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Abstract—This research aims to enhance humanoid robot 

soccer Ball Tracking, Goal Alignment, and Robot avoidance 

tasks using YOLO-NAS. The study followed a three-stage 

approach involving model engineering, which involves model 

training, code integration, and testing by comparing it with 

YOLO-v8 and YOLOv7. We measured the mAP (Mean 

Avegara Precision) and the speed of the detection of each model. 

Descriptive and Friedman techniques were employed to 

interpret testing results. In the ball tracking task, YOLO-NAS 

achieved a success rate of 53.3% compared to YOLOv7 with 

68.3%. In the goal alignment task, YOLO-NAS achieved the 

highest success rate of 91.7%. In the Robot Avoidance task, 

YOLO-NAS, the same as YOLOv8, 100% nailed the test. These 

findings suggest that YOLO-NAS performs exceptionally well in 

the goal-alignment task but does not excel in two other tasks 

related to humanoid robot soccer. 

Keywords—Humanoid Robot Soccer; YOLO; Object 

Detection; ML Deployment; Ball Tracking. 

I. INTRODUCTION 

A. Background 

The field of humanoid robot soccer, or RoboCup 

humanoid league, is a challenging in in robotics [1], [2], [3]. 

The primary goal in this field is to develop autonomous 

humanoid robots that are proficient in soccer gameplay and 

demonstrate advanced functionalities like walking, running, 

dribbling, passing, shooting, and defending without external 

human control [4], [5], [6], [7], [8]. The robot must be able to 

discern the nature of objects within its visual scope, before 

determining its course of action, to mimic human ability to 

identify objects accurately. Achieving the level of accuracy 

demonstrated in human, poses a significant challenge for 

computers [9], [10], [11]. 

These robots rely on camera vision to perceive the 

environment [12], [13], [14], make real-time decisions, and 

engage with the ball and other robots through their 

mechanical bodies. This domain serves as a testbed for state-

of-the-art artificial intelligence (AI), computer vision, motion 

planning, and control algorithms and contributes to the 

progress of robotics and AI [15], [16], [17]. It provides an 

entertaining platform to showcase the capabilities of 

autonomous humanoid machines [18]. 

In addressing the challenges in humanoid robot soccer, a 

key focus lies in refining the object detection system [19], 

[20], [21]. This entails seamlessly integrating the object 

detection system into the broader humanoid robot soccer 

software framework. Our research centers on three 

interconnected tasks pivotal to this problem: (1) ball tracking, 

(2) goal alignment, and (3) robot avoidance system. The 

effectiveness of these fundamental tasks within humanoid 

robot soccer is essential in the object detection system. 

B. Related Research 

The humanoid robot soccer for object detection system 

has transformed towards deep learning, particularly 

leveraging Convolutional Neural Network (CNN) based 

techniques [19], [22], [23], [24], [25]. The recent successes 

in the field of object detection are mostly due to the use of 

deep neural networks, more specifically convolutional neural 

networks (CNN) [26], [27], [28], [29]. Noteworthy models 

such as SSD (Single Shot Detection), MobileNet, and YOLO 

(You Look Only Once) have gained popularity across various 

domains, including humanoid robot soccer. Melo and Baros 

successfully utilized MobileNet V2, achieving a 

commendable 30 FPS detection speed on the NVIDIA Jetson 

Nano platform [30]. Yinka-Banjo et al utilized YOLOv2 to 

detect ball and goal and achieved 0.85 mAP at 50% IoU 

(Intersection over Union) [31]. 

Additionally, Nugraha et al. demonstrated a 95% 

accuracy for humanoid robot soccer for ball detection with 

YOLOv3 [32]. Narayanaswami Sai Kiran et al. pursued a 

similar approach, attaining an impressive 98.7 mAP (mean 

average precision) at a swift 30 ms detection speed [33]. 

Barry et al. utilized xYOLO, achieving a 93.6 mean Average 

Precision (mAP), encompassing the successful detection of 

goalposts in their study [34]. Despite widespread reports on 

implementing cutting-edge object detection systems in 

humanoid robot soccer, a noticeable gap exists in research 

addressing unique tasks within this domain. The predominant 

focus remains on evaluating model performance in terms of 

mAP and inference speed, leaving specific humanoid robot 

soccer tasks largely unexplored.  

