. (2), which 

performs the necessary size reduction. Similarly, during the 

decompression phase, Eq. (5) is applied to recover the 

original image. 

 

Fig. 3. Sample of 8×8 block before and after compression phase 

 

The LICA-CS is designed as a simple and high-speed 

algorithm, thanks to its low complexity and scalability, which 

allow it to effectively manage large-scale image datasets. 

Notably, LICA-CS seamlessly accommodates images of any 

size. Its method of subtracting values for image columns 

makes it straightforward and adaptable for all image types, as 

images can be uniformly converted into integer matrix 

values. This inherent flexibility highlights its capability for 

diverse image compression tasks. 

IV. NUMERICAL RESULTS 

Thorough experiments were performed to evaluate the 

performance of our proposed LICA-CS. In this section, we 

briefly describe the used datasets, the baseline approaches 

that we compared our work to, then we discuss the obtained 

results. 

A. About the Datasets 

The following datasets of 8-bit RGB images were used 

for the evaluation:  

• Waterloo [61], which is sourced from the Fractal 

Coding and Analysis Group - University of Waterloo, is a 

well-known dataset and widely used by researchers to 

evaluate the performance of various algorithms across 

different imaging tasks. It includes three sets: Greyscale Set 

1, Greyscale Set 2, and Color Set, consisting of 12 small, 12 

medium, and 8 large images respectively. 

• Kodak [62], which is sourced from Kodak company, is 

used as a benchmark dataset in the field of image processing 

and compression. It consists of 24 photographic images that 

cover various subjects and scenes. 

• EPFL [63], which is sourced from Ecole Polytechnique 

Féderale de Lausanne, is also a widely recognized set of 

images used in various research studies, particularly in the 

field of image processing and computer vision. It consists of 

10 high-resolution colored images. 
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B. Experiments Setup 

The experiments were conducted on a computer system 

with the following specifications: Intel(R) Core(TM) i7-

10510U CPU running at 1.80-2.30 GHz, 8 GB of RAM, and 

1 GB of virtual memory. The algorithms were implemented 

using the MATLAB programming environment. 

C. Experimental Results 

a) Compression ratios compared with standard 

algorithms: We start by studying the compression ratios for 

transformed images, which are expressed in bits per pixel 

(bpp). The ratio is measured using: 

8 ×  𝑠

𝑛
 (8) 

where 𝑛 denotes the number of pixels in the studied image, 

and s represents the combined size, measured in Bytes, of the 

separately compressed three components of the transformed 

image. The results obtained from this formula align with 

those obtained when dividing the compressed image size by 

the number of pixels. Therefore, smaller ratios indicate more 

effective compression. 

We compare our proposed transformation (RG`B`) and 

CSC compression (RcG`cB`c) methods to a combination of 

different standards. The latter include: RCT and YCoCg 

transformations along with JPEG2000, JPEG-LS, JPEG XR, 

and Huffman algorithms. All the mentioned methods are 

applied on the three datasets. The obtained compression ratio 

results are quantified in Table I, where the best three ratio 

values are indicated in bold. We can notice that our methods 

outperform in most cases the standard approaches, which are 

very popular and well-recognized. The highest performance 

is achieved when combining YCoCg with our CSC 

compression (method #J), followed by RCT + CSC (method 

#E), and then RG`B` + CSC (method #N).  

The findings indicate that employing the CSC algorithm 

as a postprocessing phase following transformation produces 

the highest performance. The most favorable outcomes 

emerge when combining YCoCg with the proposed CSC, 

showcasing an average compression ratio of 6.53. This 

integration highlights the efficacy of utilizing YCoCg 

alongside the proposed CSC for optimal compression results. 

This is attained by the YCoCg color space, which separates 

luminance from chrominance data, thereby diminishing 

redundancy and amplifying compression effectiveness. Such 

results show how robust our CSC method is. Specifically, in 

method #G, when comparing YCoCg with the best-

performing standard approach, namely JPEG-LS, the results 

show that CSC achieves an average improvement of 33.03%. 

