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Abstract—One of the central aspects in system identification 

and prediction is dealing with nonlinearity and uncertainties. 

This need involves the design of a novel method for achieving 

high efficiency and effectiveness, which is crucial for several 

applications. In this paper, a new intelligent control based on a 

hybrid fuzzy neural network (FNN) combined with a genetic 

algorithm (GA) is proposed for the prediction and identification 

of nonlinear systems. Two adaptations are considered in the 

proposed method: the backpropagation (BP) algorithm and the 

genetic algorithm method to correct various parameters in the 

neural network. Through adjustment, the proposed method not 

only achieves error convergence efficiently and quickly but also 

ensures continuous error reduction while avoiding the 

limitation of the regional optimal solution. Mackey-Glass 

differential delay and fuzzy neural system are utilized for system 

prediction and identification, respectively. Finally, the 

performance of the proposed method is justified through an 

application on a nonlinear system. Based on the findings, this 

paper proposed a hybrid strategy combining BP-GA and FNN 

where the outcome is greatly influenced by the balance of 

accuracy and computational efficiency. 

Keywords—Fuzzy System; Fuzzy Neural Network; Genetic 

Algorithm; Prediction; Identification. 

I. INTRODUCTION 

The advancement of control systems demands 

increasingly sophisticated solutions capable of addressing 

challenges like complex dynamics, uncertainties, and 

dynamic environments [1]. Prediction and identification of 

nonlinear systems have always caused great concerns in the 

control field [2] since the unpredictable nature of these 

systems makes it difficult to foresee their future behavior or 

identify their underlying dynamics. Moreover, the presence 

of uncertainties such as noise and unmodeled dynamics also 

introduce inaccuracies [3]-[4]. Identification and prediction 

of nonlinear systems are crucial in various applications due 

to their complexity and unpredictability: weather forecasting 

[5], finance [6], medical [7], and energy [8]. Therefore, issues 

accompanying the prediction and identification of nonlinear 

systems have gained great attention from academics.  

 In addition, several research on system identification have 

been published in recent years, across several applications, 

from power, and image processing, to energy and healthcare 

[9]-[15]. Recently, a deep neural network approach was 

proposed for robot tool dynamics identification for bilateral 

teleoperation [16]. Mao et al. introduced a Modified PSO 

algorithm on Recurrent Fuzzy Neural Network for system 

identification [17]. Kaheman developed a robust algorithm 

for parallel implicit sparse identification of nonlinear 

dynamics [18]. Nevertheless, the proposed methods are not 

optimal and may not perform at their peaks when applied to 

nonlinear systems due to the imprecision of system 

uncertainties and external disturbances, identification and 

prediction of nonlinear systems always pose a challenge to 

researchers. To counter these problems, Pham et al. 

introduced the wavelet interval type-2 Takagi -Sugeno-Kang 

hybrid controller for time-series prediction and chaotic 

synchronization [19].  

The development of intelligent control systems [20]- [23] 

in prediction and identification using fuzzy neural network 

(FNN) [24]-[28] has seen a significant surge across various 

fields [29]-[45]. This is the hybridization of Takagi-Sugeno-

Kang fuzzy systems (TSKFS) [46]-[53] and neural network 

(NN) [54]-[58], largely driven by the inspiration drawn from 

the human brain. This combination of the two artificial 

intelligence techniques aims to resolve the complexity of 

real-world systems. The FNN expands the ability of the 

conventional neural network and fuzzy logic system to take 

into account uncertainties. In essence, FNN leverages the 

power of NN, combined with various algorithms, to achieve 

desired outputs and create intelligent control systems capable 

of adapting and making optimal decisions in complex 

circumstances. 

This research proposes a novel technique based on the 

strengths of FNN, gradient estimation, and optimization 

algorithms to create a brain-inspired learning process within 

a neural network. The approach utilizes a fuzzy neural 

network to predict future outcomes based on historical data 

of the system. Mackey-Glass [59]-[65] differential-delay 

equation will be applied to calculate a nonlinear system for 

employing FNN. This method aims to accelerate learning for 

intelligent control systems by employing both the back-

propagation (BP) algorithm [66]-[75] for adjusting network 

parameters and genetic algorithm (GA) [76]-[80] for 

optimizing overall structure. The study emphasizes the 

significance of balancing accuracy and computational 

efficiency. In evaluations, the FNN considers performance 

indexes, and the presence of GA and BP algorithms helps to 
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improve computation durations for various circumstances. 

