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Abstract—Conceptually, Fast-RRT applies fast sampling 

and random steering which makes the initial path quickly 

obtained. Referring to the initial path, the optimality of the path 

is improved by applying path fusion and path optimization. 

Theoretically, path fusion will only be optimal if there is always 

a unique/different path to be fused with the previously obtained 

path. However, in the conditions of solving path planning 

problems in narrow corridors, the potential for obtaining a 

different path from the previous one is very small. So that fusion 

does not run properly, but checking the relationship between 

nodes to nodes still occurs. Instead of getting an optimal path in 

conditions like this, the computation will increase, the solution 

time will be long, and the resulting path will still be sub-optimal. 

As an effort to solve this problem, Grey Wolf Optimization 

(GWO) is involved through this study. While an initial path is 

found, the beacons are repositioned. From the path, the number 

of nodes is unpredictable, causing the decision variables in 

optimization to become large. For this reason, the GWO is 

chosen because it is independent of population representation 

and is not affected by the number of decision variables. This 

proposed method is claimed to be more effective in solving path 

planning problems in terms of convergence rate and optimality. 

Therefore, the proposed method is evaluated and compared 

with previous methods and gives the result that the average 

working speed of Fast-RRT is improved by 90.25% and the 

optimality average increased by 5.67%. 

Keywords—Fast-RRT; Grey Wolf Optimization; Path 

Planning; Convergence Rate; Optimality. 

I. INTRODUCTION 

In some scenarios, the robot performs the exploration task 

at the same time as solving the Simultaneous Localization 

and Mapping (SLAM) [1], [2], [3], [4], [5]. Generally, SLAM 

will let the robot know the marginalized poses as well as the 

initially unknown map. Thus, it must be supporting the 

performance of the robot to be fully autonomous. The reason 

behind this assumption is that since these tasks performed 

well, the robot needs to only decide where the goal point from 

any initial point is to be later traced [5], [6], [7], [8]. Finding 

the feasible and safe path in this case is known as global path 

planning and the tracing process is called path tracking [9], 

[10], [11], [12], [13], [14]. Before the robot moves from the 

current to any desired pose, path planning should be 

performed well to generate the reference path. Therefore, it 

must be designed and prepared as well as possible.      

There are two types of methods commonly used for 

solving global path planning, which are the searching-based 

and sampling-based algorithms [15], [16], [17], [18], [19], 

[20], [21], [22]. The popular methods for searching-based 

algorithms include A* [8], [23], [24], [25] and Dijkstra 

algorithm  [13], [14], [15], [16], [17]. For the sampling-based 

algrorithm include the Rapidly-Exploring Random (RRT) 

[8], [32], [33] and RRT* [34], [35], [36], [37]. Generally, the 

searching-based offers the quality and resolution of the safely 

planned path compared to the sampling-based algorithm. 

Nevertheless, the sampling-based algorithm possesses the 

high-speed process of finding and generating this path which 

cannot be found in sampling-based algorithms [38], [39], 

[40]. This can be seen clearly from how the RRT or RRT* 

works. Armed with knowledge about the environment, 

starting points, and planned ending points, RRT started its 

work by expanding from node to node. In this expansion 

process, nodes are randomly generated and then selected as 

the next node. Then the randomly generated nodes are 

checked for whether they are free-collision or not if the node 

is connected to the closest available node named a vertex. If 

a vertex is free from obstacles, the node is considered as an 

available node, and vice versa if it is not free from obstacles, 

the process of randomly generating nodes is repeated. The 

process is then repeated whenever the single vertex is made 

up. In the end, the shortest connected vertexes are found by 

comparing one to the other. Moreover, the RRT* also 

performs the same process as RRT does with the 

improvement on the process of generating the vertex. It is 

conducted by applying the rewiring step that again checks the 

connection to any rounded nodes to get the shortest vertex.      

Although RRT and its successor, RRT*, satisfy the 

objective of global path planning, they suffer from the ability 

to generate vertex connecting the nodes that are separated by 

tunnel-like obstacles [23], [41], [42], [43], [44], [45]. 

Additionally, the expansion process has also been consuming 

much time since the randomly generated node has the 

potential to be in the area around the available one [46], [47], 

[48], [49], [50]. For these limitations, several methods have 

been proposed. More Quickly-RRT* (MQ-RRT*) has been 

introduced with the aim of improving optimality and 

convergence speed. The convergence speed is improved by 
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applying the sparse sampling mechanism that reduces 

repetitive sampling. Moreover, optimality is achieved by 

biasing the Chooseparent before the rewiring stage is 

conducted. With the same focus, to speed up the initial path 

found, the hybrid-RRT combining the informed-RRT* [51], 

[52] and RRT-Connect [34], [41] has also been introduced. 

This combination sequentially gains the initial path faster 

because of bidirectional exploration from RRT-Connect and 

gives an optimal path offered by informed-RRT* after the 

initial path found. Another improvement is to combine A* 

and RRT* [53]. The sampling of RRT* is conducted by 

following the manner how A* finds the optimal path. Even 

though this hybrid algorithm is still classified as sampling-

based algorithm. The new node is wired to the most potential 

node in the trace. It means the near node is chosen based on 

the lowest cost. This cost is the sum of the path cost from the 

starting node to the examined node and the path cost from the 

goal node to the examined node. For this reason, this hybrid 

algorithm gives better optimality and is faster compared to 

RRT*. Not only these methods, the development of RRT* 

can be noticed from RRT*-Smart [54] which utilizes the 

biasing method to improve optimality. Regarding the beacons 

found from the initial path, the rest of sampling focuses on 

the area around the beacon. Not only this intelligence 

sampling, but the path optimization is also conducted to 

reduce the number of beacons as the basis for intelligence 

sampling. They are sequentially conducted to accelerate the 

optimality of algorithm. However, the initial path is found by 

applying the procedure of RRT* which takes time in the 

complex and large area. Moreover, Fast-RRT has been 

introduced [55]. In the Fast-RRT, the fast sampling is 

initiated to tackle the first limitation, and the random steering 

process is used to overcome the second one. These two 

processes are carried out sequentially and are referred to as 

improved RRT. Apart from this improvement, Fast-RRT also 

has a Fast-Optimal stage which contains commands for 

fusion and tuning. The fusion stage is carried out in the 

second stage after the new path is available. This is done with 

the assumption that the previously formed path is still sub-

optimal. Every time there is a new path, the sub-path will be 

fused with the another sub-path. Which means that fusion 

occurs when there is a unique path that is different from the 

previous path. However, in the conditions of solving path 

planning problems in narrow corridors, the potential for 

obtaining a path that is different from the previous one is very 

small. So that fusion does not run properly, but checking the 

relationship between nodes to nodes still occurs. Instead of 

getting an optimal path in conditions like this, the 

computation will increase, the solution time will be long, and 

the resulting path will still be the same, just suboptimal. 