Similar interpretation applies when studying the performance 

of RCT (method #B), leading to 29.99% improvement for 

CSC. Furthermore, it is noteworthy that the CSC method, 

without any accompanying transformation, surpasses all the 

studied algorithms that apply RCT or YCoCg 

transformations. On the other hand, the proposed 

transformation by itself demonstrates favorable performance, 

surpassing RCT by an average of 2.11 bpp when applied to 

Huffman. 

b) Running time compared with standard algorithms: 

For the best three reported methods in terms of compression 

ratio (methods J, E, and N), we studied their running time for 

all the datasets. Table II, Table III, and Table IV show the 

compression and decompression time for Waterloo, Kodak, 

and EPFL respectively. Although methods J and E have better 

compression ratios, method N achieves faster running times 

for every image in the compression and decompression 

phases. On average, RG`B` + CSC (method N) is 1.79 and 

1.5 seconds faster in compressing EPFL images than methods 

J and E respectively. Faster results for method N are also 

reported for Waterloo and Kodak images, according to the 

values presented in Table II, Table III and Table IV. 

 This is accomplished through employing RG`B` 

transformations as a preprocessing step. This decorrelation 

minimizes redundancy within the image data, enabling more 

efficient compression. Additionally, RG`B` transformations 

are computationally simpler compared to certain other color 

spaces, leading to quicker compression and decompression 

processes. Another reason for achieving fast execution time 

is the simplicity of implementing the CSC, which requires 

fewer resources, further enhancing the overall speed of the 

compression algorithm. 

TABLE I. AVERAGE COMPRESSION RATIOS (BPP) FOR OUR PROPOSED 

RG`B` AND CSC METHODS COMPARED WITH STANDARD ALGORITHMS 

Method 
Comp 

Datasets 
Average 

No TF Waterloo Kodak EPFL 

A RCT JPEG2000 11.21 9.51 10.84 10.52 

B RCT JPEG LS 8.96 9.57 10.47 9.67 

C RCT JPEG XR 13.32 10.92 11.76 12.00 

D RCT Huffman 16.55 15.06 16.9 16.17 

E RCT CSC 6.81 6.33 7.17 6.77 

F YCoCg JPEG2000 11.21 9.49 10.98 10.56 

G YCoCg JPEG-LS 9.02 9.60 10.61 9.75 

H YCoCg JPEG-XR 13.27 10.86 11.9 12.01 

I YCoCg Huffman 17.59 16.04 17.74 17.12 

J YCoCg CSC 6.6 6.16 6.84 6.53 

K - Huffman 15.25 16.49 16.91 16.22 

L RG`B` Huffman 13.65 13.52 15.01 14.06 

M - CSC 7.94 9.08 9.12 8.71 

N RG`B` CSC 7 6.66 7.48 7.05 

 

Fig. 4 presents a concise visual representation of the data 

provided in Table I, facilitating easier comprehension. It 

outlines the Average Compression Ratios (BPP) attained by 

the Proposed LICA-CS Algorithm in comparison with 

Standard Algorithms. 

 

Fig. 4. Average compression ratios (BPP) for the proposed LICA-CS 

algorithm compared with standard algorithms 
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TABLE II. COMPRESSION AND DECOMPRESSION TIME (IN SECS) FOR OUR 

PROPOSED RG`B` AND CSC METHODS USING WATERLOO IMAGES 

Image 

Compression Time (s) Decompression Time (s) 

M
et

h
o
d

 

#
J 
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et

h
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d

 

#
E
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d

 

#
N
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et
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#
J 

M
et

h
o
d

 

#
E

 

M
et

h
o
d

 

#
N

 

Clegg 1.40 1.26 0.78 0.03 0.04 0.03 

Frymire 3.40 2.74 1.55 0.06 0.05 0.04 

Lena3 0.26 0.23 0.12 0.02 0.02 0.01 

Monarch 0.31 0.30 0.13 0.03 0.03 0.01 

Peppers3 0.23 0.22 0.12 0.02 0.02 0.01 

Sail 0.32 0.33 0.15 0.03 0.02 0.01 

Serrano 0.66 0.60 0.35 0.03 0.03 0.02 

Tulips 0.32 0.30 0.15 0.03 0.03 0.02 

Average 0.86 0.75 0.42 0.03 0.03 0.02 

 

Illustrating Table II allows us to observe in Fig. 5 the 

cumulative compression and decompression time in seconds 

for the proposed LICA-CS algorithms when applied to 

Waterloo Images. 

