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Abstract—In practice, there exist systems with high non-
linearity and time-varying functions. Time-varying nonlinear
systems (TVNS) present inherent challenges due to their high
nonlinearity and time-varying nature, especially when unknown
input disturbance and model uncertainties occur. In this work, a
class of single input single output (SISO) uncertain affine TVNS
is considered for tracking controller design in the presence of
unknown disturbance, in which both the disturbance and model
uncertainties are assumed to be bounded. Based on these bounds,
a tracking controller will be proposed for first-order uncertain
TVNS with unknown input disturbance, and then it is extended
for second-order uncertain affine TVNS with unknown input
disturbance. Unlike other existing works, the proposed controller
does not use fuzzy systems, neural networks or any adaptive
mechanism to cope with uncertainties and disturbances. It only
uses the bounds of disturbance and model uncertainties, the
information of tracking error to compute the control signal, and
Lyapunov stability theory is applied to analyze stability of the
closed-loop system. In addition, the convergence rate of tracking
error can be adjusted by tuning parameters. Some numerical
simulations with a first-order system and a model of inverted
pendulum are given to verify the developed controller. These
systems are uncertain and disturbed by unknown external signals
and the proposed controller does not know this information but
the tracking error still converges to a small circle containing the
origin. The proposed controller can be extended for higher-order
systems or MIMO systems such as robotic manipulators.

Keywords—Nonlinear Systems; Time-Varying Systems; Input Dis-
turbance; Boundedness; Robust Control; Model Uncertainties.

I. INTRODUCTION

Time-varying nonlinear systems (TVNS) have been seen in
many real systems such as under-actuated surface vessels with
time-varying external disturbances [1], bilateral teleoperation
manipulators with time-varying delays due to communication
channels [2], systems with time-varying actuator failures [3],
quadrotors with time-varying disturbances [4]–[6], servo mech-
anisms [7], autonomous underwater vehicles [8], and worm
drive system [9], consensus of multi-agent systems with time-
varying delays [10], and cable-driven parallel robot [11].

Control of TVNS is very challenging, so it gained a lot of
interests from the research community with different aspects of
interests. First, adaptive state observers for SISO TVNS were
investigated in [12]. In [13], an extension of Lyapunov-density
condition for TVNS has been achieved. An averaging technique
for TVNS independent of local Lipschitz continuity was studied
in [14]. Next, a practical issue of prescribed-time control with
time-varying gain [15] was considered. In addition, speed-
gradient adaptive control with Lyapunov-Bregman functions
was revisited and developed in [16]. Nonlinear system identifi-
cation problem [17] was investigated with application of neural
network and sliding mode technique. Moreover, Deep Koopman
learning for TVNS was analyzed in [18]. Recently, stability
analysis for a class of incommensurate real order uncertain
TVNS [19] was considered. These systems were modeled using
Caputo operator. Some novel results on stabilization of time-
varying nonlinear Caputo derivative systems were introduced
in [20].

There have been many control problems solved for TVNS.
In [21], the model uncertainty was assumed to be bounded
by a linear function. Nonlinear systems with time-delay was
analyzed for prescribed time convergence in [22]. Time-varying
parameters were studied for strict-feedback nonlinear systems
in [23], in which the input function is lower and upper bounded
by some positive constants and system functions are known.
Unlike [23], the system functions in [24] were assumed un-
known but they were both lower and upper bounded by positive
constants and their signs were also certain. A model-free
adaptive control based on linearization method was proposed
in [27].

To deal with unknown input disturbance, a simple way is
to apply some disturbance observers [28], disturbance estima-
tors [29],[30], or extended state observer [31], and then the
estimated disturbance is used to compensate in the input of
the system [32]–[36]. However, to utilize these disturbance
observers, the system model must be known and exact enough.
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Otherwise, a nominal model is needed to estimate both the
model uncertainties and unknown input disturbance.

