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Abstract—Visual simultaneous localization and mapping (Vi-
sual SLAM) based on RGB-D images includes two main tasks:
building an environment map and simultaneously tracking the
location/motion trajectory of the image sensor, or called visual
odometry (VO). Visual SLAM and VO are used in many appli-
cations as robot systems, autonomous mobile robots, supporting
systems for the blind, human-machine interaction, industry, etc.
With the strong development of deep learning (DL), it has been
applied and brought impressive results when building Visual
SLAM and VO from image sensor data (RGB-D images). To get
the overall picture of the development of DL applied to building
Visual SLAM and VO systems. At the same time, the results,
challenges, and advantages of DL models to solve Visual SLAM
and VO problems. In this paper, we proposed the taxonomy to
conduct a complete survey based on three methods from RGB-D
images: (1) using DL for the modules (depth estimation, optical
flow estimation, visual odometry, mapping, and loop closure
detection) of the Visual SLAM and VO framework; (2) using DL
modules to supplement (feature extraction, semantic segmentation,
pose estimation, map construction, loop closure detection, others
module) to Visual SLAM and VO framework; (3) using end-to-
end DL to build Visual SLAM and VO systems. The studies
were surveyed based on the order of methods, datasets, and
evaluation measures, the detailed results according to datasets
are also presented. In particular, the challenges of studies using
DL to build Visual SLAM and VO systems are also analyzed and
some of our further studies are also introduced.

Keywords—Visual Slam; Visual Odometry(vo); Deep Learning
(Dl); RGB-D Images; 3d Point Cloud Scene; Camera Pose; Tra-
jectories Motion.

I. INTRODUCTION

Localization and mapping of the environment (3D space) for
robots operating in the home [1], [2], [3] autonomous vehicles
in factories [4], and blind people [5] are very important research
in computer vision and robotics. These studies help entities
locate themselves in the environment, understand the scene,
and their navigation. To perform these tasks, it is necessary
to solve two computer vision problems: Visual Simultaneous
localization and mapping (Visual SLAM) and Visual Odometry
(VO). Previously, the input data to build Visual SLAM and
VO systems were Sound Navigation and Ranging (SONAR)
sensors, 2D laser scanners, and Light Detection and Ranging
(LiDAR) [5]. When using a LiDAR sensor, the results are ac-
curate, but the cost of a LiDAR sensor is much more expensive

than an image sensor [6]. In the 21st century, the development
of computer hardware and image sensors has brought many
newer and more affordable types of data such as monocular,
stereo, or RGB-D. They can collect visual information about
their surroundings. Therefore, the studies on visual SLAM and
VO from RGB-D images are receiving very strong research
attention.

Recently, with the advent of DL with some popular model
types such as Convolutional Neural Networks (CNN), Recurrent
Neural Networks (RNN), Generative Adversarial Networks
(GAN), etc, which has brought impressive results in computer
vision, DL has also been widely applied in research on visual
SLAM and VO. At the same time, in recent years there have
been many valuable surveys on visual SLAM [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23] and VO [24]. In which the input data for the studies
surveyed above are all data obtained from image sensors, and
DL is also the method with the best results in studies on Visual
SLAM and VO.

A study of [14] presented a complete survey of Visual
SLAM methods, in which the Visual SLAM construction model
includes five steps (feature extraction, feature matching, pose
estimation, loop closure, and map building) as shown in Fig.
1. In the study of Favorskaya et al. [23] is the most recent
survey of Visual SLAM, in which the Visual SLAM process
includes two main stages: VO and loop closure, when broken
down in detail, it includes six steps: data pre-processing, feature
extraction, feature matching, pose estimation, map building, and
loop closure.

DL is also examined with three methods to implementing
Visual SLAM: adding auxiliary modules based on DL, re-
placing modules with DL modules, and using end-to-end DL.
However, most of the above surveys are based on statistics
and classification of methods and datasets without examining
in detail the algorithms and results of Visual SLAM and VO
methods. At the same time, the advantages, disadvantages, and
challenges of implementing Visual SLAM and VO have not
been presented.

To have a detailed overview of the methods and results of
Visual SLAM and VO methods, we have conducted a compre-
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Fig. 1. General Visual SLAM model [14].

hensive and detailed survey of the methods, evaluation datasets,
evaluation measures, results, advantages, and disadvantages, the
challenges of the Visual SLAM and VO methods using DL with
the input data from RGB-D images, as shown in Fig. 2.

Fig. 2. The taxonomy of DL-based Visual SLAM and VO surveys from data obtained
by the image sensors

Due to the data obtained the RGB-D image sensor provides
data that is intuitive and close to the real environment surround-
ing the object. Especially in this study, we conduct a survey
and analyze research in both the application direction of Visual
SLAM and VO systems.

This paper includes the following main contributions:
- Proposing the taxonomy for investigating DL-based meth-

ods to perform Visual SLAM and VO methods from RGB-D
image sensors.

- Conducting a complete survey based on three methods to
construct Visual SLAM and VO systems from RGB-D images:
(1) using DL modules to add auxiliary to the Visual SLAM
and VO frameworks; (2) using DL modules to supplement the
Visual SLAM and VO systems; (3) using end-to-end DL to
build Visual SLAM and VO systems.

- The surveyed studies are detail examined and presented
in the following order: methods, evaluation datasets, evaluation
measures, results, discussions, and analyses.

- Presenting challenges in implementing DL-based Visual
SLAM and VO with input data obtained from RGB-D sensors.

II. RELATED WORK

Visual SLAM and VO surveys are not a new research
problem. In the past 6 years, we found 18 valuable research
papers on Visual SLAM and VO surveys, these studies are
presented in Table I.

By the Visual SLAM categories, Mokssit et al. [22] and
[21] have done a very valuable survey of DL techniques for
Visual SLAM. In the research of Mokssit et al. [22], the authors
proposed a taxonomy of four DL-based learning methods:
modular learning, joint learning, confidence learning, and active
learning. Modular learning includes learning depth to estimate
the depth of the scene; learning optical flow is the process
of determining optical flow (the process of determining the
movement of a camera or object in the scene). The above
three techniques all use two strategies of machine learning
(ML): supervised learning and self-supervised learning. The
fourth technique is learning to map, which is the process of
building an environment map similar to the real world (3D
reconstruction scene) and 3D object modeling with three types
of maps: space-free maps, geometric maps, and semantic maps.
The fifth technique is loop closure detection, which is the
process of detecting loop closure frames. Joint learning is
a learning method that can exploit the complete dependency
relationship between different modules of the learning model
to create a more accurate complete learning model. They are
often based on two groups of techniques: only depth, optical
flow, and ego-motion are grouped and optimized together;
using end-to-end DL techniques. The third learning method
is confidence learning, which is a learning method that can
solve the uncertainty problem of DL with two techniques:
uncertainty reduction and uncertainty estimation. The final
learning method is activated learning. For a robot to work
well in an environment that can find its way, understand the
environment, and update localization and environmental maps,
the robot’s learning system must have two capabilities: active
exploration to reduce the number of operations active when
controlling robot operations and active perception to collect
information from the environment and reduce sensor errors.
The authors have listed a series of studies according to each
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TABLE I. SURVEYS BY THE VISUAL SLAM AND VO FROM 2017- 2023(NOVEMBER).

Authors Years Methods Type of
datasets

Survey
of DL

Taket et al. [7] 2017 Visual SLAM,
VO RGB-D No

Jinyu et al. [8] 2019
Visual-inertial
SLAM,
VO

Stereo,
RGB-D No

Lai et al. [9] 2020 Visual SLAM,
VO RGB-D Yes

Azzam et al. [10] 2020 Visual SLAM RGB-D Yes

Xia et al. [11] 2020 Semantic SLAM,
Visual SLAM

Monocular,
RGB-D,
Stereo

Yes

Fang et al. [12] 2021 Visual SLAM RGB-D Yes

Barros et al. [13] 2022

Embedded SLAM,
Visual-inertial
SLAM,
Visual-SLAM,
VO

RGB-D Yes

Abaspur et al. [14] 2022 Visual SLAM,
VO

Sonar,
Laser,
LiDAR,
RGB-D,
Monocular,
Stereo

Yes

Qin et al. [15] 2022 Visual SLAM RGB-D Yes
Zhang et al. [16] 2022 Visual SLAM RGB-D Yes

Tsintotas et al. [17] 2022 Visual SLAM,
VO RGB-D Yes

Chen et al. [18] 2022 Semantic
Visual SLAM

Sonar,
Laser,
LiDAR,
RGB-D,
Monocular,
Stereo

Yes

Tian et al. [19] 2022 Visual SLAM,
VO

RGB-D,
GPS No

Tourani et al. [20] 2022 Visual SLAM RGB-D Yes

Agost et al. [24] 2022 VO
LiDAR,
RGB-D,
Point cloud

Yes

Dai et al. [21] 2023 Visual SLAM,
VO RGB-D Yes

Mokssit et al. [22] 2023 Visual SLAM
Monocular,
RGB-D,
Stereo

Yes

Favors et al. [23] 2023 Visual SLAM,
VO

Monocular,
RGB-D,
Stereo

Yes

Our 2023 Visual SLAM,
VO RGB-D Yes

learning technique and method, the studies are surveyed based
on the methods, goals, data architectures, advantages, and
disadvantages. Barros et al. [13] conducted a survey on Visual
SLAM algorithms, including three methods based on output
data: visual-only SLAM, Visual-inertial SLAM, and RGB-D
SLAM. For each method, a timeline is presented. Finally,
datasets for evaluating Visual SLAM algorithms are presented.
In more detail, research by Chen et al. [18] surveyed semantic
Visual SLAM that meets the requirements of accuracy and real-
time. The authors investigated three methods: object detection,
semantic segmentation, and instance segmentation to extract
semantic information from the environment. Jinyu et al. [8] con-
ducted a survey and evaluated the algorithms of Visual-inertial
SLAM. The basic theories of Visual SLAM and Visual-inertial
SLAM are presented. The most important content is filtering-

based methods and optimization-based methods presented to
solve the problem of building Visual SLAM and Visual-inertial
SLAM systems. Finally, the KITTI [25], EuRoC [26], TUM VI
[27], ADVIO [28], and VICON [8] datasets are listed and used
to evaluate constructed Visual-inertial SLAM models. Tourani
et al. [20] presented a survey based on 45 recent outstanding
studies of Visual SLAM in which recent advancements and
impressive results. The results of Visual SLAM are analyzed
and discussed based on the novelty domain, objectives, em-
ploying algorithms, and semantic level. At the same time, the
existing challenges and trends of Visual SLAM systems are
also presented. Favorskaya et al. [23] presented the state-of-
the-art Visual SLAM systems, in which the Visual SLAM
system construction model was also surveyed and presented
with a very detailed method by the DL techniques. At the same
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time, prominent datasets for evaluating Visual SLAM models
are also listed and briefly described. By only VO categories,
Agostinho et al. [24] have conducted a complete and detailed
survey of VO systems used for robots and autonomous vehicles
operating indoors. The authors presented this state-of-the-art
VO framework according to models, algorithms, and results.
The results show an increase in accuracy of 33.14% for building
trajectory from point cloud data. At the same time, challenges
when building a VO system are also discussed and presented.

By the application of Visual SLAM and VO categories,
Theodorou et al. [29] surveyed the applications of Visual SLAM
for localization, mapping, and wayfinding, in which appli-
cations are presented according to Visual SLAM algorithms
with three methods: monocular-based (based on the image
sequence), stereo-based (based on the camera trajectory and
building a map of the environment based on feature points),
combination of monocular-based and stereo-based (based on
image sequences or feature points for mapping, tracking, and
wayfinding). Research by Lai et al. [9] surveyed methods
for building Visual SLAM and VO systems according to two
methods: traditional and DL.

III. VISUAL SLAM AND VO USING DEEP LEARNING:
SURVEY

As shown in Fig. 2, the paper surveys Visual SLAM and VO
based on the RGB-D images captured from image sensors are
introduced. In this study, we only surveyed studies conducted
based on DL.

A. Deep Learning-based module for Visual SLAM and Visual
Odometry

In the study of Mokssit et al. [22], the Visual SLAM
framework includes the following modules: depth estimation,
optical flow, VO, mapping, and loop closure detection. In study
of Favorskaya et al. [23] presents the survey according to the
architecture of DL. In this paper, we present the modules for
the architecture of DL to build the Visual SLAM system. We
present a survey on DL usage with the following modules.