The main contribution of the work is presented below:  

1. A fuzzy neural network will be proposed to improve 

response to member function input uncertainty. 

2. GA and BP are combined for enhanced learning rate and 

improved efficiency. 

3. Using Mackey-Glass differential delay for the prediction 

of the nonlinear system. 

4. An intelligent control is designed for the identification 

and prediction of nonlinear systems. 

The content of this paper consists of the following parts: 

Section I introduces the problem to be solved, Section II 

presents the proposed fuzzy neural network and the 

adjustment of the controller parameters through the genetic 

algorithm, Section III illustrates the simulation and results, 

including the Mackey-Glass differential-delay for prediction 

and fuzzy neural system for identification of a nonlinear 

system. Finally, the conclusion of the paper is presented with 

the demonstration and combination of both BP and GA.  

II. THE PROPOSED METHODOLOGY 

A. Fuzzy Neural Network 

The human brain is composed of approximately 1011 

nerve cells, which are interconnected to form a very complex 

neural network. When the human senses are stimulated by the 

outside world, signals are transmitted to the brain through 

nerve cells, and the brain will issue commands to the relevant 

receptors (effector) to respond (for example: let go 

immediately when the skin of your hand touches a hot 

object). This process often requires repeated training before 

you can make appropriate judgments and remember them in 

your brain cells. If the brain is damaged (such as a stroke 

patient), it will need to be rehabilitated to learn again. The 

operation of neural networks stems from this. Different 

algorithms are used to train neural networks so that the output 

of the neural network can achieve the results we require. 

FNN effectively addresses challenges in system 

prediction and identification, particularly for complex and 

nonlinear systems. By combining fuzzy logic and neural 

networks, FNN leverages fuzzy sets and rules to handle 

imprecise information, while neural networks capture 

complex patterns and adapt to nonlinear dynamics. FNN's 

flexibility comes from modifiable fuzzy rules and learning 

algorithms that adjust parameters for improved accuracy. 

This synergy allows FNN to accurately and robustly model 

complex, nonlinear systems, making them ideal for practical 

applications where traditional methods may be inadequate. 

In the control field, if you want to accurately analyze the 

relationship between input and output, the system must be 

modeled mathematically. However, actual systems are often 

complex and nonlinear, so how to simplify and linearize the 

system mathematically has become an important topic in 

control science. One advantage of neural networks is that they 

do not need to understand the mathematical model of the 

system. By directly replacing the system model with a neural 

network, the relationship between input and output can still 

be obtained. The membership function used in the neural 

network in this article is represented by the Gaussian 

function, as shown in Fig. 1, which is 𝑒𝑥𝑝 [−
(𝑋−𝑚)2

(𝑣)2
], where 

𝑋 is the input, 𝑚 is the center of the Gaussian function, and v 

is the width of the Gaussian function. The neural network 

used in this paper is illustrated in Fig. 2. The FNN comprises 

four layers: input, Gaussian function, multiplication, and 

output. The input layer receives signals, with each node 

representing an input variable and passing these inputs 

unmodified to the next layer. The Gaussian function layer 

applies membership functions to the inputs, mapping them to 

values between 0 and 1, thereby fuzzifying the data to handle 

uncertainty. The multiplication layer combines these 

membership values to form the firing strength of each rule, 

with each node representing a rule in the fuzzy rule base. The 

final output layer aggregates the multiplication layer's results 

and converts them back into a crisp value through 

defuzzification, providing the network’s final prediction or 

classification. 