Sliding mode control (SMC) [37]–[41] has been also a very
effective tool to cope with model uncertainties and external
disturbances [42]. Higher-order SMC with time-varying gain
[43] was proposed for SISO nonlinear systems. The work
[44] combined the SMC technique and backstepping control
to deal with time-varying parameters and unwanted distur-
bances. In [45], a SMC strategy was studied to overcome
the problem of unknown bounds of time-varying uncertainties.
SMC with reduced-order observer was addressed in [46]. Sys-
tems with time-varying delays were considered in [47] using
SMC. Switched hybrid systems with time-varying delays [48]
was studied with application of SMC. A SMC controller for
discrete-time linear systems with time-varying delays was taken
in [49]. The research [50] applied the SMC method for higher-
order TVNS.

Advanced SMC techniques have been also studied and ap-
plied in several existing works. Terminal SMC [51] was de-
signed for fourth-order nonlinear systems. Fast terminal sliding
mode control was also applied for second-order systems in [52].
Chattering-free SMC controllers were proposed in [53]–[55].
Time-varying non-singular terminal SMC was designed for
second-order systems [56]. Time-varying sliding surface was
previously studied in [57]. It was developed in [58] for second-
order systems in which the compound disturbance is bounded
by a second-order function of the state vector norm. The pro-
posed control can achieve pre-specified finite-time convergence.
In addition, time-varying sliding modes were proposed in [59]
for second-order TVNS, in which the control gain was a known
constant. Finally, super-twisting SMC observer was developed
in [60].

Intelligent control [61]–[64] has been also applied for the
TVNS with learning capacity of fuzzy systems [65]–[67], neural
networks [68]–[70], approximate dynamic programming (ADP)
[71]–[73] or reinforcement learning (RL) [74]–[77]. Both ADP
and RL techniques often utilize neural networks to approximate
optimal control signal, plant model and cost function. An ADP
based control was also developed for TVNS in [78], but no
input disturbance was addressed. ADP with policy iteration for
discrete-time TVNS was taken in [79]. In [80], strict-feedback
systems with input saturation issue was solved with neural
networks. Moreover, [81] has dealt with both input saturation
and time-varying delays using fuzzy systems. The article [82]
developed a neural network based controller with disturbance
observer for SISO non-affine nonlinear systems. An adaptive
neural fault-tolerance control of a helicopter system was studied
in [83]. In [84], neural networks were applied to approximate
the model uncertain functions and disturbances. In addition, the
control coefficient was assumed to be lower bounded and its
sign was also given. Interestingly, iterative learning control was
also applied in [85] with time-varying constraints for the output

in presence of disturbances. Lastly, model predictive control
based on learning was studied for systems with time-varying
parameters in [86].

In summary, to regulate the TVNS systems, some main
control techniques have been applied such as SMC control with
adaptive mechanism, intelligent control, disturbance observer
based control, and combination of these techniques (for exam-
ple, SMC with neural network, SMC with fuzzy systems, SMC
with disturbance observers) to deal with model uncertainties
and unknown external disturbancesm. However, the pure SMC
control has not dealt with the model uncertainties and unknown
disturbance concurrently for the considered systems to the best
of my knowledge. This motivate us to study an additional
controller design method without using fuzzy systems, neural
networks and disturbance observers, which only utilizes a
signum function.

Initial objects will be second-order TVNS with unknown
disturbance. Control of second-order nonlinear systems drew a
lot of interests from the researchers and scientists since most of
engineering systems have this form such as a continuous stirred
tank reactor [87], manipulators [88], spacecraft [89] and multi-
agent systems [90]–[92]. These systems in general are MIMO
[15],[93] or SISO [94] as a special case. In this work, tracking
controller design for a class of SISO second-order uncertain
affine TVNS systems with unknown disturbance is addressed.

The main contribution of this work to propose novel tracking
controller for a class of SISO second-order uncertain affine
TVNS systems with unknown disturbance which only uses the
information of the bounds, the tracking error, and a signum
function to compute the control signal in place of using fuzzy
systems or neural networks to approximate uncertainties or any
adaptive mechanism.

The rest of this work is organized as follows. Next section
will present main contributions consisting of novel tracking
controllers based on boundedness for first-order and second-
order TVNS systems. Then, some numerical simulations are
implemented to verify the proposed controller in section III.
Final section will give conclusions and future works.