1) Depth estimation

a. Methods
By the depth estimation module, David et al. [30] proposed

a deep network consisting of 2 stacks to directly regress depth:
using the coarse-scale network to estimate the global structure
of the scene, using the fine-scale network to refine it using local
information. Chen et al. [31] proposed a deep network which is
a variation of Hourglass to estimate depth by training a multi-
scale deep network and relative depth annotations of the data.
The input for pixel-wise depth prediction is a single image.
Zhou et al. [32] proposed an end-to-end learning deep network
for a single-view depth (scene structure) and pose estimation

(camera motion) from the image sequence. To predict single-
view depth, the DispNet network architecture was used in an
encoder-decoder design. To predict the camera pose, the target
view is concatenated with all the source views according to
the color channel of the input image sequence. Wang et al.
[33] proposed a method to improve the method performance
of Zhou et al. [32] for estimating depth and camera pose
by the CNN-based with a simple normalization step, thereby
significantly improving the performance of depth estimation.
In the proposed method, the authors applied a Direct Visual
Odometry (DVO) [34] pose predictor to predict the output
pose based on the input dense depth map, thereby reducing
information loss of sequence frames during scene reconstruc-
tion. Garg et al. [35] proposed an unsupervised CNN learning
method based on auto-encoder architecture to predict single-
view depth without requiring learning from annotated ground-
truth depths. The loss function of CNN is to represent the
difference between the source image and the inverse warped
target image show the correlation of prediction error and align
two different depths without using ground-truth of depth maps.
Godard et al. [36] proposed an end-to-end unsupervised DL
to estimate monocular depth with a new information of loss
function that enforces left-right depth consistency inside the
network. The information loss function is capable of combining
three error information: smoothness/disparity smoothness loss,
reconstruction/appearance matching loss, and left-right dispar-
ity consistency terms/left-right disparity consistency loss. The
loss function is the sum of the above three error information.
Casser et al. [37] proposed an unsupervised DL method based
on exploiting 3D geometry structure and semantics to build a
model for estimating scene depth and ego-motion. The input
of the learning method is a sequence of RGB frames and
performs the following calculation steps: object masks, object
ego-motion, and individual object motion. The output of the
learning model is the image warped according to ego-motion.
Bian et al. [38] proposed an unsupervised DL for estimating
depth and motion from two consecutive frames of monocular
video. The feature used for the training process is a geometry
consistency constraint extracted from a self-discovered mask
of dynamic scenes and occlusions to enforce scale consistency.
From which the motion of a global scale can be estimated.

b. Datasets
KITTI Dataset: The KITTI dataset [39], [40], [41] is the

most popular dataset for evaluating Visual SLAM and VO
models and algorithms. This dataset includes two versions: the
KITTI 2012 dataset [40] and the KITTI 2015 dataset [41].
Geiger et al. [39] data are used to evaluate the VO, object
detection, and object tracking models. KITTI 2012 dataset is
collected from two high-resolution camera systems, a Velodyne
HDL-64E laser scanner (grayscale and color), and a state-of-
the-art OXTS RT 3003 localization system (a combination of
devices such as GPS, GLONASS, security IMU, and RTK
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correction signals). This database is also divided into data sets
serving different problems. The data set used to evaluate the
optical flow estimation model includes 194 image pairs for
training and 195 image pairs for testing, the images have a
resolution of 1240 × 376 pixels, and the ground-truth data
is built based on 50% dense. The dataset used to evaluate
the 3D visual odometry / SLAM model consists of 22 stereo
sequences collected from a length of 39.2 km of driving. This
data set provides benchmarks and evaluation measures for VO
and Visual SLAM such as motion trajectory and driving speed.
The dataset used to evaluate object detection and 3D orientation
estimation, the ground-truth data includes accurate 3D bounding
boxes for classifying object classes such as ’Cars’, ’Vans’,
’Trucks’, ’Pedestrians’, ’Cyclists’, and ’Trams’. The ground-
truth data of 3D objects in point cloud data were manually
labeled to evaluate algorithms for 3D orientation estimation
and 3D tracking. Geiger et al. [40] provide a raw dataset for
evaluating stereo, optical flow, and object detection models. The
data collection system is built based on the following devices:
camera images, laser scans, high-precision GPS measurements,
and IMU accelerations. The data collection context is very
diverse, the system captures real-world traffic situations and
ranges from highways through rural areas to inner-city scenes
with many static objects and dynamic. This dataset includes
color and grayscale image data, saved as 8bit ”.png”. The
second type of data is OXTS (GPS/IMU), with each frame 30
different values are stored as text files of the following informa-
tion: the geographic coordinates including altitude, global ori-
entation, velocities, accelerations, angular rates, accuracies, and
satellite information. The third data type is the Velodyne scans,
which are stored as floating point binaries. This dataset also
provides ground-truth data including 3D bounding box trackless
annotation with represented in Velodyne coordinates and labels
of object classes are ’Car’, ’Van’, ’Truck’, ’Pedestrian’, ’Person
(sitting)’, ’Cyclist’, ’Tram’ and ’ Misc’. Menze et al. [41]
published the KITTI 2015 dataset for evaluating the optical
flow algorithms. The annotation data provided the annotation
data of the 3d object in the scene, where the construction of
the annotation data is based on the process of recovering the
static elements of the scene and inserting them into the moving
object using the 3D CAD model into the scene by Google 3D
Warehouse.

NYUDepth dataset [42]: This dataset consists of 1449 RGB-
D images collected from MS Kinect from multiple buildings
in three US cities. They include 464 different indoor scenes
belonging to 26 scene classes. The dataset contains 35,064
distinct objects, spread across 894 different classes. For each
of the 1449 images, supporting captions were added manually.

Make3D dataset [43]: This dataset is collected with 534
pair images (RGB images and depth maps), the resolution of
the RGB images is 2272× 1704 and the size of the depth map
is 55 × 305. Training data includes 400 images, testing data

includes 134 images collected from a 3d scanner. In addition,
588 images were also collected from the Internet. Algorithm
evaluation data is based on a person not part of the project
collecting data of the environment with images larger than
800 × 600 of scenes at ’Campus’, ’Garden’, ’Park’, ’House’,
’Building’, ’College’, ’University’, ’Church’, ’Castle’, ’Court’,
’Square’, ’Lake’, ’Temple’, and ’Scene’.

Cityscapes dataset [44]: To evaluate object detection and
classification models, especially when using DL models with
outdoor environments. Ramos et al. [44] have published the
Cityscapes dataset. The data were collected from stereo cameras
using 1/3 in CMOS 2 MP sensors (OnSemi AR0331) in 50
different cities. The original data consists of 5000 manually
annotated images from 27 cities for dense pixel-level. In
addition, there are 20,000 raw pixel-level annotated images for
evaluating object detection using object boundaries.

TUM RGB-D SLAM dataset [45]: The authors collected the
TUM RGB-D SLAM dataset using the MS Xbox Kinect sensor,
the collected data consists of RGB-D frame sequences. The
environment for data collection includes two different indoor
scenes. The first is a typical office environment called “fr1”
with a size of 6 × 6 m2, and the second is a large industrial
hall called “fr2” with a size of 10 × 12 m2. The ground-truth
trajectory from the motion capture system is provided by eight
high-speed tracking cameras. This dataset includes 39 frame
sequences and divided into four groups: “Calibration”, “Testing
and Debugging” (fr1/xyz, fr1/rpy, fr2/xyz, fr2/rpy), “Hand-
held SLAM” (fr1/360, fr1/floor, fr1/desk, fr1/desk2, fr1/room,
fr2/360 hemisphere, fr2/360 kidnap, fr2/desk, fr2/desk with
person, fr2/large no loop, fr2/large with loop), and “Robot
SLAM” (fr2/pioneer 360, fr2/pioneer slam, fr2/pioneer slam2,
fr2/pioneer slam3). The RGB-D images are 640 × 480 pixels
in size and captured at a rate of 30Hz.

ICL-NUIM dataset [46]: This is a dataset consisting of
RGB-D sequences used to evaluate VO, 3D reconstruction, and
SLAM algorithms collected from the living room and the office
room. For each scene, the authors collect four frame sequences:
living room (kt0, kt1, kt2, kt3), office room (kt0, kt1, kt2, kt3),
the number of frames in each sequence is different. The ground-
truth camera trajectories (POVRay) and synthetic trajectories
data are obtained from the ground-truth depth maps and color
images. In this dataset, there are two main types of noise: noise
from RGB images and noise from depth images when collecting
data with MS Kinect.

c. Evaluation Measure
To evaluate depth estimation models, the RMSE(Root Mean

Squared Error) measure is often used. RMSE is the square root
of the average of the squared errors and is the standard deviation
of the residuals (prediction error). The residual is a measure
of distance from the regression line data points; RMSE is a
measure of how spread out these residuals are the other words,

Van-Hung Le, Visual Slam and Visual Odometry Based on RGB-D Images Using Deep Learning: A Survey



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1055

it tells you how concentrated the data is around the line of best
fit. RMSE includes RMSElinear expressed in formula (1), and
RMSElog expressed in formula (2).

RMSElinear =

√
||
∑N

i=1 yi − y∗i ||2
N

(1)

RMSElog =

√
||
∑N

i=1 logyi − logy∗i ||2
N

(2)

where N is the number of data points, yi is the predicted
depth map, and y∗i is the ground-truth of the depth map.
RMSElinear and RMSElog have values as small as possible.

d. Results and Discussions
The results of evaluating depth estimation on the KITTI [39],

NYUDepth [42], Make3D [43], Cityscapes [44], TUM RGB-D
SLAM [45], and ICL-NUIM [46] datasets with RMSElinear,
RMSElog measurements are shown in Table II. The evaluation
results of DRM-SLAM F [47] on the NYUDepth dataset [42]
are the best (RMSElinear = 0.42, RMSElog = 0.16). The
evaluation results of Cowan-GGR [48] on the KITTI dataset
[39] are the best (RMSElinear = 3.923, RMSElog = 0.188).
The evaluation results of DVO CNN [33] on the Make3D
dataset [43] are the best (RMSElinear = 3.923, RMSElog =
0.188). The evaluation results of DRM-SLAM F [47] on the
TUM RGB-D SLAM [45] dataset are the best (RMSElinear =
0.62, RMSElog = 0.23). The evaluation results of PE N [49]
on the ICL-NUIM [46] dataset are the best (RMSElinear =
0.22, RMSElog = 0.12). In Table II, the KITTI dataset is
evaluated in most studies, and the Make3D and Cityscapes
datasets are evaluated in only a few studies. Table II also
shows studies on depth estimation evaluated across multiple
datasets, so equal comparisons across studies are difficult to
make. Therefore, Table II has many empty cells.

2) Optical Flow Estimation

a. Methods for Optical Flow Estimation
By the optical flow estimation module, Dosovitskiy et al. [67]

proposed and compared two end-to-end CNN architectures for
optical flow estimation from a pair of images: FlowNetSimple
and FlowNetCorr. They are called FlowNet. FlowNetSimple
uses a generic network with two stacked input images to
extract motion information for optical flow prediction. The
FlowNetCorr creates two identical streams for each image of
the input image pair and then combines the two streams to
predict the optical flow. Ilg et al. [68] proposed a deep network
to improve the FlowNet of Dosovitskiy et al. [67] for optical
flow estimation, it is called FlowNet 2.0. The proposed method
includes three important improvements: first is concerned with
the training data, it is trained on the FlyingChairs dataset and
FlyingThings3D dataset to exploit the quality of training data
for optical flow estimation. The second is to develop a stacked

architecture to warp with the previously estimated flow. The
third is to address small displacements by introducing a sub-
network specializing in small motions. This improved version
makes the accuracy increase four times and the speed increases
more than 17 times. Ranjan et al. [69] proposed a method by
applying the spatial-pyramid formula to DL, with the idea of
applying a coarse-to-fine method to calculate and update the
flow at each pyramid level by warping an image of a pair image.
The number of parameters of this network is reduced by 96%
compared to FlowNet by applying the Spatial Pyramid Network
and the flow at each pyramid level applies a convolutional
network to pairs of warped images and the learned convolution
filters are applied like spatial-temporal filters into the network to
improve the FlowNet network. Sun et al. [70] proposed PWC-
Net which is a combination of pyramidal processing, warping,
and a cost volume for optical flow estimation. It is an improved
model from Spatial Pyramid Network [69] and FlowNet 2.0
[68]. The input of PWC-Net is still an image pair, the CNN
features of the second image are calculated based on the current
optical flow of the first image. The warped features of the
image pair are used to construct a cost volume. PWCNet’s
calculation time is only 1/17 of FlowNet 2.0. Teed et al. [71]
proposed the RAFT network for optical flow estimation. RAFT
includes (1) the per-pixel features of image pairs extracted using
a feature encoder module, 4D correlation volume is built and
synthesized from all pairs of feature vectors using a feature
encoder module, (3) update module is iterated on recurrently
optical flow by lookups on the correlation volumes. Ren et
al. [72] proposed an unsupervised DL network called Dense
Spatial Transform Flow (DSTFlow) that estimates optical flow
based on input frame pairs. This is an end-to-end learning
consisting of three components: localization layer, sampling
layer, and interpolation layer. Backpropagation is used to train
the parameters in all three layers. Zhu et al. [73] proposed
an unsupervised CNN framework to estimate optical flow
based on proxy ground-truth data. This data is responsible for
guided optical flow learning and consists of two stages: the
first is a ground-truth flow proxy created based on classical
approaches, and the second is the process of fine-tuning the
model using image-minimizing reconstruction loss. Wang et al.
[74] proposed an end-to-end deep neural network to estimate
optical flow based on learning large motions using occlusion
models clearly and a new warping. The main flow of this
method is to use two copies of FlowNetS to share parameters
and estimate forward and backward optical flow. Janai et al. [75]
proposed a new unsupervised learning framework for optical
flow estimation based on multiple frames by exploiting the
temporal relationship between frames and occlusions jointly.
The flow fields and occlusion map are estimated based on
evaluating the loss function of the warped images. Zhong et
al. [76] proposed an unsupervised learning network for optical
flow estimation, called Deep Epipolar Flow. It uses soft epipolar
constraints on the low level and subspace of the scene when not
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TABLE II. DEPTH ESTIMATION RESULTS BASED ON DL.

