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Abstract—This study addresses the challenge of detecting 

network intrusions by exploring the efficacy of ensemble 

learning methods over traditional machine learning models. The 

problem of network security is exacerbated by sophisticated 

cyber-attack techniques that standard single model approaches 

often fail to counter effectively. Our solution employs a robust 

ensemble methodology to improve detection rates. The research 

contribution lies in the comparative analysis of individual 

machine learning models—K-Nearest Neighbors (KNN), 

Decision Trees (DT), and Gradient Boosting (GB)—against 

ensemble methods employing soft and hard voting classifiers. 

This study is one of the first to quantify the performance gains 

of ensemble methods in the context of network intrusion 

detection. Our methodological approach involves applying these 

models to the WSNBFSF dataset, which consists of traffic types 

including normal operations and various attacks. Performance 

metrics such as accuracy, precision, recall, and F1-score are 

calculated to assess the effectiveness of each model. The 

ensemble methods combine the strengths of individual models 

using voting systems, which are tested against the same metrics. 

Results indicate that while individual models like DT and GB 

achieved near-perfect accuracy scores (99.95% and 99.9%, 

respectively), the ensemble models performed even better. The 

soft voting classifier achieved an accuracy of 99.967%, and the 

hard voting classifier reached 100%, demonstrating their 

superior capability in network traffic classification and 

intrusion detection. In conclusion, the integration of ensemble 

methods significantly enhances the detection accuracy and 

reliability of network intrusion systems. Future research should 

explore additional ensemble techniques and consider scalability 

and class imbalance issues to further refine the efficacy of 

intrusion detection systems. 

Keywords—Network Intrusion Detection; Machine Learning; 

Ensemble Learning; K-Nearest Neighbors; Decision Tree; 

Gradient Boosting; Voting Classifiers; Cybersecurity. 

I. INTRODUCTION 

The widespread adoption of advanced technologies such 

as big data, the Internet of Things (IoT), and cloud computing 

has resulted in a phenomenon known as data deluge, where 

there is a massive simultaneous generation of data by humans 

and IoT devices [1]. This has significantly impacted both 

society and the business world in various ways. McKinsey, 

as referenced in [2], highlights that the competitive advantage 

in today’s global market is driven by effectively utilizing big 

data and cutting-edge technologies for productivity and 

efficiency gains. Consequently, these infrastructures have 

garnered attention not only from governments and industries 

but also from malicious actors attempting to gain 

unauthorized access to valuable and sensitive data . 

However, it’s important to note that the data generated in 

many big data and real-world applications often exhibit 

asymmetric and symmetric distributions. For instance, there 

are symmetric relationships among social network data and 

asymmetric probability distributions between mali- cious and 

regular network traffic. Despite the presence of missing 

information in these applications, they still contain valuable 

hidden patterns and knowledge. Therefore, there is a need for 

efficient methods to filter and extract these valuable patterns 

[3] . 

Additionally, the increasing reliance on the internet and 

its services has exposed computer systems and networks to 

persistent cybersecurity risks [4]. Various types of cyber-

attacks have evolved significantly over time, posing serious 

threats to governments, businesses, and individuals alike [5]. 

Despite efforts by security experts to implement defense 

mechanisms, hackers continuously find ways to carry out 

sophisticated and automated cyber-attacks, resulting in 

substantial damages. 

Intrusion Detection Systems (IDSs) have gained 

popularity in recent decades due to their ability to detect 

intrusions in real-time [4][6].  

For example, in [7], the authors discuss the importance of 

security properties in monitoring cloud computing platforms 

and propose a novel three-level cloud- based IDS that uses 

rules to represent monitoring properties effectively. This 

approach leverages virtualization architecture to enhance 

security significantly and support automatic reconfigurations 

of applications . 

According to [8], Intrusion Detection involves monitoring 

events in a computer system or network and analyzing them 

for signs of intrusion, where an intrusion is an attempt to 

bypass security mechanisms and compromise 

Confidentiality, Integrity, and Availability (CIA). IDSs, as 

defined in [9][10], are hardware or software programs that 

monitor malicious activities within computer systems and 

networks based on various parameters such as network 

packets, system logs, and rootkit analysis. Detailed roles and 

functionalities of standard IDSs can be found in [11]. 

Intrusion Detection Systems (IDS) have evolved from 

simple mechanisms designed in the early 1980s to 

sophisticated networks capable of detecting and mitigating 

emerging threats through advanced heuristic and behavioral 

techniques [40]. Today, IDS methodologies primarily include 

misuse (signature-based) and anomaly-based detection 

systems. Misuse detection systems are adept at recognizing 
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known threats but fail against novel, unseen attacks 

[Reference to studies on misuse detection systems]. 

Anomaly-based systems can identify zero-day exploits by 

detecting deviations from normal activity; however, they 

suffer from high false positive rates, leading to potential 

oversight of legitimate threats [41]. However, in recent years, 

a hybrid-based technique has emerged as a more robust and 

effective approach by combining the strengths of both 

methods [12]. 

In a Misused Intrusion Detection System (MIDS), 

specific signatures of known attacks are stored and matched 

with real-time network events to detect intrusions or intrusive 

activities. Meanwhile, MIDS has a good track record for 

known malicious activities but it has a dip in foreseeing new 

attacks as well as processing a huge amounts of signature 

profiles [13][14][15]. In addition, as case shown in 17 where 

a signature-base system attained high accurate detection of 

SQL injects in databases, but the system is limited to the SQL 

type of intrusion . 

As opposed to behavioral anomaly-based IDS, anomaly-

based IDSs follow a pattern of behaviors, and it is when these 

behaviors change in an unusual way that it becomes a 

possible attack. With such detection, IDSs are able to detect 

new attacks like zero-day exploits [16]. On the other hand, 

some of the issues that they confront are not specific to this 

war, including a high rate of false alerts that can result from 

the rapid improvement of cyber-attack techniques [17]. As a 

consequence, [18] describes an optimized anomaly-based 

ensemble classifier, which efficacy and precision is 

reportedly the best . 

By all means, IDSs are developed intensively while the 

rest problems, e.g. missing the attack, inconsistent accuracy, 

sending wrong alarms, etc. stay open [19]. 

 Machine learning algorithms have recently appeared as 

the most frequently used tools to solve these problems, with 

the supervised learning and unsupervised learning being most 

typical approaches [10]. A supervised learning model relies 

on labeled training data to achieve high accuracy for 

recognized attacks but it is often hard to scale it out, while an 

unsupervised one can work with unlabeled data and therefore 

is easily scalable and affordable [20] .  