C. Research Gap 

The integration of the YOLO object detection system into 

the humanoid robot soccer has also not been explored.  The 

YOLO series is a target detection algorithm based on deep 

learning and convolutional neural networks [35]. Its 

advantages include fast speed, high detection accuracy, and 
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real-time detection speed. Many variants of YOLO have been 

developed [36], [37]. Among those variants, YOLO-NAS, 

YOLOv7, and YOLOv8 are claimed to have the best 

performance against older models. YOLOv7 is a real-time 

object detector with high accuracy [38]. It features a design 

of trainable bag-of-freebies methods to improve detection 

accuracy without increasing inference cost YOLOv7-E6 is 

faster and more accurate than other transformer-based and 

convolutional-based detectors [38]. YOLOv7 was used by 

the Barelang team in the Robocup 2023 Humanoid Robot 

Soccer Competition [39], and they achieved third place.  

YOLOv8 was released in January 2023 by Ultralytics, the 

company that developed YOLOv5. YOLOv8 provided five 

scaled versions and implemented in many types of research: 

YOLOv8n (nano) [40], [41], [42], [43], YOLOv8s (small) 

[44], [45], [46], YOLOv8m (medium) [47], [48], [49], [49], 

YOLOv8l (large) [50], [51], [52], and YOLOv8x (extra-

large) [53], [54], [55]. YOLOv8 supports multiple vision 

tasks such as object detection [56], segmentation [57], pose 

estimation [58], tracking [59], [60], [61], and classification 

[62], [63], [64], [65], [66]. YOLO-NAS was released in May 

2023 by Deci, a company that develops production-grade 

models and tools to build, optimize, and deploy deep learning 

models. YOLO-NAS is designed to detect small objects [67], 

[68], improve localization accuracy [69], and enhance the 

performance-per-compute ratio, making it suitable for real-

time edge-device applications [62], [63], [64], [65], [66], 

[67], [68], [69], [70]. 

Upon integrating YOLO variants into humanoid robot 

soccer, rigorous testing must be conducted to evaluate the 

robot's success in performing tasks such as ball tracking, goal 

aligning, and robot collision avoidance. Research, therefore, 

is required to facilitate a systematic exploration of the 

interaction between the YOLO object detection system and 

the humanoid robot soccer, providing valuable insights into 

the system's effectiveness in real-world scenarios. Therefore, 

this research aims to bridge the identified gap by 

concentrating on evaluating the performance of three crucial 

tasks in humanoid robot soccer, which include ball tracking, 

goal aligning, and robot collision avoidance by comparing the 

capabilities of three YOLO variants encompassing YOLO-

NAS, YOLOv7, and YOLOv8. Unlike previous studies 

primarily assessing the object detection model, our approach 

involves measuring the achievements of specific humanoid 

robot soccer tasks enabled by these state-of-the-art YOLO-

NAS object detection systems. This research is expected to 

provide a comprehensive understanding of how these models 

contribute to the success of distinct tasks of humanoid robot 

soccer. 

II. METHOD 

A. Methodology 

The research was conducted in three stages, 

encompassing (1) model engineering, (2) code engineering, 

and (3) testing. The first stage (model engineering) focused 

on crafting an optimal model tailored for the experiment, 

ensuring its suitability for the envisioned objectives [71]. 

This involves model fine-tuning using a prepared dataset and 

optimizing the model. The second stage (code engineering) is 

conducted by integration into the broader robotic software 

system. The integration stage involves embedding the model 

using Pytorch and TensorRT. This integration extended to 

interfacing the model with the three specific humanoid robot 

soccer tasks (ball tracking, goal aligning, and robot collision 

avoidance), establishing a cohesive and interconnected 

system. The final stage (testing) scrutinized the performance 

of the integrated model within the context of the designated 

tasks, providing valuable insights into its real-world 

applicability and efficacy. The test was designed to evaluate 

the functionality of the newly integrated detection system 

when applied to each specific task. It aimed to ascertain the 

accuracy and effectiveness of the object detection system in 

facilitating the correct execution of tasks dependent on it. 

Controlled soccer game environments and scenarios are set 

up to conduct this test, systematically evaluating the 

utilization of the object detection system in real-world 

situations. 

B. Research Instrument 

Several instruments need to be mentioned for the 

experiment. These instruments include software and 

embedded scripts onto the rest of the robot system. The 

software consists of each model training and evaluation 

software (YOLOv7, Ultralitics, and Super Gradients). The 

researchers also utilized Netron to see the structure of the 

trained YOLO model. A video recorder script embedded into 

the rest of the robot software is utilized, and the result can be 

used to determine the tests' success accurately. A robot 

remote control software is utilized to perform the test 

experiment. 