II. MAIN RESULTS

A. First-order uncertain affine TVNS with unknown disturbance

Consider a first-order uncertain SISO affine TVNS system
with unknown input disturbance as follow:

ẋ = f(x, t) + g(x, t)(u+ d(t)), (1)

where x ∈ R (R: set of real numbers) is the system state
and also the system output, u ∈ R is the system input, the
functions f, g : R2 → R are unknown but bounded, and d(t)
is the unknown time-varying input disturbance.
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The target is to design a tracking controller so that the
tracking error e = x − xd → 0, where xd(t) is a desired
reference.

Assumption 2.1: [80]

|ẋd(t)| ≤ δ1, |ẍd(t)| ≤ δ2, ∀t (2)

where δ1, δ2 > 0, | ∗ | denotes the absolute value of ∗.
The condition (2) will be used to prove the convergence of

tracking error. In addition, the velocity and acceleration of phys-
ical systems are always bounded such as robotic manipulators.
So, their corresponding desired trajectories must be bounded
either.

Assumption 2.2: The function f(x, t) satisfies the following
condition (3), [94]:

|f(x, t)| ≤ f̄ , ∀x, t, (3)

where f̄ is a known positive constant.
Assumption 2.3: The input function is lower and upper

bounded as (4), [24],[84]

g ≤ g(x, t) ≤ ḡ, ∀x, t (4)

where g and ḡ are known positive constants.
Assumption 2.4: The unknown disturbance is bounded as (5),

[59],[88]
|d(t)| ≤ ϵ, ϵ > 0, (5)

where ϵ is known.
Unlike other works such as [88] in which both first and second
derivatives of the disturbance are also assumed to be bounded,
the proposed method only used the bound of the disturbance.
This condition (5) is understandable since the system can be
uncontrollable or unstable or even damaged if the disturbance
is not bounded (goes to infinity).

Theorem 1: Under the following controller (6)

u =
−α|e| − f̄ − δ1 − ḡϵ

g
sign(e), (6)

where α ≥ 0 is a tuning parameter, sign is a signum function,
and Assumptions 2.1, 2.2, 2.3 and 2.4 hold, the tracking error
e of the system (1) converges asymptotically to zero.

Proof 1: Define a Lyapunov function

V =
1

2
e2. (7)

So, V ≥ 0 ∀e ̸= 0, V = 0 if and only if e = 0, and its first
time derivative is

V̇ =eė

=e(ẋ− ẋd)

=e(f + g(u+ d)− ẋd).

(8)

Substitute the controller (6) into (8) to get

V̇ = e
(
f − ẋd + gd+ g

−α|e| − f̄ − δ1 − ḡϵ

g
sign(e)

)
(9)

When e ≥ 0, sign(e) = 1, |e| = e, ef ≤ ef̄ due to
Assumption 2.2 (f ≤ f̄ ), −eẋd ≤ eδ1 according to Assumption
2.1 (−ẋd ≤ δ1), and egu ≤ egu because u = −αe−f̄−δ1−ḡϵ

g <

0 and g ≥ g due to Assumption 2.3, egd ≤ eḡϵ due to
Assumptions (2.3, 2.4 gd ≤ ḡϵ), and then (9) becomes

V̇ = e
(
f − ẋd + gd+ g

−αe− f̄ − δ1 − ḡϵ

g

)
. (10)

So,

V̇ ≤ e
(
f̄ + δ1 + ḡϵ+ g

−αe− f̄ − δ1 − ḡϵ

g

)
≤ −αe2

≤ 0.

(11)

If e < 0, sign(e) = −1, |e| = −e, ef ≤ −ef̄ due to
Assumption 2.2 (f ≥ −f̄ ), −eẋd ≤ −eδ1 according to
Assumption 2.1 (−ẋd ≥ −δ1), and egu ≤ egu because
u = −αe+f̄+δ1+ḡϵ

g > 0 and g ≥ g due to Assumption 2.3,
egd ≤ −eḡϵ due to Assumptions (2.3, 2.4 gd ≥ −ḡϵ), and
then (9) becomes

V̇ = e
(
f − ẋd + gd+ g

−αe+ f̄ + δ1 + ḡϵ

g

)
. (12)

So,

V̇ ≤ e
(
− f̄ − δ1 − ḡϵ+ g

−αe+ f̄ + δ1 + ḡϵ

g

)
≤ −αe2

≤ 0.