Recent advancements have integrated machine learning 

models to enhance IDS capabilities. For instance, a 

lightweight IDS tailored for the IoT context uses a Support 

Vector Machine (SVM) classifier to detect DDoS attacks 

with minimal computational resources [38]. Similarly, 

another study compares various ML algorithms—Logistic 

Regression, SVM, Decision Tree, Random Forest, and 

Artificial Neural Network—in detecting attacks and 

anomalies in IoT infrastructure, achieving high accuracy and 

demonstrating the effectiveness of ensemble approaches [39]. 

Despite the advancements, single ML models in IDS face 

several challenges that compromise their effectiveness in 

dynamic cybersecurity environments. Firstly, these models 

are prone to overfitting, performing well on training datasets 

but failing to generalize to new, unseen data. This issue is 

critical in cybersecurity, where new types of attacks 

constantly emerge. Secondly, single models often struggle 

with handling diverse data and attack types, typically being 

optimized for specific scenarios and therefore not performing 

well across varied environments or against different kinds of 

threats. Additionally, once trained, these models can be 

inflexible, requiring comprehensive retraining to adapt to 

new threats, a process that is both time-consuming and 

resource-intensive. Moreover, even the best-performing 

single models have limitations in terms of accuracy, recall, 

precision, and other metrics, particularly in complex, noisy, 

or imbalanced datasets typical of cybersecurity settings. 

Finally, individual models may harbor unique biases or 

assumptions that can lead to errors, affecting the reliability 

and robustness of the IDS. These limitations underscore the 

need for ensemble learning approaches that combine multiple 

models to mitigate these issues, enhancing both the 

adaptability and accuracy of intrusion detection systems. 

Building on the existing foundation and addressing the 

gaps identified, this study proposes a focused approach to 

enhance the effectiveness and efficiency of Intrusion 

Detection Systems (IDS) through the integration of ensemble 

learning techniques. The specific research objectives are to: 

1. Develop and test a robust ensemble learning framework 

that combines multiple machine learning models to 

improve the detection accuracy and generalization across 

diverse cybersecurity scenarios. 

2. Investigate the performance of this ensemble approach in 

comparison to traditional single-model IDS methods, 

particularly in its ability to reduce overfitting and adapt to 

new, emerging cyber threats without extensive retraining. 

3. Conduct a comparative analysis with previous research to 

establish the benchmarking performance of the proposed 

ensemble framework and underscore its contributions to 

the field. 

The novelty of this research lies in its strategic focus on 

ensemble learning as a solution to the inherent limitations of 

single-model IDS, such as vulnerability to overfitting and 

poor adaptability to new attack vectors. By leveraging a 

variety of machine learning algorithms—such as K-Nearest 

Neighbors (KNN), Decision Tree (DT), and Gradient 

Boosting (GB)—this study aims to create a more dynamic 

and flexible IDS that can respond more effectively to the 

evolving landscape of cyber threats. Ensemble methods, by 

integrating diverse models, offer a promising approach to 

overcome the performance bottlenecks of traditional IDS 

solutions, particularly in handling complex, noisy, and 

imbalanced data sets typical in cybersecurity environments. 

The contributions are twofold: 

1. Enhanced Detection Capability: The research empirically 

validates that ensemble learning markedly elevates the 

detection rates of intrusion detection systems (IDS). By 

integrating multiple machine learning models, this 

approach is demonstrated to effectively identify both 

known threats and novel cyber anomalies that elude 

traditional single-model systems. This enhancement not 

only strengthens security protocols but also extends the 

functional capabilities of existing IDS frameworks. 
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2. Adaptability and Scalability: Additionally, this study 

showcases the superior adaptability and scalability of 

ensemble-based IDS solutions. These systems adeptly 

adjust to evolving cyber threat landscapes with minimal 

need for manual reconfiguration or extensive retraining. 

This flexibility ensures that security measures remain 

robust and effective, even as new types of threats emerge, 

thereby providing a sustainable, scalable solution for 

maintaining high security levels across diverse 

operational environments. 

In conclusion, this research is expected to make 

substantial contributions to the field of cybersecurity by 

demonstrating the practical benefits and strategic importance 

of employing ensemble learning techniques in intrusion 

detection. The anticipated results are likely to influence both 

future research directions and the development of more 

effective, resilient cybersecurity technologies. 

II. RELATED WORK 

Rose et al. [21] constructed an approach that depends 

mainly on the network profiling and a machine learning 

system as a cyber safeguarding technique for IoT devices. 

The anomaly-based intrusion system is built that perpetually 

monitors networked device activites to discern tempering and 

suspicious operations. Their methodology, with its reliability 

of 98.35%, achieved an accuracy rate equivalent to the 

number of false-positive alarms. It was accomplished by 

eventually integrating the methodology onto the Cyber-Trust 

platform. 

In the study by Ali et al. [22], a comprehensive machine 

learning approach was employed to identify IoT devices, 

utilizing NFStream to extract 85 attributes from network 

traffic. The study narrowed down these attributes to 20 using 

the information gain method and tested six machine learning 

models, with random forest and naïve Bayes classifiers 

achieving up to 99% accuracy in identifying IoT devices. 

El-Sayed et al. [23] analyzed seven supervised learning 

algorithms to determine the most efficient one for IoT 

security, grouping them into CNN-based classifiers (two-

layer CNN, four- layer CNN, VGG16) and traditional 

classifiers (logistic regression, support vector machine, and 

K-nearest neighbors). They found that the SVM algorithm 

performed best, reaching 94% accuracy on MobileNetv2 

features, due to its efficient and resource-light training 

process. 

Le K-H et al. [24] introduced IMIDS, a smart intrusion 

detection system for IoT, centered around a lightweight 

convolutional neural network that efficiently classifies 

various cyber threats. 

The system’s performance significantly improved with 

additional training data from an attack data generator, 

achieving an average F-measure of 97.22%, indicating its 

potential as an effective IDS for IoT environments. 

Joo et al. [25] proposed an IoT intrusion detection system 

based on deep learning, using a CNN to achieve 86.2% 

accuracy. They enhanced this with a hybrid method, 

incorporating machine learning classifiers instead of the 

CNN’s fully connected layers, which increased accuracy to 

around 87%. The integration of the Xception model with a 

bidirectional GRU further improved performance, yielding a 

95.6% accuracy rate. 

Bendiab et al. [26] designed a new concept which is 

driven by deep learning techniques and visual representing 

that is used for the analysis of malware traffic. The main 

target is zero-day malware which works in different ways. 

This method has been tested on a dataset containing 1,000 

pcap files, each comprising 500 malware and 500 benign 

files. It exhibited good detection with 94.50 percent malware 

detection rate with the ResNet50 model. 