C. Data Analysis Techniques 

The employed data analysis techniques include 

descriptive analysis. Raw testing results are subjected to this 

analysis. Friedman's Two-Way Analysis of Variance by 

Ranks, also known as Friedman's test, is also used in this 

research. It is a non-parametric statistical method that 

compares the means of three or more related groups. It 

involves ranking the data within each group, calculating a test 

statistic based on these ranks, and comparing it to a critical 

value from the chi-square distribution. If the computed 

statistic exceeds this critical value, the null hypothesis of no 

differences among the groups is rejected, indicating 

significant differences. In this research, we compared the test 

results of each model variant on three different tasks and 

determined if YOLO-NAS differs from YOLOv7 and 

YOLOv8. 

III. RESULT AND DISCUSSION 

A. Model Engineering 

The model was trained using a custom-made dataset 

consisting of 2054 images, which were partitioned into 

training, validation, and test subsets using an 80:10:10% 

ratio. These images are a collection of our robot vision 

footage concatenated with multiple image datasets found 

publicly on the Roboflow platform. There are 3 kind of 

objects that are labeled, this includes ball, goal post and robot. 

The labels are represented in a bounding boxes which hold 

the information of the rectangullar coordinates as well as the 

object class identifier. Labelimg software was used to create 

a label of each image. The model enginering resulted in 1644 
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images for training, 205 for validation, and 205 for testing. 

The researchers utilised the mosaic technique to add variety 

to the model and avoid model overfitting. Fig. 1 shows an 

example of the training datasets. 

 

Fig. 1. Examples of training datasets 

The initial training of our model was set for 100 epochs. 

The batch size was carefully chosen to fit our training 

hardware's memory capacity constraints. Three distinct 

model variants were trained using different frameworks: 

YOLOv7 was trained using Wongkinyiu's YOLOv7 

framework, YOLO-v8 with Ultralytics, and YOLO-NAS 

with Supergradients. Python notebooks were utilized to 

streamline and organize the training process for each YOLO 

variant. The training was successful in all three models, 

identified by stabilized performance improvement in 100 

training epochs as shown in Fig. 2. 

 

Fig. 2. Each YOLO model training performance 

To reduce the complexity of our model, it was 

automatically simplified using ONNX (Open Neural 

Network Exchange). Furthermore, the model’s precision is 

decreased from FP32 (Floating Point 32) to FP16 (Floating 

Potin 16), enhancing performance. Following these 

modifications, TensorRT was employed to compile the 

ONNX model. This compilation process incorporated 

techniques such as layer fusing and tensor fusing, all of which 

contribute to optimising the model’s inference performance. 

Nevertheless, it is important to acknowledge that these 

optimization approaches may slightly compromise mAP 

metrics in exchange for enhanced inference speed. 

The detection pipeline, implemented in Python, includes 

image preprocessing, inference, and post-processing stages. 

The preprocessing phase is minimal for YOLO-NAS, owing 

to the integration of an image normalization algorithm 

directly within the YOLO-NAS engine. Moreover, the 

requisite post-processing steps have been streamlined, as 

Non-Maximum Suppression (NMS) is executed within the 

TensorRT engine for all three models, contributing to an 

efficient and optimized detection process. Fig. 3 is an 

EfficientNMS Node as the end of model structure viewed 

using Netron. 

 

Fig. 3. The EfficientNMS node attached at the end of the YOLO model 

The performance metrics of the model were assessed on 

both the training device and the target deployment device. 

The unseen test split dataset is used for this evaluation. The 

primary metrics was utilized to evaluate our trained YOLO 

models were mean average precision (mAP) and inference 

speed. Comparisons were also conducted between the raw 

trained model and the TensorRT compiled model to provide 

comprehensive insight into the performance enhancements 

achieved through model optimization.  

Table I evaluates three models based on Mean Average 

Precision at 0.5 IoU. We also measure the mAP of each class. 

Table II shows the evaluation of speed metrics. The 

researchers measure the inference only speed and the whole 

pipeline from image acquisition, inference, and reading the 

model output speed. 

From the table, we can gain insight into the best model in 

terms of mAP, which is YOLOv8 with 0.926 mAP@0.5 

optimized model mAP for whole classes. Regarding speed, 

YOLOv7 has the best performance in this metric, with a total 

pipeline FPS of 28.9 on Jetson Nano. YOLO-NAS has the 
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balance in terms of speed and mAP with 0.897 optimized 

model mAP@0.5 and 17.51 FPS of Pipeline speed on Jetson 

Nano.  