Furthermore, in the tuning stage, the relationship between 

nodes is checked again and will be rewired by trimming the 

vertices, it is found that the two outcrop nodes are free of 

obstacles. While logically this would provide an 

improvement, Fast-Optimal still relies on Improved-RRT 

sub-paths only. Therefore, the optimal Fast-RRT solution is 

highly dependent on the repetitions performed. So, the 

optimality of the solution requires a long time [11]. 

 Regarding this problem, in this paper an improvement is 

being carried out. This development involves Grey Wolf 

Optimization (GWO) [56], [57], [58], [59] which will be the 

core method for improving the performance of the Fast-

Optimal path. The application of GWO begins by generating 

a wolf pack at a position around the target node 𝑥𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 . 

Next, the fitness value of each wolf is calculated based on the 

overall path length connecting the beacon nodes. From there, 

�⃗�𝛼, �⃗�𝛽, and �⃗�𝛿  are determined based on the three lowest 

values. Then, �⃗�1, �⃗�2, and �⃗�3 are calculated using the 

established equations, which results in �⃗�𝑛𝑒𝑤. This process is 

followed by greedy selection and updating of the wolf pack 

position. This stage is repeated as many times as the number 

of iterations (maximum iteration). This maximum iteration is 

calculated by subtracting the number of samples when the 

initial path is known from the maximum number of samples, 

then dividing the result by the number of wolves in the pack. 

Due to its more nature-inspired workings, Grey Wolf 

Optimization (GWO) has several advantages over other 

algorithms such as Particle Swarm Optimization (PSO) [60], 

[61], [62], [63], [64], [65], [66], [67], [68] and Genetic 

Algorithm (GA) [69], [70], [71], [72], [73], [74], [75], [76]. 

GWO mimics the hunting behavior of wolves; the pack leader 

(alpha), second leader (beta), and third leader (delta) work 

together to chase prey, balancing exploration and exploitation 

of the solution space [77], [78], [79], [80]. This method 

makes GWO easy to adapt to difficult problems, especially 

those with large or non-linear solution spaces. The simple 

structure and the small number of parameters make GWO 

computation less heavy and more efficient. This effective 

computation underlies the ability of GWO convergence to be 

fast without requiring many repetitions and iterations to 

provide an optimal solution. This supports the acceleration of 

GWO work in supporting the optimization of beacons nodes 

on a predetermined path. GWO also uses greedy selection, 

which helps the pack choose the best solution based on 

previous experience, so they don't get stuck in bad local 

solutions. This provides the basis for selecting GWO over 

other related methods.  

 The rest of this paper is organized as follows: Section II 

presents the materials and methods, including the problem 

statement, the basic concepts of Fast-RRT, and Grey Wolf 

Optimization. In Section III, the proposed method is 

discussed, followed by the analysis of the results in Section 

IV. Finally, the conclusion is provided in the last section.  

II. MATERIAL AND METHOD 

A. Problem Statement 

Let 𝑋 ∈ ℝ𝑛 is representation of state space for a path 

planning problem, with 𝑛 ∈ 𝑁 is space dimension, thus 𝑋 =
{𝑋𝑜𝑏𝑠 , 𝑋𝑓𝑟𝑒𝑒} is state space with 𝑋𝑜𝑏𝑠 ∈ 𝑋 refers to obstacle 

coordinates and 𝑋𝑓𝑟𝑒𝑒 ∈ 𝑋 refers to the free space. Moreover, 

if the starting node 𝑥𝑖𝑛𝑖𝑡 ∈ 𝑋𝑓𝑟𝑒𝑒  and the goal node 𝑥𝑔𝑜𝑎𝑙 ∈

𝑋𝑓𝑟𝑒𝑒  are given, then referring to 𝑋𝑜𝑏𝑠, the path planning 

algorithm has to find the ideal path from-to those nodes, 

denoted as 𝜎 = [0, 𝑇] → 𝑋𝑓𝑟𝑒𝑒  with 𝜎(0) = 𝑥𝑖𝑛𝑖𝑡  and 𝜎(𝑇) =

𝑥𝑔𝑜𝑎𝑙 . Where the area closed to the goal node 𝑥𝑔𝑜𝑎𝑙  is denoted 

by 𝑋𝑔𝑜𝑎𝑙 , which is defined as {𝑥 ∈ 𝑋|𝑥 − 𝑥𝑔𝑜𝑎𝑙| < 𝑟}, where 

𝑟 is radius around 𝑥𝑔𝑜𝑎𝑙 . 
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B. Fast-RRT 

Conceptually, Fast-RRT works by implementing two core 

stages, namely Improved-RRT, and Fast-Optimal. In 

improved-RRT there are two differentiators that distinguish 

Fast RRT from RRT, namely fast sampling and random 

steering. Likewise, path optimization is different from 

conventional methods, namely implementing path fusion and 

path optimization, both of which are found in Fast-Optimal. 

In short, the working of Fast-RRT is shown in Algorithm 1. 

