
Journal of Robotics and Control (JRC)

Volume 6, Issue 1, 2025

ISSN: 2715-5072, DOI: 10.18196/jrc.v6i1.22062 272

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id

An Effective Way for Repositioning the Beacon

Nodes of Fast RRT Results Utilizing Grey Wolf

Optimization

Heru Suwoyo 1, Andi Adriansyah 2*, Julpri Andika 3, Abu Ubaidah Shamsudin 4, Yingzhong Tian 5
1, 2, 3 Department of Electrical Engineering, Universitas Mercu Buana, Jakarta, Indonesia

4 Department of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
5 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China

Email: 1 heru.suwoyo@mercubuana.ac.id , 2 andi@mercubuana.ac.id, 3 julpri.andika@mercubuana.ac.id,
4 ubaidah@uthm.edu.my, 5 troytian@shu.edu.cn

*Corresponding Author

Abstract—Conceptually, Fast-RRT applies fast sampling

and random steering which makes the initial path quickly

obtained. Referring to the initial path, the optimality of the path

is improved by applying path fusion and path optimization.

Theoretically, path fusion will only be optimal if there is always

a unique/different path to be fused with the previously obtained

path. However, in the conditions of solving path planning

problems in narrow corridors, the potential for obtaining a

different path from the previous one is very small. So that fusion

does not run properly, but checking the relationship between

nodes to nodes still occurs. Instead of getting an optimal path in

conditions like this, the computation will increase, the solution

time will be long, and the resulting path will still be sub-optimal.

As an effort to solve this problem, Grey Wolf Optimization

(GWO) is involved through this study. While an initial path is

found, the beacons are repositioned. From the path, the number

of nodes is unpredictable, causing the decision variables in

optimization to become large. For this reason, the GWO is

chosen because it is independent of population representation

and is not affected by the number of decision variables. This

proposed method is claimed to be more effective in solving path

planning problems in terms of convergence rate and optimality.

Therefore, the proposed method is evaluated and compared

with previous methods and gives the result that the average

working speed of Fast-RRT is improved by 90.25% and the

optimality average increased by 5.67%.

Keywords—Fast-RRT; Grey Wolf Optimization; Path

Planning; Convergence Rate; Optimality.

I. INTRODUCTION

In some scenarios, the robot performs the exploration task

at the same time as solving the Simultaneous Localization

and Mapping (SLAM) [1], [2], [3], [4], [5]. Generally, SLAM

will let the robot know the marginalized poses as well as the

initially unknown map. Thus, it must be supporting the

performance of the robot to be fully autonomous. The reason

behind this assumption is that since these tasks performed

well, the robot needs to only decide where the goal point from

any initial point is to be later traced [5], [6], [7], [8]. Finding

the feasible and safe path in this case is known as global path

planning and the tracing process is called path tracking [9],

[10], [11], [12], [13], [14]. Before the robot moves from the

current to any desired pose, path planning should be

performed well to generate the reference path. Therefore, it

must be designed and prepared as well as possible.

There are two types of methods commonly used for

solving global path planning, which are the searching-based

and sampling-based algorithms [15], [16], [17], [18], [19],

[20], [21], [22]. The popular methods for searching-based

algorithms include A* [8], [23], [24], [25] and Dijkstra

algorithm [13], [14], [15], [16], [17]. For the sampling-based

algrorithm include the Rapidly-Exploring Random (RRT)

[8], [32], [33] and RRT* [34], [35], [36], [37]. Generally, the

searching-based offers the quality and resolution of the safely

planned path compared to the sampling-based algorithm.

Nevertheless, the sampling-based algorithm possesses the

high-speed process of finding and generating this path which

cannot be found in sampling-based algorithms [38], [39],

[40]. This can be seen clearly from how the RRT or RRT*

works. Armed with knowledge about the environment,

starting points, and planned ending points, RRT started its

work by expanding from node to node. In this expansion

process, nodes are randomly generated and then selected as

the next node. Then the randomly generated nodes are

checked for whether they are free-collision or not if the node

is connected to the closest available node named a vertex. If

a vertex is free from obstacles, the node is considered as an

available node, and vice versa if it is not free from obstacles,

the process of randomly generating nodes is repeated. The

process is then repeated whenever the single vertex is made

up. In the end, the shortest connected vertexes are found by

comparing one to the other. Moreover, the RRT* also

performs the same process as RRT does with the

improvement on the process of generating the vertex. It is

conducted by applying the rewiring step that again checks the

connection to any rounded nodes to get the shortest vertex.

Although RRT and its successor, RRT*, satisfy the

objective of global path planning, they suffer from the ability

to generate vertex connecting the nodes that are separated by

tunnel-like obstacles [23], [41], [42], [43], [44], [45].

Additionally, the expansion process has also been consuming

much time since the randomly generated node has the

potential to be in the area around the available one [46], [47],

[48], [49], [50]. For these limitations, several methods have

been proposed. More Quickly-RRT* (MQ-RRT*) has been

introduced with the aim of improving optimality and

convergence speed. The convergence speed is improved by

Journal of Robotics and Control (JRC) ISSN: 2715-5072 273

Heru Suwoyo, An Effective Way for Repositioning the Beacon Nodes of Fast RRT Results Utilizing Grey Wolf Optimization

applying the sparse sampling mechanism that reduces

repetitive sampling. Moreover, optimality is achieved by

biasing the Chooseparent before the rewiring stage is

conducted. With the same focus, to speed up the initial path

found, the hybrid-RRT combining the informed-RRT* [51],

[52] and RRT-Connect [34], [41] has also been introduced.

This combination sequentially gains the initial path faster

because of bidirectional exploration from RRT-Connect and

gives an optimal path offered by informed-RRT* after the

initial path found. Another improvement is to combine A*

and RRT* [53]. The sampling of RRT* is conducted by

following the manner how A* finds the optimal path. Even

though this hybrid algorithm is still classified as sampling-

based algorithm. The new node is wired to the most potential

node in the trace. It means the near node is chosen based on

the lowest cost. This cost is the sum of the path cost from the

starting node to the examined node and the path cost from the

goal node to the examined node. For this reason, this hybrid

algorithm gives better optimality and is faster compared to

RRT*. Not only these methods, the development of RRT*

can be noticed from RRT*-Smart [54] which utilizes the

biasing method to improve optimality. Regarding the beacons

found from the initial path, the rest of sampling focuses on

the area around the beacon. Not only this intelligence

sampling, but the path optimization is also conducted to

reduce the number of beacons as the basis for intelligence

sampling. They are sequentially conducted to accelerate the

optimality of algorithm. However, the initial path is found by

applying the procedure of RRT* which takes time in the

complex and large area. Moreover, Fast-RRT has been

introduced [55]. In the Fast-RRT, the fast sampling is

initiated to tackle the first limitation, and the random steering

process is used to overcome the second one. These two

processes are carried out sequentially and are referred to as

improved RRT. Apart from this improvement, Fast-RRT also

has a Fast-Optimal stage which contains commands for

fusion and tuning. The fusion stage is carried out in the

second stage after the new path is available. This is done with

the assumption that the previously formed path is still sub-

optimal. Every time there is a new path, the sub-path will be

fused with the another sub-path. Which means that fusion

occurs when there is a unique path that is different from the

previous path. However, in the conditions of solving path

planning problems in narrow corridors, the potential for

obtaining a path that is different from the previous one is very

small. So that fusion does not run properly, but checking the

relationship between nodes to nodes still occurs. Instead of

getting an optimal path in conditions like this, the

computation will increase, the solution time will be long, and

the resulting path will still be the same, just suboptimal.

Furthermore, in the tuning stage, the relationship between

nodes is checked again and will be rewired by trimming the

vertices, it is found that the two outcrop nodes are free of

obstacles. While logically this would provide an

improvement, Fast-Optimal still relies on Improved-RRT

sub-paths only. Therefore, the optimal Fast-RRT solution is

highly dependent on the repetitions performed. So, the

optimality of the solution requires a long time [11].

 Regarding this problem, in this paper an improvement is

being carried out. This development involves Grey Wolf

Optimization (GWO) [56], [57], [58], [59] which will be the

core method for improving the performance of the Fast-

Optimal path. The application of GWO begins by generating

a wolf pack at a position around the target node 𝑥𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 .

Next, the fitness value of each wolf is calculated based on the

overall path length connecting the beacon nodes. From there,

�⃗�𝛼, �⃗�𝛽, and �⃗�𝛿 are determined based on the three lowest

values. Then, �⃗�1, �⃗�2, and �⃗�3 are calculated using the

established equations, which results in �⃗�𝑛𝑒𝑤. This process is

followed by greedy selection and updating of the wolf pack

position. This stage is repeated as many times as the number

of iterations (maximum iteration). This maximum iteration is

calculated by subtracting the number of samples when the

initial path is known from the maximum number of samples,

then dividing the result by the number of wolves in the pack.