TABLE I.  RAW MODEL AND OPTIMIZED MODEL EVALUATION ON MEAN 

AVERAGE PRECISION 

Model Device Engine 
mAP@0.5 

Ball Goalpost Robot Total 

YOLOv7 

RTX 3060 

12GB 

Pytorch 0.986 0.966 0.896 0.949 

TensorRT 0.959 0.811 0.623 0.798 

Jetson Nano TensorRT 0.959 0.811 0.623 0.798 

YOLOv8 

RTX 3060 

12GB 

Pytorch 0.995 0.972 0.935 0.967 

TensorRT 0.990 0.922 0.866 0.926 

Jetson Nano TensorRT 0.990 0.922 0.866 0.926 

YOLO-

NAS 

RTX 3060 

12GB 

Pytorch 0.995 0.972 0.935 0.965 

TensorRT 0.979 0.892 0.820 0.897 

Jetson Nano TensorRT 0.979 0.892 0.820 0.897 

TABLE II.  RAW MODEL AND OPTIMIZED MODEL EVALUATION ON SPEED 

METRICS 

Model Device Engine 
Speed (Seconds) Pipeline 

FPS Inference Pipeline 

YOLOv7 

RTX 3060 

12GB 

Pytorch 0.0018 0.0052 192.31 

TensorRT 0.0008 0.0017 588.24 

Jetson 

Nano 
TensorRT 0.0248 0.0346 28.90 

YOLOv8 

RTX 3060 

12GB 

Pytorch 0.0036 0.0068 147.06 

TensorRT 0.0014 0.0027 370.37 

Jetson 

Nano 
TensorRT 0.0611 0.0752 13.30 

YOLO-NAS 

RTX 3060 

12GB 

Pytorch 0.0032 0.005 200.00 

TensorRT 0.0012 0.002 500.00 

Jetson 

Nano 
TensorRT 0.0482 0.0571 17.51 

 

Fig. 4 shows the whole robot architecture. The researchers 

integrated the object detection system in Python. An 

abstraction layer, referred to as the YOLO interface, has been 

developed to streamline the integration of three different 

YOLO model versions into our object detection pipeline. 

This design choice simplifies transitioning between various 

versions of YOLO, ensuring a smoother and more efficient 

workflow to test the deployed models. 

 

Fig. 4. Robot software structure 

The controller, implemented in Python, functions as a 

ROS (Robot Operating System) node and serves as a central 

hub for communication among various nodes within the 

robot, including the walking and action nodes. Additionally, 

the controller houses a WebSocket server instance, 

facilitating communication with the web user interface. The 

node also consists of an instance of the striker module, which 

dictates the robot's behavior using a Finite State Machine 

(FSM) algorithm. Concurrently, the streamer manages 

vision-related tasks, including video capturing via OpenCV 

from GStreamer, vision recording, and hosting a live video 

streaming server using WebRTC. 

B. Integration with the Ball Tracking System 

A strategic approach is adopted to mitigate false positives 

in ball detection, particularly when the system identifies 

multiple balls. The system retains a memory of the ball’s 

previous position, serving as a vital reference point in 

subsequent iterations. This information plays a crucial role in 

accurately identifying and selecting the bounding box that 

corresponds to the nearest ball, ensuring consistency in 

tracking. 

The ball-tracking mechanism is further enhanced through 

the implementation of a Proportional Integral Derivative 

(PID) algorithm. The ball tracking system will take the picked 

bounding box of the ball position to calculate its error.  The 

PID takes an error difference with the target and gives an 

output of the head pan and tilt motion. The error is the ball 

detection relative to the center of the image. The feedback 

loop of this algorithm will always make the robot head align 

with the ball. If the ball is not at the center of the image, the 

system will force the head to perform pan and tilt motion so 

that the ball sits at the center of the camera frame. This motion 

is performed on the head so that the robot would not lose track 

of the ball. Fig. 5 shows the whole process of ball tracking in 

the robot. 

 

Fig. 5. The ball tracking algorithm represented in a flowchart 

C. Integrating with Goal Alignment 

The alignment process commences when the robot 

positions itself directly in front of the ball, necessitating the 

integration of ball and goal detection. In this specific task, it 

is imperative to distinguish between aligning the robot with 

the goal and positioning it onto the goalpost, the latter being 

the detected object. Consequently, an additional post-

processing algorithm is incorporated to achieve this precision 

in alignment. 

mailto:mAP@0.5
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First, the robot scans for the goalpost in a 180-degree span 

of the head pan. The goal yaw angle relative to the robot body 

orientation is calculated from the head yaw angle and x 

position of the detected goal boxes. This yaw position is 

collected. Then, the detection is clustered into 2 groups (left 

and right goalposts). 