 

Fig. 5. Total compression and decompression time (S) for the proposed 

LICA-CS algorithms using waterloo images 

TABLE III. COMPRESSION AND DECOMPRESSION TIME (IN SECS) FOR OUR 

PROPOSED RG`B` AND CSC METHOD USING KODAK IMAGES 

Image 

Compression Time (s) Decompression Time (s) 

M
et

h
o
d

 

#
J 
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et

h
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d

 

#
E
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et
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#
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#
J 

M
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d

 

#
E

 

M
et

h
o
d

 

#
N

 

kodim01 0.34 0.35 0.15 0.02 0.03 0.01 

kodim02 0.28 0.26 0.13 0.03 0.03 0.02 

kodim03 0.27 0.25 0.14 0.03 0.03 0.01 

kodim04 0.26 0.25 0.13 0.03 0.03 0.02 

kodim05 0.37 0.37 0.17 0.03 0.03 0.01 

kodim06 0.34 0.31 0.15 0.03 0.03 0.01 

kodim07 0.26 0.26 0.13 0.03 0.03 0.02 

kodim08 0.42 0.41 0.15 0.03 0.03 0.01 

kodim09 0.32 0.34 0.14 0.03 0.03 0.01 

Kodim10 0.34 0.35 0.17 0.03 0.03 0.01 

Kodim11 0.34 0.31 0.14 0.03 0.03 0.01 

Kodim12 0.33 0.30 0.14 0.03 0.03 0.02 

Kodim13 0.40 0.38 0.16 0.03 0.03 0.01 

Kodim14 0.35 0.35 0.17 0.03 0.03 0.02 

Kodim15 0.33 0.31 0.14 0.03 0.03 0.01 

Kodim16 0.22 0.21 0.09 0.01 0.03 0.01 

Kodim17 0.34 0.33 0.16 0.03 0.03 0.02 

Kodim18 0.44 0.40 0.18 0.02 0.04 0.02 

Kodim19 0.35 0.34 0.16 0.03 0.03 0.02 

Kodim20 0.37 0.40 0.17 0.03 0.03 0.01 

Kodim21 0.34 0.33 0.14 0.03 0.03 0.01 

Kodim22 0.39 0.37 0.17 0.03 0.03 0.01 

Kodim23 0.29 0.30 0.14 0.03 0.03 0.02 

Kodim24 0.41 0.37 0.18 0.03 0.03 0.01 

Average 0.34 0.33 0.15 0.03 0.03 0.02 

 

Fig. 6 elucidates the total compression and 

decompression time is seconds that extracted from Table III, 

contrasting the performance of the Proposed LICA-CS 

Algorithm when applied to Kodak Images. 

 

Fig. 6. Total compression and decompression time (S) for the proposed 

LICA-CS algorithm compared with standard algorithms using kodak images 

TABLE IV. COMPRESSION AND DECOMPRESSION TIME (IN SECS) FOR OUR 

PROPOSED RG`B` AND CSC METHODS USING EPFL IMAGES 

Image 

Compression Time (s) Decompression Time (s) 

M
et

h
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d

 

#
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et

h
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d

 

#
E
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et
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#
N
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#
E

 

M
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h
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#
N

 

Bike 4.72 4.36 2.17 0.09 0.08 0.08 

Cafe 5.88 5.37 2.83 0.08 0.08 0.07 

P01 3.31 3.12 1.81 0.1 0.1 0.07 

P04 3.79 3.45 2.46 0.09 0.08 0.08 

P06 4.44 4.11 2.49 0.1 0.09 0.09 

P10 3.01 2.86 1.47 0.11 0.08 0.09 

P14 3.05 2.87 1.71 0.09 0.09 0.08 

P22 2.85 2.58 1.57 0.09 0.09 0.08 

P30 3.91 3.47 2.4 0.1 0.09 0.08 

Women 3.5 3.36 1.65 0.1 0.09 0.08 

Average 3.84 3.55 2.05 0.1 0.09 0.08 

 

Fig. 7 illustrates the total compression and decompression 

time in seconds for the Proposed LICA-CS algorithm when 

applied to EPFL images. 

 

Fig. 7. Total compression and decompression time (in secs) for the proposed 

LICA-CS algorithm compared with standard algorithm using EPFL images 

c) Compression ratios compared with state-of-the-art 

schemes: We also evaluated the performance of our proposed 

methods with other state-of-the-art schemes, including 

BWCA [27], [57], GST (based on KMTF-BWCA) [28], [58], 

and BBWCA [29], [59], [60]. Table V shows their images 

sizes and their compression ratios using Eq. (8) for selected 

Kodak images. On average, our method outperforms the 

others with an improvement of 59.8, 57.87, and 5.2% in the 
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compression ratio compared to BWCA, GST, and BBWCA 

respectively. 