A study on machine leaning techniques [27] that result 

from MQTT-based attacks was evaluated by six machine 

learning methods in respect to both unidirectional and 

bidirectional flow features at different abstraction levels, thus 

preventing the readers from understanding clearly the key 

take away of the study. The findings of the study, based on 

MQTT data simulation, gave evidence of mapping 

capabilities between the flow based features and MQTT type 

attacks, as well as the model accuracy that was at quite a high 

level; 99.04 

Sapre et al. [24] explored the head to head comparison of 

KDDCup99 and NSLKDD datasets to gauge the performance 

of machine learning classifiers. They concluded that the 

NSL-KDD dataset is superior, as classifiers trained on it were 

less prone to redundancy and exhibited more accurate 

performance, despite a 20.18% lower accuracy compared to 

those trained on the KDDCup99 dataset. 

Liu et al. [28] investigated the impact of various attacks 

on IoT sensors and networks using the NSL-KDD dataset, 

evaluating eleven machine learning techniques. Their 

findings indicated that tree-based and ensemble methods 

outperformed others, with XGBoost leading in accuracy 

(97%), MCC (90.5%), and AUC (99.6%). The study also 

highlighted the effectiveness of the expectation-

maximization technique in detecting attacks, surpassing the 

naïve Bayes classifier by 22% in accuracy. 

Amouri et al. [29] utilized a two-stage process to 

differentiate benign and malicious nodes in a network. 

Initially, data were gathered by dedicated sniffers (DSs), 

followed by the generation and dispatch of the 

Comprehensive Cyber-Intelligence (CCI) to the super node 

(SN). The SN then applied linear regression on the CCIs from 

various DSs to identify malicious nodes. They tested this 

approach using random waypoint (RWP) and Gauss Markov 

(GM) mobility models, focusing on black hole and DDoS 

attacks. The system demonstrated high detection rates, 

particularly in high-velocity conditions, achieving over 98% 

effectiveness. 

Fenanir et al. [30] developed a lightweight IDS 

employing a filter-based feature selection method to 

minimize computational demands. Their investigation 

included various machine learning algo- rithms, with the 

decision tree (DT) method emerging as the most effective, 

demonstrating high accuracy across different datasets, 

reaching up to 98%. 

Islam et al. [31] explored various IoT threats and 

evaluated both shallow and deep learning IDSs, using 
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decision tree (DT), random forest (RF), SVM, DNN, DBN, 

LSTM, stacked LSTM, and Bi-LSTM models. They assessed 

these models using multiple datasets, including NSL-KDD 

and IoTID20, finding that deep learning-based IDSs 

outperformed their shallow counterparts, with notable 

accuracies up to 98.79%. 

Ahmad et al. [32] proposed a feature clustering approach 

using the UNSW-NB15 dataset, ad- dressing common data 

analysis challenges like overfitting and unbalanced datasets. 

They applied machine learning methods, including random 

forest (RF), support vector machine (SVM), and artificial 

neural networks, achieving significant accuracies in binary 

and multiclass classifications, with RF showing particularly 

high accuracy. 

Saba et al. [33] introduced a two-stage hybrid method for 

enhancing IDS accuracy. Initially, a genetic algorithm (GA) 

selected pertinent features, followed by the application of 

SVM, ensemble classifiers, and decision trees, achieving a 

remarkable 99.8% accuracy on the NSL-KDD dataset. 

Smys et al. [34] proposed a hybrid CNN model for an IoT 

IDS, capable of detecting various types of attacks. Their 

approach demonstrated a high sensitivity to threats, with an 

accuracy rate of 98.6%. 

Papafotikas et al. [35] developed a digital system that uses 

an ML-based clustering method, specifically K-means, to 

detect suspicious activities in IoT devices, showcasing 

effective identifica- tion capabilities. 

Lastly, in [36], an IDS utilizing a combined machine 

learning model was introduced, integrating three different 

datasets to create a novel architecture, resulting in a 

promising accuracy of 95.18%. 

Table I presents a summary of previous works about 

IDSs. 

TABLE I.  SUMMARY OF RELATED WORKS 

Ref. Study Description Key Findings 

[21] 

Rose et al. developed a network profiling 
and machine learning framework to safe-guard IoT devices, 

employing an anomaly-based intrusion detection system tested 

on the Cyber-Trust platform. 

High efficacy in detecting tampering and suspicious activities 

with 98.35% ac curacy and false-positive rate. 

[22] 

Ali et al. used NFStream to extract 85 

attributes from network traffic, narrowing them down to 20 

using the information gain method and testing six machine 
learning models. 

Random forest and naïve Bayes classifiers achieved up to 

99% accuracy in identifying IoT devices. 

[23] 

El-Sayed et al. analyzed seven supervised 

learning algorithms to find the most efficient for IoT security, 

comparing CNN-based and traditional classifiers. 

SVM algorithm performed best with 94% accuracy using 
MobileNetv2 features. 

[24] 

Le K-H et al. introduced IMIDS, a smart 

intrusion detection system for IoT, based on a lightweight 

convolutional neural net- work. 

Improved performance with additional data, achieving a 
97.22% F-measure. 

[25] 
Joo et al. proposed a deep learning-based 

IoT intrusion detection system, enhancing it with a hybrid 

method incorporating machine learning classifiers. 

Achieved 95.6% accuracy with the integration of the Xception 

model and a bidirectional GRU. 

[26] 
Bendiab et al. developed a method for IoT 

security using deep learning and visual rep resentation to analyze 

malware traffic, targeting zero-day malware. 

Demonstrated a 94.50% malware detection rate us ing the 

ResNet50 model. 

[27] 
A study on MQTT-based attacks evaluated six machine 

learning techniques using packet-based and flow-based features. 

High model accuracy of 99.04% in distinguishing  MQTT 

based attacks. 

[37] 
Sapre et al. compared the KDDCup99 and NSLKDD datasets 

to assess the performance of machine learning classifiers. 

NSLKDD dataset proved superior, showing more accurate 

performance with less redundancy. 

[28] 

Liu et al. investigated various attacks on 

IoT sensors and networks using the NSLKDD dataset, 
evaluating eleven machine learning techniques. 

XGBoost was the most effective with 97% accuracy, 90.5% 

MCC, and 99.6% AUC. 

[29] 

Amouri et al. applied a two-stage process to differentiate 

benign and malicious nodes using linear regression on data 
collected by dedicated sniffers. 

Demonstrated high detection rates, particularly in high 

velocity conditions, with over 98% effectiveness. 

[30] 

Fenanir et al.   developed a lightweight 

IDS using a filter-based feature selection method and 
evaluated various machine learning algorithms. 

Decision tree method showed high accuracy across different 

datasets, reaching up to 98%. 

[31] 
Islam et al. evaluated both shallow and deep learning IDSs 

using various models and datasets. 

Deep learning-based IDSs outperformed shallow ones, with 

accuracies up to 98.79%. 

[32] 
Ahmad et al. proposed a feature clustering approach to address 

data analysis challenges using the UNSW-NB15 dataset. 
Random forest achieved high accuracy in binary and 

multiclass classifications. 

[33] 

Saba et al.  used a two-stage hybrid method 

for enhancing IDS accuracy, including a genetic algorithm for 

feature selection. 