Denote S where each P represents the yaw value of each 

yaw position (1). S is separated into 2 clusters G_left and 

G_right. M can be calculated using the formula mentioned in 

(2). M is used to divide the yaw position as mentioned in (3) 

and (4). 

𝑆 = {𝑃1, 𝑃2, … , 𝑃𝑛} (1) 

𝑀 =  
𝑃𝑚𝑎𝑥 + 𝑃𝑚𝑖𝑛

2
+ 𝑃𝑚𝑖𝑛 (2) 

𝐺𝑙𝑒𝑓𝑡 = {𝑃𝑖 ∈ 𝑆|𝑃𝑖 < 𝑀} (3) 

𝐺𝑟𝑖𝑔ℎ𝑡 = {𝑃𝑖 ∈ 𝑆|𝑃𝑖 ≥ 𝑀} (4) 

To get usable middle yaw of the goal information, the 

mean is calculated for each group which results in positions 

of 2 goalposts. Centre of the goal is calculated by summing 2 

goalposts together and dividing it by 2. The mathematical 

representation of this formula is mentioned in (5). 

𝑀𝑖𝑑 𝑔𝑜𝑎𝑙 =
1

2
(

∑ 𝑃𝑖
|𝐺𝑙𝑒𝑓𝑡|

𝑖=1

𝐺𝑙𝑒𝑓𝑡

+
∑ 𝑃𝑗

|𝐺𝑟𝑖𝑔ℎ𝑡|

𝑗=1

𝐺𝑟𝑖𝑔ℎ𝑡

) (5) 

After the middle of the goal is found, the robot performs 

a walking motion to align its body to the center of the goal. 

When the desired pose is achieved, the robot will stop its 

walking motion and perform a kicking motion. Fig. 6 is the 

flowchart representation of the code. 

 

Fig. 6. The flowchart representation of YOLO integration with goal 

alignment task 

Once the robot has secured the ball upfront, it is 

imperative to align it with the center of the goal to augment 

the likelihood of scoring. This task computes the discrepancy 

between the robot's heading poses and the center of the ball. 

A shifting or turning walking motion will be executed to align 

the robot with the goal's center. The objective is to enable the 

robot to align with the goal accurately from 7 meters. The 

robot should accomplish this task within a span of 120 

degrees, with the robot's pose aligning with the goal. 

D. Integrating with Robot Collision Avoidance 

The integration begins by extracting robot bounding 

boxes from the model inference. To address false positive 

detection errors related to robots, the system records robot 

positions over a sequence of five consecutive iterations, a 

parameter subject to later adjustment. Five iterations prove 

both adequate and immediate when evaluating model 

performance in this context. The system initiates an 

avoidance maneuver only when a robot consistently appears 

across all iterations. While multiple robots may be within the 

robot's vision, the developed algorithm can only track a single 

robot to count appearance consistency. The closest 

appearance of the opposing robot is selected to initiate the 

evading maneuver, following a predefined path when the 

condition is triggered. Notably, this algorithm functions 

within a finite-state machine architecture. The procedure for 

robot collision avoidance is illustrated in Fig. 7 through a 

flowchart diagram. 

 

Fig. 7. Flowchart representation of goal aligning process 

E. Testing the Ball Tracking 

To ascertain the robot's ability to track the ball, a series of 

experiments were carried out to evaluate the tracking 

system's success rate. The ball moves at speeds ranging from 

1 m/sec to 6 m/s. The number of the ball test speed is set at 

this variation of speed since this is the possible ball speed that 

are possible to occur in a humanoid robot soccer game. If the 

head of the robot can move its direction to the direction of the 

ball movement at a certain speed, the test is a success. The 

test would fail if the robot did not follow the ball's movement. 

To measure the consistency of success of the test, 10 

performed tests are sampled. The distance between the robot 

and the ball are set to 1 meter in all iterations of the tests. The 

outcomes are summarized in Table III. Three models were 

tested on each 6 variations of speeds. 

Fig. 8 shows the ongoing testing process of ball tracking. 

The ball is moved manually, and the speed will be measured 

later with the help of video recording. However, the 

measurement method utilized to gauge the object's speed is 

subject to potential inaccuracies, necessitating 

acknowledgement. The procedure unfolds as follows: the 

robot captures visual data, with a textual overlay at the 

image's corner, displaying a numerical value indicative of the 

temporal interval between successive frames. Fig. 9 shows 
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the live video recording of the robot. Subsequent analysis of 

the recording entails determining the object's displacement, 

facilitated by identifying two white markers set at 0.5 meters 

on the field, in conjunction with the aforementioned time gap. 