TABLE V. IMAGE SIZES (KB) AND COMPRESSION RATIOS (BPP) FOR OUR 

PROPOSED RG`B` AND CSC METHODS COMPARED WITH STATE-OF-THE-

ART SCHEMES USING KODAK IMAGES 

 BWCA GST BBWCA LICA-CS 

Image Size Ratio Size Ratio Size Ratio Size Ratio 

kodim02 765 15.89 750 15.58 381 7.95 320 6.67 

kodim05 991 20.69 947 19.67 244 5.08 376 7.82 

kodim07 780 16.22 743 15.48 350 7.29 282 5.88 

kodim08 1008 21.05 981 20.51 463 9.64 395 10.48 

kodim11 837 17.39 800 16.67 297 6.19 307 6.40 

kodim13 1020 21.24 965 20.17 352 7.34 396 8.25 

kodim20 591 12.31 560 11.65 332 6.92 270 5.63 

kodim21 827 17.27 783 16.33 480 10.00 311 6.49 

kodim22 891 18.60 839 17.52 358 7.45 355 7.41 

kodim23 791 16.44 739 15.38 346 7.21 297 6.20 

Average 850 17.71 811 16.9 360 7.51 330.9 7.12 

 
 

d) Running time compared with state-of-the-art 

schemes: To accurately assess the computational efficiency 

of our proposed method and provide a fair and meaningful 

comparison, we conducted experiments using identical 

experimental setups and settings as the existing methods 

presented in the previous section. For this specific set of 

experiments only, we utilized a different machine with the 

following specifications: Intel Core 2 Quad CPU running at 

2.4 GHz, 2 GB of RAM, and 1 GB of virtual memory. By 

adopting this approach, we compare the running time of our 

method with the previously reported results in Table VI. 

Significant improvements were observed in the compression 

and decompression processes of RG`B`-CSC when applied to 

the presented images. This demonstrates the robustness and 

efficiency of the proposed transformation and compression 

methods. 

TABLE VI. COMPRESSION AND DECOMPRESSION TIME (IN SECS) FOR OUR 

PROPOSED RG`B` AND CSC METHODS COMPARED WITH STATE-OF-THE-

ART SCHEMES USING SELECTED KODAK IMAGES 

 Compression Time (s) Decompression Time (s) 

Image 

B
W

C
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S

T
 

B
B
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A
 

L
IC

A
-C

S
 

B
W

C
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G
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B

W
C

A
 

L
IC

A
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kodim02 16.46 17.21 17.70 1.43 23.76 25.39 28.06 0.1 

kodim05 16.07 16.82 19.14 2.03 23.85 28.09 30.50 0.1 

kodim07 17.58 18.33 18.41 1.48 22.46 25.95 30.60 0.1 

kodim08 16.32 17.07 19.77 1.79 21.32 24.82 27.80 0.1 

kodim11 18.02 18.77 19.49 1.82 23.34 23.24 28.55 0.1 

kodim13 17.37 18.12 18.18 1.99 22.77 25.55 28.66 0.1 

kodim20 18.82 19.57 20.98 2.07 21.17 24.40 27.46 0.1 

kodim21 19.17 19.92 19.48 1.85 21.46 22.63 28.95 0.1 

kodim22 16.91 17.66 19.60 2.21 21.97 22.19 22.87 0.1 

kodim23 16.78 17.53 19.95 1.69 22.90 25.98 29.23 0.1 

Average 17.35 18.10 19.27 1.83 22.50 24.82 28.27 0.1 

 

Fig. 8 displays a chart describing the compressed image 

size in kilobytes (KB) for the Proposed LICA-CS algorithm 

in contrast to State-of-the-Art schemes when applied to 

KODAK images. 

 

 

Fig. 8. Compressed image size (KB) for the proposed LICA-CS algorithm 

compared with state-of-the-art schemes using KODAK images 

Fig. 9 summarizes the data extracted from Table VI, 

presenting the total compression and decompression time (in 

seconds) for the Proposed LICA-CS algorithm in comparison 

to State-of-the-Art schemes when applied to KODAK 

images. 