Due to its more nature-inspired workings, Grey Wolf

Optimization (GWO) has several advantages over other

algorithms such as Particle Swarm Optimization (PSO) [60],

[61], [62], [63], [64], [65], [66], [67], [68] and Genetic

Algorithm (GA) [69], [70], [71], [72], [73], [74], [75], [76].

GWO mimics the hunting behavior of wolves; the pack leader

(alpha), second leader (beta), and third leader (delta) work

together to chase prey, balancing exploration and exploitation

of the solution space [77], [78], [79], [80]. This method

makes GWO easy to adapt to difficult problems, especially

those with large or non-linear solution spaces. The simple

structure and the small number of parameters make GWO

computation less heavy and more efficient. This effective

computation underlies the ability of GWO convergence to be

fast without requiring many repetitions and iterations to

provide an optimal solution. This supports the acceleration of

GWO work in supporting the optimization of beacons nodes

on a predetermined path. GWO also uses greedy selection,

which helps the pack choose the best solution based on

previous experience, so they don't get stuck in bad local

solutions. This provides the basis for selecting GWO over

other related methods.

 The rest of this paper is organized as follows: Section II

presents the materials and methods, including the problem

statement, the basic concepts of Fast-RRT, and Grey Wolf

Optimization. In Section III, the proposed method is

discussed, followed by the analysis of the results in Section

IV. Finally, the conclusion is provided in the last section.

II. MATERIAL AND METHOD

A. Problem Statement

Let 𝑋 ∈ ℝ𝑛 is representation of state space for a path

planning problem, with 𝑛 ∈ 𝑁 is space dimension, thus 𝑋 =
{𝑋𝑜𝑏𝑠 , 𝑋𝑓𝑟𝑒𝑒} is state space with 𝑋𝑜𝑏𝑠 ∈ 𝑋 refers to obstacle

coordinates and 𝑋𝑓𝑟𝑒𝑒 ∈ 𝑋 refers to the free space. Moreover,

if the starting node 𝑥𝑖𝑛𝑖𝑡 ∈ 𝑋𝑓𝑟𝑒𝑒 and the goal node 𝑥𝑔𝑜𝑎𝑙 ∈

𝑋𝑓𝑟𝑒𝑒 are given, then referring to 𝑋𝑜𝑏𝑠, the path planning

algorithm has to find the ideal path from-to those nodes,

denoted as 𝜎 = [0, 𝑇] → 𝑋𝑓𝑟𝑒𝑒 with 𝜎(0) = 𝑥𝑖𝑛𝑖𝑡 and 𝜎(𝑇) =

𝑥𝑔𝑜𝑎𝑙 . Where the area closed to the goal node 𝑥𝑔𝑜𝑎𝑙 is denoted

by 𝑋𝑔𝑜𝑎𝑙 , which is defined as {𝑥 ∈ 𝑋|𝑥 − 𝑥𝑔𝑜𝑎𝑙| < 𝑟}, where

𝑟 is radius around 𝑥𝑔𝑜𝑎𝑙 .

Journal of Robotics and Control (JRC) ISSN: 2715-5072 274

Heru Suwoyo, An Effective Way for Repositioning the Beacon Nodes of Fast RRT Results Utilizing Grey Wolf Optimization

B. Fast-RRT

Conceptually, Fast-RRT works by implementing two core

stages, namely Improved-RRT, and Fast-Optimal. In

improved-RRT there are two differentiators that distinguish

Fast RRT from RRT, namely fast sampling and random

steering. Likewise, path optimization is different from

conventional methods, namely implementing path fusion and

path optimization, both of which are found in Fast-Optimal.

In short, the working of Fast-RRT is shown in Algorithm 1.

Algorithm 1 – Fast-RRT

1 Input: 𝑥𝑖𝑛𝑖𝑡 , 𝑥𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝

2 Output: A path 𝑇 from 𝑥𝑖𝑛𝑖𝑡 to 𝑥𝑔𝑜𝑎𝑙

3 for = 𝑖 … 𝑁 do

4 𝑇𝑖𝑛𝑖𝑡 ← 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇(𝑥𝑖𝑛𝑖𝑡 , 𝑋𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝)

5 If 𝑇𝑖𝑛𝑖𝑡 isnot None then

6 𝑇𝑜𝑝𝑡 ← 𝐹𝑎𝑠𝑡𝑂𝑝𝑡(𝑇𝑜𝑝𝑡, 𝑇𝑖𝑛𝑖𝑡)

Although there are similarities in the general concept of

exploration, in 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇 step there is fast sampling.

Where this step is done by limiting random nodes which are

only allowed in areas that have never been touched. This

coverage refers to the radius of nodes that have been obtained

by Fast-RRT. Obviously, there can be no repeated generation

of nodes around the old node which makes the method speed

up. In addition to fast-sampling on the improved RRT, there

is also random-steering which does the steering process to

random points so that the vertices are free from obstacles. The

sampling process on the improved RRT stops when the

newest node is in the goal node area. But instant solutions like

this only provide sub-optimality. So that there is a repetition

of path generation with the same method. However,

whenever a path is formed, Fast-RRT will process the two

best paths in the next process, namely Fast-Optimal. Where

at this stage, there are two core jobs, namely Fusion and Fast-

Tuning. In fusion nodes with very close distances are

considered to coincide. Then all vertices are reconnected,

with reference to the cost of each sub-optimal path.

Furthermore, in order to cut the high-cost value, fast-tuning

is done. Where in this process, the direct connection between

nodes is barrier-free, replacing the vertices between the

previous nodes. In general, fast-optimal on Fast-RRT can be

seen in the following algorithm.

Algorithm 2 – 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇 𝑎𝑛𝑑 𝐹𝑎𝑠𝑡 𝑂𝑝𝑡𝑖𝑚𝑎𝑙
1 Input: 𝑥𝑖𝑛𝑖𝑡 , 𝑥𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝

2 Output: A path 𝑇𝑜𝑝𝑡 from 𝑥𝑖𝑛𝑖𝑡to 𝑥𝑔𝑜𝑎𝑙

3 for = 𝑖 … 𝑁 do

4 𝑥𝑟𝑎𝑛𝑑 ← 𝐹𝑎𝑠𝑡𝑆𝑎𝑚𝑝𝑙𝑒(𝑀𝑎𝑝)

5 𝑥𝑛𝑒𝑎𝑟 ← 𝑛𝑒𝑎𝑟𝑒𝑠𝑡(𝑇, 𝑥𝑟𝑎𝑛𝑑)

6 𝑥𝑛𝑒𝑤 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑟𝑎𝑛𝑑)

7 𝐸𝑡 ← 𝐸𝑑𝑔𝑒(𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟)

8 if 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝐸𝑡, 𝑀𝑎𝑝) then

9 𝑇 ← 𝑎𝑑𝑑𝑁𝑜𝑑𝑒(𝑥𝑛𝑒𝑤)

10 if 𝑥𝑛𝑒𝑤 ∈ 𝑋𝑔𝑜𝑎𝑙 then

11 𝑇𝑖𝑛𝑖𝑡 ← 𝑇
12 if 𝑖𝑠𝑛𝑜𝑡𝑒𝑚𝑝𝑡𝑦(𝑇𝑖𝑛𝑖𝑡)
13 𝑇𝑜𝑝𝑡 ← 𝑝𝑎𝑡ℎ𝑓𝑢𝑠𝑖𝑜𝑛(𝑇𝑖𝑛𝑖𝑡 , 𝑇𝑜𝑝𝑡)

14 𝑇𝑜𝑝𝑡 ← 𝑝𝑎𝑡ℎ𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒(𝑇𝑜𝑝𝑡)

15 endif
16 endif
17 endif
18 endfor

Referring to Algorithm 2, 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇 is shown in the

command in lines 4 to 11. Meanwhile, 𝐹𝑎𝑠𝑡𝑂𝑝𝑡𝑖𝑚𝑎𝑙 is

shown in commands 12 up to 17. To find out details about

these, Fast-RRT in [55] can be used as a reference.

C. Grey Wolf Optimization

The leadership structure and hunting strategy of grey

wolves in nature are modeled by the GWO algorithm. For the

purpose of mimicking the leadership hierarchy, four different

varieties of grey wolves, including alpha, beta, delta, and

omega, are used. In addition, the three essential components

of hunting—looking for prey, surrounding prey, and

attacking prey—are used.

The grey wolf, which hunts enormous prey in packs and

depends on interpacket cooperation, inspired this algorithm.

This behavior has two intriguing aspects: social hierarchy and

the hunting mechanism. The grey wolf has a complicated

social hierarchy due to being a highly gregarious animal. The

term "dominance hierarchies" refers to ranking wolves based

on their size and power. There are the alphas, betas, deltas,

and omegas as a result. The pack is led by the alpha male and

female, who are at the top of the hierarchy. Every member of

the pack is ranked according to their position. The wolf pack's

hierarchy helps weaker members of the pack who are unable

to hunt for themselves and is not just about hostility and

power. The beta wolf comes next, who aids the alpha wolf in

making choices and maintains order in the pack. The delta

wolf is ranked beneath the beta wolf. They are frequently

powerful but lack leadership abilities or self-assurance to

assume leadership roles. Finally, the omega wolf has no

power at all, and other wolves will run after him right away.