The resultant data is subsequently categorized according to 

varying speed intervals. 

TABLE III.  THE TEST RESULT OF THE BALL-TRACKING TASK 

Variant Speed (m/sec) 
Trials Success 

Rate 1 2 3 4 5 6 7 8 9 10 

NAS 

1 1 1 1 1 1 1 1 1 1 1 

32/60 

(53.3%) 

2 1 1 1 1 1 1 1 0 1 0 

3 0 0 1 0 0 1 1 1 1 1 

4 1 1 0 0 1 1 0 0 1 1 

5 0 0 0 0 0 1 0 0 0 1 

6 0 0 0 0 0 0 0 0 0 0 

V7 

1 1 1 1 1 1 1 1 1 1 1 

41/60 

(68.3%) 

2 1 1 1 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 1 1 

4 1 1 0 0 1 1 0 0 1 1 

5 0 0 1 0 1 0 0 0 0 1 

6 1 0 0 0 0 0 0 0 0 1 

V8 

1 1 1 1 1 1 0 1 1 1 1 

26/60 

(43.3%) 

2 1 1 1 1 1 1 1 0 1 0 

3 0 1 1 0 1 1 0 0 1 0 

4 0 1 0 0 1 1 0 0 1 0 

5 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 

 

 

Fig. 8. Ball tracking testing 

 

Fig. 9. Ball tracking testing robot vision recording 

YOLOv7 has outperformed other models in this task. Ball 

Tracking using YOLOv7 maintained its reliability until the 

ball was moving at three m/sec before losing track of the ball. 

Ball tracking using YOLO-NAS and YOLOv8 has lower 

performance. YOLOv7 can still track the ball even at the 

speed of 6 m/sec. YOLO-NAS can track the ball at a speed of 

up to 5 m/sec. YOLOv8 can track the ball at a speed of up to 

4 m/sec. Fig. 10 shows the complete comparison of 3 models' 

performance against the speed of the ball movement. 

This result is affected by the computation speed of the 

model. YOLOv7 has the fastest computational speed at 24 

ms, followed by YOLO-NAS at 48 ms and YOLOv8 at 61 

ms on Jetson Nano. The fastest computation speed 

corresponds to a faster response against faster object 

movement. A low detection frame rate caused by slower 

computational speed is the limiting factor of the ball-tracking 

task. 

F. Testing the Goal Alignment 

During the test, a successful detection prompts the robot 

to make a slight left or right turn, followed by a kicking 

motion. The test is deemed successful if the robot turns in the 

correct direction after scanning for goalposts. The results of 

the test are detailed in Table IV. 

TABLE IV.  RESULT OF GOAL ALIGNING TEST 

Models Distance (m) 
Trial 

Success Rate 
1 2 3 

NAS 

1 1 1 1 

11/12 (91.7%) 
3 1 1 1 

5 1 1 1 

7 1 1 0 

V7 

1 1 1 1 

10/12 (83.3%) 
3 1 1 1 

5 1 1 1 

7 0 0 0 

V8 

1 1 1 1 

9/12 (75.0%) 
3 1 1 1 

5 1 1 1 

7 0 0 0 

 

The goal alignment measurement is limited to only 3 for 

each distance sample since it requires enabling motion that 

costs servo age. Using only 3 samples we accumulated the 

result and YOLO-NAS has the best performance against 

another model. Only YOLO-NAS that able to successfully 

perform the goal-aligning task even at 7 meters of distance. It 

only has a single error at 7 meters of distance test. YOLO-v8 

and YOLOv7 successfully strike all tests with distances up to 

5 meters. Fig. 11 shows the robot performing the kick that has 

already successfully detected and aligned itself facing the 

goal. 

 

Fig. 10. Robot successfully performing ball aligning task 

G. Testing the Robot Collision Avoidance 

To ensure that our robot can adeptly avoid collisions with 

other robots on the field, thereby testing the efficiency of the 

deployed detection system. The robot avoidance mechanism 

discerns the positions of different robots concerning our 

robot's current position. A walking path is then generated to 

circumvent potential collisions with incoming robots. The 
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successful execution of this task signifies that the robot 

detection system is operational and ready for utilization. 

Within this task, the robot must demonstrate the ability to 

evade collisions with other robots. 

The robot collision avoidance task is rooted in robot 

detection. The test commences as the robot prepares to move 

forward. When another robot is detected in its path, our robot 

will adjust its course to the left or right, contingent on the 

position of the opposing robot. The result of this test is in 

Table V. 