 

Fig. 9. Total compression and decompression time (in secs) for the proposed 

LICA-CS algorithm compared with state-of-the-art schemes using KODAK 

images 

Comparison with Benchmark Schemes: Besides the 

reported results, we compared our LICA-CS method with 

several benchmark software and compression algorithms that 

are commonly used in the field of image compression. The 

performance of each method [29] is evaluated in terms of 

compression efficiency using Kodak dataset. Table VII 

presents the obtained compressed file sizes in KBs after 

applying the respective compression methods. We can 

observe significant improvements in terms of compression 

efficiency for LICA-CS. Specifically, our method 

compresses the 11520 KBs of data to 3310 KBs, which is a 

size reduction of 71.27%, outperforming all benchmark 

software/algorithm approaches. The interesting observation 

that was made from Table I when analyzing the results of 

YCoCg-CSC is better shown in this comparison in Table VII, 

where the images are compressed to 3093 KBs. Additionally, 

BBWCA demonstrated competitive compression ratios, with 

a total file size of 3553 KBs, a reduction of 69.16%. HEVC 

and LZ4X, on the other hand, achieved impressive 

compression results with an average reduction of 63.37% and 

62.6% respectively. 
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TABLE VII. COMPRESSED IMAGE SIZES (KB) FOR OUR METHODS ALONG 

WITH SEVERAL BENCHMARK SOFTWARE AND COMPRESSION ALGORITHMS 

KODAK TEST IMAGE 
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1
 

T
o

ta
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ADVANCE 

COMP 
608 422 495 493 477 666 460 468 614 451 5154 

ALLUME 386 576 487 503 699 407 788 370 410 372 4998 

BBWCA 381 463 352 480 308 346 350 332 244 297 3553 

BCM 457 785 628 490 532 737 375 381 507 390 5282 

BULK ZIP 450 710 372 441 753 613 469 751 482 603 5644 

CAESIUM 475 422 496 518 797 500 706 407 736 411 5468 

C-MIX 453 510 457 497 625 520 761 666 657 456 5602 

COMPRESSO

R.IO 
413 765 425 597 380 415 392 391 603 668 5049 

CRUSH 409 692 556 536 544 795 646 612 583 376 5749 

FILE 

MINIMIZER 
560 758 471 521 740 681 691 596 573 495 6086 

FILE 

OPTIMIZER 
409 432 721 665 559 502 401 447 618 518 5272 

HEVC (x265) 403 493 343 487 397 538 326 418 462 353 4220 

LICA-CS 320 395 396 311 355 297 282 270 376 348 3310 

LZ4X 370 420 412 373 402 537 465 456 444 429 4308 

MRP 497 760 550 511 513 791 534 474 628 409 5667 

NANOZIP 475 556 472 519 446 543 490 431 551 715 5198 

PAQ8PXD_V4 450 490 598 607 489 655 733 596 372 569 5559 

UPACK 0.25 661 710 379 675 503 529 371 572 587 568 5555 

WINRK 3.1.2 598 515 398 783 674 457 374 611 456 593 5459 

YCoCg-CSC 296 380 380 287 334 265 254 259 355 283 3093 

ZCM 0.92 495 631 772 542 408 714 565 597 416 450 5590 

 

Fig. 10 illustrates the data from Table VII through a chart 

representing the compressed image size (KB) for the 

Proposed LICA-CS algorithm, alongside various benchmark 

software and compression algorithms. 

 

Fig. 10. Compressed image size (KB) for the proposed LICA-CS algorithm 

along with several benchmark software and compression algorithms 

e) Comparison of Compression ratios for grayscale 

images: In the comparison of 12 selected images from the 

Waterloo grayscale image sets 1 and 2, we evaluated the 

compression ratios achieved by applying the algorithms from 

[30]. The results are presented in Table VIII, indicating the 

extent to which each algorithm compressed the image. On 

average, our method demonstrated superior performance 

compared to all other algorithms, achieving a compression 

ratio that was 13% better than the IWT-HF. 