Omega wolf is also in charge of keeping an eye on the young

wolves. The three best solutions will be denoted by alpha,

beta, and delta, respectively, at each stage when we apply the

approach previously discussed to our optimization problem,

and the remaining solutions will be denoted by omega. It

basically means that the three best solutions guide the

optimization process. The prey will also be the best possible

outcome of the optimization.

Most of the logic follows the equations:

�⃗⃗⃗� = |𝐶 ⋅ �⃗�𝑝(𝑡) − �⃗�(𝑡)| (1)

�⃗�𝑝(𝑡 + 1) = �⃗�𝑝(𝑡) − 𝐴. �⃗⃗⃗� �⃗⃗⃗� = |𝐶 ⋅ �⃗�𝑝(𝑡) − �⃗�(𝑡)| (2)

where 𝑡 denotes the current iteration, the vector 𝐴 and 𝐶

represent the coefficient vectors, 𝑋𝑝
⃗⃗ ⃗⃗ ⃗ refers to the position

vector of the prey and �⃗� is the position of the wolf.

Vectors 𝐴 and 𝐶 are generally given as follows.

𝐴 = 2�⃗� ⋅ 𝑟1 − �⃗� (3)

𝐶 = 2𝑟2 (4)

where the linear decrement 𝐴 is from 2 to 0 through iteration

and 𝑟1⃗⃗⃗ ⃗ and 𝑟2⃗⃗⃗⃗ are random vector in range [0,1], calculated

for each wolf at each iteration. Whereas �⃗� can be calculated

using (5).

�⃗� = 2 (1 −
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥𝑖𝑡𝑒𝑟
) (5)

Journal of Robotics and Control (JRC) ISSN: 2715-5072 275

Heru Suwoyo, An Effective Way for Repositioning the Beacon Nodes of Fast RRT Results Utilizing Grey Wolf Optimization

Vector 𝐴 controls the trade-off between exploration and

exploitation while 𝐶 always adds some degree of

randomness. This is necessary because our agents can get

stuck in the local optima and most of the metaheuristics have

a way of avoiding it. Since �⃗� is calculated, 𝐴 and 𝐶 will be

computed using (3) and (4), respectively. Since, we don’t

know the real position of the optimal solution, 𝑋𝑝
⃗⃗ ⃗⃗ ⃗ depends on

the 3 best solutions and the formulas for updating each of the

agents (wolfs) are:

�⃗⃗⃗�𝛼 = |𝐶1 ⋅ �⃗�𝛼 − �⃗�| (6)

�⃗⃗⃗�𝛽 = |𝐶2 ⋅ �⃗�𝛽 − �⃗�| (7)

�⃗⃗⃗�𝛾 = |𝐶3 ⋅ �⃗�𝛿 − �⃗�| (8)

�⃗�1 = �⃗�α − 𝐴1 (9)

�⃗�2 = �⃗�𝛽 − 𝐴2 (10)

�⃗�3 = �⃗�𝛾 − 𝐴3 (11)

�⃗�(𝑡 + 1) =
�⃗�1 + �⃗�2+�⃗�3

3
 (12)

where �⃗�(𝑡) represents the current position of the agent and

�⃗�(𝑡 + 1) is the updated one (called �⃗�𝑛𝑒𝑤 in Introduction).

According to the algorithm above, the wolf's position will be

changed in accordance with the top three wolves from the

previous iteration. The result will not exactly match the

average of the top three wolves because the vector 𝐶

introduces a slight random shift.

III. PROPOSED METHOD

In general, the proposed method combines RRT*, Fast-

RRT, and GWO in some ways. This framework is based on

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇 preserving workflow adopted from Fast-

RRT and involves the RRT* rewiring process. GWO is used

to find the best position for beacons on the formed path. The

beacon in question is a node obtained after path reduction

optimization is applied (it is called the target node). In this

study, the reduction in question is by applying triangular

inequality. This aims to provide a reasonable and feasible

path variant. Triangular inequality and continued with GWO

replaces fusion which is heavily influenced by the alternative

suboptimal paths obtained. Therefore, in addition to being

fast, it also guarantees an increase in optimality. The

advantage of this technique is that it is fast because it does

not require a lot of sampling and is also not affected by how

optimal the initial path is obtained. The flow diagram of this

process can be seen in Fig. 1.

Referring to Fig. 1, RRT with fast sampling and random

direction is initially performed. This RRT is adopted from

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇 in Fast-RRT and is performed to obtain the

initial path in a certain number of sampling times. In this step,

the use of adopted rewiring is also applied. This is to support

that the results obtained also show good optimality. In this

study, based on this rewiring, it is expected that the

suboptimal path is obtained so that the optimization work will

be better. The process of applying these methods continues

until the initial path is found. After the initial path is found,

the next process is path optimization. With the focus no

longer depending on the number of samplings allowed or

even the number of samplings approaching infinity, the

optimization carried out in this study minimizes sampling and

focuses on moving the node position to a better place. To

reduce the computational cost, in this study the initial path is

optimized by applying triangular inequality before GWO

optimization is carried out. The optimization process using

GWO takes place with the number of generations adjusted to

the number of remaining samplings. The beacons in question

are nodes that connect the starting point to the destination

point. Simultaneously, a number of nodes obtained are

optimized with the aim of determining the best position that

produces the shortest obstacle-free path. At the beginning of

GWO, one by one the node positions are identified, as a

reference in generating points around the beacon randomly,

at the distribution radius 𝑟𝑑𝑖𝑠𝑏. Where the number of beacons

determines the number of decision variables at this stage. By

determining a number of candidate solutions and random

generation, the initial population is obtained. The number of

this population is defined as 𝑁𝑝𝑜𝑝. After obtaining this initial

population, the optimization process runs with each

generation.

Fig. 1. Flowchart of the proposed method

Algorithm 3 – Proposed Method

1 Input: 𝑥𝑖𝑛𝑖𝑡 , 𝑥𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝, 𝑁𝑝𝑜𝑝

2 Output: A path 𝑇𝑜𝑝𝑡 from 𝑥𝑖𝑛𝑖𝑡to 𝑥𝑔𝑜𝑎𝑙

3 for = 𝑖 … 𝑁 do

4 𝑥𝑟𝑎𝑛𝑑 ← 𝐹𝑎𝑠𝑡𝑆𝑎𝑚𝑝𝑙𝑒(𝑀𝑎𝑝)

5 𝑥𝑛𝑒𝑎𝑟 ← 𝑛𝑒𝑎𝑟𝑒𝑠𝑡(𝑇, 𝑥𝑟𝑎𝑛𝑑)

6 𝑥𝑛𝑒𝑤 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑟𝑎𝑛𝑑)

7 𝐸𝑡 ← 𝐸𝑑𝑔𝑒(𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟)

8 if 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝐸𝑡, 𝑀𝑎𝑝) then

9 𝑇 ← 𝑎𝑑𝑑𝑁𝑜𝑑𝑒(𝑥𝑛𝑒𝑤)

10 if 𝑥𝑛𝑒𝑤 ∈ 𝑋𝑔𝑜𝑎𝑙 then

11 𝑇𝑖𝑛𝑖𝑡 ← 𝑇

12 𝑝𝑎𝑡ℎ𝑓𝑜𝑢𝑛𝑑𝑎𝑡 = 𝑖;
13 state=1

14 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑁𝑝𝑜𝑝

15 endif

16 endif

17 endfor

18 𝑚𝑎𝑥𝑖𝑡 = (𝑁 − 𝑝𝑎𝑡ℎ𝑓𝑜𝑢𝑛𝑑𝑎𝑡)

19 If state==1

20 𝑖𝑑𝑥 ← 𝑔𝑒𝑡𝑟𝑎𝑛𝑑𝐼𝑑𝑥(𝑇𝑖𝑛𝑖𝑡)

21 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← 𝑔𝑒𝑡𝑛𝑜𝑑𝑒(𝑇𝑖𝑛𝑖𝑡(𝑖𝑑𝑥))

22 𝑇𝑜𝑝𝑡 ← 𝐺𝑊𝑂(𝑇𝑖𝑛𝑖𝑡)

23 𝑇𝑜𝑝𝑡 ← 𝑝𝑎𝑡ℎ𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒(𝑇𝑜𝑝𝑡)

24 end

Journal of Robotics and Control (JRC) ISSN: 2715-5072 276

Heru Suwoyo, An Effective Way for Repositioning the Beacon Nodes of Fast RRT Results Utilizing Grey Wolf Optimization

As a note, not only considering the distance, the fitness or

objective function applied to this GWO also considers the

feasibility of the path. Each time the fitness is evaluated, the

candidate solution is considered invalid when there is a

collision with any obstacle. Based on the generated random

population, �⃗�𝛼, �⃗�𝛽, �⃗�𝛾 are determined by first evaluating the

fitness for all individuals (i.e. candidate solution, which

collects information on all beacon coordinates. Where �⃗�𝛼 is

the best gray wolf in the pack, �⃗�𝛽 is the second best, �⃗�𝛾 is the

third best. Based on these results, the next determination of a

is done by applying the formula described in (2). With a,

�⃗�1, �⃗�2, �⃗�3 can then be determined using (9), (10), and (11),

respectively. By maintaining this process, the final solution

is obtained. In each generation, the increase is indicated by a

decrease in the cost path. And as a termination criterion, the

maximum iteration is used as the main reference for stopping

the optimization process or not. If the iteration is the same as

the maximum iteration, the optimization process is complete,

and the final path is obtained. All steps of the proposed

method can be clearly seen in Algorithm 3. Moreover, the

optimization step is conducted when GWO obtained a new

solution. Conceptually, the path reduced in this optimization

step by firstly checking the connection from the current

waypoint to the next one. This method iterates by starting at

𝑥𝑔𝑜𝑎𝑙 and moving to 𝑥𝑖𝑛𝑖𝑡 while sequentially observing the

direct connection to the parent up until the connection of two

separate nodes is deemed to be a collision with the

obstruction. No additional nodes can be joined directly if the

order of observations reaches 𝑥𝑖𝑛𝑖𝑡 . This method follows the

rule of triangular inequality and can be seen in Algorithm 5.