Attained 99.8% accuracy on the NSLKDD dataset. 

[34] 

Smys et al. suggested a hybrid CNN model 

for an IoT intrusion detection system to identify various 

types of attacks. 

The model was highly sensitive to threats, with a 98.6% 
accuracy rate. 

[35] 
Papafotikas et al. developed a digital system using K-means 

clustering to detect suspicious activities in IoT devices. 
Showcased effective iden tification capabilities. 

[36] 

An IDS utilizing a fused machine learning 

model was proposed, integrating three different datasets under 
a novel built architecture. 

Promising accuracy of  95.18%. 
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III. PROPOSED  METHODOLOGY  

The adopted methodology, Fig. 1 shows, is a sequential 

process combining Ensemble Learning to spot any 

irregularities and attacks in the dataset. Data preprocessing is 

the starting point in the process. Data should be transformed 

into the required format for analysis. Following this, the 

method branches into three different machine learning 

models: KNN, DT, and GB, each one is a method useful for 

making forecasts. 

These predictions are then consolidated through two 

distinct voting mechanisms: soft voting and hard voting. Soft 

voting is about the probability of each class to give a final 

decision and hard voting is, the most popular prediction out 

of the models. Later, the proposed forecasts are evaluated 

using several metrics to figure out how accurate the ensemble 

technique is. 

The technique that has been used here, blends the 

strengths of different machine learning models, to increase 

the accuracy of malicious versus benign node identification 

predictions in a network. This approach seeks to exploit the 

individualistic features every model has, combining them to 

make the best decision with regard to their integrity. 

Evaluation metrics help us to measure the efficiency of this 

method in one way or another. 

 
Fig. 1. Proposed Scheme 

A. Dataset Overview  

The analysis of DDoS attack patterns in WSNs is based 

on the WSNBFSF data which is a collection of network 

traffic captured specifically for the purpose of the 

experiment. It incorporates precise representations of 

Blackhole, Flooding, as well as Selective Forwarding attacks. 

This database of datasets was created with a specified 

wireless network environment in a con- trolled manner. 

These kinds of attacks, which could happen in any IT system, 

are also of great relevance to the area of network security 

because of their ability to interfere with operations. 

While meticulously preprocessing the dataset, raw 

network logs were reduced to structured format, which is 

good enough for analytical use. This consequently leads to a 

dataset that has 16 features and commit to 312,106 records. 

The WSNBFSF dataset down comes to four types of 

network traffic comprising of Normal traffic and Blackhole, 

Flooding, and Selective Forwarding attacks data instances. 

This kind of a categorization moreover facilitates the more 

focused analysis of assault vectors, bringing to the field of 

cybersecurity in wireless sensor networks useful results. 

B. Data Preprocessing  

Our investigation commenced with the WSNBFSF 

dataset, encompassing data indicative of normal network 

behavior and that characteristic of three types of attacks: 

Blackhole (BH), Flooding (FF), and Selective Forwarding 

(SF) within wireless sensor networks. The first step in our 

process involved ensuring secure data transfer, followed by 

employing a data manipulation library for deeper processing 

to unravel underlying structures and patterns. 

An initial visual inspection of class distribution, depicted 

in Fig. 2, highlighted the dataset's composition, revealing a 

significant class imbalance. The rationale behind addressing 

class imbalance is to prevent models from favoring the 

majority class and overlooking the minority class, which 

could result in biased and unreliable predictions. To address 

this, we applied class resampling techniques to ensure an 

equitable class distribution. This downsampling process, 

illustrated in Fig. 3, involved reducing the size of larger 

classes to match that of the smallest class, thus achieving 

uniformity across all classes. Downsampling was chosen to 

maintain the integrity of the original dataset without 

introducing synthetic variability. 

 
Fig. 2. Distribution of classes before downsampling 

 
Fig. 3. Distribution of classes after downsampling 
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The resampling algorithm employed non-replacement 

sampling to create a balanced dataset, thereby mitigating the 

potential bias introduced by class imbalance. The feature 

segregation process subsequently identified and isolated the 

various features and classes within the dataset. To further 

standardize the dataset and ensure that each feature 

contributes equally to analytical models, we applied feature 

scaling using the standardization equation: 

𝑧 =
(𝑥 − 𝜇)

𝜎
 

where 𝑧 is the standardized score, 𝑥 is the original value, 𝜇 is 

the mean of the feature values, and 𝜎 is the standard deviation 

of the feature values. This is critical for algorithms that are 

sensitive to the scale of the data and facilitates faster 

convergence for optimization algorithms. 

Finally, we partitioned the data into two subsets: one for 

training the models and another reserved for evaluation tasks. 

The split was conducted with an 80-20% distribution, 

allocating 80% of the data for training and 20% for testing 

purposes. The choice of an 80-20 split is a well-established 

practice, balancing the need for a substantial training dataset 

with the necessity of a robust test set for model validation. 

This standard partitioning approach, prevalent in machine 

learning processes, facilitates a robust evaluation of the 

models' performance. 

C. Machine Learning Models  

Our selection of the KNN, Decision Tree, and Gradient 

Boosting models was a deliberate decision based on the unique 

attributes each model brings to the table, particularly for the 

complexities of intrusion detection in IoT environments. KNN 

was specifically chosen for its operational simplicity and its 

effective utilization of proximity in feature space as a key to 

classification, a quality that serves the IoT security domain 

well due to the varied nature of the device profiles and the 

subtleties of their interactions [42]. This model's reliance on the 

nearest neighbor rule makes it particularly responsive to local 

patterns within the data, which is essential when the goal is to 

detect anomalous behaviors that may indicate a security 

breach. 

Decision Trees were selected for their ability to break down 

the decision process into a series of straightforward questions 

and answers—a method that not only performs well with 

categorical and continuous input but also provides clear 

explanations for each decision, a crucial factor when actions 

may need to be justified or reviewed in a security context. Their 

structured approach to decision-making, coupled with the 

interpretability of the resulting tree, offers an invaluable asset 

in establishing transparent and trustable security protocols 

within IoT systems [43]. 

Gradient Boosting stands out due to its systematic approach 

to learning from mistakes. It doesn't merely learn; it evolves by 

intensifying its focus on instances that previous iterations have 

failed to classify correctly. This adaptability makes Gradient 

Boosting especially potent for intrusion detection, where it is 

essential to catch and adapt to new and sophisticated attack 

vectors. By combining multiple weak learners and directing 

efforts towards improving their mistakes, Gradient Boosting 

converges to a strong predictive model capable of handling the 

diverse and dynamic nature of IoT security threats [44]. 