(13)

Thus, V̇ ≤ −αe2 ≤ 0 for ∀e, α ̸= 0, this implies V → 0 or
e(t) → 0 asymptotically as t → ∞. The convergence rate of
the tracking error will be faster if the tuning parameter α is
larger.
A structure diagram of the proposed control system is displayed
in Fig. 1 in which the plant is modeled as the system (1) and
the tracking controller is designed as (6).

Fig. 1. A Structure Diagram of the Control System

Next, this result will be extended for second-order uncertain
affine TVNS with unknown input disturbance.
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B. Second-order uncertain TVNS with unknown disturbance

Consider a second-order uncertain SISO affine TVNS system
with unknown input disturbance as follows{

ẋ1 =x2

ẋ2 =f(x1, x2, t) + g(x1, x2, t)(u+ d(t)),
(14)

where x1, x2 ∈ R are state variables, x1 is the system output,
both functions f(x1, x2, t) : R

3 → R and g(x1, x2, t) : R
3 →

R are uncertain but bounded, and d(t) ∈ R is unknown input
disturbance.

A similar system was also studied in [52],[58] with different
assumptions. However, the work [52] applied the fast terminal
SMC technique while the reseach [58] used a time-varying
sliding surface.

Assumption 2.5: The function f(x1, x2, t) satisfies the fol-
lowing condition (15), [94]:

|f(x1, x2, t)| ≤ f̄ , ∀x, t, x = [x1 x2]
T , (15)

where f̄ is a known positive constant.
Assumption 2.6: The input function is lower and upper

bounded as (16), [24],[84]

g ≤ g(x1, x2, t) ≤ ḡ, ∀x, t (16)

where g and ḡ are known positive constants.
These conditions (3) and (15) for the function f , and (4) and

(16) for the function g are helpful in the proof of convergence
for tracking error. For continuous-time systems such as robotic
manipulators and inverted pendulum, the function f, g are
continuous. Moreover, the working space x, ẋ (for example
joint angle and its derivative) is also limited due to physical
constraints. Hence, the system functions f, g are bounded.

Remark 2.1: In [58], the unknown functions were pre-
sented as f = f0 + ∆f and g = g0 + ∆g where f0, g0
were known functions and ∆f ,∆g were uncertain. Then, a
compounded disturbance was defined as dc(t) = ∆f (x, t) +
∆g(x, t)u(t) + g(x)d(t) and it is assumed to be bounded
by a positive second-order function of the state vector norm
δ = a0 + a1||x|| + a2||x||2 with positive constants a0, a1, a2.
The controller [58] based on a time-varying sliding surface
needs to know the functions f0, g0 and the bound δ(x) to
compute the control signal. However, the proposed controller in
this work requires only the bounds for unknown functions and
disturbance. Hence, for practical systems with totally model
uncertainties and unknown disturbance, these bounds can be
selected as large as possible for (f̄ , ḡ, ϵ) and as small as possible
for g.

Assumption 2.7:

|ẋ1| ≤ ν, ∀x1 and ν > 0. (17)

Remark 2.2: In practical systems, such as mobile robots,
manipulators, the velocity is bounded due to the physical lim-
itation of the actuator. So, the assumption (17) is a reasonable
condition for the state x2.

Theorem 2: Under the following controller (18)

u =
−α|s| − f̄ − δ − ḡϵ

g
sign(s), (18)

where s = ė+βe is a sliding surface, e = x1−xd, α ≥ 0, β > 0
are tuning parameters, δ = δ2 + β(ν + δ1), and Assumptions
2.1, 2.5, 2.6 and 2.4 hold, the tracking error e of the system
(14) converges asymptotically to zero.

Proof 2: Define a Lyapunov function

V =
1

2
s2. (19)

Do the same things as in the previous proof 1 with s is in the
place of e. So,

V̇ =sṡ

=s(ë+ βė)

=s[ẍ1 − ẍd + β(ẋ1 − ẋd)]

=s[f + g(u+ d)− ẍd + β(ẋ1 − ẋd)].