Algorithm 4 – 𝐺𝑊𝑂

1 Input: 𝑇𝑖𝑛𝑖𝑡, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑚𝑎𝑥𝑖𝑡, 𝑁𝑝𝑜𝑝

2 Output: 𝑇𝑜𝑝𝑡

3 𝑎𝑔𝑒𝑛𝑡𝑠 ← 𝑏𝑎𝑙𝑙𝑠ℎ𝑎𝑝𝑒𝑑𝐷𝑖𝑠𝑡(𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , 𝑁𝑝𝑜𝑝)
4 while 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑚𝑎𝑥𝑖𝑡
5 �⃗�α, �⃗�𝛽 , �⃗�𝛿 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑎𝑔𝑒𝑛𝑡𝑠)

6 for 𝑖 = 1: 𝑙𝑒𝑛𝑔𝑡ℎ (𝑎𝑔𝑒𝑛𝑡𝑠)

7 �⃗⃗⃗�𝛼 , �⃗⃗⃗�𝛽 , �⃗⃗⃗�𝛿

8 �⃗�1, �⃗�2, �⃗�3
9 end
10 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑁𝑝𝑜𝑝
11 𝑎𝑔𝑒𝑛𝑡𝑠 ← 𝑔𝑟𝑒𝑑𝑑𝑦𝑆𝑒𝑙(�⃗�𝑛𝑒𝑤)
12 end
13 𝑇𝑜𝑝𝑡 ← 𝑎𝑔𝑒𝑛𝑡𝑠

Assuming the initial path as input, the first time before

GWO is applied, the first step in this optimization is to

determine a node with a random index, called 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑,

which is a node that is not a starting point and not a goal point.

This determination is shown in command line 21 in

Algorithm 3. Referring to the maximum iterations allowed,

𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 is optimized using GWO. In the initial setting, this

maximum iteration is the number of samples that are still left

and can be used which is proportional to the specified 𝑁𝑝𝑜𝑝.

𝑁𝑝𝑜𝑝 is the number of candidate solution swarms that can be

determined. 𝑁𝑝𝑜𝑝 is the number of candidate solution

swarms that can be determined. The larger the specified

value, the fewer optimization iterations using GWO. This is

because 𝑁𝑝𝑜𝑝 becomes an addition to the iteration when

GWO is successfully applied in one cycle. The termination

criteria used to represent the GWO iteration limitation

is 𝑚𝑎𝑥𝑖𝑡 which is determined previously based on the

sampling iterations required to obtain the initial path (see line

18 in Algorithm 3. By knowing 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , agents who are

candidate solution flocks (representing wolves) are generated

by applying Uniform Spherical Distribution centred on

𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 .

Algorithm 5 – 𝑝𝑎𝑡ℎ𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒

1 Input: 𝑇𝑜𝑝𝑡, 𝑥𝑖𝑛𝑖𝑡 , 𝑥𝑔𝑜𝑎𝑙

2 Output: 𝑇𝑓𝑖𝑛𝑎𝑙

3 𝑤𝑜𝑙𝑣𝑒𝑠 ←

4 𝑇𝑓𝑖𝑛𝑎𝑙(1) ← 𝑥𝑔𝑜𝑎𝑙

5 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑥𝑔𝑜𝑎𝑙

6 for 𝑖 = 2: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑜𝑝𝑡) do

7 if 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒 (𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑇𝑜𝑝𝑡(𝑖))

8 continue

9 else

10 𝑇𝑓𝑖𝑛𝑎𝑙 = 𝑎𝑝𝑝𝑒𝑛𝑑(𝑇𝑜𝑝𝑡(𝑖 − 1))

11 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑇𝑜𝑝𝑡(𝑖 − 1)

12 end

13 end

14 return 𝑇𝑓𝑖𝑛𝑎𝑙

The number of wolves is determined by the desired

population size, in this case termed 𝑁𝑝𝑜𝑝. Furthermore, by

considering the termination criteria and (1) – (11), GWO

repositions 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 . This step begins by determining the first

best wolf, second best, third best with the notation �⃗�α, �⃗�𝛽 , �⃗�𝛿,

respectively (see command line 5 in Algorithm 4). This

determination applies to the objective function which is the

path cost when 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 is substituted with the candidate

solution with the lowest value from the agents after

optimization. Not only referring to the cost path, candidate

solutions are considered valid if the solution node does not

collide if connected with 𝑥𝑛𝑖𝑒𝑔1 ← 𝑇𝑖𝑛𝑖𝑡(𝑖𝑑𝑥 + 1) and does

not collide with obstacles in the environment if connected

with 𝑥𝑛𝑖𝑒𝑔2 ← 𝑇𝑖𝑛𝑖𝑡(𝑖𝑑𝑥 − 1). 𝑖𝑑𝑥 referred to is the index

used to determine 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 in Algorithm 3, line 20.

Furthermore, when new 𝑎𝑔𝑒𝑛𝑡𝑠 are successfully determined,

�⃗�𝑛𝑒𝑤 determined by applying (12). And finally in one

optimization cycle, greedy selection is performed before

�⃗�𝑛𝑒𝑤 will be substituted into �⃗�𝑐𝑒𝑟𝑡𝑎𝑖𝑛 in 𝑎𝑔𝑒𝑛𝑡𝑠. By

maintaining this stage, when the termination criteria are met,

GWO provides agents whose one of the candidate solutions

is the best node to replace 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 . These steps result in a

new node arrangement with better optimality and give an

optimized path after GWO is operated (note line 23 in

Algorithm 3 and its description in Algorithm 5). This path

planning algorithm can improve the efficiency of

autonomous robots in exploration, especially for global path

planning in static environments. The perception of the

environment and the robot's position must be generated by

SLAM well before the algorithm is applied. If the

environment is dynamic, the robot must also be able to avoid

obstacles. Ethical aspects such as security, data privacy, and

the freedom of algorithms from bias need to be considered to

avoid risks to humans and ensure fair decisions.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 277

Heru Suwoyo, An Effective Way for Repositioning the Beacon Nodes of Fast RRT Results Utilizing Grey Wolf Optimization

IV. RESULT AND DISCUSSION

At this section, the robot is assumed to know all the

information of the environment and the starting as well as the

goal point are given initially. Moreover, the environment is

considered static, and the algorithm will solve the global path

planning. There will be several environments used to evaluate

the work of algorithms including the RRT*, Fast-RRT,

RRT*-Smart, and GWO-tuned Fast-RRT as the proposed

method. These environments are presented on Fig. 2.

All static environments shown in Fig. 2 are environments

that researchers usually use in their research to test the

methods that have been developed. 1st Environment in Fig.

2(a) is used to examine the ability of the method to pass

through the narrow channel. Environment shown in Fig. 2(b)

is the environment used to test RRT*-Connect on [34].

Environment 2(c) is one of the environments used to test

RRT*-Smart on [54]. While the environment shown in Fig.

2(d) is an environment for testing methods to solve path

planning problems in a large environment and there is only

one possible solution.

Based on the level of complexity, the 1st Environment to

4th Environment have different characteristics from each

other. 1st Environment complexity is represented by a narrow

corridor and there is only one unique solution to produce a

path connecting the starting and goal points. In 2nd

Environment, its complexity is shown by the existence of an

indirect path that requires more challenging exploration

compared to 1st Environment. 3rd Environment has the same

level of complexity as 2nd Environment, namely there are

narrow corridors with lots of space that have the potential to

make exploration spread. While in 4th Environment, not only

does it show a long distance between the starting position and

the goal, but it also only has 1 unique solution. As for the

initial and final positions for each environment are

determined as follows: in the 1st Environment, the initial

position is at position (70, 10) and the final position is at

position (5, 70); in the 2nd Environment, the initial position

is placed at coordinates (90, 50) and the final position is

placed at coordinates (10, 50); in the 3rd Environment the

initial and final positions are placed at (155, 5) and (15, 105),

respectively; the initial and final positions in the 4th

Environment are placed at (5, 5) and (155, 75), respectively.