 

Fig. 1. Gaussian function (m = 1, v = 1) 

 

Fig. 2. The proposed neural network  

Layer 1 is the input layer: 

𝑂𝑖
(1)
(𝑘) = 𝑋𝑖 (1) 
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Layer 2 is the Gaussian function layer: 

𝑂𝑖𝑗
(2)
(𝑘) = 𝑒𝑥𝑝 [

(𝑋𝑖 −𝑚𝑖𝑗)
2

(𝑣𝑖𝑗)
2

] (2) 

Layer 3 is the multiplication layer: 

𝑂𝑗
(3)
(𝑘) = ∏ 𝑂𝑖𝑗

(2)(𝑘)𝑅
𝑖   (3) 

Layer 4 is the output layer: 

𝑦𝑝 = 𝑂
(4)
(𝑘) = ∑ 𝑤𝑗𝑂𝑗

(3)
(𝑘)𝑅

𝑗=1   (4) 

B. Adjustment Rules 

The backward transfer algorithm, also known as the 

steepest slope method, ensures that the object being adjusted 

converges effectively. This algorithm operates in two main 

phases. The first phase involves introducing inputs from the 

input layer and propagating them through the hidden layers 

to the output layer, where the network output value is 

calculated with all weight values fixed. In the second phase, 

the backward transmission phase, the error is computed as the 

difference between the expected output and the actual 

network output. This error is then propagated back through 

the network to adjust the weight values. The learning rate is 

a crucial parameter that determines the step size during 

optimization, balancing convergence speed and stability. The 

following is the derivation of the backpropagation used in this 

paper: 

The objective function used is determined by equation (5) 

𝐸(𝑘) =
1

2
(𝑦
∧
(𝑘) − 𝑦(𝑘))

2

=
1

2
∑ (𝑦

∧
(𝑘) − 𝑂4(𝑘))

2

𝑗   (5) 

where 𝑦(𝑘) and 𝑦
∧
(𝑘) are the actual output and expected 

output values of the network. 

According to the guidance algorithm, adjusting the 

adjustment values of each weight or parameter can obtain 

equation (6) 

𝑊(𝑘 + 1) = 𝑊(𝑘) + 𝛥𝑊(𝑘) = 𝑊(𝑘) + 𝜂 (−
𝜕𝐸(𝑘)

𝜕𝑊
)  (6) 

In 𝑊 = [𝑚, 𝑣, 𝜔], then you can get 

𝜕𝐸(𝑘)

𝜕𝑊
= [

𝜕𝐸(𝑘)

𝜕𝑚𝑖𝑗
,
𝜕𝐸(𝑘)

𝜕𝑣𝑖𝑗
,
𝜕𝐸(𝑘)

𝜕𝜔𝑗
]  (7) 

where 
𝜕𝐸(𝑘)

𝜕𝑚𝑖𝑗
,
𝜕𝐸(𝑘)

𝜕𝑣𝑖𝑗
,
𝜕𝐸(𝑘)

𝜕𝜔𝑗
 can be derived from formulas (8), 

(9) and (10), respectively. 

𝜕𝐸(𝑘)

𝜕𝑚𝑖𝑗
= 𝑒(𝑘) ⋅ 𝜔𝑗 ⋅ 𝛱

𝑖
𝑂𝑖𝑗
(2)
⋅
2(𝑢𝑖𝑗

(2)(𝑘)−𝑚𝑖𝑗)

(𝑣𝑖𝑗)
2   (8) 

𝜕𝐸(𝑘)

𝜕𝑣𝑖𝑗
= 𝑒(𝑘) ⋅ 𝜔𝑗 ⋅ 𝛱

𝑖
𝑂𝑖𝑗
(2)
⋅
2(𝑢𝑖𝑗

(2)(𝑘) − 𝑚𝑖𝑗)
2

(𝑣𝑖𝑗)
3

 (9) 

𝜕𝐸(𝑘)

𝜕𝜔𝑗
= 𝑒(𝑘) ⋅ 𝑂𝑗

(3)
 (10) 

where 𝑒(𝑘) is the error calculated by comparing current 

output to the expected output. 