The intrinsic features of these models, including KNN's 

agility, Decision Tree's clarity, and Gradient Boosting's 

progressive learning, make them not just individually capable 

but also collectively powerful when used in concert within an 

ensemble method. These models cover a broad spectrum of 

machine learning approaches—from instance-based learning 

to ensemble methods, ensuring a robust defense against the 

varied and evolving threats characteristic of IoT networks. 

D. Ensemble Learning  

Ensemble learning represents a sophisticated paradigm in 

machine learning that involves combining multiple models to 

achieve superior predictive performance compared to 

individual models operating in isolation [45][46]. This 

approach is particularly effective in addressing complex 

problems like intrusion detection in IoT environments, where 

the diversity of attack vectors and the subtleties of normal 

versus malicious activities can be challenging for any single 

model to handle accurately. 

In this study, we implemented both soft and hard voting 

techniques as part of our ensemble strategy. Soft voting is used 

to calculate the mean probability of class predictions from 

various models, selecting the class with the highest mean 

probability as the final prediction. This method is particularly 

beneficial when different models deliver probabilities with 

varying levels of confidence, allowing for a more nuanced 

decision-making process that leverages the strengths of each 

model’s predictive confidence [47]. 

On the other hand, hard voting employs a majority rule 

approach where the final class prediction is the one that 

receives the most votes from the individual models within the 

ensemble. This method assumes equal weight for each model's 

prediction, providing a straightforward and robust decision-

making mechanism that reduces the risk of error from any 

single model's misjudgment. It is particularly effective in 

situations where a clear consensus among different models can 

indicate a higher confidence in the prediction outcome [47]. 

These ensemble techniques were not selected arbitrarily. 

They were chosen based on their ability to integrate and 

harmonize the diverse strengths of the individual models used 

in this research—KNN, Decision Tree, and Gradient Boosting. 

Each model contributes its unique perspective to the ensemble, 

thereby enhancing the overall decision-making process. KNN 

contributes localized sensitivity to the proximity of data points, 

Decision Trees provide interpretability and clear decision 

pathways, and Gradient Boosting offers increasing accuracy 

over iterations by focusing on previously misclassified 

instances. 

Together, these ensemble learning methods enhance the 

overall robustness, accuracy, and reliability of the intrusion 

detection system [48]. By effectively pooling the predictions 

of individual models, the ensemble approach mitigates 

individual model biases or weaknesses, leading to improved 

generalization across diverse IoT network scenarios. This 

methodological choice is crucial for developing a scalable and 

effective security solution capable of adapting to the evolving 

landscape of cyber threats in IoT environments [49]. 
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E. Evaluation Measures  

The evaluation of machine learning models is crucial to 

understanding their performance and appropriateness for 

specific tasks. This section elaborates on the evaluation metrics 

briefly mentioned in the methods section, including their 

rationale, equations, and limitations. 

1) Confusion Matrix 

The confusion matrix is a fundamental tool used to 

visualize the performance of a classification model. It provides 

a matrix format that shows the counts of true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN) 

predictions, offering a clear picture of both the successes and 

errors of the model [50]. 

2) Accuracy 

Accuracy measures the proportion of total correct 

predictions (both positive and negative) made by the model out 

of all predictions. 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

3) Precision 

Precision assesses the accuracy of positive predictions. It is 

particularly useful in scenarios where the cost of a false 

positive is high. 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

4) Recall 

Recall (or sensitivity) measures the ability of a model to 

identify all relevant instances (true positives) within a dataset. 

This metric is crucial in situations where missing a positive 

instance (false negative) carries a significant penalty, such as 

in medical diagnosis. 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

5) F1-Score 

The F1-score is the harmonic mean of precision and recall, 

providing a balance between these two metrics. It is 

particularly useful when the class distribution is uneven and 

errors in one class are more significant than errors in other 

classes. 

F1-Score = 2 ×
Precision × Recall

Precision + Recall
 

The accuracy is more informative when the classes are 

balanced, whereas precision, recall, and the F1-score provide 

more insights when dealing with imbalanced datasets. Each 

metric provides a different perspective on model performance, 

addressing various aspects of prediction accuracy and error 

consequences. 

While these metrics provide valuable insights, they also 

have limitations: 

− Accuracy can be misleading in the presence of imbalanced 

classes. 

− Precision and Recall may contradict each other, and 

improving one can often result in lowering the other, 

known as the precision-recall trade-off. 

− The F1-score, although it balances precision and recall, 

might not always reflect the practical usefulness of a 

model, especially when a balance is not preferable. 

In summary, the methodology we have embraced is a 

meticulous and structured sequence of steps aimed at 

optimizing the detection and classification of network 

intrusions. The cornerstone of this process is a thorough data 

preprocessing phase, essential for preparing the dataset for 

subsequent analysis [51]. Following this foundational stage, 

we employed a trio of machine learning models [52]—KNN, 

DT, and GB—each chosen for their specific attributes that are 

advantageous in the realm of network security. These models 

were then integrated into a robust ensemble learning [53] 

framework, utilizing both soft and hard voting techniques to 

enhance predictive accuracy. 

The ensemble approach, a testament to the power of 

collective intelligence, capitalizes on the complementary 

strengths of the individual models [54]. It offers a sophisticated 

decision-making mechanism that is both diverse in perspective 

and unified in goal [55]. Evaluation metrics, including 

accuracy, precision, recall, and the F1-score, serve as the 

yardsticks for assessing the effectiveness of our models, 

ensuring that our results are not only statistically significant but 

also relevant and applicable in practical scenarios [56]. 

As we transition into the results section, we carry forward 

the methodological rigor and analytical insights that have 

characterized the preceding stages of this study. The 

forthcoming section will not only present the outcomes of our 

modeling efforts but will also contextualize these findings 

within the broader landscape of network intrusion detection 

research. It will highlight the precision of our approach in 

identifying threats and validate the efficacy of our models 

through a comparative analysis with existing methodologies, 

ultimately reinforcing the contribution of this research to the 

field of cybersecurity. 

IV. EXPERIMENT RESULTS 

A. Machine Learning Models Results 

In the conducted experiments, a comparative analysis of 

three machine learning models was performed: KNN, DT, 

and GB. Each model was tasked with classifying network 

traffic into four categories: Blackhole, Flooding, For- 

warding, and Normal. 

To address model generalization, cross-validation was 

employed during the training process of each machine 

learning model [57]. Cross-validation is a robust statistical 

technique that helps ensure the model's ability to perform 

well on unseen data. It involves partitioning the data into 

subsets, training the model on some subsets while validating 

on others, and rotating this process to cover the entire dataset. 

This method helps mitigate overfitting and provides a more 

reliable estimate of the model's performance in different 

network environments [58]. 

Regarding computational resources, the training and 

deployment of these models were conducted using Google 

Colab, which provides a robust cloud-based environment 

with substantial computational resources. Specifically, the 

system's specifications included 51.0 GB of system RAM, 
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15.0 GB of GPU RAM, and 201.2 GB of disk space, which 

were adequate for handling the computational demands. For 

instance, the KNN model achieved a mean accuracy of 

approximately 86.52% with a training time of 12.28 seconds, 

highlighting efficiency in both training speed and model 

accuracy. 