Testing of all methods was conducted on a PC with the

following specifications: Intel Core i7-14700K 3.40 GHz

processor, 64.0 GB RAM, 64-bit operating system, RTX

3080 10GB GPU, and 1TB SSD. In the test, all methods were

run alternately to solve the path planning problem in the 1st

– 4th Environment with a sampling rate of 10000. All

methods were compared based on the working speed,

indicated by the completion time in seconds, and the

optimality of the resulting path, represented by the cost path

in units of length. Furthermore, 𝑒𝑝𝑠, the maximum distance

for placing 𝑥𝑛𝑒𝑤 in each method is determined to be 5 units

of length.

(a) (b)

(c) (d)

Fig. 2. Used environment

Journal of Robotics and Control (JRC) ISSN: 2715-5072 278

Heru Suwoyo, An Effective Way for Repositioning the Beacon Nodes of Fast RRT Results Utilizing Grey Wolf Optimization

In the first experiment, RRT*, Fast-RRT, Informed-

RRT*, RRT*-Smart, and Proposed methods were applied to

solve the 1st environmental problem. The results of the

application are visually shown in Fig. 3. Based on the solution

of the 1st Environment problem, as seen in Fig. 3(a) and Fig.

3(c), RRT* and RRT*-Smart cannot solve the problem. This

is because both apply conventional exploration that is not

directed and limited to narrow corridors. Meanwhile, with the

presence of random steering after applying fast sampling,

Fast-RRT and the proposed method can easily and quickly

pass through narrow corridors when conducting exploration

(see Fig. 3(b) and Fig. 3(d)). The effectiveness of both

approaches used to carry out the exploration process is also

shown in the number of sampling repetitions of 5000 to get

the initial path. Based on this test, not only the optimality of

the path is indicated by a shorter cost path than Fast-RRT, the

overall planning work speed for the proposed method is also

better than Fast-RRT. This is shown by the time consumed in

planning, namely, 8.9079 seconds, while Fast-RRT requires

104.5422 seconds.

Next, testing and comparison of all methods are carried

out in solving the problem in the 2nd Environment. While

maintaining the same parameterization stages as the testing

in the 1st Environment, the test results of RRT*, Fast-RRT,

RRT*-Smart, and the proposed method are shown in Fig. 4.

Referring to the test on the 2nd Environment, it can be seen

that all methods can solve the path planning problem.

However, if observed, each method shows different test

results from one another. Based on the results shown in Fig.

4(a), RRT* can solve the problem in 665.0656 seconds with

a path cost of 278.9263 units of length. While for Fast-RRT,

as seen in Fig. 4.(b) shows a longer cost path, namely

287.1462 with a time required of 197.7759 seconds.

Although fast, the path produced by Fast-RRT is not more

optimal than RRT*. This strengthens the statement at the

beginning that the path fusion in Fast-RRT is not able to work

well. While RRT* by utilizing the rewiring and conventional

exploration stages can provide improvements to the initial

path, path fusion cannot. This is because the possibility of

obtaining a unique path other than the path that was

previously obtained is very small. Logically, this statement

can be accepted. In narrow corridors, by only maintaining fast

sampling and random steering in exploration, the potential for

obtaining random nodes in areas that approach the path is

very low. This phenomenon is also supported by the results

shown by RRT*-Smart in Fig. 4(c). The optimization process

of RRT*-Smart that applies smart sampling is more ideal

when the environment is narrow corridors. Thus, this

approach is more ideal than maintaining the limitation of

sampling areas such as path fusion with the exploration

process applying fast-sampling and random steering. In short,

the experiments and tests in the second environment show

that in the case of narrow corridors, Fast-RRT can only

provide suboptimal paths. Based on the analysis of the three

methods, the basis for the development of the proposed

method is getting stronger. This is also proven by the results

showing that the path cost generated by the proposed method

is 267.7008 which is very short compared to the previous

results. In addition, the speed of getting the final path also

shows that the proposed method has a good convergence rate,

with a very fast completion time of 14.4501 seconds.

(a) (b)

(c) (d)

Fig. 3. The performance of different algorithms to solve path planning problem in 1st Environment (a) RRT*, (b) Fast-RRT, (c) RRT*-Smart, (d) Proposed

Method

Journal of Robotics and Control (JRC) ISSN: 2715-5072 279

Heru Suwoyo, An Effective Way for Repositioning the Beacon Nodes of Fast RRT Results Utilizing Grey Wolf Optimization

(a) (b)

(c) (d)

Fig. 4. The performance of different algorithms to solve path planning problems in 2nd Environment (a) RRT*, (b) Fast-RRT, (c) RRT*-Smart, (d) Proposed

Method

Next, all methods are tested to solve the problem in the

3rd Environment. Based on this test, the results are shown in

Fig. 5. The results show that all methods can solve the path

planning problem. However, each method has different

performance from each other. Referring to Fig. 5(a), RRT*

produces a cost path of 182.7306 with a completion time of

1545.9285 seconds. This duration shows that RRT* is slow

in solving path planning problems in a relatively large area.

The slowness of this solution is also indicated by the number

of samples of 4617 needed to determine the initial path. This

result is like RRT*-Smart which also takes a long time to

solve the problem. RRT*-Smart takes 2383.5985 seconds to

solve the problem where the initial path is found in 4322

sample repetitions. The cost path generated through the

application of RRT*-Smart is 183.5356 units of length. These

two results again show that exploration in a conventional and

undirected way makes the initial path slow to find.

Nevertheless, the results given have shown that path

optimization can run in sufficient time. On the other hand, it

is seen that smart sampling, which is carried out periodically

in sufficient duration, turns out to show that smart sampling

is not significantly different from conventional optimization

methods. This statement supports the similar results obtained

between RRT* and RRT*-Smart. Although at first glance,

the results obtained from RRT* or RRT*-Smart are

sufficient, the time required for planning is a fundamental

concern. The effectiveness of the method considers the speed

in carrying out the planning. Referring to this statement, Fast

RRT and the proposed method are relevant to meet the

criteria for the required working time.

Although Fast-RRT significantly shows faster working

time and better path cost results, its performance is not better

than the proposed method. Fast-RRT takes 179.7521 seconds

to produce a path with a cost of 180.3921. While the proposed

method shows an extremely better performance. The

resulting Path Cost is 161.4539 units of Length, with the time

required being 6.572 seconds. Thus, the proposed method

outperforms the RRT*, Fast-RRT, and RRT*-Smart methods

in the 3rd Environment.

By conducting tests on the 1st, 2nd, 3rd Environment, the

ability to solve problems in narrow channels, and areas with

many corridors and partitions, the proposed method has

shown very good performance and outperforms other

methods. Furthermore, to test its ability to solve problems in

areas where there is only one unique and tricky solution

(because many corridors and partitions interfere with

exploration), testing on the 4th Environment was carried out.

This test still uses the same parameterization as the previous

test. Based on the results shown in Fig. 6, RRT* and RRT*-

Journal of Robotics and Control (JRC) ISSN: 2715-5072 280

Heru Suwoyo, An Effective Way for Repositioning the Beacon Nodes of Fast RRT Results Utilizing Grey Wolf Optimization

Smart cannot solve the problem of path planning in a large

area with partitions, while the number of samples taken is

limited. This shows that the exploration process of both

methods is slow due to the uncertainty of the distribution

direction. Slowness in the exploration process certainly has a

negative impact when the search space faced is large.

Repetition in areas that have been explored potentially occurs

due to this uncertainty. This statement causes RRT* and

RRT*-Smart to be unable to solve the problem. Although

RRT*-Smart has the advantage of being able to perform

better path optimization, this step can only be done when the

initial path is obtained. Unlike the results of RRT* or RRT*-

Smart, Fast-RRT and the proposed method successfully solve

the problem with a cost path of 290.4575 and 288.118 units

of length, respectively. In the process of obtaining this path,

Fast-RRT requires a total duration of 166.3818 seconds, and

the proposed method requires 30.6501 seconds. Thus, the

proposed method offers a better path cost, which means that

optimality is met. Considering the difference in path cost

between Fast-RRT and the proposed method, the average

increase in path optimality is 5.67%. Furthermore, referring

to the time required is also short, the proposed method has a

better convergence speed. And considering the time

difference to Fast-RRT, the proposed method shows an

average increase in working time of 90.25%. Up to this point,

the proposed method consistently shows its superiority

compared to the previous methods, RRT*, Fast-RRT, and

RRT*-Smart both in terms of convergence rate and

optimality.

(a) (b)

(c) (d)

Fig. 5. The performance of different algorithms to solve path planning problem in 4th Environment (a) RRT*, (b) Fast-RRT, (c) RRT*-Smart, (d) Proposed

Method

Fig. 6. 5th Environment

Journal of Robotics and Control (JRC) ISSN: 2715-5072 281

Heru Suwoyo, An Effective Way for Repositioning the Beacon Nodes of Fast RRT Results Utilizing Grey Wolf Optimization

To further demonstrate the efficiency of GWO-tuned Fast

RRT. It was performed to solve the 5th Environment as

shown in Fig. 7. In this test, the starting and goal points were

placed at (75, 5) and (5, 75), respectively. Parameterization

was done by applying the test to other previous environments.