Authors/Years
Dataset/
Measu./
Methods

NYUDepth
[42]

KITTI
2012 [39]

Make3D
[43]

Cityscapes
[44]

TUM RGB-D
SLAM
dataset

[45]

ICL-NUIM
dataset

[46]

RMSE
linear

RMSE
log

RMSE
linear

RMSE
log

RMSE
linear

RMSE
log

RMSE
linear

RMSE
log

RMSE
linear

RMSE
log

RMSE
linear

RMSE
log

David et al. [30]/2014 Multi-Scale
DN 2.19 0.285 5.246 0.248 8.325 0.409 - - - - - -

Liu et al. [50]/2015 CRF
CNN 0.82 - - - - - - - - - - -

Zoran et al. [51]/2015 Ordinal
Relationships DN 1.2 0.42 - - - - - - - - - -

Wang et al. [52]/2015 HCRF CNN 0.75 0.26 - - - - - - - - - -
Eigen et al. [53]/2015 SGD DN 0.64 0.23 - - - - - - 1.41 0.37 0.83 0.43
Liu et al. [54]/2016 CRF CNN N 0.73 0.33 - - - - - - 0.86 0.29 0.81 0.41

Chen et al. [31]/2016 pixel-wise
ranking DN 0.24 0.38 - - - - - - - - - -

Laina et al. [55]/2016 Deeper FCRN 0.51 0.22 - - - - - - 1.07 0.39 0.54 0.28
Garg et al. [35]/2016 Unsupervised CNN - - 5.104 0.273 9.635 0.444 - - - - - -

Godard et al. [36]/2017 Unsupervised
CNN D - - 6.125 0.217 8.86 0.142 14.445 0.542 - - - -

Zhou et al. [32]/2017 SfMLearner - - 4.975 0.258 10.47 0.478 - - - - - -
Weer. et al. [49]/2017 PE S 0.52 0.21 - - - - - - 0.69 0.25 0.32 0.18
Weer. et al. [49]/2017 PE N 0.45 0.17 - - - - - - 0.65 0.24 0.22 0.12
Mal et al. [56]/2018 StD 0.48 0.17 - - - - - - 0.7 0.27 0.36 0.18
Chen et al. [57]/2018 RSS 0.45 0.18 - - - - - - 0.65 0.24 0.33 0.19

Yang et al. [58]/2018
pre-trained
KITTI +
Cityscapes

- - 6.641 0.248 - - - - - - - -

Wang et al. [33]/2018 DVO CNN - - 5.583 0.228 8.09 0.204 - - - - - -
Yang et al. [58]/2018 pre-trained KITTI - - 6.5 0.27 - - - - - - - -
Mahj. et al. [59]/2018 pre-trained KITTI - - 6.22 0.25 - - - - - - - -

Yin et al. [60]/2018
Geonet-VGG
pre-trained
KITTI

- - 6.09 0.247 - - - - - - - -

Yin et al. [60]/2018 Geonet-Resnet
pre-trained KITTI - - 5.857 0.233 - - - - - - - -

Zou et al. [61]/2018
DF-Net
pre-trained
KITTI

- - 5.507 0.223 - - - - - - - -

Mahj. et al. [59]/2018
pre-trained
KITTI +
Cityscapes

- - 5.912 0.243 - - - - - - - -

Yin et al. [60]/2018

Geonet-Resnet
pre-trained
KITTI +
Cityscapes

- - 5.737 0.232 - - - - - - - -

Zou et al. [61]/2018

DF-Net
pre-trained
KITTI +
Cityscapes

- - 5.215 0.213 - - - - - - - -

Mal et al. [56]/2018 StD- RGB 0.51 0.21 - - - - - - - - - -
Chen et al. [57]/2018 RSS-RGB 0.73 0.19 - - - - - - - - - -

Ranjan et al. [62]/2019
pre-trained
KITTI +
Cityscapes

- - 5.199 0.213 - - - - - - - -

Ranjan et al. [62]/2019 Pre-trained KITTI - - 5.326 0.217 - - - - - - - -

Bian et al. [38]/2019 pre-trained
KITTI - - 5.439 0.217 - - - - - - - -

Bian et al. [38]/2019
pre-trained
KITTI +
Cityscapes

- - 5.234 0.208 - - - - - - - -

Casser et al. [37]/2019 struct2depth - - 5.291 0.215 - - - - - - - -
Godard et al. [63]/2019 Monodepth2 - - 4.701 0.19 - - - - - - - -

Ye et al. [47]/2020 DRM-
SLAM F 0.42 0.16 - - - - - - 0.62 0.23 0.3 0.13

Rares et al. [64]/2020 packnet-sfm - - 4.601 0.189 - - - - - - - -

Ye et al. [47]/2020 DRM-
SLAM C 0.5 0.19 - - - - - - 0.7 0.28 0.36 0.18

Luo et al. [65]/2020 EPC++ - - 5.35 0.216 - - - - - - - -

Lee et al. [66]/2021
Faster
R-CNN
AVN

- - 4.772 0.191 - - - - - - - -

Mumuni et al. [48]/2022 Cowan-GGR - - 3.923 0.188 - - - - - - - -
Mumuni et al. [48]/2022 Cowan - - 4.916 0.212 - - - - - - - -
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in motion. The unsupervised training process is optimized based
on image-based losses and epipolar constraint losses. Liao et
al. [77] proposed a method to estimate optical flow based on
a combination of utilizing intrinsic image decomposition and
recomposition based on Retinex theory on two consecutive
frames of outdoor UAV videos and an edge refinement scheme
based on weighted neighborhood filtering. Yan et al. [78]
proposed a semi-supervised DL network to estimate optical
flow. The proposed network is based on direct estimation from
real data without using ground-truth data. Foggy images and
optical flow modules are estimated from clean images based
on domain transformation. These two data sources interact
with each other, the optical flow module and the flow map
that produces the flow map must be the same to generate
the same error. Dai et al. [79] proposed a self-supervised
learning framework for depth and object motion estimation.
In which the motion of individual objects is predicted based
on rotation and translation of 6 DOF. The proposed network
consists of two subnets: ObjMotion-net and the Depth-net. The
pose network is used to design ObjMotion-net and Depth-net
are designed based on the encoder and the decoder structure
with the basic structure being ResNet50. Ranjan [62] proposed
an unsupervised training framework of multiple specialized
neural networks called Competitive Collaboration to perform
depth estimation, camera motion estimation, optical flow, and
segmentation. This general framework solves the problem by
dividing the scene into moving objects and static background,
camera motion, depth of static scene structure, and optical flow
of moving objects.

b. Datasets of Optical Flow Estimation
MPI Sintel dataset [80]: To evaluate optical flow estimation

models, Butler et al. [80] have published the MPI Sintel dataset.
This dataset is created from 3D animations built from Sintel
open-source code. Based on the cartoon, the camera’s param-
eters, moving objects, and graphics are all calculated using
vectors. The ground-truth data for optical flow estimation is also
provided in the form of vectors. This dataset includes 35 clips,
with 23 clips (1064 frames) used for the training model and
12 clips (564 frames) used for the testing model. The process
of dataset creation is carried out in three different ways: first
is ”Albedo”, this data uses the simplest pass of constant color
with almost no lighting effect; the second is ”Clean”, this data
using this pass adds complexity by introducing various types
of lighting that make smooth gloss surfaces, self-shadowing,
darkening in cavities and darkening where the object is close
to the surface; the third is ”Final”, this data is similar to the
released film and adds some effects such as atmospheric effects,
depth of field blur, motion blur, and color correction.

Middlebury dataset [81]: Unlike other datasets, this dataset
has a very small number of frames, consisting of only 8 frames,
and the ground-truth data is determined in the middle pair.
The authors not only collected color images but also created

grayscale images. The data is divided into 12 sequences for the
training model with ground-truth data, and 12 sequences for
the testing model.

Flying Chairs dataset [67]: The ground-truth data is the
model of the chair. This data includes 22,872 image pairs
and corresponding flow fields. Among them, 964 images were
collected from Flick with the environments ’City’, ’Landscape’,
and ’Mountain’ with a resolution of 1024 × 768. From this
ground-truth image, the authors cropped the images with the
dimensions are 512 × 384 in 4 quadrants. Chair objects are
added to the background, resulting in 809 chair types with 62
views per chair.

Foggy dataset [78]: This is a synthetic dataset built by
combining the defogging method with the original FlowNet2
[68], PWCNet [70], and CC [62]. The defogging method was
proposed by Berman et al. [82]. The generated data includes
2,346 real fog image pairs used for training and the ground-truth
includes 100 real fog image pairs that are annotated manually.

c. Evaluation Measure of Optical Flow Estimation
To evaluate the results of the optical flow estimation, the

methods often use the EPE (End-Point Error) losses measure
between the predicted optical flow and ground-truth. The unit
of measurement is pixels. Based on the evaluation measure, if
the EPE is small, the optical flow estimation model is better.

d. Results, Discussions of Optical Flow Estimation
The results of optical flow estimation are shown in Table III.

The results were evaluated on seven datasets when evaluated
on the Sintel Clean dataset [80], the best results were with the
method of Liao et al. [77] (FlowNet2-IAER). On the Sintel
Final dataset [80], the best results are from the method of Liao
et al. [77] (FlowNet2-IAER). On the KITTI 2012 dataset [39],
the best result is that of the method of Zhong et al. [76] (sub-
test-ft). On the KITTI 2015 dataset [41], the best results are
from the method of Ren et al. [72]. On the Middlebury dataset
[81], the best results are from the method of Bailer et al. [83].
On the Flying Chairs dataset [67], the best result is that of the
method of Zhu et al. [73]. Finally, on the Foggy dataset [78],
the best result is that of the method of Yan et al. [78]. The
results show that more recent studies tend to have lower error
rates. However, studies often focus on evaluating a few datasets:
Sintel Clean, Sintel Final, KITTI 2012, and KITTI 2015, so
there are many empty results on the remaining datasets.

3) Keypoints Detection and Feature Matching

a. Methods for Keypoints Detection and Feature Matching
By the keypoints detection and feature matching categories,

Hart et al. [84] proposed a method to detect keypoints and
feature matching by finding a description prediction model
before performing matching. In which the points are well
located and repeatable, which also reduces the number of points
of interest and reduces the time to consider points for the
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TABLE III. THE OPTICAL FLOW ESTIMATION RESULTS BASED ON DL

Datasets/Authors/Years
Sintel
Clean
[80]

Sintel
Final
[80]

KITTI
2012 [39]

KITTI
2015 [41]

Middlebury
[81]

Flying
Chairs
[67]

Foggy [78]

Train/Test
(EPE)

Train/Test
(EPE)

Train/Test
(EPE)

Train/Test
(EPE)

Train/Test
(EPE)

Train/Test
(EPE)

Train/Test
(EPE)

Dosovitskiy et al.
[67]/2015 3.20/6.08 4.83/ 7.88 6.07/7.6 - 3.81/4.52 - -

Ilg et al. [68]/2017 1.45/ 4.16 2.01/ 5.74 1.28/ 1.8 2.30/- 0.35/0.52 - -
Ranjan et al. [69]/2017 3.17/6.64 4.32 /8.36 8.25/10.1 0.33/ 0.58 -/3.07 -

Ren et al. [72]/2017 4.17/5.30 5.45/6.16 3.29 / 4.0 0.36/0.39 - - -
Zhu et al. [73]/2017 -/3.01 -/7.96 -/9.5 - - -/3.01 -
Sun et al. [70]/2018 2.02/4.39 2.08/5.04 1.45/1.7 2.16/- - - -

Wang et al. [74]/2018 4.03/7.95 5.95/9.15 3.55/4.2 8.88/- - -/3.76 -
Janai et al. [75]
(Hard)
/2018

5.38/8.35 6.01/9.38 - 8.8/- - - -

Janai et al. [75]
(Hard-ft)
/2018

6.05/- 7.09/- - 7.45/- - - -

Janai et al. [75]
(None-ft)
/2018

4.74/- 5.84/- - 3.24/- - - -

Janai et al. [75]
(Soft-ft)
/2018

3.89/7.23 5.52/8.81 - 3.22/- - - -

Zhong et al. [76]
(baseline)
/2019

6.72/- 7.31/- 3.23/- 4.21/- - - -

Zhong et al. [76]
(gtF)
/2019

6.15/- 6.71/- 2.61/- 2.89/- - - -

Zhong et al. [76]
(F)
/2019

6.21/- 6.73/- 2.56/- 3.09/- - - -

Zhong et al. [76]
(low-rank)
/2019

6.39/- 6.96/- 2.63/- 3.03/- - - -

Zhong et al. [76]
(sub)
/2019

6.15/- 6.83/- 2.62/- 2.98/- - - -

Zhong et al. [76]
(sub-test-ft)
/2019

3.94/6.84 5.08/8.33 2.61/1.1 2.56/- - - -

Zhong et al. [76]
(sub-train-ft)
/2019

3.54/7.0 4.99/8.51 2.51/1.3 2.46/- - - -

Bailer et al. [83]
/2019 -/3.748 -/5.81 -/3.5 - -/0.33 -/2.45 -

Yan et al. [78]
/2020 - - -/1.6 - - - -/4.32

Liao et al. [77]
(PWC-Net-ft)
/2021

2.02/4.39 2.08/5.04 1.45/1.7 - - - -/6.10

Liao et al. [77]
(FlowNet2-ft)
/2021

1.45/4.16 2.01/5.74 1.28/1.8 - - - -/4.74

Liao et al. [77]
(FlowNet2-IA)
/2021

1.52/4.11 5.51/1.4 1.4/1.8 - - - -/4.72

Liao et al. [77]
(FlowNet2-IAER)
/2021

1.46/4.06 2.13/1.37 1.37/1.8 - - - -/5.19

matching process. Verdie et al. [85] proposed a method that
allows detecting keypoints and feature matching based on a
training method to identify potentially stable points on the
training image by creating a regression set of points of a score
map whose values are local maxima at these locations. Shen
et al. [86] proposed an end-to-end matching network based
on improvements by LF-Net, the proposed method proposes a
scale space structure with the corresponding map for keypoints

detection. Second, the training patch is selected based on the
general loss function and neighbor mask.

b. Datasets for Keypoints Detection and Feature Matching
Evaluation

To evaluate the results of keypoints detection and feature
matching, Verdie et al. [85] used the following datasets.

Webcam dataset [85]: This is a dataset consisting of 6

Van-Hung Le, Visual Slam and Visual Odometry Based on RGB-D Images Using Deep Learning: A Survey



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1059

scenes of which five scenes (StLouis, Mexico, Chamonix,
Courbevoie, and Frankfurt) are selected from the AMOS [87]
dataset and the Panorama scene is collected from the roof with
a 360 degrees view.

Oxford dataset [88]: This is a small dataset, consisting
of 8 scenes (viewpoint changes (1) and (2); scale changes
(3) and (4); image blur (5) and (6); JPEG compression (7);
and illumination (8)). On the data, there are two types of
changes: scene type and image condition. In a scene, there are
two types of variable regions: (a) containing uniform regions
with distinctive edge boundaries and (b) the other containing
repeating motifs in different forms.

EF dataset [89]: This is a small dataset, consisting of 5
sequences of 38 images which contains drastic illumination and
background clutter changes.