Algorithm 1 – Fast-RRT 

1 Input: 𝑥𝑖𝑛𝑖𝑡 , 𝑥𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝  

2 Output: A path 𝑇 from 𝑥𝑖𝑛𝑖𝑡 to 𝑥𝑔𝑜𝑎𝑙  

3 for = 𝑖 … 𝑁 do  

4  𝑇𝑖𝑛𝑖𝑡 ← 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇(𝑥𝑖𝑛𝑖𝑡 , 𝑋𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝)  

5  If 𝑇𝑖𝑛𝑖𝑡 isnot None then 

6            𝑇𝑜𝑝𝑡 ← 𝐹𝑎𝑠𝑡𝑂𝑝𝑡(𝑇𝑜𝑝𝑡, 𝑇𝑖𝑛𝑖𝑡) 

Although there are similarities in the general concept of 

exploration, in 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇 step there is fast sampling. 

Where this step is done by limiting random nodes which are 

only allowed in areas that have never been touched. This 

coverage refers to the radius of nodes that have been obtained 

by Fast-RRT. Obviously, there can be no repeated generation 

of nodes around the old node which makes the method speed 

up. In addition to fast-sampling on the improved RRT, there 

is also random-steering which does the steering process to 

random points so that the vertices are free from obstacles. The 

sampling process on the improved RRT stops when the 

newest node is in the goal node area. But instant solutions like 

this only provide sub-optimality. So that there is a repetition 

of path generation with the same method. However, 

whenever a path is formed, Fast-RRT will process the two 

best paths in the next process, namely Fast-Optimal. Where 

at this stage, there are two core jobs, namely Fusion and Fast-

Tuning. In fusion nodes with very close distances are 

considered to coincide. Then all vertices are reconnected, 

with reference to the cost of each sub-optimal path. 

Furthermore, in order to cut the high-cost value, fast-tuning 

is done. Where in this process, the direct connection between 

nodes is barrier-free, replacing the vertices between the 

previous nodes. In general, fast-optimal on Fast-RRT can be 

seen in the following algorithm. 

Algorithm 2 – 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇 𝑎𝑛𝑑 𝐹𝑎𝑠𝑡 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 
1 Input: 𝑥𝑖𝑛𝑖𝑡 , 𝑥𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝  

2 Output: A path 𝑇𝑜𝑝𝑡 from 𝑥𝑖𝑛𝑖𝑡to 𝑥𝑔𝑜𝑎𝑙  

3 for = 𝑖 … 𝑁 do  

4  𝑥𝑟𝑎𝑛𝑑 ← 𝐹𝑎𝑠𝑡𝑆𝑎𝑚𝑝𝑙𝑒(𝑀𝑎𝑝)  

5  𝑥𝑛𝑒𝑎𝑟 ← 𝑛𝑒𝑎𝑟𝑒𝑠𝑡(𝑇, 𝑥𝑟𝑎𝑛𝑑) 

6  𝑥𝑛𝑒𝑤 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑟𝑎𝑛𝑑) 

7  𝐸𝑡 ← 𝐸𝑑𝑔𝑒(𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟) 

8  if 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝐸𝑡, 𝑀𝑎𝑝) then 

9  𝑇 ← 𝑎𝑑𝑑𝑁𝑜𝑑𝑒(𝑥𝑛𝑒𝑤) 

10  if 𝑥𝑛𝑒𝑤 ∈ 𝑋𝑔𝑜𝑎𝑙 then 

11  𝑇𝑖𝑛𝑖𝑡 ← 𝑇 
12  if 𝑖𝑠𝑛𝑜𝑡𝑒𝑚𝑝𝑡𝑦(𝑇𝑖𝑛𝑖𝑡) 
13  𝑇𝑜𝑝𝑡 ← 𝑝𝑎𝑡ℎ𝑓𝑢𝑠𝑖𝑜𝑛(𝑇𝑖𝑛𝑖𝑡 , 𝑇𝑜𝑝𝑡) 

14  𝑇𝑜𝑝𝑡 ← 𝑝𝑎𝑡ℎ𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒(𝑇𝑜𝑝𝑡)  

15  endif 
16  endif 
17  endif 
18 endfor  

Referring to Algorithm 2, 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇 is shown in the 

command in lines 4 to 11. Meanwhile, 𝐹𝑎𝑠𝑡𝑂𝑝𝑡𝑖𝑚𝑎𝑙 is 

shown in commands 12 up to 17. To find out details about 

these, Fast-RRT in [55] can be used as a reference.   

C. Grey Wolf Optimization 

The leadership structure and hunting strategy of grey 

wolves in nature are modeled by the GWO algorithm. For the 

purpose of mimicking the leadership hierarchy, four different 

varieties of grey wolves, including alpha, beta, delta, and 

omega, are used. In addition, the three essential components 

of hunting—looking for prey, surrounding prey, and 

attacking prey—are used. 

The grey wolf, which hunts enormous prey in packs and 

depends on interpacket cooperation, inspired this algorithm. 

This behavior has two intriguing aspects: social hierarchy and 

the hunting mechanism. The grey wolf has a complicated 

social hierarchy due to being a highly gregarious animal. The 

term "dominance hierarchies" refers to ranking wolves based 

on their size and power. There are the alphas, betas, deltas, 

and omegas as a result.  The pack is led by the alpha male and 

female, who are at the top of the hierarchy. Every member of 

the pack is ranked according to their position. The wolf pack's 

hierarchy helps weaker members of the pack who are unable 

to hunt for themselves and is not just about hostility and 

power. The beta wolf comes next, who aids the alpha wolf in 

making choices and maintains order in the pack. The delta 

wolf is ranked beneath the beta wolf. They are frequently 

powerful but lack leadership abilities or self-assurance to 

assume leadership roles. Finally, the omega wolf has no 

power at all, and other wolves will run after him right away. 

Omega wolf is also in charge of keeping an eye on the young 

wolves. The three best solutions will be denoted by alpha, 

beta, and delta, respectively, at each stage when we apply the 

approach previously discussed to our optimization problem, 

and the remaining solutions will be denoted by omega. It 

basically means that the three best solutions guide the 

optimization process. The prey will also be the best possible 

outcome of the optimization.  