The GWO-tuned Fast RRT test was performed with 14

repetitions to measure the consistency of the method in

solving the path planning problem. Not only referring to the

working speed, the optimality of the path was considered in

this test. The results of the test are shown in Fig. 7 and

explained in Table I.

Referring to Table I and Fig. 7, the time required to solve

the problem is uncertain. This is because the fast-sampling

and random steering contained in the proposed method make

exploration have no definite direction (and only focus on

reaching unexplored areas). In addition to time, the resulting

cost path also shows differences between one test and

another. Based on the theory, this condition occurs due to the

need for different sampling amounts in determining the initial

path. As discussed earlier, the faster the initial path is

determined, the more freedom the method provides to

perform optimization. Maximum optimization is obtained

when the number of samples is high, and vice versa. So

naturally, the initial path that is found earlier has the potential

to show more optimal results. Furthermore, to measure how

effectively the method can be applied, the results of the tests

carried out 14 times were analyzed. Based on the overall

performance, the average time required to solve the problem

is 7.754335714 seconds and produces the path cost that varies

with the range [120.1041, 134.7460].

TABLE I. THE PERFORMANCE OF GWO-TUNED FAST-RRT FOR 15

REPETITIVE SOLVING PATH PLANNING PROBLEM OF 5TH
 ENVIRONMENT

No Path Cost Initial Path Found Consumed Time

1 134.1819 1463 2.6529

2 130.6204 6833 6.5168

3 126.3837 3449 5.8087

4 131.3522 3372 10.513

5 129.4169 2960 10.9536

6 132.6336 7172 12.3564

7 120.1041 5198 7.3613

8 133.9939 6978 11.5184

9 120.8056 3937 8.9688

10 134.7460 1217 2.3513

11 133.0216 2888 6.8522

12 122.8171 3400 7.1297

13 132.7946 3921 7.0770

14 129.5982 3333 8.5006

Fig. 7. Performance of GWO-Tuned Fast RRT for Solving Path Planning Problem in 5th Environment for 14 times of repetitio

Journal of Robotics and Control (JRC) ISSN: 2715-5072 282

Heru Suwoyo, An Effective Way for Repositioning the Beacon Nodes of Fast RRT Results Utilizing Grey Wolf Optimization

V. CONCLUSION

This study successfully generates optimal paths in a short

time by applying GWO to Fast RRT. The experimental

results show that the path cost increases by an average of

5.67%, while the overall working speed increases by 90.25%

compared to the previous method. For future work, this study

can be further tested in dynamic and real-time environments

and improve its scalability. The theoretical contribution of

this study is to add the ability to adjust beacons that have been

generated by 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇 (on Fast RRT) and process

rewiring, by utilizing GWO. Instead of using fast-optimal

which includes path fusion and path optimization, after the

initial path is found, GWO is applied to perform optimization.

First, the node is determined based on the index obtained

randomly instead of the starting and goal points. This node is

called 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 which will be optimized by GWO by

involving the previous and subsequent nodes based on the

path that has been found. In other words, GWO changes the

position of beacon nodes with a focus on improving the

optimality of the path (shortening the path).

ACKNOWLEDGMENT

This research is supported by Universitas Mercu Buana,

Jakarta.

REFERENCES

[1] H. Suwoyo et al., “Maximum likelihood estimation-assisted ASVSF
through state covariance-based 2D SLAM algorithm,” Telkomnika

Telecommun. Comput. Electron. Control, vol. 19, no. 1, pp. 327–338,
2020, doi: 10.12928/TELKOMNIKA.V19I1.16223.

[2] Y. Tian, H. Suwoyo, W. Wang, D. Mbemba, and L. Li, “An AEKF-

SLAM Algorithm with Recursive Noise Statistic Based on MLE and
EM,” J. Intell. Robot. Syst. Theory Appl., vol. 97, pp. 339-355, 2020,
doi: 10.1007/s10846-019-01044-8.

[3] Y. Tian, H. Suwoyo, W. Wang, and L. Li, “An ASVSF-SLAM
Algorithm with Time-Varying Noise Statistics Based on MAP Creation

and Weighted Exponent,” Math. Probl. Eng., vol. 2019, pp. 28–34,
2019, doi: 10.1155/2019/2765731.

[4] T. Bailey and H. Durrant-whyte, “Simultaneous Localisation and

Mapping (SLAM): Part II State of the Art,” Robotics and Automation
Magazine, pp. 1–10, 2006.

[5] W. Burgard, C. Stachniss, K. Arras, and M. Bennewitz, “Introduction

to Mobile Robotics SLAM : Simultaneous Localization and Mapping
What is SLAM ?,” University of Freiburg, 2012.

[6] I. Karabegović and V. Doleček, Mobile Robotics. in Detecting and
Mitigating Robotic Cyber Security Risks, 2017, doi: 10.4018/978-1-
5225-2154-9.ch016.

[7] R. Kuemmerle. State Estimation and Optimization for Mobile Robot
Navigation. Doctoral dissertation, Verlag nicht ermittelbar, 2013.

[8] I. Noreen, A. Khan, and Z. Habib, “A Comparison of RRT, RRT* and
RRT*-Smart Path Planning Algorithms,” IJCSNS Int. J. Comput. Sci.

Netw. Secur., vol. 16, no. 10, pp. 20–27, 2016.

[9] J. Cong, J. Hu, Y. Wang, Z. He, L. Han, and M. Su, “FF-RRT*: a
sampling-improved path planning algorithm for mobile robots against

concave cavity obstacle,” Complex Intell. Syst., vol. 9, no. 6, pp. 7249–
7267, Dec. 2023, doi: 10.1007/s40747-023-01111-6.

[10] L. Zhu, P. Duan, L. Meng, and X. Yang, “GAO-RRT*: A path planning

algorithm for mobile robot with low path cost and fast convergence,”
AIMS Math., vol. 9, no. 5, pp. 12011–12042, 2024, doi:
10.3934/math.2024587.

[11] N. Kumar and A. Kumar, “Multi-Point Path Planning Using

Bidirectional Path Search In Static And Dynamic Environments,”
Educ. Adm. Theory Pract., Apr. 2023, doi: 10.53555/kuey.v29i4.6468.

[12] L. Liu, X. Wang, X. Yang, H. Liu, J. Li, and P. Wang, “Path planning

techniques for mobile robots: Review and prospect,” Expert Syst. Appl.,
vol. 227, p. 120254, Oct. 2023, doi: 10.1016/j.eswa.2023.120254.

[13] A. Orthey, C. Chamzas, and L. E. Kavraki, “Sampling-Based Motion
Planning: A Comparative Review,” Annu. Rev. Control Robot. Auton.

Syst., vol. 7, no. 1, pp. 285–310, Jul. 2024, doi: 10.1146/annurev-
control-061623-094742.

[14] G. Sotirchos and Z. Ajanovic, “Search-based versus Sampling-based

Robot Motion Planning: A Comparative Study,” J arXiv preprint
arXiv:2406.09623, 2024, doi: 10.48550/arXiv.2406.09623.

[15] Z. M. Al-Zubaidi, S. Ay, and M. Al-Khafaji, “A Comparative Study of

Various Path Planning Algorithms for Pick-and-Place Robots,”
Research Square, pp. 1-27, 2023, doi: 10.21203/rs.3.rs-2808265/v1.

[16] Z. Feng, L. Zhou, J. Qi, and S. Hong, “DBVS-APF-RRT*: A global

path planning algorithm with ultra-high speed generation of initial
paths and high optimal path quality,” Expert Syst. Appl., vol. 249, p.
123571, Sep. 2024, doi: 10.1016/j.eswa.2024.123571.

[17] S. Ganesan and S. K. Natarajan, “A novel directional sampling-based

path planning algorithm for ambient intelligence navigation scheme in

autonomous mobile robots,” J. Ambient Intell. Smart Environ., vol. 15,
no. 3, pp. 269–284, Sep. 2023, doi: 10.3233/AIS-220292.

[18] X. Jiang, Z. Wang, and C. Dong, “A Path Planning Algorithm Based

on Improved RRT Sampling Region,” Comput. Mater. Contin., vol. 80,

no. 3, pp. 4303–4323, 2024, doi: 10.32604/cmc.2024.054640.

[19] X. Wang, Y. Feng, J. Tang, Z. Dai, and W. Zhao, “A UAV path
planning method based on the framework of multi-objective jellyfish

search algorithm,” Sci. Rep., vol. 14, no. 1, p. 28058, Nov. 2024, doi:
10.1038/s41598-024-79323-0.

[20] M. Faroni, N. Pedrocchi, and M. Beschi, “Adaptive hybrid local–global

sampling for fast informed sampling-based optimal path planning,”
Auton. Robots, vol. 48, no. 2–3, p. 6, May 2024, doi: 10.1007/s10514-
024-10157-5.