(20)

When s ≥ 0,

V̇ = s
(
f − ẍd + gd+ β(ẋ1 − ẋd) + g

−αs− f̄ − δ − ḡϵ

g

)
≤ s

(
f̄ + δ2 + β(ν + δ1) + ḡϵ+ g

−αs− f̄ − δ − ḡϵ

g

)
≤ −αs2,

(21)
since u < 0 and s ≥ 0.

If s < 0,

V̇ = s
(
f − ẍd + gd+ β(ẋ1 − ẋd) + g

−αs+ f̄ + δ + ḡϵ

g

)
≤ s

(
− f̄ − δ − ḡϵ+ g

−αs+ f̄ + δ + ḡϵ

g

)
≤ −αs2,

(22)
since u > 0 and s < 0.

Thus, V̇ ≤ −αs2 ≤ 0 for ∀s, α ̸= 0, this makes V → 0 and
consequently s → 0, and V̇ = 0 if and only s = 0. Hence,
this implies e(t) → 0 asymptotically as t → ∞ since β > 0.
If β increases then e(t) → 0 more quickly but the control
signal is also larger because s is bigger. In summary, the bigger
parameter α will force the sliding surface to converges to zero
more quickly and the larger value β will cause the tracking
error to go to the origin faster, however the control signal will
becomes larger.
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Next section will provide some numerical simulations with
two examples to demonstrate how the proposed tracking con-
troller works.

III. NUMERICAL SIMULATIONS

A. Example 1

Consider the system (1) with the system functions

f(x, t) = 1 + sin2(x) +
1

1 + cos2(t)
, (23)

g(x, t) =
2

1 + sin2(t)
, (24)

and the input disturbance

d = cos(t). (25)

Clearly, these system functions and disturbance are bounded
by f̄ = 3, g = 1, ḡ = 2, and ϵ = 1, respectively. The desired
reference is chosen as xd = sin(t). So, δ1 = 1. The proposed
controller is

u = (−α|e| − 5)sign(e), (26)

where α = 20. Sampling time is selected as Ts = 0.001
seconds. Initial output x(0) = π/3 is chosen for comparison
purpose.

Numerical simulation results are shown in following figures.
For easy view, all curves are plotted on logarithm scale for the
time axis.

In Fig. 2, the system output x(t) and the reference signal
xd(t) are plotted. The output converges to the desired output
after 0.05 seconds. The tracking error is displayed in Fig. 3.
It converges to a small ball including the origin and oscillates
with high frequency due to the chattering phenomenon.

Fig. 2. System Output and Desired Reference

Fig. 3. Tracking Error

In Fig. 4, a plot of the Lyapunov function is shown. It is
smaller than 10−4 but oscillatory. The control signal is plotted
in Fig. 5. It oscillates with magnitude of ±5 as expected
when the tracking error converges to zero. This chattering
phenomenon can be removed if the sign function is replaced
with a saturation function or tanh function.

Fig. 4. Lyapunov Function

In this case, a modified tanh function u = tanh(qe) =
vqe−v−qe

vqe+v−qe is applied in place of sign(e) where v ≈ 2.7183
is the base of the natural logarithm and q > 0 is big enough.
Then, the control signal is obtained as in Fig. 6. There is no
chattering phenomenon as compared with Fig. 5 and it is much
more smooth.

The corresponding Lyapunov function is shown in Fig. 7. It
also converges to the domain containing the origin with much
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Fig. 5. Control Signal

Fig. 6. Control Signal With the Function tanh(100e) in Place of sign(e)

Fig. 7. The Lyapunov Funtion V (e)

less oscillation.
To compare the effectiveness of the function tanh(100e)

with the signum function sign(e), three performance indicators
are computed as

MAE =
1

N

N∑
i=0

|e(i)|, Mean Absolute Error

ME =
1

N

N∑
i=0

e(i), Mean Error

RMSE =
1

N

√√√√ N∑
i=0

e2(i), Root Mean Squared Error,

(27)

where N = 1000. Calculated indicators are shown in Table I. It
can be observed that the proposed controller with the modified
function tanh(100e) provided closely the same performance
as the one using the signum function sign(e) but there is no
chattering phenomenon as in Fig. 6.