TABLE V.  ROBOT COLLISION AVOIDANCE TEST RESULT 

 
Variants 

NAS V7 V8 

T
r
ia

ls
 

1 1 0 1 

2 1 0 1 

3 1 1 1 

4 1 0 1 

5 1 1 1 

6 1 1 1 

7 1 1 1 

8 1 0 1 

9 1 0 1 

10 1 1 1 

 

YOLO-NAS and YOLOv8 successfully finished all 12 

trials of the robot avoidance task. YOLO-v7, which has low 

detection metrics, could not finish all the tests with six errors 

due to low detection performance on robot datasets. 

H. Friedman’s Two-Way Analysis of Variance by Ranks 

Using Related-Samples Friedman’s Two-Way analisys of 

variance by ranks, as shown in Table VI, the researchers 

measured if there were significant differences between the 3 

models' results or not. The result shows that YOLOv7 has the 

best success rate compared to YOLO-NAS in the Ball 

tracking task. Against goal alignment task, our Friedman’s 

analisys found that YOLO-NAS has superior performance, as 

shown in Table VII. Against the Robot avoidance task, both 

YOLO-NAS and YOLOv8 nailed the task. Only YOLOv7 

that has 50% valid result as shown in Table VIII. 

The "Sig." value (significance level) reported as "<.001" 

indicates that the p-value associated with the test statistic is 

less than 0.001. This means that the probability of observing 

the data, assuming that the null hypothesis is true and that the 

distributions are the same, is less than 0.001. We reject the 

null hypothesis since the significance level is set at 0.05, and 

the p-value is much smaller than 0.05. Table IX of the 

Hypothesis Test Summary shows sufficient evidence to 

conclude that the distributions of NAS, V7, and V8 are 

different. It is also important to mention that the p-value 

provided is an asymptotic approximation, which means it's 

valid for large sample sizes. However, exact significance may 

differ for smaller sample sizes. 

TABLE VI.  BALL TRACKING TEST ANALISYS 

Model Valid Frequency Valid Percent Cumulative Percent 

NAS 
0 28 46.7 46.7 

1 32 53.3 100.0 

V7 
0 19 31.7 31.7 

1 41 68.3 100.0 

V8 
0 34 56.7 56.7 

1 26 43.3 100.0 

TABLE VII.  GOAL ALIGNMENT TEST ANALISYS 

Model Valid Frequency Valid Percent Cumulative Percent 

NAS 
0 1 8.3 8.3 

1 11 91.7 100.0 

V7 
0 2 16.7 16.7 

1 10 83.3 100.0 

V8 
0 3 25.0 25.0 

1 9 75.0 100.0 

TABLE VIII.  ROBOT AVOIDANCE TEST ANALISYS 

Model Valid Frequency Valid Percent Cumulative Percent 

NAS 
0 0 0 0 

1 10 100.0 100.0 

V7 
0 5 50.0 50.0 

1 5 50.0 100.0 

V8 
0 0 0 0 

1 10 100.0 100.0 

TABLE IX.  HYPOTHESYS TEST RESULTS 

Null Hypothesis Test Sig.a,b Decision 

The distributions of NAS, V7 

and V8 are the same. 

Ball Tracking .001 
Reject the null 

hypothesis. 

Goal 

Alignment 
.223 

Retain the null 

hypothesis. 

Robot 
Avoidance 

.007 
Reject the null 

hypothesis. 

 

 Using Pairwise Comparison in Table IX, using between 

two samples shows the comparison of each test result. The 

test statistic is a numerical value calculated from the data that 

quantifies the sample relationship. The standard error 

indicates how much the sample statistic is expected to vary 

from sample to sample. The significance value (often denoted 

as the p-value) indicates the probability of observing the 

observed test statistic if the null hypothesis were true. A low 

p-value suggests that the observed difference between 

samples or groups is unlikely to have occurred by random 

chance alone, leading to the rejection of the null hypothesis. 

Adjusted Significance (Adj. Sig.) refers to a corrected or 

adjusted significance value, possibly accounting for multiple 

comparisons or other factors by analyzing these fields in the 

pairwise comparison table, we can assess the differences or 

relationships between the samples or groups being compared 

and determine whether these differences are statistically 

significant or not. 