[21] Y. Shi, S. Huang, and M. Li, “An Improved Global and Local Fusion
Path-Planning Algorithm for Mobile Robots,” Sensors, vol. 24, no. 24,
p. 7950, Dec. 2024, doi: 10.3390/s24247950.

[22] I. A. Hassan, I. A. Abed, and W. A. Al-Hussaibi, “Path Planning and

Trajectory Tracking Control for Two-Wheel Mobile Robot,” J. Robot.

Control JRC, vol. 5, no. 1, pp. 1–15, Dec. 2023, doi:
10.18196/jrc.v5i1.20489.

[23] H. Suwoyo, A. Adriansyah, J. Andika, A. U. Shamsudin, and M. F.

Zakaria, “An Integrated Rrt*Smart-a* Algorithm for Solving the

Global Path Planning Problem in a Static Environment,” IIUM Eng. J.,
vol. 24, no. 1, pp. 269–284, 2023, doi: 10.31436/iiumej.v24i1.2529.

[24] S. Al-Ansarry and S. Al-Darraji, “Hybrid RRT-A*: An Improved Path

Planning Method for an Autonomous Mobile Robots,” Iraqi J. Electr.

Electron. Eng., vol. 17, no. 1, pp. 1–9, 2021, doi:
10.37917/ijeee.17.1.13.

[25] W. Xin, L. Wanlin, F. Chao, and H. Likai, “Path Planning Research

Based on An Improved A* Algorithmfor Mobile Robot,” IOP Conf.
Ser. Mater. Sci. Eng., vol. 569, no. 5, p. 052044, Jul. 2019, doi:
10.1088/1757-899X/569/5/052044.

[26] D. Fan and P. Shi, “Improvement of Dijkstra’s algorithm and its

application in route planning,” in 2010 Seventh International

Conference on Fuzzy Systems and Knowledge Discovery, pp. 1901–
1904, 2010, doi: 10.1109/FSKD.2010.5569452.

[27] M. A. Javaid, “Understanding Dijkstra Algorithm,” SSRN Electron. J.,
2013, doi: 10.2139/ssrn.2340905.

[28] M. A. Khan, “A Comprehensive Study of Dijkstra’s Algorithm,” SSRN
Electron. J., 2023, doi: 10.2139/ssrn.4559304.

[29] A. Tilanterä, J. Sorva, O. Seppälä, and A. Korhonen, “Students

Struggle with Concepts in Dijkstra’s Algorithm,” in Proceedings of the
2024 ACM Conference on International Computing Education

Research - Volume 1, pp. 154–165, 2024, doi:
10.1145/3632620.3671096.

[30] D. Rachmawati and L. Gustin, “Analysis of Dijkstra’s Algorithm and

A∗ Algorithm in Shortest Path Problem,” J. Phys. Conf. Ser., vol. 1566,

no. 1, 2020, doi: 10.1088/1742-6596/1566/1/012061.

[31] A. Rk, P. Reddy, and M. Yamuna, “Research On The Optimization Of
Dijkstra’s Algorithm And Its Applications,” International Journal of
Science, Technology & Management, vol. 4, no. 1, pp. 304-309, 2015.

[32] R. Mashayekhi, M. Y. I. Idris, M. H. Anisi, and I. Ahmedy, “Hybrid

RRT: A semi-dual-tree RRT-based motion planner,” IEEE Access, vol.
8, pp. 18658–18668, 2020, doi: 10.1109/ACCESS.2020.2968471.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 283

Heru Suwoyo, An Effective Way for Repositioning the Beacon Nodes of Fast RRT Results Utilizing Grey Wolf Optimization

[33] H. Suwoyo, A. Burhanudin, Y. Tian, and J. Andika, “Problem solving
path planning and path tracking in a 3 DOF hexapod robot using the

RRT* algorithm with path optimization and Pose-to-Pose,” Sinergi

Indones., vol. 28, no. 2, pp. 265–276, 2024, doi:
10.22441/sinergi.2024.2.007.

[34] S. Klemm et al., “RRT*-Connect: Faster, asymptotically optimal

motion planning,” in 2015 IEEE International Conference on Robotics
and Biomimetics (ROBIO), pp. 1670–1677, 2015, doi:
10.1109/ROBIO.2015.7419012.

[35] I. B. Jeong, S. J. Lee, and J. H. Kim, “RRT*-Quick: A motion planning

algorithm with faster convergence rate,” Adv. Intell. Syst. Comput., vol.
345, pp. 67–76, 2015, doi: 10.1007/978-3-319-16841-8_7.

[36] I. Noreen, A. Khan, K. Asghar, and Z. Habib, “A path-planning

performance comparison of RRT*-AB with MEA* in a 2-Dimensional

Environment,” Symmetry, vol. 11, no. 7, 2019, doi:
10.3390/sym11070945.

[37] B. Liao, F. Wan, Y. Hua, R. Ma, S. Zhu, and X. Qing, “F-RRT*: An
improved path planning algorithm with improved initial solution and

convergence rate,” Expert Syst. Appl., vol. 184, pp. 115457–115457,
2021, doi: 10.1016/j.eswa.2021.115457.

[38] A. Perez, S. Karaman, A. Shkolnik, E. Frazzoli, S. Teller, and M. R.

Walter, “Asymptotically-optimal path planning for manipulation using

incremental sampling-based algorithms,” IEEE Int. Conf. Intell. Robots
Syst., pp. 4307–4313, 2011, doi: 10.1109/IROS.2011.6048640.

[39] A. H. Qureshi and Y. Ayaz, “Potential functions based sampling
heuristic for optimal path planning,” Auton. Robots, vol. 40, no. 6, pp.
1079–1093, 2016, doi: 10.1007/s10514-015-9518-0.

[40] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, "Informed RRT*:

Optimal sampling-based path planning focused via direct sampling of

an admissible ellipsoidal heuristic," 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2997-3004, 2014,
doi: 10.1109/IROS.2014.6942976.

[41] J. Chen, Y. Zhao, and X. Xu, “Improved RRT-Connect Based Path
Planning Algorithm for Mobile Robots,” IEEE Access, vol. 9, pp.
145988–145999, 2021, doi: 10.1109/ACCESS.2021.3123622.

[42] X. Li and Y. Tong, “Path Planning of a Mobile Robot Based on the

Improved RRT Algorithm,” Appl. Sci., vol. 14, no. 1, p. 25, Dec. 2023,
doi: 10.3390/app14010025.

[43] E. H. Bes. Path Planning with Homotopic Constraints for Autonomous

Underwater Vehicles. Doctoral dissertation, Universitat de Girona,
2012.

[44] L. G. D. O. Veras, F. L. L. Medeiros, and L. N. F. Guimaraes,

“Systematic Literature Review of Sampling Process in Rapidly-
Exploring Random Trees,” IEEE Access, vol. 7, pp. 50933–50953,
2019, doi: 10.1109/ACCESS.2019.2908100.

[45] W. Burzyński and W. Stecz, “Trajectory planning with multiplatform
spacetime RRT*,” Appl. Intell., vol. 54, no. 19, pp. 9524–9541, Oct.
2024, doi: 10.1007/s10489-024-05650-4.

[46] A. Almalaq, K. Alqunun, R. Abbassi, Z. M. Ali, M. M. Refaat, and S.

H. E. Abdel Aleem, “Integrated transmission expansion planning

incorporating fault current limiting devices and thyristor-controlled
series compensation using meta-heuristic optimization techniques,”

Sci. Rep., vol. 14, no. 1, p. 13046, Jun. 2024, doi: 10.1038/s41598-024-
63331-1.

[47] O. Maruyama and A. Chihara, “NWE: Node-weighted expansion for

protein complex prediction using random walk distances,” Proteome

Sci., vol. 9, 2011, doi: 10.1186/1477-5956-9-S1-S14.

[48] A. Felner et al., “Partial-Expansion A* with Selective Node

Generation,” Proc. AAAI Conf. Artif. Intell., vol. 26, no. 1, pp. 471–
477, Sep. 2021, doi: 10.1609/aaai.v26i1.8137.

[49] J. Qi, Q. Yuan, C. Wang, X. Du, F. Du, and A. Ren, “Path planning and
collision avoidance based on the RRT*FN framework for a robotic

manipulator in various scenarios,” Complex Intell. Syst., vol. 9, no. 6,
pp. 7475–7494, Dec. 2023, doi: 10.1007/s40747-023-01131-2.

[50] H. Qin, S. Shao, T. Wang, X. Yu, Y. Jiang, and Z. Cao, “Review of

Autonomous Path Planning Algorithms for Mobile Robots,” Drones,
vol. 7, no. 3, p. 211, Mar. 2023, doi: 10.3390/drones7030211.

[51] C. Li, C. Wang, J. Wang, Y. Shen, and M. Q. H. Meng, “Sliding-

window informed RRT∗: A method for speeding up the optimization

and path smoothing,” 2021 IEEE Int. Conf. Real-Time Comput. Robot.