The DT classifier demonstrated near-perfect mean 

accuracy, achieving approximately 99.95% with a swift 

training time of 7.35 seconds. This high level of accuracy, 

combined with low computational time, illustrates the 

model’s efficiency and potential for real-world application. 

GB, despite being a more complex ensemble technique, 

was trained in 184.47 seconds, indicating a longer training 

time which is expected due to the model's intricacy. However, 

it yielded a high mean accuracy of approximately 99.83%, 

justifying the additional computational cost. The high 

accuracy rates across these models, especially for DT and 

GB, suggest that the trade-off between computational 

resources and model performance is favorable. 

These results affirm that the developed models are not 

only accurate but also computationally viable, with the 

potential to be scaled and deployed in real-world network 

environments where performance and computational 

efficiency are critical. 

Table II presents the performance results of single 

models. 

TABLE II.  SUMMARY OF MACHINE LEARNING MODELS PERFORMANCE 

Model Accuracy Precision Recall F1-Score 

KNN 86.52% 

Blackhole: 77% 

Flooding: 95% 

Forwarding: 90% 

Normal: 91% 

Blackhole: 90% 

Flooding: 94% 

Forwarding: 97% 

Normal: 69% 

Blackhole: 83% 

Flooding: 94% 

Forwarding: 93% 

Normal: 79% 

DT 99.95% 

Blackhole: 100% 

Flooding: 100% 

Forwarding: 

100% 

Normal: 100% 

Blackhole: 100% 

Flooding: 100% 

Forwarding: 

100% 

Normal: 100% 

Blackhole: 100% 

Flooding: 100% 

Forwarding: 

100% 

Normal: 100% 

GB 99.82% 

Blackhole: 100% 

Flooding: 100% 

Forwarding: 

100% 

Normal: 100% 

Blackhole: 100% 

Flooding: 100% 

Forwarding: 

100% 

Normal: 100% 

Blackhole: 100% 

Flooding: 100% 

Forwarding: 

100% 

Normal: 100% 

 

The KNN classifier achieved an overall accuracy of 

86.52%, demonstrating substantial precision and recall in its 

predictions. It showed commendable proficiency, particularly 

in identifying Flooding and Forwarding attacks with 

precision rates of 95% and 90%, respectively, and almost 

equally high recall rates. However, it was less adept at 

correctly classifying Normal traffic, achieving a lower 

precision of 91% and a notably modest recall of 69%, 

resulting in a lower f1-score for this class compared to the 

others. 

The provided confusion matrix in Fig. 4 for the KNN 

reveals insights into the model's performance, which 

necessitates a more in-depth error analysis. From the matrix, 

we can observe a commendable performance in accurately 

classifying most instances of Flooding (label 2) and 

Forwarding attacks (label 3), as seen in the high values on the 

matrix diagonal for these classes. However, the substantial 

number of misclassifications of Normal traffic (label 0) as 

Flooding (label 2) and Forwarding (label 3) attacks, evident 

in the non-diagonal elements, warrants a closer examination. 

This misclassification pattern suggests potential biases or 

weaknesses in the model when dealing with Normal traffic, 

which is of particular concern as it is imperative for a network 

security system to distinguish between benign and malicious 

traffic reliably. It is critical to conduct a comprehensive error 

analysis to delve into the root causes of these 

misclassifications. Factors such as feature selection, the 

representation of traffic patterns, and the model's sensitivity 

to the overlap between Normal traffic characteristics and 

those of attack traffic should be scrutinized. 

 
Fig. 4. Confusion matrix of KNN 

The DT classifier presented a near-perfect performance, 

boasting an impressive ac- curacy of 99.95%. It exhibited 

remarkable precision and recall scores, reaching 100% in 

most categories. The f1-scores mirrored these results, 

indicating the model’s exceptional ability to discern between 

different types of network traffic with almost flawless 

accuracy. Only a solitary misclassification was noted among 

the Blackhole category, and an equally minimal misstep was 

observed within the Flooding class. 

The confusion matrix in Fig. 5 for the 

DecisionTreeClassifier provides a quantitative depiction of 

the model’s classification performance. The matrix indicates 

a high number of correct predictions with 1441 instances of 

Normal traffic (label 0) accurately identified, and similar high 

values for attack types 1, 2, and 3 with 1590, 1586, and 1493 

correct classifications, respectively. The relatively low 

misclassification numbers—only one instance of Normal 

traffic misclassified as attack type 1, and two instances of 

attack type 3 misclassified as Normal traffic—suggest that 

the DecisionTreeClassifier exhibits a strong discriminative 

ability. 

However, the true merit of a classifier is not only in the 

high numbers of correct classifications but also in 

understanding and mitigating the instances it misclassifies. 

For instance, the three instances where the model has 

predicted Normal traffic instead of an attack (types 0 
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misclassified as 3 and vice versa) may indicate specific 

scenarios where the model’s decision boundary is not 

adequately defined. A nuanced analysis of these cases could 

yield insights into the feature space where overlaps occur, 

leading to potential improvements in the model's 

classification rules. 

 
Fig. 5. Confusion matrix of DT 

Gradient Boosting, a potent ensemble technique, 

displayed a similar prowess with an accuracy of 99.82%. It 

also achieved perfect precision and recall scores of 100% 

across the majority of the classes, with only a slight deviation 

in the Normal category, where it misclassified three 

instances. 

The confusion matrix in Fig. 6 for the GB depicts a robust 

classification capability with high correct prediction rates 

across all classes—1444 for Normal traffic, 1588 for attack 

type 1, 1586 for attack type 2, and 1492 for attack type 3. 

These results underscore the model’s strengths in 

discriminating between different traffic types. However, 

there are some instances of misclassification, such as Normal 

traffic being incorrectly labeled as attack type 1 or 3, and 

similarly, some instances of attack types being mistaken for 

Normal traffic. 

While these misclassification numbers are low, they are 

crucial for an error analysis to ascertain the robustness and 

fairness of the model across diverse scenarios. The analysis 

should probe into these errors to discover if they are 

attributable to particular attributes, noise, or potential 

overfitting of the model to the training data. For instance, the 

misclassification of Normal traffic as attack types could 

suggest that the model may be overly sensitive to certain 

patterns that are not necessarily indicative of an attack. 

The superiority of DT and GB was shown further with 

their confusion matrices which indicated a fine number of 

true positives and were neglected of false negatives and false 

positives in most classes. The identical nature by which the 

diagonal rows of these matrices depicted demonstrated that 

the stated models were applicable to the task at hand of 

discriminating traffic, it was almost certain that there was a 

negligible error in the distinction of traffic types. Hence, they 

will deliver exceptional performace in predictions and 

modeling. 