Most of the logic follows the equations: 

�⃗⃗⃗�  =  |𝐶 ⋅ �⃗�𝑝(𝑡) − �⃗�(𝑡)| (1) 

�⃗�𝑝(𝑡 + 1) = �⃗�𝑝(𝑡) − 𝐴. �⃗⃗⃗� �⃗⃗⃗�  =  |𝐶 ⋅ �⃗�𝑝(𝑡) − �⃗�(𝑡)| (2) 

where 𝑡 denotes the current iteration, the vector  𝐴 and  𝐶 

represent the coefficient vectors,  𝑋𝑝
⃗⃗ ⃗⃗ ⃗ refers to the position 

vector of the prey and  �⃗� is the position of the wolf. 

Vectors  𝐴 and  𝐶 are generally given as follows. 

𝐴 =  2�⃗� ⋅ 𝑟1 − �⃗� (3) 

𝐶 = 2𝑟2  (4) 

where the linear decrement  𝐴 is from 2 to 0 through iteration 

and  𝑟1⃗⃗⃗ ⃗  and  𝑟2⃗⃗⃗⃗  are random vector in range [0,1], calculated 

for each wolf at each iteration. Whereas �⃗� can be calculated 

using (5). 

�⃗� = 2 (1 −
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥𝑖𝑡𝑒𝑟
)  (5) 
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Vector 𝐴 controls the trade-off between exploration and 

exploitation while 𝐶 always adds some degree of 

randomness. This is necessary because our agents can get 

stuck in the local optima and most of the metaheuristics have 

a way of avoiding it. Since �⃗� is calculated, 𝐴 and 𝐶 will be 

computed using (3) and (4), respectively. Since, we don’t 

know the real position of the optimal solution, 𝑋𝑝
⃗⃗ ⃗⃗ ⃗ depends on 

the 3 best solutions and the formulas for updating each of the 

agents (wolfs) are: 

�⃗⃗⃗�𝛼  =  |𝐶1 ⋅ �⃗�𝛼  −  �⃗�| (6) 

�⃗⃗⃗�𝛽 =  |𝐶2 ⋅  �⃗�𝛽  −  �⃗�| (7) 

�⃗⃗⃗�𝛾  =  |𝐶3 ⋅  �⃗�𝛿  −  �⃗�| (8) 

�⃗�1  =  �⃗�α − 𝐴1 (9) 

�⃗�2 =  �⃗�𝛽  −  𝐴2 (10) 

�⃗�3 =  �⃗�𝛾  −  𝐴3 (11) 

�⃗�(𝑡 + 1) =
�⃗�1 + �⃗�2+�⃗�3

3
 (12) 

where  �⃗�(𝑡) represents the current position of the agent and 

�⃗�(𝑡 + 1) is the updated one (called �⃗�𝑛𝑒𝑤  in Introduction). 

According to the algorithm above, the wolf's position will be 

changed in accordance with the top three wolves from the 

previous iteration. The result will not exactly match the 

average of the top three wolves because the vector 𝐶 

introduces a slight random shift. 

III. PROPOSED METHOD 

In general, the proposed method combines RRT*, Fast-

RRT, and GWO in some ways. This framework is based on 

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇 preserving workflow adopted from Fast-

RRT and involves the RRT* rewiring process. GWO is used 

to find the best position for beacons on the formed path. The 

beacon in question is a node obtained after path reduction 

optimization is applied (it is called the target node). In this 

study, the reduction in question is by applying triangular 

inequality. This aims to provide a reasonable and feasible 

path variant. Triangular inequality and continued with GWO 

replaces fusion which is heavily influenced by the alternative 

suboptimal paths obtained. Therefore, in addition to being 

fast, it also guarantees an increase in optimality. The 

advantage of this technique is that it is fast because it does 

not require a lot of sampling and is also not affected by how 

optimal the initial path is obtained. The flow diagram of this 

process can be seen in Fig. 1. 

Referring to Fig. 1, RRT with fast sampling and random 

direction is initially performed. This RRT is adopted from 

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇 in Fast-RRT and is performed to obtain the 

initial path in a certain number of sampling times. In this step, 

the use of adopted rewiring is also applied. This is to support 

that the results obtained also show good optimality. In this 

study, based on this rewiring, it is expected that the 

suboptimal path is obtained so that the optimization work will 

be better. The process of applying these methods continues 

until the initial path is found. After the initial path is found, 

the next process is path optimization. With the focus no 

longer depending on the number of samplings allowed or 

even the number of samplings approaching infinity, the 

optimization carried out in this study minimizes sampling and 

focuses on moving the node position to a better place. To 

reduce the computational cost, in this study the initial path is 

optimized by applying triangular inequality before GWO 

optimization is carried out. The optimization process using 

GWO takes place with the number of generations adjusted to 

the number of remaining samplings. The beacons in question 

are nodes that connect the starting point to the destination 

point. Simultaneously, a number of nodes obtained are 

optimized with the aim of determining the best position that 

produces the shortest obstacle-free path. At the beginning of 

GWO, one by one the node positions are identified, as a 

reference in generating points around the beacon randomly, 

at the distribution radius 𝑟𝑑𝑖𝑠𝑏. Where the number of beacons 

determines the number of decision variables at this stage. By 

determining a number of candidate solutions and random 

generation, the initial population is obtained. The number of 

this population is defined as 𝑁𝑝𝑜𝑝. After obtaining this initial 

population, the optimization process runs with each 

generation. 