TABLE I. COMPARISON OF THREE PERFORMANCE INDICATORS

Function MAE ME RMSE
tanh(100e) 0.6189 0.1889 0.0069
sign(e) 0.6184 0.1877 0.0069

In summary, the proposed controller with the modified func-
tion tanh(100e) gave the similar performance indicators but
its control signal is much more smooth with no chattering
phenomenon. So, the function tanh(qe) can be applied in place
of sign(e) to remove the oscillation with high frequency of
the control signal. Next subsection will verify the proposed
controller with a benchmark system.

B. Example 2

To illustrate the proposed controller for second-order sys-
tems, a cart-pole inverted pendulum (IP) will be used, which
is very challenging in control since its unstable nature, under-
actuation, and non-linearity. For simulation, the model is de-
scribed as follows [52],[95].

ẋ1 = x2

ẋ2 = f(x) + g(x)(u+ d(t)),
(28)

where, x = [x1 x2]
T , x1 = θ is the tilt angle of the pendulum,

x2 = θ̇.

f(x) =
asin(x1)−mlx2

2cosx1sinx1/(mc +m)

l[4/3−mcos2x1/(mc +m)]
,

g(x) =
cosx1/(mc +m)

l[4/3−mcos2x1/(mc +m)]
,

a = 9.8 m/s2 is gravity acceleration, mc is the mass of the
cart, m is the mass of pendulum, the length of the pendulum is
2l, P = masinθ is the gravitational force, and u is the force

Nam H. Nguyen, Tracking Control for Affine Time-Varying Nonlinear Systems with Bounds
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applied to the cart as in Fig. 8. In addition, the input disturbance
is selected as d(t) = 0.3sin(0.5t) which is time-varying.

The IP’s parameters are given as follows: mc = 1 kg,
m = 0.1 kg và l = 0.5 m. The controller’s parameters are
chosen as: α = 200, β = 100, and the bounds are obtained from
the model (28) as: g = 0.375, f̄+δ2+β(ν+δ1)+ ḡϵ = 10. The
sampling time Ts = 0.001, the reference is xd(t) = 0.1sin(t),
and the initial state vector is x0 = [0.3 0]T . Simulation results

Fig. 8. Diagram of the IP

are displayed in following Fig. 9 and 10 with logarithm scale
on the time axis. The tracking error converges to zero after
0.08 seconds as in Fig. 9. The control signal u(t) is plotted
in Fig. 10 with chattering phenomenon, but this bang-bang
issue is removed with tanh(50s) in place of sign(s) as in
Fig. 11. The corresponding tilt angle is obtained as in Fig.
12 with similar performance as the case using sign(s).

Fig. 9. Tilt angle θ and its reference

The proposed controller (Proposal) is also compared with an
adaptive fuzzy controller (AFC) in which its parameters are
chosen as α = 0.01, β = 10, the modified function tanh(50s)
is in place of the signum function sign(s).

Fig. 10. Control signal u for the IP.

Fig. 11. Control signal when tanh(50s) is applied

The AFC [95] is designed as follows.

u =
1

ĝ(x,wg)
[−f̂(x,wf ) + ẍd + kT e] (29)

where e = [e ė]T , k = [15 8]T , f̂ and ĝ are estimations
by fuzzy systems of f and g, respectively, in which their
parameters are updated as

ẇf =− γ1e
TPbζ(x)

ẇg =− γ2e
TPbη(x)u,

(30)

Nam H. Nguyen, Tracking Control for Affine Time-Varying Nonlinear Systems with Bounds
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Fig. 12. The tilt angle θ when tanh(50s) is applied

where P =

[
15 5
5 5

]
, γ1 = 100, γ2 = 1, b = [0 1]T ,

µ1n = gaussmf(x1, [0.1779;−π/6]),

µ1z = gaussmf(x1, [0.1779; 0]),

µ1p = gaussmf(x1, [0.1779;π/6])

(31)

µ2n = gaussmf(x2, [0.06795;−0.2]),

µ2z = gaussmf(x2, [0.06795; 0]),

µ2p = gaussmf(x2, [0.06795; 0.2]),

(32)

ζ(x) =[µ1nµ2n µ1nµ2z µ1nµ2p µ1zµ2n µ1zµ2z

µ1zµ2p µ1pµ2n µ1pµ2p µ1pµ2p]
T ,

(33)

η(x) =
[
µ1n µ1z µ1p

]T
, (34)

and gaussmf(x, [σ; c]) = e−
(x−c)2

2σ2 is a Gaussian membership
function.