HPatches(HP) dataset [90]: This is a dataset consisting of
116 sequences built from 6 images with known patterns in
nature and man-made, it is divided into two parts: (1) HP-
viewpoint includes 59 sequences with significant viewpoint
changes; (2) HP-illumination includes 57 sequences with sig-
nificant illumination changes. The data of these two sets is
divided into 90% for the training and validation model and 10%
for the testing model. During the training process, the data is
standardized to a size of 320× 240.

c. Evaluation Measure of Keypoints Detection and Feature
Matching

To evaluate the results of the keypoints detection and fea-
ture matching process, the studies often use the measure of
repeatability, of which there are two evaluation cases: the first
is to evaluate the repeatability in the case of taking the ratio.
The main score is 2% of the score on the image (2%); the
second is that a keypoint can not be used more than once
when evaluating repeatability (stand.). Based on the results of
these two measurements, the higher the result is the better [85].
Another measure, average match score (AMS), is also evaluated
for keypoints detection and feature matching [90].

d. Results of Keypoints Detection and Feature Matching
The keypoints detection and feature matching results based

on DL are shown in Table IV. In addition, the authors also com-
pared some traditional methods such as Fast [91], SFOP [92],
SIFER [93], SIFT [94], SURF [95], WADE [96], and EdgeFoci
[97]. When comparing the measures (2%) and (stand.), TILDE
[85] has the best results when compared to measure AMS, and
RF-Net has the best results. However, the results are evaluated
on multiple datasets and with different measures, so many cells
in Table IV are empty.

4) DL Module Adds to the Visual Slam Framework

a. Feature Extraction Module DL
Qin et al. [101] proposed a keypoint extraction network

used to resemble the ORB-SLAM2 [102] module in the

VO framework. Therefore, SP-Flow is used to replace ORB-
SLAM2 in the VO framework. This network is called SP-
Flow, it is a combination of a self-supervised framework
and the Lucas–Kanade. The self-supervised framework of SP-
Flow includes three stages: keypoint pre-training, keypoint self-
labeling, and joint training. In the Visual SLAM model, whether
feature extraction is effective or not often depends on the
feature point extraction for a single image and its feature point
matching accuracy between two successive frames. SP-Flow
has tried to make the feature extraction process simple but
still ensure accuracy. The architecture of SP-Flow includes six
conventional convolution layers. Bruno et al. [103] proposed
a module the Learned Invariant Feature Transform (LIFT) in
the traditional ORB-SLAM of the Visual SLAM method. This
module is responsible for extracting features from images in
the ORB-SLAM [104] method. The architecture of LIFT is
based on CNN consisting of three modules: detector, orientation
estimator, and descriptor. It is a very important module in the
ORB-SLAM method, and LIFT has been pre-trained on many
VO datasets.

Studies based on this method have performed evaluations
on datasets such as the TUM RGB-D SLAM dataset [45],
the KITTI 2012 dataset [39], and the Euroc dataset [105]. The
TUM RGB-D SLAM [45], and the KITTI 2012 [39] datasets
have been presented above.

The Euroc dataset [105] is collected on-board a Micro
Aerial Vehicle (MAV), its data includes stereo images, syn-
chronized IMU measurements, accurate motion, and ground-
truth structure. This dataset is used to evaluate the Visual-
inertial SLAM and 3D reconstruction capabilities. The data
includes 11 stereo sequences collected from slow flights under
good visual conditions to dynamic flights with motion blur and
poor illumination. This dataset includes two data types: images
collected from industrial scenarios; and images collected from
inside a Vicon motion capture system, with obstacles placed
over the scene.

To evaluate the results of the Visual SLAM algorithm using
the DL module for feature extraction, the methods use several
evaluation metrics as follows: (1) The absolute trajectory error
(ATE) [45] is the distance error between the ground-truth
ÂT i and the estimated motion ATi trajectory, aligned with an
optimal SE(3) pose T. ATE is calculated according to formula
(3).

ATE = min
T∈SE(3)

√√√√ 1

Igt|
∑
i∈Igt

||TATi − ÂT i||2 (3)

(2%) trel and rrel measurements: trel is the average transna-
tional RMSE drift (%) on length of 100m-800m. rrel is the
average rotational RMSE drift (◦/100m) on length of 100m-
800m.

Results of the Visual SLAM method when using the feature
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TABLE IV. THE KEYPOINTS DETECTIONS AND FEATURE MATCHING RESULT BASED ON DL

Authors/Years
Datasets/
Measu./
Methods

Webcam Oxford EF HP-
viewpoint

HP-
illumination

2% stand. 2% stand. 2%
Average
match
score

Average
match
score

Average
match
score

Low et al. [94]/2004 SIFT 20.7 46.5 43.6 32.2 23 0.296 0.49 0.494
Rosten et al. [91]/2006 Fast 26.4 53.8 47.9 39 28 - - -

Bay et al. [95]/2006 SURF 29.9 56.9 57.6 43.6 28.7 0.235 0.493 0.481
Forstner et al. [92]/2009 SFOP 22.9 51.3 39.3 42.2 21.2 - - -
Zitnick et al. [97]/2011 EdgeFoci 30 54.9 47.5 46.2 31 - - -
Mainali et al. [93]/2013 SIFER 25.7 45.1 40.1 27.4 17.6 - - -

Salti et al. [96]/2013 WADE 27.5 44.3 51 25.6 28.6 - - -
Verdie et al. [85]/2015 TILDE-GB 33.3 54.5 32.8 43.1 16.2 - - -
Verdie et al. [85]/2015 TILDE-CNN 36.8 51.8 49.3 43.2 27.6 - - -
Verdie et al. [85]/2015 TILDE-P24 40.7 58.7 59.1 46.3 33 - - -
Verdie et al. [85]/2015 TILDE-P 48.3 58.1 55.9 45.1 31.6 - - -
Tian et al. [98]/2017 L2-Net+DoG - - - - - 0.189 0.403 0.394
Tian et al. [98]/2017 L2-Net+SURF - - - - - 0.307 0.627 0.629
Tian et al. [98]/2017 L2-Net+FAST - - - - - 0.229 0.571 0.431
Tian et al. [98]/2017 L2-Net+ORB - - - - - 0.298 0.705 0.673
Tian et al. [98]/2017 L2-Net+Zhang et al. - - - - - 0.235 0.685 0.425

Mishchuk et al. [99]/2017 Hard-Net+DoG - - - - - 0.206 0.436 0.468
Mishchuk et al. [99]/2017 Hard-Net+SURF - - - - - 0.334 0.65 0.668
Mishchuk et al. [99]/2017 Hard-Net+FAST - - - - - 0.29 0.617 0.63
Mishchuk et al. [99]/2017 Hard-Net+ORB - - - - - 0.238 0.616 0.632
Mishchuk et al. [99]/2017 Hard-Net+Zhang et al. - - - - - 0.273 0.671 0.557

Ono et al. [100]/2018 LF-Net - - - - - 0.251 0.617 0.566
Shen et al. [86]/2019 RF-Net - - - - - 0.453 0.783 0.808

extraction module using DL are shown in Table V. The results
are based on the ATE, trel, and rrel measurements that the
smaller the better. The results are evaluated on three datasets
with three types of measures, each method only evaluates one
dataset and one type of measure. Therefore, Table V still has
many empty results. Table V also shows that the error results
on the TUM RGB-D SLAM and Euroc datasets are very low
(0.03-0.5m), but the results on the KITTI 2012 dataset are very
large (8-11m). This proves that choosing a standard dataset
for evaluating the feature extraction problem also has many
challenges.

b. DL Semantic Segmentation Module
Sun et al. [107] proposed MR-SLAM to improve the results

of the RGB-D SLAM. The main idea of this method is to use
the RGB-D data-based motion removal method and integrate it
into the front end of the RGB-D SLAM framework. The input
data of MR-SLAM is RGB-D images, the ego-motion compen-
sated image difference is first used to detect moving objects,
a particle filter is second used to detect motion, and third is
to apply the maximum-a-posterior (MAP) estimator on vector
quantified depth images to construct the foreground. Kaneko
et al. [108] proposed a framework to improve the efficiency
of the Visual SLAM framework by using the results of mask-
based semantic segmentation to identify feature point extraction
regions (detect and segment several objects on the image). The

object mask problem is implemented using DeepLab v2 [109].
This helps to reduce the number of incorrect matches between
correspondences when using RANSAC. The authors applied
to ORB-SLAM framework to build a Visual SLAM system.
Yu et al. [110] proposed DS-SLAM to improve localization
efficiency in dynamic environments when performing pose
estimation. DS-SLAM has five threads running in parallel:
tracking, semantic segmentation, local mapping, loop closing,
and dense semantic map creation. In particular, the local map-
ping thread and loop closing thread are implemented similarly
to the ORB-SLAM2 [102] method. DS-SLAM uses the raw
RGB image is utilized for semantic segmentation and moving
consistency checks simultaneously by SegNet and RANSAC,
respectively. Finally, The global octo-tree map is built based
on the combination of the created local point clouds from the
keyframes’ transformation matrix and the depth images. Bescos
et al. [111] proposed DynaSLAM based on ORB-SLAM2
method. DynaSLAM’s input data is in dynamic scenarios for
monocular, stereo, and RGB-D images. DynaSLAM can detect
moving objects using multi-view geometry, DL, or both types
of models. The pixel-wise semantic segmentation of dynamic
objects with stereo and monocular input data is performed using
Mask R-CNN, with RGB-D data using the multi-view geometry
method for rendering. The mapping and tracking steps are per-
formed based on the ORB-SLAM2 method. Zhong et al. [112]
proposed Detect-SLAM based on integrating ORB-SLAM2, an
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TABLE V. RESULTS OF VISUAL SLAM METHOD WHEN USING THE DL FEATURE EXTRACTION MODULE

Authors/Years
Dataset/

Measurements/
Methods

TUM RGB-D
SLAM
dataset

[45]

KITTI 2012 dataset
[39]

Euroc
dataset
[105]

Absolute
Trajectory

Error
(ATE)(m)

t rel(%) r rel(deg/100m -o )

Absolute
Trajectory

Error
(ATE)(m)

Absolute
Trajectory

Error
(ATE)(m)

Mur et al. [102]/2017 ORB-SLAM2
(stereo) - 0.727 0.22 - -

Tang et al. [106]/2019 GCN-SLAM 0.05 - - - -

Qin et al. [101]/2020 SP-Flow
SLAM 0.03 - - - -

Qin et al. [101]/2020 Stereo
LSD-SLAM - 0.942 0.272 - -

Qin et al. [101]/2020 SP-Flow
SLAM(stereo) - 0.76 0.19 - -

Bruno et al. [103]/2020 LIFT-SLAM - - - 9.19 0.573

Bruno et al. [103]/2021 LIFT-SLAM
(fine-tune KITI) - - - 11.33 0.08

Bruno et al. [103]/2021 LIFT-SLAM
(fine-tune Euroc) - - - 8.94 0.07

Bruno et al. [103]/2021 Adaptive
LIFT-SLAM - - - 8.56 0.04

Bruno et al. [103]/2021
Adaptive
LIFT-SLAM
(fine-tune KITI)

- - - 11.24 0.28

Bruno et al. [103]/2021
Adaptive
LIFT-SLAM
(fine-tune Euroc)

- - - 11.3 0.048

object detection module using a Single Shot Multibox Object
Detector (SSD) to perform. Detect-SLAM also includes three
parallel streams: tracking, local mapping, and loop closing.
However, there are the following new points. Firstly, Detect-
SLAM only cares about moving objects. The second is that
the static objects are reconstructed on keyframes according to
the point cloud data and the object map is also constructed.
The third is to improve object detection results using a SLAM-
enhanced detector. Tian et al. [113] proposed a novel framework
to build the Visual SLAM system based on the combination of
Faster RCNN for object detection, semantic segmentation in 3D
space, and the estimation results from the SLAM system. The
input data of the framework is an RGB-D image. Firstly, the
local target map is built using CNN to detect the 2D object
proposals. Then, the dynamic global target map is updated
based on the local target map obtained by CNNs. Finally, the
detection result of the current frame is obtained by projecting
the global target map into 2D space. Cheng et al. [114] proposed
the OFB-SLAM method to improve the results of the Visual
SLAM system in the case of a dynamic environment. OFB-
SLAM uses optical flow in a feature-based monocular SLAM
system to remove dynamic feature points on the input frame.
OFB-SLAM includes two modules: ego-motion estimation and
dynamic feature point detection. Ego-motion estimation module
extracts the feature points from the current frame and the
previous frame, to find the corresponding feature pair between
the two frames, RANSAC is used. Optical flow is used to detect
object motion. OFB-SLAM is integrated into ORB-SLAM and
implements the next steps of the Visual SLAM system. Shao et
al. [115] proposed a method to filter outliers of RANSAC-based

F-matrix calculations using faster R-CNN. In which the inliers
are trained using semantic patches tailored which can provide
semantic labels of image regions. From there, low-quality
feature areas are effectively reduced. The proposed method is
added to the ORB-SLAM system. Xua et al. [116] proposed
Deep SAFT to improve feature-based vSLAM’s applicability
in more challenging environmental conditions. Deep SAFT is
an online learning scene adaptation feature transform that is
capable of self-adapting to recently observed scenes by taking
advantage of the advantages of CNN. The authors used Deep
SAFT to replace ORB-SLAM2 in the Visual SLAM system.
Liu et al. [117] proposed the Edge-Feature Razor (EF-Razor)
method, EF-Razor first uses semantic information offered by
the real-time object detection method YOLOv3 to distinguish
edge features. To effectively filter unstable features onto the
SLAM system, EF-Razor was used. The authors integrated
EF-Razor into ORB-SLAM2. Rusli et al. [118] proposed a
semantic SLAM using method objects and walls as a model
of an environment, called RoomSLAM. RoomSLAM includes
two modules running in parallel: front-end and back-end. The
front-end performs object detection and wall detection by using
YOLOv3 on RGB images. The depth images are converted to
point cloud data to determine the location of objects and walls
in the 3D space/the real world. They are seen as landmarks of
the environment and the walls are used to construct rooms in
the scene. The back-end is responsible for estimating the state
through the optimization graph. In RoomSLAM a second com-
ponent that is also very important in the room, RoomSLAM also
looks for similarities between rooms to detect loop closures. Jin
et al. [119] proposed an unsupervised semantic segmentation
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SLAM framework, called USS-SLAM to improve Robot po-
sitioning accuracy when moving, this framework is integrated
into the ORB-SLAM2 method. To do this, USS-SLAM filters
out dynamic features using a semantic segmentation model
learned from the DeepLab V2 whose backbone is ResNet.
This learning method can be trained by the adversarial transfer
learning method in multi-level feature spaces. The next steps of
the Visual SLAM system are based on ORB-SLAM2. Zhao et
al. [120] proposed a semantic Visual-inertial SLAM system for
dynamic environments based on VINS-Mono [121] with three
streams: RGB-image manager, semantic segmentation manager,
and feature point processing. In particular, RGB-image manager
and semantic segmentation manager use the RGB images and
the semantic segmentation result. The feature point processing
flow uses the optical flow to track feature points on the RGB im-
ages. The output of this research is that it is possible to perform
real-time trajectory estimation by utilizing the pixel-wise results
of semantic segmentation. Cheng et al. [122] proposed DM-
SLAM based on feature-based methods to improve the results
of the location accuracy in dynamic environments. DM-SLAM
is combined from an instance segmentation network with
optical flow information. DM-SLAM includes four modules:
semantic segmentation, ego-motion estimation, dynamic point
detection, and a feature-based SLAM framework. The semantic
segmentation module uses Mask R-CNN for object segment
segmentation, followed by moving points being detected and
removed in ego-motion estimation. The dynamic feature points
are extracted from the dynamic point region detected in the
previous step. Finally, the feature-based SLAM framework
module uses ORB-SLAM2. Liu et al. [123] proposed RDS-
SLAM to improve the results of building Visual SLAM systems
in real-world dynamic environments. RDS-SLAM proposes a
semantic segmentation thread that does not have to wait for
results from any module, and the tracking thread also does
not have to wait for results from the segmentation module.
This method helps to effectively perform semantic segmentation
results for dynamic object detection and eliminate outliers. The
next implementation of RDS-SLAM is based on ORB-SLAM3.
Su et al. [124] proposed a real-time Visual SLAM algorithm
based on deep learning based on the ORB-SLAM2 method.
To extract semantic information from the images, a parallel
semantic thread is built. To remove dynamic features in the
image, the authors used an optimized optical flow mask module.
Dynamic objects in images are detected using YOLOv5s built
into the semantic thread. To improve the system results in the
tracking module, a method of optimizing the homograph matrix
is used.