 

Fig. 1. Flowchart of the proposed method 

Algorithm 3 – Proposed Method  

1 Input: 𝑥𝑖𝑛𝑖𝑡 , 𝑥𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝, 𝑁𝑝𝑜𝑝  

2 Output: A path 𝑇𝑜𝑝𝑡 from 𝑥𝑖𝑛𝑖𝑡to 𝑥𝑔𝑜𝑎𝑙  

3 for = 𝑖 … 𝑁 do  

4  𝑥𝑟𝑎𝑛𝑑 ← 𝐹𝑎𝑠𝑡𝑆𝑎𝑚𝑝𝑙𝑒(𝑀𝑎𝑝)  

5  𝑥𝑛𝑒𝑎𝑟 ← 𝑛𝑒𝑎𝑟𝑒𝑠𝑡(𝑇, 𝑥𝑟𝑎𝑛𝑑) 

6  𝑥𝑛𝑒𝑤 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑟𝑎𝑛𝑑) 

7  𝐸𝑡 ← 𝐸𝑑𝑔𝑒(𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟) 

8  if 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝐸𝑡, 𝑀𝑎𝑝) then 

9  𝑇 ← 𝑎𝑑𝑑𝑁𝑜𝑑𝑒(𝑥𝑛𝑒𝑤) 

10  if 𝑥𝑛𝑒𝑤 ∈ 𝑋𝑔𝑜𝑎𝑙 then 

11  𝑇𝑖𝑛𝑖𝑡 ← 𝑇 

12  𝑝𝑎𝑡ℎ𝑓𝑜𝑢𝑛𝑑𝑎𝑡 = 𝑖; 
13  state=1 

14  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑁𝑝𝑜𝑝 

15  endif 

16  endif 

17 endfor  

18 𝑚𝑎𝑥𝑖𝑡 = (𝑁 − 𝑝𝑎𝑡ℎ𝑓𝑜𝑢𝑛𝑑𝑎𝑡) 

19 If state==1 

20  𝑖𝑑𝑥 ← 𝑔𝑒𝑡𝑟𝑎𝑛𝑑𝐼𝑑𝑥(𝑇𝑖𝑛𝑖𝑡) 

21  𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← 𝑔𝑒𝑡𝑛𝑜𝑑𝑒(𝑇𝑖𝑛𝑖𝑡(𝑖𝑑𝑥)) 

22  𝑇𝑜𝑝𝑡 ← 𝐺𝑊𝑂(𝑇𝑖𝑛𝑖𝑡) 

23  𝑇𝑜𝑝𝑡 ← 𝑝𝑎𝑡ℎ𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒(𝑇𝑜𝑝𝑡) 

24 end 
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As a note, not only considering the distance, the fitness or 

objective function applied to this GWO also considers the 

feasibility of the path. Each time the fitness is evaluated, the 

candidate solution is considered invalid when there is a 

collision with any obstacle. Based on the generated random 

population, �⃗�𝛼, �⃗�𝛽, �⃗�𝛾 are determined by first evaluating the 

fitness for all individuals (i.e. candidate solution, which 

collects information on all beacon coordinates. Where �⃗�𝛼 is 

the best gray wolf in the pack, �⃗�𝛽 is the second best, �⃗�𝛾 is the 

third best. Based on these results, the next determination of a 

is done by applying the formula described in (2). With a, 

�⃗�1, �⃗�2, �⃗�3 can then be determined using (9), (10), and (11), 

respectively. By maintaining this process, the final solution 

is obtained. In each generation, the increase is indicated by a 

decrease in the cost path. And as a termination criterion, the 

maximum iteration is used as the main reference for stopping 

the optimization process or not. If the iteration is the same as 

the maximum iteration, the optimization process is complete, 

and the final path is obtained. All steps of the proposed 

method can be clearly seen in Algorithm 3. Moreover, the 

optimization step is conducted when GWO obtained a new 

solution. Conceptually, the path reduced in this optimization 

step by firstly checking the connection from the current 

waypoint to the next one. This method iterates by starting at 

𝑥𝑔𝑜𝑎𝑙  and moving to 𝑥𝑖𝑛𝑖𝑡   while sequentially observing the 

direct connection to the parent up until the connection of two 

separate nodes is deemed to be a collision with the 

obstruction.  No additional nodes can be joined directly if the 

order of observations reaches 𝑥𝑖𝑛𝑖𝑡 . This method follows the 

rule of triangular inequality and can be seen in Algorithm 5.  

Algorithm 4 – 𝐺𝑊𝑂  

1 Input: 𝑇𝑖𝑛𝑖𝑡, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑚𝑎𝑥𝑖𝑡, 𝑁𝑝𝑜𝑝 

2 Output: 𝑇𝑜𝑝𝑡 

3 𝑎𝑔𝑒𝑛𝑡𝑠 ← 𝑏𝑎𝑙𝑙𝑠ℎ𝑎𝑝𝑒𝑑𝐷𝑖𝑠𝑡(𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , 𝑁𝑝𝑜𝑝) 
4 while 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑚𝑎𝑥𝑖𝑡 
5  �⃗�α, �⃗�𝛽 , �⃗�𝛿 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑎𝑔𝑒𝑛𝑡𝑠) 

6  for 𝑖 = 1: 𝑙𝑒𝑛𝑔𝑡ℎ (𝑎𝑔𝑒𝑛𝑡𝑠) 

7  �⃗⃗⃗�𝛼 , �⃗⃗⃗�𝛽 , �⃗⃗⃗�𝛿 

8  �⃗�1, �⃗�2, �⃗�3 
9  end 
10  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑁𝑝𝑜𝑝 
11  𝑎𝑔𝑒𝑛𝑡𝑠 ← 𝑔𝑟𝑒𝑑𝑑𝑦𝑆𝑒𝑙(�⃗�𝑛𝑒𝑤) 
12 end  
13 𝑇𝑜𝑝𝑡 ← 𝑎𝑔𝑒𝑛𝑡𝑠 

Assuming the initial path as input, the first time before 

GWO is applied, the first step in this optimization is to 

determine a node with a random index, called 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑,  

which is a node that is not a starting point and not a goal point. 

This determination is shown in command line 21 in 

Algorithm 3. Referring to the maximum iterations allowed, 

𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  is optimized using GWO. In the initial setting, this 

maximum iteration is the number of samples that are still left 

and can be used which is proportional to the specified 𝑁𝑝𝑜𝑝. 