C. Genetic Algorithm (GA) 

In Darwin’s theory of evolution, the concept of “natural 

selection and survival of the fittest” is mentioned, which 

became the fundamentals of the GA’s principle. In nature, 

individuals with favorable traits are more likely to survive 

and reproduce, passing on their genes to future generations 

with stronger viability and adaptability. A population of 

candidate solutions (individuals) undergoes selection. Those 

solutions that perform better on a specific task (survival) are 

more likely to be chosen for reproduction. Each individual is 

called a chromosome (Chromosome), its gene value is 

generated randomly, and the set of chromosomes in each 

generation is called a population (Population). By competing 

with each other, the one that is more suitable for the 

environment has a higher fitness value. Chromosomes with 

higher fitness values can copy more offspring, and then select 

pairs among them to mate (Crossover) to produce the next 

generation, in order to produce the next generation with 

higher fitness. Furthermore, in order to avoid missing some 

useful information, mutation is added to prevent the incident 

although the rate is usually minor. In control system 

parameter tuning, GA efficiently searches the parameter 

space, balancing exploration and exploitation, and effectively 

handling complex, nonlinear, and optimization problems.  

The fitness function is an indicator used to evaluate the 

adaptability of each individual in the population. When 

applied to genetic algorithms, the higher the fitness function 

value, the greater the individual's adaptability and 

competitiveness, which means the stronger, the greater the 

chance of survival and the greater the possibility of passing 

on one's genes to the next generation. In the process of 

evolution, the characteristics of the surviving individuals will 

change according to the selected fitness function. Therefore, 

the ecological environment of evolution can be controlled by 

setting different fitness functions. In order to apply genetic 

algorithms to practical problems, we must appropriately 

express the optimization problem and goals as fitness 

functions. For example, if we require the minimum value of 

function F, the fitness function can be defined as: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 1/𝐹(𝑥) or 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑒−𝐹(𝑥), where 𝑥 is the 

solution corresponding to the chromosome in the search 

space. 

Replication plays the role of natural selection in genetic 

algorithms. It determines the probability of an individual 

being replicated based on the fitness value of each individual. 

The higher the fitness value, the greater the chance that 

individuals will be copied into the next generation, and the 

elimination of the unsuitable will increase the fitness value of 

the next generation population. The simplest and most widely 

used copying process is Roulette Wheel Selection. Its 

procedure is as follows: 

1. First calculate the fitness function value 𝑓𝑖 of each 

individual in the population, and the sum of all fitness 

function values 𝑓𝑠𝑢𝑚. 

2. Then randomly [0, 𝑓𝑚𝑖𝑛] select a random number in this 

interval 𝑓𝑟𝑎𝑛𝑑, and subtract the fitness function value of 

the individuals in the population in sequence: 

𝑓𝑟𝑎𝑛𝑑 = 𝑓𝑟𝑎𝑛𝑑 − 𝑓𝑖  (11) 
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3. Until minus 𝑓𝑟𝑎𝑛𝑑 is less than 𝑓𝑘 or equal to zero, the 𝑘𝑡ℎ 

individual will be copied to the mating slot, and the 

selection is repeated until the number of individuals in the 

mating slot is the same as the number of individuals in the 

population. 

Since an excessively large learning rate will cause the 

parameter adjustment of the second half of the algebra to 

oscillate, and a smaller learning rate will make the learning 

efficiency too slow, a dynamic learning rate adjustment 

method is added to make the learning effect more effective. 

A dynamic learning rate is an adaptive approach that adjusts 

the learning rate during the training process. Instead of using 

a fixed learning rate, it changes over time to improve training 

efficiency and performance, enhancing the model's ability to 

reach a global minimum and improve overall performance. 

This adaptability allows the learning rate to be higher at the 

beginning for faster convergence and lower later to fine-tune 

the model and avoid overshooting the optimal solution. The 

dynamic learning rate used in this paper is as follows: 

𝜉𝑘 = 𝜉𝑚𝑎𝑥 −
𝜉𝑚𝑎𝑥 − 𝜉𝑚𝑖𝑛
𝑇𝑜𝑡𝑎𝑙𝑒𝑝𝑜𝑐ℎ

∙ 𝑒𝑝𝑜𝑐ℎ(𝑘) (12) 

where 𝜉 is the dynamic learning rate, 𝜉𝑚𝑎𝑥  is the maximum 

learning rate, and 𝜉𝑚𝑖𝑛  is the minimum learning rate. 

According to equation (12), the learning rate will decrease 

with the learning algebra. At the same time, the parameter 

adjustment of the second half of the algebra will not be in an 

oscillating state, nor will it cause the learning efficiency to be 

too slow. 