To evaluate the DL module for semantic segmentation added
to the Visual SLAM system, the studies evaluated the following
datasets. CARLA [125] is used to study the results of three
methods of autonomous driving: a classic modular pipeline, an
end-to-end model trained via imitation learning, and an end-

to-end model trained via reinforcement learning. CARLA can
provide automated digital environments such as urban layouts,
buildings, and vehicles. This can support the development,
training, and validation of urban automated driving systems.

ObjectFusion dataset I, ObjectFusion dataset II, ObjectFusion
dataset III, and ObjectFusion dataset VI [113] are collected
from the Asus Xtion Pro RGB-D sensor in indoor environments.
Trajectories are chosen to build data with many prominent
objects as keyframes both locally and globally. ObjectFusion
dataset I is that there is an object in each frame of the
scene, the data is a frame sequence consisting of 1,801 frames.
ObjectFusion dataset II is that there are multiple objects in
each frame of the scene such as ’Chairs’, ’Dogs’, ’Pot plants’,
and so on. The data is collected in full lighting conditions and
is a frame sequence consisting of 1,625 frames. ObjectFusion
dataset III is collected in a more challenging context, the data is
collected in a scene with many objects and is occluded in many
frames. ObjectFusion dataset VI is similar to ObjectFusion
dataset III, and the data is captured in a scene with many objects
and moving obstacles.

The ICL-NUIM dataset [126] is an RGB-D benchmarking
used to evaluate system VO and Visual SLAM algorithms. The
image data was compiled from camera trajectories in raytraced
3D models in POVRay with two scenes in the living room
and office. They provided some ground-truth data. Living room
ground-truth data includes 3D surface ground-truth together
with the depth maps, camera poses, and camera trajectory. In
addition, the ground-truth data of 3D reconstruction is also
provided to evaluate.

ADVIO dataset [28] is collected from an iPhone, a Google
Pixel Android phone, and a Google Tango device in different
indoor and outdoor scenes. It includes 23 sequence frames (7
sequences collected from Office indoor scenes, 12 sequences
collected from urban indoor scenes, 2 sequences collected from
urban outdoor scenes, and 2 sequences collected from suburban
outdoor scenes). The ground-truth data includes ground-truth
trajectory based on the camera pose calculated from the IMU
data of the iPhone.

To evaluate the DL module for semantic segmentation added
to the Visual SLAM system, the studies evaluated the follow-
ing measurements. Mean Tracking Rate (MTR) [108] is the
tracking success rate in 50 trials when successful tracking is
performed on 80% of the 1000 frames of the sequence, as
computed in the formula (4).

MTR =
1

m

m=50∑
i=1

(TrackingRatei) (4)

where TrackingRatei is the ”Tracking Rate” (%) at time ith,
and m is the number of times the ”Tracking Rate” is performed.

Mean Trajectory Error (MTE) [108] is an estimate of the
camera’s position relative to the defined ground-truth. It is
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the error distance for each time step and the average value
of a sequence as ”Trajectory Error (m)”. Here, only calculate
MTE for ”Success Tracking” i.e. ”Tracking Rate” exceeds
80%, MTE is computed based on the formula (5).

MTE =
1

m

m∑
i=1

(
1

ni
||Xt − Yit||2) (5)

where i = 1, 2, ..., 50 is the number of ”Successful Tracking”
trials. Xt is the 3D position of the ground-truth trajectory, and
Yit is the 3D position of the estimated trajectory over the entire
time series (t = 1, ..., ni). ATE is presented in Eq. (3).
IOU (Intersection over Union) is a measure to evaluate the

results of detecting objects in the scene during the process of
building the Visual SLAM system, IOU is calculated according
to the formula (6).

IOU =
BBg ∩BBr

BBg ∪BBr
(6)

where BBg is the ground-truth bounding box of the object,
and BBr is the bounding box prediction of the object. Pixel
accuracy (PA) is calculated according to the formula (7).

PA =

∑
i nii∑
i ti

(7)

Mean precision (MP ) is calculated according to the formula
(8).

MP =
1

ncl

∑
i nii∑
j nji

(8)

where nij is the number of pixels classified as j while the true
value is i. ncl is the total classes. ti is the number of pixels
that belong to class i with ti =

∑
j nij .

Another measure used is the absolute translation error RMSE
(Tabs) [116], which is the distance between the estimated
trajectory and the ground-truth trajectory. Another type of
measure used is the absolute translation (trans.) error RMSE
(Tabs) [116], which is the distance between the estimated
trajectory and the ground-truth trajectory. The calculation of
RMSE (Tabs) was performed in the study of Sturm et al. [45].

In Zhao et al. [120] study, measurements such as RMSE,
Mean error, and Absolute Pose Error(APE) are also presented.
These measures are also defined [127].

Results of Visual SLAM when using the DL semantic seg-
mentation module are presented in Table VI. The results have
been evaluated on multiple measures (MTR, MTE, ATE,
IOU , PA, MP , RMSE (Tabs), RMSE, Mean Error, APE)
with multiple datasets (CARLA [125], TUM RGB-D SLAM
dataset [45], ObjectFusion dataset I, ObjectFusion dataset II,
ObjectFusion dataset III, ObjectFusion dataset VI [113], ICL-
NUIM dataset [126], ADVIO dataset [28]). Although, they
all use DL for semantic segmentation and are added to the
Visual SLAM system, each dataset and method uses a different
measure. Therefore, there are many empty results in Table VI.

c. DL Pose Estimation Module
Pose estimation is the process of estimating the camera

pose as the subject carrying the camera moves in the environ-
ment/scene. In this section, we survey methods and research on
using DL for camera pose estimation. Zou et al. [128] proposed
an ObjectFusion system to estimate the camera pose of each
RGB-D frame and build 3D object surface reconstruction in the
scene. To do this, the instance segmentation masks are detected
in each frame and used to encode each object instance to a
latent vector by a deep implicit object representation. To detect
each object instance, the object shape and pose are initialized.
The camera pose is estimated based on the deep implicit
object representation and sparsely sampled map points. Xu et
al. [129] proposed MID-Fusion for a multi-instance dynamic
RGBD SLAM system. The authors used an object-level octree-
based volumetric representation to estimate the camera pose
in a dynamic environment. Mumuni et al. [48] proposed a
confidence-weighted adaptive network (Cowan) framework to
train a depth estimation model from monocular RGB images
and predict camera pose, and optical flow by using EgoMNet,
and OFNet, respectively. Cowan’s training process includes
two stages: the first is DepthNet, EgoMNet, and OFNet to
predict the outputs depth map, camera pose, and optical flow,
respectively. The second is that the outputs from the previous
step are used to filter suitable regions allowing the network
to be updated again in the previous step. Zhu et al. [130]
proposed a method to learn neural camera pose representation
coupled with neural camera movement representation in the
3D scene. The camera pose is represented by a vector, the
local camera movement is represented by a matrix operating
on the vector of the camera pose. The vector representing
the camera pose includes 6 DOFs, with information such as
position and direction of movement. The regression camera
pose output is through the DL network. Qiao et al. [131]
proposed Objects Matter for camera re-localization in the scene,
the proposed method is based on extracting object relation
features and strengthening the inner representation of an image
using an Object Relation Graph (ORG). Where the objects in
the image and the relationships between them can be important
information to restore the camera pose. To extract features
of objects, the proposed method uses Graph Neural Networks
(GNNs) and then integrates ORG into PoseNet and MapNet to
be able to predict many datasets. To evaluate the DL module
for pose estimation/camera pose estimation added to the Visual
SLAM system, the studies evaluated the following datasets.
SceneNet RGB-D [132] is a large synthetic dataset with a
5M indoor synthetics video dataset of high-quality ray-traced
RGB-D images, built-in full lighting conditions, and providing
ground-truth data (3D ground-truth trajectories). The authors
built a ground-truth trajectory with a length of 5 minutes for one
journey, the image resolution is 320 × 240 pixels, resulting in
300 images in a trajectory. SceneNet RGB-D is used to evaluate
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TABLE VI. RESULTS OF VISUAL SLAM WHEN USING THE DL SEMANTIC SEGMENTATION MODULE

Authors/Years
Methods/
Datasets/
Matrix

CARLA
[125]

TUM
RGB-D
SLAM
dataset

[45]

Object
Fusion
-dataset
I [113]

Object
Fusion
-dataset
II [113]

Object
Fusion
-dataset
III [113]

Object
Fusion
-dataset
IV [113]

ICL-
NUIM
dataset
[126]

ADVIO
dataset [28]

MTR
(%)/
MTE
(m)

ATE

Mean
IOU /
Mean
PA/
MP

Mean
IOU /
Mean
PA/
MP

Mean
IOU /
Mean
PA/
MP

Mean
IOU /
Mean
PA/
MP

Absolute
trans.
error

RMSE
(Tabs)

RMSE Mean
Error

APE
for

trans.

Sun et al. [107]/2017 MR-SLAM - 0.085 - - - - - - - -

Kaneko et al. [108]/2018 Mask-SLAM 58.2/
13.7 - - - - - - - - -

Yu et al. [110]/2018 DS-SLAM - 0.103 - - - - - - - -
Qin et al. [121]/2018 VINS-Mono - - - - - - - 5.037 4.71 1.68

Bescos et al. [111]/2018 DynaSLAM - 0.019 - - - - - - - -
Zhong et al. [112]/2018 Detect-SLAM - 0.113 - - - - - - - -

Tian et al. [113]/2019 ObjectFusion-
FCN-VOC8s - -

0.52/
0.62/
0.729

0.5169/
0.5966/
0.7103

0.5775/
0.6559/
0.6708

0.3529/
0.4168/
0.7361

- - - -

Tian et al. [113]/2019 ObjectFusion-
CRF-RNN - -

0.59/
0.63/
0.938

0.4769/
0.4899/
0.5633

0.5618/
0.6058/
0.4115

0.273/
0.2989/
0.5955

- - - -

Tian et al. [113]/2019 ObjectFusion-
Mask-RCNN - -

0.59/
0.64/
0.895

0.4855/
0.5021/
0.7125

0.4946/
0.5397/
0.4489

0.3433/
0.3938/
0.716

- - - -

Tian et al. [113]/2019 ObjectFusion-
Deeplabv3+ - -

0.58/
0.63/
0.856

0.4849/
0.4927/
0.719

0.4869/
0.537/
0.4458

0.3484/
0.3952/
0.7351

- - - -

Tian et al. [113]/2019
ObjectFusion-
SORS
(GLOBAL)

- -
0.71/

0.726/
0.954

0.5889/
0.6438/
0.7989

0.6063/
0.6764/
0.872

0.4012/
0.4261/
0.7806

- - - -

Tian et al. [113]/2019
ObjectFusion-
SORS
(ACTIVATE)

- -
0.702/
0.724/
0.936

0.5301/
0.5765/
0.8626

0.5528/
0.6106/
0.902

0.3728/
0.3878/
0.7873

- - - -

Cheng et al. [114]/2019 OFB-SLAM - 0.082 - - - - - - - -

Shao et al. [115]/2020

Semantic
Filter
RANSAC
Faster
R-CNN

- 0.19 - - - - - - - -

Xua et al. [116]/2020 Offline
Deep SAFT - 0.0179 - - - - 0.057 - - -

Xua et al. [116]/2020 Continuous
Deep SAFT - 0.168 - - - - 0.043 - - -

Xua et al. [116]/2020 Discrete
Deep SAFT - 0.0235 - - - - 0.065 - - -

LIU et al. [117]/2020 EF-Razor - 0.0168 - - - - - - - -
Rusli et al. [118]/2020 RoomSLAM - 0.205 - - - - - - - -

Jin et al. [119]/2020 USS-SLAM
with ALT - 0.01702 - - - - - - - -

Jin et al. [119]/2020 USS-SLAM
without ALT - 0.019 - - - - - - - -

Zhao et al. [120]/2020 Visual-inertial
SS - - - - - - - 4.84 4.51 1.61

Cheng et al. [122]/2020 DM-SLAM - 0.034 - - - - - - - -
Liu et al. [123]/2021 RDS-SLAM - 0.065 - - - - - - - -

Su et al. [124]/2022 ORB-SLAM2
PST - 0.019 - - - - - - - -

semantic segmentation, instance segmentation, object detection,
optical flow, camera pose estimation, and 3D scene labeling
algorithms in the Visual SLAM system. 7-Scenes dataset [133]
is collected from the handheld MS Kinect RGB-D sensor with
a resolution of 640 × 480 pixels. The ground-truth data of
the tracking camera and dense 3D model are built from the
KinectFusion system based on the scene coordinate regression
forest.