 
Fig. 6. Confusion matrix of GB 

B. Ensemble Learning Models Results 

The confusion matrix in Fig. 7 for the soft 

VotingClassifier reveals a highly effective consensus 

approach in making predictions, with the majority voting of 

multiple classifiers resulting in a strong performance across 

all classes. The matrix displays a notable accuracy in 

classification, with 1442 correct predictions for Normal 

traffic, and 1591, 1586, and 1495 for attack types 1, 2, and 3 

respectively, indicating the classifier’s proficiency. The 

negligible number of misclassifications suggests that the 

ensemble approach has succeeded in creating a robust model. 

Nevertheless, the two instances where Normal traffic was 

classified as an attack type and the zero instances of attacks 

misclassified as Normal traffic present a critical opportunity 

for model improvement. Examining these misclassifications 

could uncover if the ensemble's decision boundaries between 

Normal and abnormal traffic patterns need refinement. 

Delving into the specifics of these instances would help to 

further tune the model, enhancing its predictive precision and 

thereby its practical applicability in real-world network 

security systems. 

In assessing model generalization, the ensemble 

techniques, specifically the soft and hard voting classifiers, 

were subjected to rigorous cross-validation to ensure their 

robust performance on unseen data.  

The soft voting classifier, an ensemble that combines 

model predictions with weighted probabilities, achieved a 

commendable mean accuracy of approximately 99.97% with 

a training time of roughly 177.6 seconds. Similarly, the hard 

voting classifier, which uses a majority voting scheme, also 

displayed outstanding performance with a mean accuracy of 

approximately 100% and a training time of approximately 

178.1 seconds. These high accuracy levels, coupled with the 

thoroughness of cross-validation, indicate a strong potential 

for these models to generalize well to new and diverse 

network environments, which is critical for reliable network 

intrusion detection. The ensemble methods effectively 

aggregate the predictive strength of individual models, 

enhancing the overall predictive stability and reducing the 

likelihood of overfitting, which is a common pitfall that can 

impair generalization to new data. 
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Fig. 7. Confusion matrix of soft voting 

As illustrated in Table III, the soft voting classifier got a 

great accuracy rate up to 99.967%, with zero faultiness in 

both precision and recalls for all categories proved absolute 

consent for Blackhole, Flooding, Forwarding, and Normal 

traffic. The f1-score, a balanced criterion for measuring 

precision and recall, returned the value of 1 for all the voting 

types which proved the efficiency of soft voting method for 

recognizing the attack types with the value of 1. 

The confusion matrix in Fig. 8 for the hard 

VotingClassifier underscores the model's high accuracy in 

classifying network traffic, with a substantial number of true 

positives for each category and minimal misclassification. 

However, the occurrence of misclassifications—though 

few—highlights the necessity for a detailed error analysis to 

fully comprehend the model’s performance nuances. For 

instance, the complete absence of misclassified instances for 

certain attack types is encouraging, yet the few misclassified 

cases between Normal traffic and attacks are crucial for 

evaluating the model's reliability and robustness. 

 
Fig. 8. Confusion matrix of hard voting 

In our experiments, Hard voting classifier demonstrated 

its superiority by acquiring an almost perfect accuracy score 

of 100%. This accordingly means that each prediction made 

by the classifier conformed with the exact labels to the letter. 

High performance was the fruit of an accuracy that coalesced 

with a recall of 100% for all classes, making the f1 score as 

flawless as it could. Its outstanding concurrence with others 

in the ensemble shows that the hard voting classifier has 

accomplished a high level of accuracy beyond the individual 

performance of each classifier in this domain which 

eventually means that collective decision making can notably 

enhance the accuracy of predictive models in the context of 

network intrusion detection. 

TABLE III.  SUMMARY OF ENSEMBLE LEARNING MODELS PERFORMANCE 

Model Accuracy Precision Recall F1-Score 

Voting 
Classifier 

(Soft) 

99.967% 

100% 

Blackhole: 
100% 

Flooding: 

100% 
Forwarding: 

100% 

Normal: 100% 

100% 

Blackhole: 
100% 

Flooding: 

100% 
Forwarding: 

100% 

Normal: 100% 

100% 

Blackhole: 
100% 

Flooding: 

100% 
Forwarding: 

100% 

Normal: 100% 

Voting 

Classifier 
(Hard) 

100% 

100% 

Blackhole: 

100% 
Flooding: 

100% 

Forwarding: 
100% 

Normal: 100% 

100% 

Blackhole: 

100% 
Flooding: 

100% 

Forwarding: 
100% 

Normal: 100% 

100% 

Blackhole: 

100% 
Flooding: 

100% 

Forwarding: 
100% 

Normal: 100% 

 

C. Comparison Results 

The predictive model’s performance for network 

intrusion detection was evaluated by comparing the 

differences between standalone machine learning models and 

the application of ensemble method. The best accuracy was 

shown by the KNN model of 86.52%, which has precisions 

and recalls equal to 77% and 90% respectively for the 

Blackhole class as depicted in Table IV. Identification of the 

two types of attacks was a success, with a precision, in 

general, above 90% and a recall as high as 97% at times. 

However, it had a reasonable drop in efficiency when it came 

to norm traffic and had precision at 91% but recall at a 

depressing 69%. 

Replacing the first DT/GB classifiers by the Decision 

Tree classifier and then by Gradient Boosting we observed 

that the DT achieved an impressive 99.95% accuracy, and the 

GB was behind with only 99.82% accuracy. This approach 

showed perfect precision and recall in all cases of any traffic 

category, what was confirmed by its F1-scores that 

demonstrated more or less perfect classifying capacity. 

The ensembles methods in combination with soft and hard 

voting decreased the complexity involved, thus boosting the 

performance of the model. The soft voting classifier brought 

on an outstanding performance which was encircled by the 

near-perfect accuracy of 99.967% and preser- vation of 100% 

precision and recall across all classes. The hard voting 

classifier, although, became a symbol of perfect classification 

with 100% accuracy without any exceptions, referring to 

every case without a mistake. 

The comparison is the analytical comparison which 

demonstrates the resilience of ensemble learning techniques, 

specifically, voting classifier, in the sense that it assembles 

the strengths of respective models for greater precision and 
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trustworthiness in network intrusion detection. These 

practical results suggest that thoughts should be given to the 

implementation of ensemble tech- niques within the 

cybersecurity frameworks in order to make the detection and 

classification of suspicious activities more efficient. 