TABLE VIII. COMPRESSION RATIOS (BPP) FOR OUR PROPOSED RG`B` - 

CSC METHODS COMPARED WITH STATE-OF-THE-ART SCHEMES FROM [30] 

USING 12 SELECTED WATERLOO IMAGES 

Im
ag

e 

H
u

ff
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ri

th
m

et
ic
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bird.TIF 6.8016 6.7747 3.1390 3.4712 4.2333 2.8630 2.45 

bridge.TIF 7.6937 7.6689 5.9086 5.7904 6.3164 4.9043 4.00 

circles.TIF 1.8484 1.7811 1.2627 0.1526 0.1136 1.3375 1.11 

crosses.TIF 1.0001 0.1879 1.4285 0.3855 0.1786 2.0281 1.24 

slope.TIF 7.5411 7.5177 1.0643 1.5713 1.6929 1.6449 1.77 

squares.TIF 1.3517 1.0776 0.2505 0.0771 0.0500 0.6989 1.05 

boat.TIF 7.1468 7.1238 4.1005 4.2498 5.2881 3.5184 3.13 

goldhill2.TIF 7.4970 7.4779 4.6544 4.7116 5.5985 3.8035 3.29 

lena2.TIF 7.4683 7.4456 4.0166 4.2437 5.5190 3.2545 3.12 

library.TIF 5.8704 5.8490 5.8350 5.1011 4.2544 5.1664 3.72 

mandrill.TIF 7.3804 7.3580 6.0232 6.0365 6.3869 5.0441 4.24 

peppers.TIF 7.5951 7.5716 4.4042 4.4887 5.5480 3.5105 3.16 

Average 5.7662 5.6528 3.5073 3.3566 3.7650 3.1478 2.69 

 

Fig. 11 depicts the average Compression Ratios (BPP) for 

the proposed LICA-CS algorithm compared to State-of-the-

Art schemes, utilizing selected Waterloo images as described 

in Table VIII. 

 

Fig. 11. Average compression ratios (BPP) for the proposed LICA-CS 

algorithm with state-of-the-art schemes using selected waterloo images 

V. CONCLUSIONS 

In this paper, we proposed a lossless image compression 

algorithm (LICA-CS) that uses a transformation method to 

reduce the correlation between image components to prepare 

the image for the next compression stage that requires less 

correlation, followed by a compression method called 

Columnar Subtraction Model to reduce image intensity. by 

taking advantage of the similarity and proximity of pixel 

values within adjacent columns, providing a clear gain in 

reducing image size, this is accomplished by subtracting 

neighboring columns from each other in each of the three-

color matrices within the targeted image. Thorough 

experiments were conducted to compare LICA-CA with 

cutting-edge algorithm and various performance benchmarks 

demonstrated substantial enhancements for LICA-CS, 

particularly in compression ratio and execution time. 

Improvement for LICA-CS in term of compression ratio, 

our method compresses the 11520 KBs of data to 3310 KBs, 

which is a size reduction of 71.27%, outperforming all 

benchmark software/algorithm approaches. The interesting 

observation that was made from Table I when analyzing the 
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results of YCoCg-CSC is better shown in this comparison in 

Table VII, where the images are compressed to 3093 KBs. 

Additionally, BBWCA demonstrated competitive 

compression ratios, with a total file size of 3553 KBs, a 

reduction of 69.16%. HEVC and LZ4X, on the other hand, 

achieved impressive compression results with an average 

reduction of 63.37% and 62.6%, respectively.  

Improvement for LICA-CS in terms of execution time, 

we compare the running time of our method with the 

previously reported results in Table VI. Significant 

improvements were observed in the compression and 

decompression processes of LICA-CS when applied to the 

presented images. The proposed method achieved an average 

of 1.93 seconds, compared with 40.35 seconds needed by 

BWCA. 

Improvement for LICA-CS in terms of implementation 

complexity, while the fundamental concepts of BBWCA are 

relatively simple, implementing it can become complex, 

particularly when handling large images. The efficient 

encoding and decoding of the BBWCA imposes detailed 

management of indices and suffix arrays, which can impose 

significant computational demands. In contrast, LICA-CS 

offers a simpler implementation and is a high-performance 

algorithm capable of effectively managing large image sizes 

or complex data. 

As a future direction, our aim is to expand the scope of 

this work to include the compression of low-resolution 

images, specifically focusing on raster map images which 

often have less redundancy compared to higher-resolution 

images, making it more challenging for compression 

algorithms to identify and exploit redundancy for efficient 

compression. By extending our methods to address the 

unique challenges posed by this type of imagery, we 

anticipate further advancements in efficient and effective 

compression algorithms. 
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