To evaluate the DL module for pose estimation added to the
Visual SLAM system, the studies performed evaluation on the

following measurements. ATE is defined in the formula (3).
Dense Correspondence Re-Projection Error (DCRE) [131] is
the 2D displacement magnitude according to the 2D projection
of dense 3D points rendered by 3D ground-truth camera poses
and predicted camera poses. Based on two measures ATE and
DCRE, the smaller the value, the better the proposed method.

Results of Visual SLAM when using the DL pose estimation
module are presented in Table VII. Just like the results above, in
Table VII, the results of multiple methods are evaluated on three
different datasets, so there are many empty result cells. The
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number of evaluation methods on the SceneNet RGB-D dataset
[132] is the largest, the results show a huge difference (with
the ObjectFusion S3 [128] method the result is 0.79, but the
Maskfusion(MF) S3 [134] results are 14.824) shown in Table
VII.

d. DL Map Construction Module
Zhao et al. [139] proposed a deep network to build 3D

dense mapping, called LKN-VO (Learning Kalman Network-
based monocular VO). The input data of LKN-VO is monocular
RGB images. The dense optical flow is estimated by FlowNet2,
and the depth map is estimated by DepthNet. The global pose
trajectory is built upon transferring and filtering 6 DOF relative
poses using the SE(3) composition layer. Next, the point cloud
data of the image is built based on the depth map and the
learned global pose. The output is that a dense 3D map is
constructed.

Tao et al. [140] proposed a method for constructing an indoor
3D semantic Visual SLAM algorithm based on the combination
of Mask Regional Convolutional Neural Network (RCNN) and
ORB feature extraction. To accurately collect keypoints, the
authors used the real-time ORB feature extraction. To detect
instance segmentation tasks and semantic association of map
points, the proposed method uses the Mask RCNN. The output
is the constructed semantic map.

By the mapping categories, to build a safe path that can avoid
obstacles in the environment for robots or autonomous vehicles,
geometric maps need to be built based on spatial maps. This
includes information about the space of the environment, and
structures to plan movements, paths, and its location in the en-
vironment. Han et al. [141] surveyed building an environmental
map. The process of building semantic mapping includes three
modules: spatial mapping, acquisition of semantic information,
and map representation.

McCormac et al. [142] proposed a method combining CNNs
and Visual SLAM (ElasticFusion) to build dense 3D maps. In
which Visual SLAM builds a 3D global map based on 2D
images, CNNs perform semantic predictions on multiple views
based on probability. The output is a densely annotated semantic
3D map.

Sunderhauf et al. [143] propose a method for building an
environment map based on Visual SLAM and DL techniques for
object detection and segmentation, thereby creating a semantic
map of the environment with full geometry information of the
environment and information on 3D objects in the environment.
In the phase of detecting and segmenting objects in the environ-
ment, the method has been used and evaluated on many typical
models such as Fast R-CNN, Faster R-CNN, YOLO, or the
Single Shot MultiBox Detector (SSD).

Yang et al. [144] proposed a real-time semantic mapping
system that includes two main tasks: the first is 3D geometric
reconstruction often using SLAM models, and the second is 3D

object semantic segmentation using a CNN model to convert
pixel label distributions of 2D images to 3D grids and propose
a Conditional Random Field (CRF) model with higher order
cliques to enforce semantic consistency among grids.

Grinvald et al. [145] proposed online volumetric instance
aware semantic mapping from RGB-D images based on ge-
ometric segmentation with object-like convex 3D segmentation
of depth image using geometry-based method, semantic in-
stance aware segmentation refinement is performed on the RGB
image by Mask R-CNN. The data association is performed
on RGB-D image pairs, and map integration is performed by
Voxblox TSDF-based dense mapping framework.

Karkus et al. [146] suggested the Differentiable Mapping
Network (DMN) based on a combination of spatial structure
and an end-to-end training model for mapping. DMN performs
the construction of maps that allow embedding views in a spa-
tial structure. The filters are used to localize image sequences
using particle filters. The gradient descent is used to combine
the map representation and localization.

To evaluate the performance of the map construction DL
module in the Visual SLAM system, the researchers used
several datasets with RGB-D images as shown below. KITTI
2012 dataset [39], NYU RGB-D V2 dataset [42], TUM RGB-
D SLAM dataset [45], and ICL-NUIM dataset [46] have been
presented above.

Mask-RCNN MC dataset [140] is a self-generated dataset,
including 10,000 images collected from 21 types of ob-
jects commonly found in homes and laboratories (’Person’,
’Robot’, ’Suitcase’, ’Chair’, ’Air conditioner’, ’Desk’, ’Book-
case’, ’Cat’, ’Jackboard’, ’Door’, ’TV’, ’Potted plant’, ’Book’,
’Mouse’, ’Dog’, ’Umbrella’, ’Drone’, ’Bed’, ’Laptop’, ’Cell
phone’, ’Keyboard’). The data is collected based on an MS
Kinect V2 connected to a Laptop with Intel i5-7500, the
memory is 32 GB, and a GPU GTX 1080 graphic. They are
mounted on a moving robot. The data is divided into 90% for
training and 10% for testing.

To evaluate the performance of the map construction DL
module in the Visual SLAM system, the researchers used
several datasets with RGB-D images as shown below.

Measures trel, rrel, and RMSE have been presented above.
The average log error (log)(ALE) measure is calculated based
on the formula (9).

ALE =

√
1

N

∑
p

(log(dgtp − log(dp))2 (9)

The absolute relative error (AbRE) measure is calculated based
on the formula (10).

AbRE =
1

N

∑
p

|dgtp − dp|
dgtp

(10)
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TABLE VII. RESULTS OF VISUAL SLAM WHEN USING THE DL POSE ESTIMATION MODULE

Authors/Years
Datasets/

Measurements/
Methods

SceneNet RGB-D
[132]

KITTI
2012

dataset
[39]

7-Scenes
Dataset

[133]

RMSE of
Absolute

Trajectory
Error (ATE)

(cm)

RMSE of
Absolute

Trajectory
Error (ATE)

(cm)

Dense
Correspondence

Re-Projection
Error

(DCRE)(cm)
Kahler et al. [135]/2015 InfiniTAM(IM) S1 22.486 - -
Kahler et al. [135]/2015 InfiniTAM(IM) S2 28.08 - -
Kahler et al. [135]/2015 InfiniTAM(IM) S3 13.824 - -
Kahler et al. [135]/2015 InfiniTAM(IM) S4 34.846 - -

Dai et al. [136]/2017 BundleFusion (BF) S3 4.164 - -
Dai et al. [136]/2017 BundleFusion (BF) S1 5.2 - -
Dai et al. [136]/2017 BundleFusion (BF) S2 5.598 - -
Dai et al. [136]/2017 BundleFusion (BF) S4 7.742 - -

Kendall et al. [137]/2017 PoseNet17 - - 24
Runz et al. [134]/2018 Maskfusion(MF) S4 18.972 - -
Runz et al. [134]/2018 Maskfusion(MF) S1 20.856 - -
Runz et al. [134]/2018 Maskfusion(MF) S2 22.71 - -

Brahmbhatt et al. [138]/2018 PoseNet + log q - - 22
Runz et al. [134]/2018 Maskfusion(MF) S3 14.824 - -

Brahmbhatt et al. [138]/2018 MapNet - - 21
Mahjourian et al. [59]/2018 Vid2Depth - 1.25 -

Xu et al. [129]/2019 MID-fusion(MID) S1 5.98 - -
Xu et al. [129]/2019 MID-fusion(MID) S2 4.132 - -
Xu et al. [129]/2019 MID-fusion(MID) S3 5.1675 - -
Xu et al. [129]/2019 MID-fusion(MID) S4 5.3825 - -

Ranjan et al. [62]/2019 CC - 1.2 -
Casser et al. [37]/2019 Struct2Depth - 1.1 -
Godard et al. [63]/2019 Monodepth2 - 1.6 -

Luo et al. [65]/2020 EPC++ - 1.2 -
Zhu et al. [130]/2021 NeuralR-Pose - - 21
Lee et al. [66]/2021 Insta-DM - 1.05 -

Zou et al. [128]/2022 ObjectFusion S3 0.79 - -
Zou et al. [128]/2022 ObjectFusion S1 0.964 - -
Qiao et al. [131]/2022 ORGPoseNet - - 21
Zou et al. [128]/2022 ObjectFusion S4 1.132 - -
Qiao et al. [131]/2022 ORGMapNet - - 20

Mumuni et al. [48]/2022 Cowan - 1.15 -
Mumuni et al. [48]/2022 Cowan-GGR - 1.05 -

where, dgtp and dp are the ground-truth depth and estimated
depth of pixel p, respectively.

Displacement error (DE - et) is the displacement error of
the object compared to the ground-truth position. Rotation error
(RE - er) is the object’s rotation angle error compared to the
ground-truth data.

Results of Visual SLAM when using the DL map construc-
tion module are presented in Table VIII. Similar to the previous
modules, the map construction based on the DL module is also
evaluated on many datasets and with many different measures.
Many cells in Table VIII are empty. The above results are that
the smaller the better.

e. DL Loop Closure Detection Module
Hou et al. [150] proposed a pre-trained CNN model for

creating an appropriate image representation to detect visual
loop closure. The pre-trained CNN model is trained from
more than 2.5 million images of 205 scene categories of the
scene-centric dataset. It is easy to extract CNN whole-image
descriptors, and then select the most suitable layer for detecting
Visual SLAM’s loop closure.

Xia et al. [151] proposed to use and compare several DL
networks to detect loop closure in the Visual SLAM framework
as PCANet, CaffeNet, AlexNet, and GoogLeNet.

Zhang et al. [152] proposed using a pre-trained CNN model
to generate whole-image descriptors for loop closure detection.
To detect loop closure, the CNN model performs similarity
matrix calculation. The architecture of the CNN model includes
convolution, max-pooling operation, and a fully connected layer
with an input image size of 221×221, and the output is a vector
with more than 1000 elements.

Merrill et al. [153] proposed an unsupervised DL model with
convolutional auto-encoder network architecture. The proposed
network used the HOG feature on the training data, thereby
creating a compact and lightweight model for real-time loop
closing.

Memon et al. [154] proposed a method using two DL
networks to detect the loop closure detection more accurately.
The proposed method ignores coarse features such as moving
objects in the environment such as cycles, bikes, pedestri-
ans, vehicles, and any animals. To extract deep features, the
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TABLE VIII. RESULTS OF VISUAL SLAM WHEN USING THE DL MAP CONSTRUCTION MODULE

Authors/
Years

Methods/
Datasets/
Measu.

KITTI
2012

dataset
[39]

NYU
RGB-D

V2
dataset [42]

TUM
RGB-D
SLAM
dataset

[45]

ICL-NUIM
dataset

[46]

Mask-RCNN
MC

dataset
[140]

trel
(%)

rrel
(⃝)

RM
SE

ALE
(log)

AbRE
(abs.
rel)

RM
SE

ALE
(log)

AbRE
(abs.
rel)

RM
SE

ALE
(log)

AbRE
(abs.
rel)

DE RE

Geiger et al. [147]/
2011 VISO-S 2.05 1.19 - - - - - - - - - - -

Geiger et al. [147]
/2011 VISO-M 19 3.23 - - - - - - - - - - -

Haarnoja et al. [148]
/2016 BKF 18.04 5.56 - - - - - - - - - - -

Liu et al. [54]/
2016 - - 0.73 0.33 0.33 0.86 0.29 0.25 0.81 0.41 0.45 - -

Liu et al. [54]/
2016 + Fusion - - 0.65 0.3 0.29 0.81 0.28 0.24 0.64 0.32 0.34 - -

Laina et al. [55]/
2016 - - 0.51 0.22 0.18 1.07 0.39 0.25 0.54 0.28 0.23 - -

Laina et al. [55]/
2016 + Fusion - - 0.44 0.19 0.16 0.91 0.32 0.22 0.41 0.23 0.19 - -

Coskun et al. [149]/
2017 LSTM-KF 3.24 1.55 - - - - - - - - - - -

Coskun et al. [149]/
2017 LSTMs 3.07 1.38 - - - - - - - - - - -

Zhao et al. [139]/
2019 LKN 1.79 0.87 - - - - - - - - - - -

Ye et al. [47]/
2020

DRM-
SLAM C - - 0.5 0.19 0.16 0.7 0.28 0.2 0.36 0.18 0.16 - -

Ye et al. [47]/
2020

F w/o
Confidence - - 0.48 0.2 0.16 0.67 0.26 0.18 0.35 0.17 0.16 - -

Ye et al. [47]/
2020

DRM-
SLAM F - - 0.44 0.16 0.09 0.62 0.23 0.1 0.3 0.13 0.14 - -

Tao et al. [140]/
2020

Non-
semantic
maps
without
moving
objects

- - - - - - - - - - -
0.0068
±
(0.0029)

0.0138
±
(0.0057)

Tao et al. [140]/
2020

Semantic
maps
without
moving
objects

- - - - - - - - - - -
0.0045
±
(0.0029)

0.0127
±
(0.0057)

Tao et al. [140]/
2020

Non-
semantic
maps
with
moving
objects

- - - - - - - - - - -
0.0071
±
(0.0029)

0.0145
±
(0.0057)

Tao et al. [140]/
2020

Semantic
maps
with
moving
objects

- - - - - - - - - - -
0.0057
±
(0.0029)

0.0134
±
(0.0057)

proposed method uses the VGG16 architecture and uses five
convolution layers, 4 Max pooling layers, and two dense layers.
As a result, the proposed method has eight times more loop
closure detection accuracy than traditional feature extraction.