The setting for comparison is given with initial output θ0 =
0.3(rad), sampling time Ts = 0.01(second), simulation time
Tf = 20(second).

Simulation results are shown in the following table and
figures. The output θ and its reference are displayed in Fig.
13 in which the proposed controller provided a faster response
than the AFC controller while the tracking error are similarly
shown in Fig. 14. In addition, performance indicators for the
proposed controller are better than the AFC as shown in Table
II in which MIN and MAX are minimum and maximum
values of the tracking error, respectively. The control signals
are compared in Fig. 15, in which the proposal generated a
larger magnitude during the starting time but smaller after that.

Fig. 13. Comparison of the tilt angle θ

Fig. 14. Comparison of the tracking error θ − xd(t)

Fig. 15. Comparison of the control signal u
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TABLE II. COMPARISON WITHOUT MEASUREMENT NOISE

Method MAE ME RMSE MAX MIN
Proposal 0.0652 0.0091 0.0016 0.3000 -0.1011
AFC 0.0818 0.0193 0.0022 0.3126 -0.1058

To evaluate how the measurement noise can affect the
proposed controller, a sensor noise dn(t) is added to the tilt
angle x1 for simulations as follow

dn(t) = 0.0105sin(3t+ π/2), (35)

where the magnitude of the noise is selected as 3.5% of
the maximum value of x1 (that is 0.3) [17]. Most of the
existing works cited here had not evaluated the impact of the
measurement noise except the work [17]. The simulation results
in comparison with the AFC controller are given in Table III in
which the performance indicators of the proposed method are
better than the AFC method but they are similar to those of the
proposed method without measurement noise in Table II.

TABLE III. COMPARISON WITH MEASUREMENT NOISE

Method MAE ME RMSE MAX MIN
Proposal 0.0656 0.0092 0.0017 0.3000 -0.1046
AFC 0.0831 0.0194 0.0022 0.3131 -0.0983

It can be observed that there are 12 parameters (wf , wg) of
the AFC updated online, which involves two integral operators.
Moreover, the designer had to select suitably the basis function
vector η(x), ζ(x) beforehand. So, the proposed controller is
simpler than the AFC in design and computational load. By
trials, this AFC controller can not guarantee stability when the
initial output θ0 is far away from the equilibrium point θe = 0
(|θ0| > 0.3) but the proposed controller still works.

From these simulation examples, it can be observed that
the tracking error converges to the origin faster if the tuning
parameters α, β are bigger but the control signal will be larger
either, and vice versa. In addition, the proposed controller
can cope with the measurement noise as the case with IP
example. Finally, the modified function tanh(qs), with q > 1
big enough will remove the chattering phenomenon effectively
while keeping similar performance. This opens up practical
applications.

IV. CONCLUSION AND FUTURE WORKS

In this work, a boundedness based tracking controller was
proposed for a class of first-order uncertain SISO affine TVNS
systems with unknown input disturbance. Then, the proposed
controller was extended for second-order uncertain SISO affine
TVNS systems with unknown input disturbance. This controller
can be applied in case that the functions of the system and input
disturbance are unknown but their bounds can be obtained.
Desired convergence rate of the tracking error can be achieved

more quickly by tuning the controller parameters α, β. If these
factors are bigger, the tracking error will converge to the origin
faster but the control signal will be larger, and vice versa.

Numerical simulations for a first-order system and a IP model
were carried out to verify the designed controllers. The bounds
of uncertainties and disturbance were determined from the prior
information of the system. Simulation results show that the
tracking error converges to the origin with chattering effects of
the control signal as expected. To avoid the chattering effects,
the modified function tanh(qe) was proposed to replace the
signum function sign(e). With this replacement, the perfor-
mance indicators were maintained and the control signal was
much more smooth without oscillation. The proposed method
can also deal with the sensor’s noise for the IP robot since it
provided better performance than the AFC controller and kept
similar performance as the case without measurement noise.
Future works will focus on uncertain MIMO TVNS and higher-
order uncertain TVNS systems with unknown disturbance.
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