𝑁𝑝𝑜𝑝 is the number of candidate solution swarms that can be 

determined. 𝑁𝑝𝑜𝑝 is the number of candidate solution 

swarms that can be determined. The larger the specified 

value, the fewer optimization iterations using GWO. This is 

because 𝑁𝑝𝑜𝑝 becomes an addition to the iteration when 

GWO is successfully applied in one cycle. The termination 

criteria used to represent the GWO iteration limitation 

is 𝑚𝑎𝑥𝑖𝑡 which is determined previously based on the 

sampling iterations required to obtain the initial path (see line 

18 in Algorithm 3. By knowing 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 , agents who are 

candidate solution flocks (representing wolves) are generated 

by applying Uniform Spherical Distribution centred on 

𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 . 

Algorithm 5 – 𝑝𝑎𝑡ℎ𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 

1 Input: 𝑇𝑜𝑝𝑡, 𝑥𝑖𝑛𝑖𝑡 , 𝑥𝑔𝑜𝑎𝑙  

2 Output: 𝑇𝑓𝑖𝑛𝑎𝑙   

3 𝑤𝑜𝑙𝑣𝑒𝑠 ←  

4 𝑇𝑓𝑖𝑛𝑎𝑙(1) ← 𝑥𝑔𝑜𝑎𝑙  

5 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑥𝑔𝑜𝑎𝑙  

6 for 𝑖 = 2: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑜𝑝𝑡) do  

7  if 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐹𝑟𝑒𝑒 (𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑇𝑜𝑝𝑡(𝑖))  

8  continue 

9  else  

10  𝑇𝑓𝑖𝑛𝑎𝑙 = 𝑎𝑝𝑝𝑒𝑛𝑑(𝑇𝑜𝑝𝑡(𝑖 − 1)) 

11  𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑇𝑜𝑝𝑡(𝑖 − 1) 

12  end 

13 end  

14 return 𝑇𝑓𝑖𝑛𝑎𝑙   

The number of wolves is determined by the desired 

population size, in this case termed 𝑁𝑝𝑜𝑝. Furthermore, by 

considering the termination criteria and (1) – (11), GWO 

repositions 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 . This step begins by determining the first 

best wolf, second best, third best with the notation �⃗�α, �⃗�𝛽 , �⃗�𝛿, 

respectively (see command line 5 in Algorithm 4). This 

determination applies to the objective function which is the 

path cost when 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  is substituted with the candidate 

solution with the lowest value from the agents after 

optimization. Not only referring to the cost path, candidate 

solutions are considered valid if the solution node does not 

collide if connected with 𝑥𝑛𝑖𝑒𝑔1 ← 𝑇𝑖𝑛𝑖𝑡(𝑖𝑑𝑥 + 1) and does 

not collide with obstacles in the environment if connected 

with 𝑥𝑛𝑖𝑒𝑔2 ← 𝑇𝑖𝑛𝑖𝑡(𝑖𝑑𝑥 − 1). 𝑖𝑑𝑥 referred to is the index 

used to determine 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  in Algorithm 3, line 20. 

Furthermore, when new 𝑎𝑔𝑒𝑛𝑡𝑠 are successfully determined, 

�⃗�𝑛𝑒𝑤   determined by applying (12). And finally in one 

optimization cycle, greedy selection is performed before 

�⃗�𝑛𝑒𝑤 will be substituted into �⃗�𝑐𝑒𝑟𝑡𝑎𝑖𝑛  in 𝑎𝑔𝑒𝑛𝑡𝑠. By 

maintaining this stage, when the termination criteria are met, 

GWO provides agents whose one of the candidate solutions 

is the best node to replace 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 . These steps result in a 

new node arrangement with better optimality and give an 

optimized path after GWO is operated (note line 23 in 

Algorithm 3 and its description in Algorithm 5). This path 

planning algorithm can improve the efficiency of 

autonomous robots in exploration, especially for global path 

planning in static environments. The perception of the 

environment and the robot's position must be generated by 

SLAM well before the algorithm is applied. If the 

environment is dynamic, the robot must also be able to avoid 

obstacles. Ethical aspects such as security, data privacy, and 

the freedom of algorithms from bias need to be considered to 

avoid risks to humans and ensure fair decisions. 
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IV. RESULT AND DISCUSSION 

At this section, the robot is assumed to know all the 

information of the environment and the starting as well as the 

goal point are given initially. Moreover, the environment is 

considered static, and the algorithm will solve the global path 

planning. There will be several environments used to evaluate 

the work of algorithms including the RRT*, Fast-RRT, 

RRT*-Smart, and GWO-tuned Fast-RRT as the proposed 

method. These environments are presented on Fig. 2. 

All static environments shown in Fig. 2 are environments 

that researchers usually use in their research to test the 

methods that have been developed. 1st Environment in Fig. 

2(a) is used to examine the ability of  the method to pass 

through the narrow channel. Environment shown in Fig. 2(b) 

is the environment used to test RRT*-Connect on [34]. 

Environment 2(c) is one of the environments used to test 

RRT*-Smart on [54]. While the environment shown in Fig. 

2(d) is an environment for testing methods to solve path 

planning problems in a large environment and there is only 

one possible solution. 

Based on the level of complexity, the 1st Environment to 

4th Environment have different characteristics from each 

other. 1st Environment complexity is represented by a narrow 

corridor and there is only one unique solution to produce a 

path connecting the starting and goal points. In 2nd 

Environment, its complexity is shown by the existence of an 

indirect path that requires more challenging exploration 

compared to 1st Environment. 3rd Environment has the same 

level of complexity as 2nd Environment, namely there are 

narrow corridors with lots of space that have the potential to 

make exploration spread. While in 4th Environment, not only 

does it show a long distance between the starting position and 

the goal, but it also only has 1 unique solution. As for the 

initial and final positions for each environment are 

determined as follows: in the 1st Environment, the initial 

position is at position (70, 10) and the final position is at 

position (5, 70); in the 2nd Environment, the initial position 

is placed at coordinates (90, 50) and the final position is 

placed at coordinates (10, 50); in the 3rd Environment the 

initial and final positions are placed at (155, 5) and (15, 105), 

respectively; the initial and final positions in the 4th 

Environment are placed at (5, 5) and (155, 75), respectively. 