Chang et al. [155] proposed a triple loss-based metric
learning method to embed into the Visual SLAM system to
increase the accuracy of closed-loop detection. This method
converted the keyframes into feature vectors, evaluating the
similarity of the keyframes by calculating the Euclidean dis-
tance of feature vectors. Features on keyframes are extracted
using ResNet V1 50 with the average-pooling output size of
2048× 1× 1. The fully connected layer is 2048× 1024× 128.

Duan et al. [156] proposed a deep feature matching-based
keyframe retrieval method to perform loop closure detection in
the semantic Visual SLAM system, called DFM (deep feature
matching), this method is based on the CNN method. The
matching of the implementation method’s current scenes with
the recorded keyframes and finding the transformation between
the matched keyframes for trajectory correction by matching
the local pose graphs. This method converted the keyframe
descriptors and pose graphs into a sparse image, with each
keyframe into a feature point.

City Centre [157] was collected on a road near the city center
with many moving objects such as people and vehicles, in
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environmental conditions with a lot of sun and wind causing the
tree shadows to change a lot. The data was collected on a road
with a total length of 2km and 2,474 images were collected,
with each data collection point marked in yellow, two images
collected at the same location marked in red and connected by
one line.

Gardens Point Walking (GPW) [153] was collected while
traveling three times on a road at the QUT campus in Brisbane,
Australia. This dataset shows large differences in view direc-
tion, dynamic objects, occlusions, and illumination of each pass
through this path. Of the three walks on this road, two are done
in one day with one walking on the left-hand side and one time
on the right-hand side of pedestrians. In which, the ith image
in this sequence is matched with any ith image in the other two
sequences.

To evaluate the performance of the loop closure detec-
tion using the DL module in the Visual SLAM system, the
researchers used several RGB-D datasets as shown below.
AUC (Area Under the Curve) is an aggregate measure of the
performance of a binary classifier across all possible threshold
values. ROC curve is a curve that represents the classification
performance of a classification model at thresholds. Essentially,
True Positive Rate (TPR) vs False Positive Rate (FPR) for
different threshold values. TPR and FPR values are calculated
as formula (11).

TPR =
TP

TP + FP
;FPR =

FP

TN + FN
(11)

AUC is an index calculated based on the ROC curve to
evaluate how well the model can classify. The area under the
ROC curve and on the horizontal axis is the AUC, with a
value in the range [0, 1]. RMSE has been presented above. The
mean of the trajectory error (MTE) is defined in formula (5).
Average (Avg.) Good Match (%) is the good matches (inliers)
rate of the pose graphs. Results of Visual SLAM methods
when using the DL loop closure detection module are presented
in Table IX. The studies were evaluated on the KITTI 2012
[39], City Centre [157], GPW [153], TUM RGB-D SLAM [45]
datasets with the AUC, MTE, RMSE, and Avg. Good Match
measures. With measures AUC and Avg. Good Match, the better
the results are, with measures MTE and RMSE, the smaller
the results are the better.

f. DL Others Module
Camera re-localization is the process of estimating the cam-

era’s location and orientation in the data collection environment
using the images of the captured environment as the input.
To evaluate the performance of this module, studies often
evaluate based on two metrics: Angular (Ang.) error (degree)
and Translation (Trans.) error (m). Some research results of the
camera re-localization module based on DL on the 7-Scenes
[133] dataset are shown in Table X.

Another DL-based module is distance estimation. The results
of studies performing distance estimation based on image data
obtained from the environment are shown in Table XI. The
results are evaluated on the KITTI 2012 dataset [39] with the
following measurements: RMSE has been presented above;
AccDev is the accuracy with one-meter deviation; Acc is more
accurate than the accurate one. In which the RMSE result is
as small as possible, the larger Acc and DevAcc are the better.

Another DL-based module is scene reconstruction. The re-
sults of studies performing 3D reconstruction scenes based on
image data (RGB-D) obtained from the environment are shown
in Table XI. In Table XI, 3D reconstruction scene methods
are based on RGB or depth images of NYU RGB-D V2 [42],
KITTI 2012 [39] in Table XII, and Make3D [43] datasets. When
using RGB images as input, methods often use the method
of estimating the depth of the image, and then combining
it with color images to build a 3D scene with point cloud
data. These studies often perform and improve image depth
estimation models.

5) End-to-end for the Visual SLAM Algorithm

As presented in Fig. 1 and Fig. 2, the research based on
the DL for Visual SLAM and VO systems is very diverse. The
research can only be applied to one module of the Visual SLAM
and VO framework. Currently, most research using the end-
to-end DL methods is mainly used for the VO construction
process with the basic output being the camera’s moving
trajectory/camera pose (6 DOF) in the environment. Weber et
al. [194] proposed a CNN for extracting and training temporal
features on videos using a Slow Fusion Network and Early
Fusion Network with dimensions of (390 × 130 × 10 × 3),
(390 × 130 × 2 × 3) to estimate ego-motion. Slow Fusion
Network has input data of 10 consecutive frames of a video
and uses up to 5 conv. layers, Early Fusion Network uses the
input of 2 consecutive frames of a video and all convolution
layers are 2D convolution. Wang et al. [195] proposed an
end-to-end framework, called DeepVO for VO estimation, the
process of extracting the conventional feature-based monocular
VO is based on CNN, the process of learning the CNN features
extracted from motion information and estimating poses of
two consecutive monocular RGB images is by using RCNN.
Peretroukhin et al. [196] proposed a model called Sun-BCNN
(Sun Bayesian Convolutional Neural Network) for estimating
VO, in which Bayesian CNN is used to detect the direction of
the sun from an RGB image using global orientation informa-
tion as a mean and covariance. The final VO is built upon a
sliding window bundle adjuster. Li et al. [197] proposed an un-
supervised DL, called UnDeepVO for VO estimation. The input
data to train the model is stereo image pairs, the features are
extracted from both spatial and temporal geometric constraints,
but the model can perform estimating VO, 6-DOF poses, and
depth estimation with monocular images. To estimate pose,
UnDeepVO uses features extracted from VGG. UnDeepVO
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TABLE IX. RESULTS OF VISUAL SLAM METHODS WHEN USING THE DL LOOP CLOSURE DETECTION MODULE

Authors/ Years
Datasets/

measurement\
Methods

KITTI
2012

dataset
[39]

(00,02
,05)

City
Centre
[157]

GPW
[153]

TUM
RGB-D
SLAM
dataset

[45]
(fr1 desk,
fr2 desk,

fr3
long
office)

KITTI
2012

dataset
[39]

(00,02,08)

KITTI
2012

dataset
[39]
(00)

AUC AUC AUC MTE RMSE MTE RMSE

Avg.
Good
Match

(%)
Galvez et al. [158]/2012 DBoW2 ORB 0.067 0.22 0.092 - - - - -
Galvez et al. [158]/2012 DBoW2 BRISK 0.318 0.186 0.088 - - - - -
Galvez et al. [158]/2012 DBoW2 SURF 0.175 0.177 0.086 - - - - -
Galvez et al. [158]/2012 DBoW2 AKAZE 0.413 0.444 0.199 - - - - -
Rmsa et al. [159]/2017 DBoW3 ORB 0.274 0.217 0.182 - - - - -
Rmsa et al. [159]/2017 DBoW3 BRISK 0.169 0.187 0.098 - - - - -
Rmsa et al. [159]/2017 DBoW3 SURF 0.12 0.019 0.0197 - - - - -
Rmsa et al. [159]/2017 DBoW3 AKAZE 0.46 0.174 0.147 - - - - -
Garcia et al. [160]/2018 iBoW 0.88 0.94 0.95 - - - - -
Sarlin et al. [161]/2019 HF-Net - - - - - - - -

Memon et al. [154]/2020 Impro BoW
Without AE 0.912 0.96 0.94 - - - - -

Memon et al. [154]/2020 Impro BoW
With AE 0.96 0.97 0.97 - - - - -

Chang et al. [155]/2021 Triplet Loss
BoW - - - 0.014 0.016 5.416705 6.74

Chang et al. [155]/2021
Triplet Loss

Metric
Learning

- - - 0.012 0.0135 2.92 3.46

Duan et al. [156]/2022 CNN DFM - - - - - - - 63

TABLE X. RESULTS OF VISUAL SLAM METHODS WHEN USING THE DL CAMERA RE-LOCALIZATION MODULE

Authors/Years
Dataset/
Measu.

Methods

7-Scenes
dataset

Ang.
error

(degree)

Trans.
error
(m)

Kendall et al. [162], [163]/2016 PoseNet 10.4 0.44
Kendall et al. [162], [163]/2016 Bayesian PoseNet 9.81 0.47
Kendall et al. [162], [163]/2016 PoseNet-Euler6 9.83 0.38
Kendall et al. [162], [163]/2016 PoseNet-Euler6-Aug 8.58 0.34
Kendall et al. [162], [163]/2016 BranchNet-Euler6 9.82 0.3
Kendall et al. [162], [163]/2016 BranchNet-Euler6-Aug 8.3 0.29
Kendall et al. [137]/2017 Geometric PoseNet 8.1 0.23
Melekhov et al. [164]/2017 Hourglass 9.5 0.23
Walch et al. [165]/2017 LSTM-Pose 9.9 0.31
Wu et al. [166]/2017 BranchNet 8.3 0.29
Wang et al. [167]/2019 MLFBPPose 9.8 0.2
Bui et al. [168]/2019 ANNet 7.9 0.21
Cai et al. [169]/2019 GPoseNet 10.0 0.31
Saha et al. [170]/2019 AnchorPoint 7.5 0.13
Wang et al. [171]/2020 AttLoc 7.6 0.2
Turkoglu et al. [172]/2021 GNN-RPS 5.2 0.16

uses an encoder-decoder architecture to generate dense depth
maps. Zhan et al. [198] proposed a Depth-VO-Feat framework
to estimate depth images using CNN and other CNN-based
VO from stereo sequences. Depth-VO-Feat framework can
estimate single-view depths and two-view odometry which can
reduce scaling ambiguity issues. Shamwell et al. [199] pro-
pose a Visual-Inertial-Odometry Learner (VIOLearner) method
based on an unsupervised deep neural network to combine
RGB-D images and inertial measurement unit (IMU) intrinsic

parameters of the camera to estimate the camera’s moving
trajectory/camera pose in the environment. IMU data is fed
through CNN layers and the output is a 3D Affine matrix that
estimates the change in camera pose between a source image
and a target image. VIOLearner uses the input data including
an RGB-D source image, a target RGB image, IMU data,
and a camera calibration matrix K with the camera’s intrinsic
parameters. VIOLearner generates hypothesis trajectories and
then corrects them online according to the Jacobians of the
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TABLE XI. RESULTS OF VISUAL SLAM METHODS WHEN USING THE DL DISTANCE ESTIMATION MODULE

Authors/Years
Dataset/
Measu.

Methods

KITTI
2012

dataset
[39]

(03, 04, 05,
06, 07,10)

KITTI
2012

dataset
[39]

(09,10)

RMSE Acc AccDev RMSE Acc AccDev
Mur et al. [104]/2015 ORB-SLAM-mono 7.4623 0.0221 0.0368
Engel et al. [173] /2016 DSO-mono 7.3854 0.0241 0.0452
Fanani et al. [174]/2017 PMO 0.7463 0.7183 0.9633
Wang et al. [175]/2017 DSO-stereo 0.0756 0.9387 1
Yin et al. [60]/2018 GeoNet 6.2302 0.0306 0.0544
Xue et al. [176]/2019 SRNN 0.6754 0.6121 0.9667
Xue et al. [176]/2019 SRNN-se 0.6526 0.5801 0.9727
Xue et al. [176]/2019 SRNN-point 0.5234 0.6267 0.9822
Xue et al. [176]/2019 SRNN-channel 0.5033 0.6487 0.9873
Kreuzig et al. [177]/2019 DistanceNet-FlowNetS 0.5544 0.6292 0.9752
Kreuzig et al. [177]/2019 DistanceNet-Reg 0.5315 0.6848 0.9855
Kreuzig et al. [177]/2019 DistanceNet-LSTM 0.4167 0.6871 0.9896
Kreuzig et al. [177]/2019 DistanceNet-BCE 0.3925 0.7158 0.993
Kreuzig et al. [177]/2019 DistanceNet 0.3901 0.6984 0.9916 0.4624 0.6669 0.9841
Bian et al. [38]/2019 SfMLearner 7.5671 0.0216 0.0505

TABLE XII. THE RESULTS OF ESTIMATING THE CAMERA’S MOVING TRAJECTORY ON THE IMAGE SEQUENCES OF KITTI 2012 DATASET [39]

Authors/Years Methods
Dataset/
Measu./
Output

KITTI
2012

dataset
[39]

(00, 02, 05,
07, 08)

KITTI
2012

dataset
[39]

(09, 10)

KITTI
2012

dataset
[39]

(03, 04, 05,
06, 07,10)

trel(%) rrel(�) trel(%) rrel(�) trel(%) rrel(�)
Leutenegger et al. [202]/2015 OKVIS Trajectory estimation - - 13.535 2.895 - -

Zhou et al. [32]/2017 SFMLearner Trajectory estimation 36.232 4.562 21.085 7.25 - -
Bloesch et al. [203]/2017 ROVIO Trajectory estimation - - 20.11 2.165 - -
Wang et al. [195] /2017 DeepVO Trajectory estimation - - - - 5.96 6.12

Shamwell et al. [199]/2018 VIOLearner Trajectory estimation 5.574 2.31 1.775 1.135 - -
Li et al. [197]/2018 UnDeepVO Trajectory estimation 4.07 2.026 - - - -
Li et al. [197]/2018 VISO2-M Trajectory estimation 17.924 2.798 - - 17.48 16.52
Li et al. [197]/2018 ORB-SLAM-M Trajectory estimation 27.0575 10.2375 - - - -
Li et al. [197]/2018 VISO2-M Trajectory estimation - - - - 1.89 1.96

Zhan et al. [198]/2018 Depth-VO-Feat Trajectory estimation - - 12.27 3.52 - -
Almalioglu et al. [201]/2022 SelfVIO Trajectory estimation 0.9 0.44 1.88 1.23 - -
Almalioglu et al. [201]/2022 SelfVIO (no IMU) Trajectory estimation - - 2.41 1.62 - -
Almalioglu et al. [201]/2022 SelfVIO (LSTM) Trajectory estimation - - 2.07 1.32 - -

error image obtained with the original coordinates. Yang et al.
[200] proposed a DL framework, called D3VO for building VO
with three levels: deep depth, pose, and uncertainty estimation.
The first level is to use a self-supervised network to estimate
depth from stereo videos using DepthNet from a single image,
the second level is to estimate the pose between adjacent
images using PoseNet, and the third level is to estimate the
associated uncertainty. Incorporating temporal information into
the depth estimation learning process. Almalioglu et al. [201]
proposed SelfVIO (self-supervised DL-based VIO) to estimate
the camera’s moving trajectory and depth from input data
of monocular RGB image sequences and IMU. SelfVIO can
perform estimating the relative translation and rotation between
consecutive frames parametrized as 6 DOF motion and a depth
image. To recover the camera’s movement trajectory in the
environment, SelfVIO used the convolutional layers. Studies
based on end-to-end DL for building VO systems/estimating
trajectory motion/camera pose in the environment often use
metrics trel and rrel to evaluate the results, which have been

presented above. The results based on these two measures are
that lower is better. The results of estimating the camera’s
moving trajectory in the environment based on end-to-end DL
on the image sequences of the KITTI 2012 dataset [39] are
shown in Table XII. In Table XII, the research results of end-to-
end DL have also been compared with traditional ML methods
such as ORB-SLAM-M, and the results show that the methods
using end-to-end DL are better than traditional ML.