RCAR 2021, pp. 141–146, 2021, doi:
10.1109/RCAR52367.2021.9517672.

[52] D. Wu, L. Wei, G. Wang, L. Tian, and G. Dai, “APF-IRRT*: An
Improved Informed Rapidly-Exploring Random Trees-Star Algorithm

by Introducing Artificial Potential Field Method for Mobile Robot Path

Planning,” Appl. Sci. Switz., vol. 12, no. 21, 2022, doi:
10.3390/app122110905.

[53] Q. Zhou and G. Liu, “UAV Path Planning Based on the Combination

of A-star Algorithm and RRT-star Algorithm,” in 2022 IEEE
International Conference on Unmanned Systems (ICUS), pp. 146–151,
2022, doi: 10.1109/ICUS55513.2022.9986703.

[54] F. Islam, J. Nasir, U. Malik, Y. Ayaz, and O. Hasan, “RRT*-Smart:

Rapid convergence implementation of RRT* towards optimal

solution,” 2012 IEEE Int. Conf. Mechatron. Autom. ICMA 2012, pp.
1651–1656, 2012, doi: 10.1109/ICMA.2012.6284384.

[55] Z. Wu, Z. Meng, W. Zhao, and Z. Wu, “Fast-RRT: A RRT-based

optimal path finding method,” Appl. Sci. Switz., vol. 11, no. 24, 2021,
doi: 10.3390/app112411777.

[56] Q. Gu, X. Li, S. Jiang, and H. Mora, “Hybrid Genetic Grey Wolf
Algorithm for Large-Scale Global Optimization,” Complexity, vol.
2019, 2019, doi: 10.1155/2019/2653512.

[57] J. Liu, X. Wei, and H. Huang, “An Improved Grey Wolf Optimization

Algorithm and its Application in Path Planning,” IEEE Access, vol. 9,
pp. 121944–121956, 2021, doi: 10.1109/ACCESS.2021.3108973.

[58] N. Mittal, U. Singh, and B. S. Sohi, “Modified Grey Wolf Optimizer

for Global Engineering Optimization,” Appl. Comput. Intell. Soft
Comput., vol. 2016, 2016, doi: 10.1155/2016/7950348.

[59] J. Zhao and Z. M. Gao, “An improved grey wolf optimization algorithm

with multiple tunnels for updating,” J. Phys. Conf. Ser., vol. 1678, no.
1, 2020, doi: 10.1088/1742-6596/1678/1/012096.

[60] J. A. Abdor-Sierra, E. A. Merchán-Cruz, F. A. Sánchez-Garfias, R. G.

Rodríguez-Cañizo, E. A. Portilla-Flores, and V. Vázquez-Castillo,
“Particle swarm optimization for inverse kinematics solution and

trajectory planning of 7-dof and 8-dof robot manipulators based on unit

quaternion representation,” J. Appl. Eng. Sci., vol. 19, no. 3, pp. 592–
599, 2021, doi: 10.5937/jaes0-30557.

[61] S. Dereli and R. Köker, “IW-PSO approach to the inverse kinematics
problem solution of a 7-DOF serial robot manipulator,” Sigma J Eng
Nat Sci, vol. 36, no. 1, pp. 77–85, 2018.

[62] R. Havangi, “Mobile robot localization based on PSO estimator,” Asian
J. Control, vol. 21, no. 4, pp. 2167–2178, 2019, doi: 10.1002/asjc.2004.

[63] B. Song, Z. Wang, and L. Zou, “An improved PSO algorithm for
smooth path planning of mobile robots using continuous high-degree

Bezier curve,” Appl. Soft Comput., vol. 100, p. 106960, Mar. 2021, doi:
10.1016/j.asoc.2020.106960.

[64] J. Xin, Z. Li, Y. Zhang, and N. Li, "Efficient real-time path planning

with self-evolving particle swarm optimization in dynamic
scenarios," Unmanned Systems, vol. 12, no. 2, pp. 215-226, 2024.

[65] H. T. Najm, N. S. Ahmad, and A. S. Al-Araji, “Enhanced path planning

algorithm via hybrid WOA-PSO for differential wheeled mobile
robots,” Syst. Sci. Control Eng., vol. 12, no. 1, p. 2334301, Dec. 2024,
doi: 10.1080/21642583.2024.2334301.

[66] A. J. Mohammed, K. I. Ghathwan, and Y. Yusof, “Optimal Robot Path

Planning using Enhanced Particle Swarm Optimization algorithm,”
Iraqi J. Sci., pp. 178–184, Jan. 2020, doi: 10.24996/ijs.2020.61.1.20.

[67] L. Zheng, W. Yu, G. Li, G. Qin, and Y. Luo, “Particle Swarm

Algorithm Path-Planning Method for Mobile Robots Based on

Artificial Potential Fields,” Sensors, vol. 23, no. 13, p. 6082, Jul. 2023,

doi: 10.3390/s23136082.

[68] I. D. Fahmizal, M. Arrofiq, H. Maghfiroh, H. P. Santoso, P. Anugrah,
and A. Molla, "Path Planning for Mobile Robots on Dynamic

Environmental Obstacles Using PSO Optimization," Jurnal Ilmiah

Teknik Elektro Komputer dan Informatika (JITEKI), vol. 10, no. 1, pp.
166-172, 2024.

[69] T. Duckett, “A genetic algorithm for simultaneous localization and

mapping,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 1, pp. 434–439,
2003.

[70] J. Ni, K. Wang, H. Huang, L. Wu, and C. Luo, “Robot path planning
based on an improved genetic algorithm with variable length

chromosome,” 2016 12th Int. Conf. Nat. Comput. Fuzzy Syst. Knowl.

Discov. ICNC-FSKD 2016, pp. 145–149, 2016, doi:
10.1109/FSKD.2016.7603165.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 284

Heru Suwoyo, An Effective Way for Repositioning the Beacon Nodes of Fast RRT Results Utilizing Grey Wolf Optimization

[71] S. T. Lian, K. Marzuki, and Y. Rubiyah, “Tuning of a neuro-fuzzy
controller by genetic algorithms with an application to a coupled-tank

liquid-level control system,” Eng. Appl. Artif. Intell., vol. 11, no. 4, pp.
517–529, 1998, doi: 10.1016/s0952-1976(98)00012-8.

[72] Y. Li, J. Zhao, Z. Chen, G. Xiong, and S. Liu, “A Robot Path Planning

Method Based on Improved Genetic Algorithm and Improved

Dynamic Window Approach,” Sustainability, vol. 15, no. 5, p. 4656,
Mar. 2023, doi: 10.3390/su15054656.

[73] J. Wang, “Intelligent Path Planning of Mobile Robot Based on Genetic
Algorithm,” J. Phys. Conf. Ser., vol. 2547, no. 1, p. 012001, Jul. 2023,
doi: 10.1088/1742-6596/2547/1/012001.

[74] W. Rahmaniar and A. E. Rakhmania, “Mobile Robot Path Planning in
a Trajectory with Multiple Obstacles Using Genetic Algorithms,” J.

Robot. Control JRC, vol. 3, no. 1, pp. 1–7, Jun. 2021, doi:
10.18196/jrc.v3i1.11024.

[75] F. Liu, S. Liang, and D. X. Xian, “Optimal Path Planning for Mobile

Robot Using Tailored Genetic Algorithm,” TELKOMNIKA Indones. J.
Electr. Eng., vol. 12, no. 1, pp. 1–9, Jan. 2014, doi:
10.11591/telkomnika.v12i1.3127.

[76] J. Liu, Z. Chen, Y. Zhang, and W. Li, “Path Planning of Mobile Robots
based on Improved Genetic Algorithm,” in Proceedings of the 2020

2nd International Conference on Robotics, Intelligent Control and

Artificial Intelligence, pp. 49–53, 2020, doi:
10.1145/3438872.3439054.

[77] M. S. Abed, O. F. Lutfy, and Q. F. Al-Doori, “Adaptive weight grey

wolf algorithm application on path planning in unknown
environments,” Indones. J. Electr. Eng. Comput. Sci., vol. 27, no. 3, p.
1375, Sep. 2022, doi: 10.11591/ijeecs.v27.i3.pp1375-1387.

[78] L. Liu, L. Li, H. Nian, Y. Lu, H. Zhao, and Y. Chen, “Enhanced Grey

Wolf Optimization Algorithm for Mobile Robot Path Planning,”

Electronics, vol. 12, no. 19, p. 4026, Sep. 2023, doi:
10.3390/electronics12194026.

[79] R. Kumar, L. Singh, and R. Tiwari, “Path planning for the autonomous

robots using modified grey wolf optimization approach,” J. Intell.
Fuzzy Syst., vol. 40, no. 5, pp. 9453–9470, Apr. 2021, doi:
10.3233/JIFS-201926.

[80] B. Tu, F. Wang, X. Han, and X. Fu, “Q-learning Guided Grey Wolf

Optimizer for UAV 3D Path Planning,” Int. J. Adv. Comput. Sci. Appl.,
vol. 15, no. 7, 2024, doi: 10.14569/IJACSA.2024.0150747.