Testing of all methods was conducted on a PC with the 

following specifications: Intel Core i7-14700K 3.40 GHz 

processor, 64.0 GB RAM, 64-bit operating system, RTX 

3080 10GB GPU, and 1TB SSD. In the test, all methods were 

run alternately to solve the path planning problem in the 1st 

– 4th Environment with a sampling rate of 10000. All 

methods were compared based on the working speed, 

indicated by the completion time in seconds, and the 

optimality of the resulting path, represented by the cost path 

in units of length. Furthermore, 𝑒𝑝𝑠, the maximum distance 

for placing 𝑥𝑛𝑒𝑤  in each method is determined to be 5 units 

of length. 

 

  
(a) (b) 

 

 

(c) (d) 

Fig. 2. Used environment  
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In the first experiment, RRT*, Fast-RRT, Informed-

RRT*, RRT*-Smart, and Proposed methods were applied to 

solve the 1st environmental problem. The results of the 

application are visually shown in Fig. 3. Based on the solution 

of the 1st Environment problem, as seen in Fig. 3(a) and Fig. 

3(c), RRT* and RRT*-Smart cannot solve the problem. This 

is because both apply conventional exploration that is not 

directed and limited to narrow corridors. Meanwhile, with the 

presence of random steering after applying fast sampling, 

Fast-RRT and the proposed method can easily and quickly 

pass through narrow corridors when conducting exploration 

(see Fig. 3(b) and Fig. 3(d)). The effectiveness of both 

approaches used to carry out the exploration process is also 

shown in the number of sampling repetitions of 5000 to get 

the initial path. Based on this test, not only the optimality of 

the path is indicated by a shorter cost path than Fast-RRT, the 

overall planning work speed for the proposed method is also 

better than Fast-RRT. This is shown by the time consumed in 

planning, namely, 8.9079 seconds, while Fast-RRT requires 

104.5422 seconds. 

Next, testing and comparison of all methods are carried 

out in solving the problem in the 2nd Environment. While 

maintaining the same parameterization stages as the testing 

in the 1st Environment, the test results of RRT*, Fast-RRT, 

RRT*-Smart, and the proposed method are shown in Fig. 4. 

Referring to the test on the 2nd Environment, it can be seen 

that all methods can solve the path planning problem. 

However, if observed, each method shows different test 

results from one another. Based on the results shown in Fig. 

4(a), RRT* can solve the problem in 665.0656 seconds with 

a path cost of 278.9263 units of length. While for Fast-RRT, 

as seen in Fig. 4.(b) shows a longer cost path, namely 

287.1462 with a time required of 197.7759 seconds. 

Although fast, the path produced by Fast-RRT is not more 

optimal than RRT*. This strengthens the statement at the 

beginning that the path fusion in Fast-RRT is not able to work 

well. While RRT* by utilizing the rewiring and conventional 

exploration stages can provide improvements to the initial 

path, path fusion cannot. This is because the possibility of 

obtaining a unique path other than the path that was 

previously obtained is very small. Logically, this statement 

can be accepted. In narrow corridors, by only maintaining fast 

sampling and random steering in exploration, the potential for 

obtaining random nodes in areas that approach the path is 

very low. This phenomenon is also supported by the results 

shown by RRT*-Smart in Fig. 4(c). The optimization process 

of RRT*-Smart that applies smart sampling is more ideal 

when the environment is narrow corridors. Thus, this 

approach is more ideal than maintaining the limitation of 

sampling areas such as path fusion with the exploration 

process applying fast-sampling and random steering. In short, 

the experiments and tests in the second environment show 

that in the case of narrow corridors, Fast-RRT can only 

provide suboptimal paths. Based on the analysis of the three 

methods, the basis for the development of the proposed 

method is getting stronger. This is also proven by the results 

showing that the path cost generated by the proposed method 

is 267.7008 which is very short compared to the previous 

results. In addition, the speed of getting the final path also 

shows that the proposed method has a good convergence rate, 

with a very fast completion time of 14.4501 seconds. 

 

  

(a) (b) 

  

(c) (d) 

Fig. 3. The performance of different algorithms to solve path planning problem in 1st Environment (a) RRT*, (b) Fast-RRT, (c) RRT*-Smart, (d) Proposed 

Method 
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(a) (b) 

  

(c) (d) 

Fig. 4. The performance of different algorithms to solve path planning problems in 2nd Environment (a) RRT*, (b) Fast-RRT, (c) RRT*-Smart, (d) Proposed 

Method 

Next, all methods are tested to solve the problem in the 

3rd Environment. Based on this test, the results are shown in 

Fig. 5. The results show that all methods can solve the path 

planning problem. However, each method has different 

performance from each other. Referring to Fig. 5(a), RRT* 

produces a cost path of 182.7306 with a completion time of 

1545.9285 seconds. This duration shows that RRT* is slow 

in solving path planning problems in a relatively large area. 

The slowness of this solution is also indicated by the number 

of samples of 4617 needed to determine the initial path. This 

result is like RRT*-Smart which also takes a long time to 

solve the problem. RRT*-Smart takes 2383.5985 seconds to 

solve the problem where the initial path is found in 4322 

sample repetitions. The cost path generated through the 

application of RRT*-Smart is 183.5356 units of length. These 

two results again show that exploration in a conventional and 

undirected way makes the initial path slow to find. 

Nevertheless, the results given have shown that path 

optimization can run in sufficient time. On the other hand, it 

is seen that smart sampling, which is carried out periodically 

in sufficient duration, turns out to show that smart sampling 

is not significantly different from conventional optimization 

methods. This statement supports the similar results obtained 

between RRT* and RRT*-Smart. Although at first glance, 

the results obtained from RRT* or RRT*-Smart are 

sufficient, the time required for planning is a fundamental 

concern. The effectiveness of the method considers the speed 

in carrying out the planning. Referring to this statement, Fast 

RRT and the proposed method are relevant to meet the 

criteria for the required working time. 