From the Table X We can conclude that statistical data 

related to different tests, including "Ball Tracking," "Goal 

Alignment," and "Robot Avoidance," with comparisons 

between various sample pairs such as V8-NAS, V8-V7, and 

NAS-V7. The key parameters analysed are the test statistic, 

standard error, standard test statistic, significance (Sig.), and 

adjusted significance (Adj. Sig.). For instance, in the "Ball 

Tracking" test, the comparison between samples V8-V7 

yielded a test statistic of 0.375, a standard error of 0.183, a 

standard test statistic of 2.054, a significance of 0.04, and an 

adjusted significance of 0.12. This data suggests a significant 

difference between these samples in the context of ball 

tracking. 

In the "Goal Alignment" test, the comparison between 

samples V8-NAS produced a test statistic of 0.25, a standard 

error of 0.408, a standard test statistic of 0.612, a significance 

of 0.54, and an adjusted significance of 1. This indicates that 
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there is no significant difference between these samples in 

terms of goal alignment. Similarly, the "Robot Avoidance" 

test shows varying results for different sample comparisons, 

such as V7-NAS, V7-V8, and NAS-V8, with corresponding 

test statistics, standard errors, standard test statistics, 

significances, and adjusted significances. These findings 

provide valuable insights into the performance of the samples 

across different tests, allowing for informed decision-making 

in the context of the respective applications. 

TABLE X.  PAIRWISE COMPARISON 

Test 
Sample 1-

Sample 2 

Test 

Statistic 

Std. 

Error 

Std. Test 

Statistic 
Sig. 

Adj. 

Sig.a 

Ball 

Tracking 

V8-NAS .150 .183 .822 .411 1.000 

V8-V7 .375 .183 2.054 .040 .120 

NAS-V7 -.225 .183 -1.232 .218 .653 

Goal 

Alignment 

V8-V7 .125 .408 .306 .759 1.000 

V8-NAS .250 .408 .612 .540 1.000 

V7-NAS .125 .408 .306 .759 1.000 

Robot 

Avoidance 

V7-NAS .750 .447 1.677 .094 .281 

V7-V8 -.750 .447 -1.677 .094 .281 

NAS-V8 .000 .447 .000 1.000 1.000 

   

IV. CONCLUSION 

Based on our test results, YOLO-NAS was able to be used 

for three tasks of humanoid robot soccer. In the Ball tracking 

task, YOLO-NAS achieved 53.3% success rate from 60 

samples. In the goal alignment task, YOLO-NAS achieved 

91.7% success rate. Finally, in the robot avoidance task, 

YOLO-NAS gained a success rate of 100% in 10 samples. 

Based on the statistical data provided, we can conclude 

that in the "Ball Tracking" test, there is a significant 

difference between samples V8-V7, as indicated by the test 

statistic of 0.375 and a significance level of 0.04. However, 

there is no significant difference between samples V8-NAS 

and NAS-V7. No significant differences exist between the 

sample pairs for the "Goal Alignment" test, as all the test 

statistics have p-values above 0.05. The "Robot Avoidance" 

test shows a marginally significant difference between 

samples V7-NAS and V7-V8, with a test statistic of 0.75 and 

a significance level of 0.094. However, there is no significant 

difference between samples NAS-V8. In summary, the 

statistical analysis suggests that there are significant 

differences in the performance of the samples in the "Ball 

Tracking" and "Robot Avoidance" tests. In contrast, no 

significant differences were observed in the "Goal 

Alignment" test. 

The limited data sample in this research stems from the 

constraints imposed by the actuators utilized in the humanoid 

robot soccer system. Due to these actuators' specific 

capabilities and limitations, the number of samples available 

for analysis was restricted. Consequently, the findings of this 

study may not fully capture the breadth of potential outcomes. 

It is recommended that future research endeavors expand the 

sample size to encompass a wider range of scenarios and 

conditions. By incorporating a more extensive dataset, 

researchers can achieve more robust and accurate results, 

thereby enhancing the reliability and validity of their findings 

in humanoid robot soccer. 

Based on the insights and experiences garnered from our 

recent research, we have found some recommendations to 

guide and enhance future studies in this domain. As our 

existing hardware only supports FP-16 (Floating Point 16) 

quantization, future studies should consider employing newer 

versions of Jetson devices that can handle INT-8 (Integer 8) 

quantization, which could yield faster inference speeds. Our 

work only compares the performance of the models on 

training hardware (Nvidia RTX 3060) and deployment 

devices (Nvidia Jetson Nano 4 GB). Future research should 

use the newer hardware with extended computing capabilities 

for better detection performance. To improve the frame-per-

second (FPS) rate, future work should explore the utilization 

of C++ for interfacing with the GPU, as opposed to the 

Python-based pipeline used in our research. 
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