IV. CHALLENGES AND DISCUSSIONS

Visual SLAM and VO systems are applied and are very
important components in building robot systems, autonomous
mobile robots, and assistance systems for the blind, human-
machine interaction, industry, etc. Based on the above surveys,
it can be seen that the results of Visual SLAM and VO systems
have been significantly improved when using DL in the system
modules or the end-to-end DL systems. As presented in Fig. 1
and Fig. 2, the Visual SLAM and VO systems must perform
through many steps, there may be many intermediate results
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in each step, so there are many challenges that need to be
resolved to have a good Visual SLAM and VO systems. During
the survey of research on Visual SLAM and VO systems, we
realized that there are some challenges and discussions in this
problem on the RGB-D images which are specifically presented
as follows.

A. Performances of Visual SLAM and VO systems

DL has delivered convincing results in the Visual SLAM
and VO systems. However, DL is a method based on statistical
ML, therefore, the results in the steps of the Visual SLAM and
VO system-building process all have certain errors. Based on
the model illustrated in Fig. 1, the errors can accumulate and
the output has very large errors concerning the original data.
To minimize these errors, end-to-end models were built based
on DL. However, the accuracy was only partially improved,
the results are presented in Table XIII. Most of the studies
using DL to build the Visual SLAM and VO systems often
exploit environment features based on the RGB-D images
obtained from the environment. The features extracted using
DL are mainly space. When moving in the environment, the
data obtained from the environment is usually a sequence of
frames. Therefore, temporal features need to be researched and
extracted to improve the performance of environmental map
construction, shown in Fig. 3.

Fig. 3. Environment map built using ORB-SLAM 2.0 [102] on TUM RGB-D dataset

Another issue concerns the performance of DL methods,
with 3D real-world spaces containing many environmental
challenges such as environmental complexity, moving objects,
lighting, etc. These factors all affect the performance of the
learning model. Therefore, with the DL method of learning the
environment, the methods often have to use supervised learning
methods to learn features extracted from the environment such
as studies [156], [204], [205], [206], [195], [207]. With the
methods of using unsupervised data, they are often performed
in very specific and uniform environmental conditions such as
studies [208], [199], [197], [201], [209].

B. Energy Consumption and Computing Space

It can be seen that DL networks have brought impressive
results for building Visual SLAM and VO systems. However,
whether DL methods are used at one step in the Visual

SLAM and VO systems building model or end-to-end, DL
is usually computed on the GPU. To equip GPUs, the cost
is more expensive than CPUs, and other devices, especially
GPUs consume a much larger amount of power than CPUs.
Visual SLAM and VO systems are typically installed on CPU-
only computers or edge devices. These computers can be
mounted on moving robots, industrial autonomous vehicles,
self-driving cars, etc. Therefore, the power supply for these
computer devices is relatively limited. Although, recently there
have been some studies on building Visual SLAM and VO
systems by computing on edge devices/split computing on
several devices such as [210], [211], [212], [213]. However,
these studies are still only tested in the laboratory. Another
issue of computational space is that when constructing the
Visual SLAM and VO systems in a large space shown in
Fig. 4, the computational space will increase according to the
number of frames obtained from the environment if the amount
of data obtained gradually reduces the calculation speed and
reaches a threshold that will overflow the computer’s memory.
Especially in the case of building environment maps and 3D
scene reconstruction.

Fig. 4. AdaptSLAM’s design model performs distributed computing on edge devices
[214].

C. Generalize and Adaptive

Although, currently research using DL methods to build
Visual SLAM and VO systems has quite convincing results.
However, the learning methods using DL networks are mainly
learned from fixed scenes and environments, with little mixing
and few moving objects. Learn-based methods often exploit
well the features extracted from the environment, subjects
should have good results in the learning environment. When
moving to a highly moving environment with a few more
objects, the effectiveness of the learned model is no longer
maintained. For example, building an environment map for
autonomous vehicles moving in a factory. During the process of
moving in the environment, suddenly another object moves onto
the path, and the environment of the autonomous vehicle has
been learned, which causes the environment to change and the
autonomous vehicle can not complete the job due to the wrong
path estimation. Therefore, the issue of environmental general-
ization and adaptation in environmental conditions with mixed
flutes needs to be studied further. From there, it is possible to
build an environment learner that meets many situations when
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TABLE XIII. RESULTS OF VISUAL SLAM METHODS WHEN USING THE DL SCENE RECONSTRUCTION MODULE

Authors/Years
Dataset/
Measu./
Methods

NYU
RGB-D

V2
dataset [42]

NYU
RGB-D

V2
dataset [42]

KITTI
2012

dataset
[39]

Make3D [43]
dataset

RGB Depth RGB RGB
RMSE REL RMSE REL RMSE REL RMSE REL

Saxena et al. [178]/2008 Samples 0 - - - - - - 16.7 0.53
Saxena et al. [43]/2009 Samples 0 - - - - 8.374 0.28 - 0.698
Eigen et al. [30]/2014 Samples 0 - - - - 7.156 0.19 - -
Eigen et al. [53]/2015 Samples 0 0.641 0.158 - - - - - -
Laina et al. [55]/2016 Samples 0 0.573 0.127 - - - - - -
Roy et al. [179]/2016 Samples 0 0.744 0.187 - - - - - -

Mancini et al. [180]/2016 Samples 0 - - - - 7.508 - - -
Cadena et al. [181]/2016 Samples 650 - - - - 7.14 0.179 - -

Xu et al. [182]/2017 Samples 0 0.586 0.121 - - - - - -
Liao et al. [183]/2017 Samples 225 0.442 0.104 - - - - - -
Liao et al. [183]/2017 Samples 225 - - - - 4.5 0.113 - -
Xu et al. [184]/2018 Samples 0 0.593 0.125 - - - - - -
Xu et al. [184]/2018 Samples 0 0.582 0.12 - - - - - -
Mal et al. [56]/2018 Samples 0 0.514 0.143 - - 6.266 0.208 - -
Mal et al. [56]/2018 Samples 20 0.351 0.078 0.461 0.11 - - - -
Li et al. [185]/2018 (L2 loss) 0.943 0.572 - - - -
Li et al. [185] /2018 L1 loss 0.256 0.046 0.68 0.24 - - - -
Mal et al. [56]/2018 Samples 200 0.23 0.044 0.259 0.054 - - - -

Li et al. [185]/2018 L1 loss
Samples 50 - - 0.44 0.13 - - - -

Mal et al. [56]/2018 Samples 50 - - 0.347 0.076 - - - -
Mal et al. [56]/2018 Samples 500 - - - - 3.378 0.073 5.525 0.14

Li et al. [185]/2018 L1 loss
samples 200 - - 0.39 0.1 - - - -

Wang et al. [186]/2018 Samples 0 - - - - 6.298 0.18 - -
Wofk et al. [187]/2019 Samples 0 0.583 0.164 - - 5.191 0.145 10.281 0.594
Gur et al. [188]/2019 Samples 0 0.766 0.254 - - 5.187 0.141
Xu et al. [189]/2019 Samples 0 0.579 0.108 - - - - - -
Tu et al. [190]/2019 Samples 0 0.547 0.152 - - - - - -

Wang et al. [191]/2019 Samples 100 0.502 - - - - - - -
Hu et al. [192]/2019 Samples 20 0.526 - 1.369 - - - - -

Wofk et al. [187]/2019 Samples 20 0.385 0.086 0.462 0.106 - - - -
Hu et al. [192]/2019 Samples 200 0.495 - 1.265 - - - - -

Wofk et al. [187]/2019 Samples 200 0.292 0.068 0.289 0.062 - - - -
Tu et al. [190]/2019 Samples 20 - - 0.457 0.107 - - - -

Hu et al. [192] /2019 Samples 50 - - 1.31 - - - - -
Wofk et al. [187]/2019 Samples 50 - - 0.35 0.075 - - - -
Hu et al. [192]/2019 Samples 0 - - - - 5.437 - - -
Hu et al. [192]/2019 Samples 500 - - - - 5.389 - - -

Wang et al. [191]/2019 Samples 500 - - - - 5.14 - - -
Wofk et al. [187]/2019 Samples 500 - - - - 3.033 0.051 5.658 0.135

Tu et al. [193]/2020 DEM
samples 0 0.49 0.135 - - 4.433 0.101 10.003 0.529

Tu et al. [193] /2020

w/o
pre-trained
weights
samples 0

0.637 0.187 - - - - - -

Tu et al. [193]/2020 DEM samples 20 0.314 0.069 0.443 0.1 - - - -

Tu et al. [193]/2020 DEM
samples 200 0.194 0.036 0.223 0.041 - - - -

Tu et al. [193]/2020
w/o
pre-trained
weights

0.226 0.042 0.23 0.043 - - - -

Tu et al. [193]/2020 DEM
samples 50 - - 0.342 0.07 - - - -

Tu et al. [193]/2020 DEM
samples 500 - - - - 2.485 0.04 5.455 0.104

moving, lighting changes, objects in the environment change,
etc. The issue of evaluating the results of Visual SLAM and VO
systems is only relative, as shown in Table II, Table III, Table
IV, Table V, Table VI, Table VII, Table VIII, Table IX, Table X,
Table XI, Table XII, Table XIII. Although, using the DL method
in the same step or from beginning to end of the system, the
methods are different. Different evaluations are performed on
different measures. Therefore, this issue needs to be unified so
that peer comparison between methods ensures effectiveness.

D. Actual Implementation

It can be seen that the biggest drawback of ML models
as well as the DL method is the problem of changing the
environment between training and experimentation. However,
we have tried to learn all the situations that can occur in reality
and tried to build an experimental environment close to the

real environment. However, this is never enough, especially
since many unusual situations arise in reality, changing lighting
conditions, and timing causes the environment to change. These
changes may not be learned by the DL models or not learned
much. The results of building the environmental map of the
Visual SLAM and VO systems are not good, making the actual
implementation difficult and yielding poor results. Although,
the studies of Visual SLAM and VO systems have been
evaluated on multiple datasets such as KITTI 2012 [39], KITTI
2015 [41], NYU RGB-D V2 [42], 7-Scenes [133], TUM RGB-
D SLAM [45], GPW [153], ICL-NUIM [46], Mask-RCNN
MC [140], SceneNet RGB-D [132], CARLA [125], Object
Fusion [113], ADVIO [28], Euroc [105], Sintel Final [80],
Middlebury [81], Flying Chairs [67], Foggy [78], etc. Many
different lighting conditions, indoors or outdoors, performed at
many different times, etc. The results have been shown and
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compared in Table II, Table III, Table IV, Table V, Table VI,
Table VII, Tab. VIII, Table IX, Tab. X, Table XI, Table XIII,
and Table XII. However, the issue of practical implementation
of Visual SLAM and VO systems still faces many challenges
and needs further research.

Currently, to deploy the Visual SLAM and VO applications
into practice, we use RGB-D image information obtained from
the environment. The system needs to have a calculation time
equal to or close to reality (about 24fps). To build a system with
such computing time, the system needs to perform calculations
on a relatively large GPU. Therefore, integrating GPUs onto
embedded computers and mobile devices is also a challenge
that needs further research.

V. CONCLUSIONS AND FUTURE WORKS

Visual SLAM and VO systems are often the core of control
systems on autonomous vehicle systems, industrial robots,
guidance systems, etc. The advent and strong development of
DL methods have brought very impressive results in solving
ML and computer vision problems with RGB-D image as
the input data. In this paper, we proposed the taxonomy for
investigating DL-based methods to perform Visual SLAM and
VO methods from RGB-D images sensors. We have also
conducted a complete survey of more than 200 studies on
building Visual SLAM, VO, and related systems. This survey
is based on three main directions of the Visual SLAM and VO
systems: applying DL modules to the steps of Visual SLAM
and VO systems, replacing the DL modules to the Visual
SLAM and VO systems, applying end-to-end DL to the Visual
SLAM and VO systems. In which the studies are presented in
order of methods, evaluation datasets, evaluation measures, and
experimental results. The results show that, despite receiving a
lot of research attention in the past 10 years, the results on
the Visual SLAM and VO systems are scattered according to
many different criteria, because each study may only focus on
one step of the Visual SLAM and VO system. At the same
time, we also present discussions and challenges to build Visual
SLAM and VO systems.

Shortly, we will build a standard dataset to evaluate Visual
SLAM and VO with full contexts and situations that can occur
in reality when blind people move and find their way into the
kitchen room. At the same time, try to improve the process of
building moving maps and finding directions for blind people in
the kitchen, especially in new environments.Conducting a com-
parative study on using DL to estimate VO/camera pose/camera
trajectory on the self-constructed and collected data.
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