Although Fast-RRT significantly shows faster working 

time and better path cost results, its performance is not better 

than the proposed method. Fast-RRT takes 179.7521 seconds 

to produce a path with a cost of 180.3921. While the proposed 

method shows an extremely better performance. The 

resulting Path Cost is 161.4539 units of Length, with the time 

required being 6.572 seconds. Thus, the proposed method 

outperforms the RRT*, Fast-RRT, and RRT*-Smart methods 

in the 3rd Environment. 

By conducting tests on the 1st, 2nd, 3rd Environment, the 

ability to solve problems in narrow channels, and areas with 

many corridors and partitions, the proposed method has 

shown very good performance and outperforms other 

methods. Furthermore, to test its ability to solve problems in 

areas where there is only one unique and tricky solution 

(because many corridors and partitions interfere with 

exploration), testing on the 4th Environment was carried out. 

This test still uses the same parameterization as the previous 

test. Based on the results shown in Fig. 6, RRT* and RRT*-
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Smart cannot solve the problem of path planning in a large 

area with partitions, while the number of samples taken is 

limited. This shows that the exploration process of both 

methods is slow due to the uncertainty of the distribution 

direction. Slowness in the exploration process certainly has a 

negative impact when the search space faced is large. 

Repetition in areas that have been explored potentially occurs 

due to this uncertainty. This statement causes RRT* and 

RRT*-Smart to be unable to solve the problem. Although 

RRT*-Smart has the advantage of being able to perform 

better path optimization, this step can only be done when the 

initial path is obtained. Unlike the results of RRT* or RRT*-

Smart, Fast-RRT and the proposed method successfully solve 

the problem with a cost path of 290.4575 and 288.118 units 

of length, respectively. In the process of obtaining this path, 

Fast-RRT requires a total duration of 166.3818 seconds, and 

the proposed method requires 30.6501 seconds. Thus, the 

proposed method offers a better path cost, which means that 

optimality is met. Considering the difference in path cost 

between Fast-RRT and the proposed method, the average 

increase in path optimality is 5.67%. Furthermore, referring 

to the time required is also short, the proposed method has a 

better convergence speed. And considering the time 

difference to Fast-RRT, the proposed method shows an 

average increase in working time of 90.25%. Up to this point, 

the proposed method consistently shows its superiority 

compared to the previous methods, RRT*, Fast-RRT, and 

RRT*-Smart both in terms of convergence rate and 

optimality. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 5. The performance of different algorithms to solve path planning problem in 4th Environment (a) RRT*, (b) Fast-RRT, (c) RRT*-Smart, (d) Proposed 

Method 

 

Fig. 6. 5th Environment 
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To further demonstrate the efficiency of GWO-tuned Fast 

RRT. It was performed to solve the 5th Environment as 

shown in Fig. 7. In this test, the starting and goal points were 

placed at (75, 5) and (5, 75), respectively. Parameterization 

was done by applying the test to other previous environments. 

The GWO-tuned Fast RRT test was performed with 14 

repetitions to measure the consistency of the method in 

solving the path planning problem. Not only referring to the 

working speed, the optimality of the path was considered in 

this test. The results of the test are shown in Fig. 7 and 

explained in Table I.  

Referring to Table I and Fig. 7, the time required to solve 

the problem is uncertain. This is because the fast-sampling 

and random steering contained in the proposed method make 

exploration have no definite direction (and only focus on 

reaching unexplored areas). In addition to time, the resulting 

cost path also shows differences between one test and 

another. Based on the theory, this condition occurs due to the 

need for different sampling amounts in determining the initial 

path. As discussed earlier, the faster the initial path is 

determined, the more freedom the method provides to 

perform optimization. Maximum optimization is obtained 

when the number of samples is high, and vice versa. So 

naturally, the initial path that is found earlier has the potential 

to show more optimal results. Furthermore, to measure how 

effectively the method can be applied, the results of the tests 

carried out 14 times were analyzed. Based on the overall 

performance, the average time required to solve the problem 

is 7.754335714 seconds and produces the path cost that varies 

with the range [120.1041, 134.7460]. 

TABLE I.  THE PERFORMANCE OF GWO-TUNED FAST-RRT FOR 15 

REPETITIVE SOLVING PATH PLANNING PROBLEM OF 5TH
 ENVIRONMENT 

No Path Cost Initial Path Found Consumed Time 

1 134.1819 1463 2.6529 

2 130.6204 6833 6.5168 

3 126.3837 3449 5.8087 

4 131.3522 3372 10.513 

5 129.4169 2960 10.9536 

6 132.6336 7172 12.3564 

7 120.1041 5198 7.3613 

8 133.9939 6978 11.5184 

9 120.8056 3937 8.9688 

10 134.7460 1217 2.3513 

11 133.0216 2888 6.8522 

12 122.8171 3400 7.1297 

13 132.7946 3921 7.0770 

14 129.5982 3333 8.5006 

  

    

    

    

  

Fig. 7. Performance of GWO-Tuned Fast RRT for Solving Path Planning Problem in 5th Environment for 14 times of repetitio
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V. CONCLUSION 

This study successfully generates optimal paths in a short 

time by applying GWO to Fast RRT. The experimental 

results show that the path cost increases by an average of 

5.67%, while the overall working speed increases by 90.25% 

compared to the previous method. For future work, this study 

can be further tested in dynamic and real-time environments 

and improve its scalability. The theoretical contribution of 

this study is to add the ability to adjust beacons that have been 

generated by 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑅𝑅𝑇 (on Fast RRT) and process 

rewiring, by utilizing GWO. Instead of using fast-optimal 

which includes path fusion and path optimization, after the 

initial path is found, GWO is applied to perform optimization. 

First, the node is determined based on the index obtained 

randomly instead of the starting and goal points. This node is 

called 𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  which will be optimized by GWO by 

involving the previous and subsequent nodes based on the 

path that has been found. In other words, GWO changes the 

position of beacon nodes with a focus on improving the 

optimality of the path (shortening the path). 
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