TABLE IV.  COMPARISON OF MACHINE LEARNING AND ENSEMBLE 

LEARNING MODELS PERFORMANCE 

Model Accuracy Precision Recall F1-Score 

KNN 86.52% 88% 87% 87% 

DT 99.95% 100% 100% 100% 

GB 99.82% 100% 100% 100% 

Voting Classifier 

(Soft) 
99.967% 100% 100% 100% 

Voting Classifier 

(Hard) 
100% 100% 100% 100% 

 

Table V provides a comparative landscape of the 

performance of various machine learning models against the 

hard voting classifier developed in our study. The comparison 

underscores the efficacy of the ensemble technique adopted 

in the hard voting classifier, which outperforms several 

notable models and techniques across a range of datasets. 

The MobileNetV3 model, trained on data from the IEEE 

DataPort website, achieved an accuracy of 98.35%, which 

while commendable, is surpassed by our hard voting 

classifier's perfect accuracy. Similarly, the combination of 

Random Forest and Naïve Bayes models applied to the 

UNSW IoT Traces and Your Things dataset secured an 

accuracy of 99%, still marginally less than our model. The 

SVM, known for its effectiveness in high-dimensional 

spaces, fell short at 94% accuracy when applied to packet 

data, highlighting the complexity and challenge present in 

network intrusion detection tasks. 

Further, the Xception-BiGRU architecture, despite its 

advanced deep learning capabilities, achieved an accuracy of 

95.6% on a Kaggle dataset, indicating the difficulty of 

achieving high accuracy in diverse datasets. The XGBoost 

model, applied to the well-known NSL-KDD dataset, 

achieved an accuracy of 97%, which suggests its proficiency 

in feature engineering and classification tasks, yet it does not 

reach the benchmark set by our model. 

Our hard voting classifier, evaluated on the WSNBFSF 

dataset, attained a 100% accuracy rate, which represents a 

significant advancement in the field of intrusion detection 

systems. This suggests that the ensemble of models within the 

hard voting classifier is well-suited for the intricacies and 

variability inherent in network security datasets. Perfect 

accuracy indicates that the classifier has effectively leveraged 

the strengths of multiple models to achieve a level of 

predictive performance that is unmatched by the individual 

models compared here. 

The results in Table V not only validate the superiority of 

our hard voting classifier in accuracy but also hint at its 

robustness and adaptability across different types of network 

intrusion scenarios. This comprehensive performance metric 

illustrates the potential for the hard voting classifier to serve 

as a benchmark for future intrusion detection system 

developments and evaluations. 

TABLE V.  COMPARISON OF OUR HARD VOTING MODELS PERFORMANCE 

WITH EXISTING APPROACHES 

Ref. Model Dataset Accuracy 

[21] MobileNetV3 

Data from 

IEEE DataPort 

website 

98.35% 

[22] 
Random Forest and 

Naïve Bayes 

UNSW IoT 

Traces, and 

Your Things 

dataset 

 

99% 

[23] SVM packet data 94% 

[25] Xception-BiGRU 
Dataset from 

Kaggle 
95.6% 

[28] XGBoost NSL-KDD 97% 

Our Model 
Voting Classifier 

(Hard) 
WSNBFSF 100% 

 

The findings from the experiments with the ensemble 

learning models, particularly the hard voting classifier, have 

several practical implications for the design and 

implementation of network intrusion detection systems 

(NIDS). The near-perfect performance of the ensemble 

models indicates that combining multiple algorithms can lead 

to more accurate detection of various types of network 

intrusions, which is crucial in the rapidly evolving landscape 

of cybersecurity threats. 

In practical terms, the integration of such ensemble 

methods can enhance the ability of NIDS to differentiate 

between benign and malicious traffic with greater precision, 

reducing the number of false positives and negatives. This 

accuracy is particularly valuable in large-scale networks 

where the volume of traffic can make manual review of alerts 

impractical. The high accuracy of the ensemble models can 

also increase trust in automated security measures, which is 

essential for their adoption in critical infrastructure. 

Moreover, the application of ensemble learning models 

can potentially improve the speed and efficiency of threat 

detection. By leveraging the strengths of individual 

classifiers and minimizing their weaknesses, these models 

can operate effectively even when faced with large and 

complex datasets. This capability is essential for real-time 

intrusion detection where the speed of response can mitigate 

the impact of attacks. 

V. CONCLUSION  

The comprehensive analysis of machine learning and 

ensemble learning models presented in this study offers an in-

depth evaluation of their performance in network intrusion 

detection. Our investigation began with the application of 

individual machine learning models—KNN, DT, and GB—

each demonstrating competencies in classifying network 

traffic and identifying threats with varying degrees of 

accuracy. The KNN model, while being the least precise, was 

notably effective in detecting Flooding and Forwarding 

attacks, underscoring the value of simplicity and local 

inference in model construction. DT and GB, on the other 

hand, stood out with their exceptional accuracy, reflecting the 

robustness of tree-based algorithms in managing the intricate 

patterns often present within cybersecurity data. 
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Our exploration extended into ensemble learning 

techniques, where soft and hard voting classifiers were 

examined. The results highlighted the advantage of 

combining multiple models, with both voting techniques 

achieving nearly flawless accuracy—soft voting with 

99.967% and hard voting with 100%. This amalgamation not 

only harnessed the strengths of each contributing model but 

also diminished their individual weaknesses, resulting in a 

predictive system that was both reliable and robust. 

The ensemble models were rigorously evaluated against 

previous approaches, as indicated in Table V, where they 

demonstrated superior accuracy. Notably, the hard voting 

classifier's perfect accuracy benchmarked a significant 

advancement over other cited methods, illustrating the 

potential of collective decision-making in enhancing the 

precision of network intrusion detection systems. 

The practical implications of these findings are significant 

for the field of cybersecurity. The ability to detect and 

classify network intrusions accurately is paramount, and this 

research underscores the promise of blending individual and 

ensemble learning approaches. However, there is an 

understanding that model performance in controlled 

experiments must translate into real-world effectiveness. 

Therefore, we underscore the necessity for continuous 

validation of these models against emerging threats in 

dynamic network environments. 

Future research should not only continue to refine the 

accuracy and efficiency of these models but also address 

critical areas such as scalability, resource efficiency, and 

model interpretability. Scalability and efficiency are crucial 

for deploying these systems within large-scale and diverse 

network infrastructures. Meanwhile, interpretability remains 

a cornerstone for trust and accountability in automated 

decision-making systems, particularly in a domain as 

sensitive as network security [59]. 

In light of the evolving nature of cyber threats, future 

studies must also focus on the adaptability of intrusion 

detection systems. The development of models that can 

evolve with the threat landscape and detect new types of 

attacks in real-time will be a critical area of advancement. 

Further exploration into sophisticated deep learning 

architectures [60] and novel ensemble techniques that can 

operate within the constraints of real-time detection and with 

limited computational resources will be essential. 

This study lays the groundwork for a robust and 

sophisticated approach to network intrusion detection, with 

the aspiration that future advancements will build upon this 

foundation to achieve even greater levels of security and 

reliability in the cyber domain. 
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