III. SIMULATION AND RESULTS 

A. Mackey-Glass Differential-Delay Prediction 

In this paper, a neural network is used to predict a 

nonlinear system represented by equation (13) and illustrated 

in Fig. 3. 

𝑑𝑥(𝑡)

𝑑𝑡
=

𝑎𝑥(𝑡 − 𝜏)

1 + 𝑥10(𝑡 − 𝜏)
− 𝑏𝑥(𝑡);   𝑎 = 0.2, 𝑏 = 0.1, 𝜏 = 17 (13) 

In the proposed model, 𝑟𝑒𝑓(𝑡), 𝑟𝑒𝑓(𝑡 − 6), 𝑟𝑒𝑓(𝑡 −
12) and 𝑟𝑒𝑓(𝑡 − 18) are used as inputs. After the neural 

network operation, 𝑟𝑒𝑓(𝑡 + 6) information will be the 

output. The entire system architecture is shown in Fig. 4; at 

the beginning, the parameters in the neural network are 

random values, so each learning will produce different 

results; in the data part, a total of 1,000 pieces of data are 

generated. The first 500 transactions are used to train a neural 

network, and the last 500 transactions are used to verify the 

trained network. 

All data is normalized, i.e. the size of the training data is 

scaled in equal proportions so that the maximum value in the 

training data is 1, which does not exceed the performance of 

the network. After the training is completed, the network 

output is also scaled proportionally to match the original data. 

Later, the maximum value of the network output may exceed 

1 due to the modification of the network. However, the 

regularization of this data does not affect the quality of the 

network training, so the original design is maintained. 

 

Fig. 3. Output of the nonlinear system  

 

Fig. 4. Neural network system architecture 

The initial layer of the network comprises four nodes, 

which serve as the entrances for input data. As the data 

progresses through the network, it encounters the second 

hidden layer, which is composed of 1200 nodes 

corresponding to each input. In alignment with the network 

architecture, the third layer also consists of 1200 nodes. 

Operating as a multiple-input single-output (MISO) network, 

the output layer culminates in a single node dedicated to 

producing the final output. The network undergoes 2500 

generations of training, with a dynamic learning rate that 

ranges from a maximum value of 0.01 to a minimum value of 

0.0000000001. Fig. 5 shows the use of backpropagation to 

adapt the neural network. Furthermore, Fig. 6 showcases the 

average root error of each generation, with the final 

generation exhibiting an average error of 6.0235e-003 for 

each data point. 

 

Fig. 5. Output diagram of neural network adjusted using back pass 
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Fig. 6. Error mean value (BP) of each generation 

The neural network architecture consists of multiple 

layers, with each layer containing a specific number of nodes. 

The initial layer consists of four nodes, corresponding to the 

four inputs of the network. Moving on to the second hidden 

layer, there are 50 nodes, each aligning with one of the inputs. 

This structural pattern extends to the subsequent layer, also 

containing 50 nodes. Transitioning to the outpt layer, the 

network's configuration operates under a MISO setup, 

indicating the presence of a single node for output processing. 

The genetic algorithm implemented within this network 

involves a total of 5000 generations, harnessing 500 distinct 

sets of chromosomes within the evolutionary process. Critical 

parameters have been set meticulously, with the mating rate 

established at 0.8, and the mutation rate at 0.2. In terms of the 

dynamic learning rate, the range spans from a maximum 

value of 0.001 to a minimum of 0.000001. The genetic 

algorithm's copying mechanism adopts a roulette wheel 

approach to accomplish the replication process efficiently. 

However, after executing the program, it was found that 

sampling was completely based on probability, resulting in a 

notable impact on the outcome of the program. When it is 

small, it cannot show the actual effect, that is, the better 

chromosomes cannot be guaranteed to continue to be passed 

on. Analysis of the comprehensive error map across 

generations revealed a pattern of oscillation akin to taking 

three steps forward followed by two steps back. Therefore, to 

effectively implement the roulette wheel concept, a 

substantial number of generations must be stipulated. It may 

take tens of thousands of generations before the overall effect 

will come out. Since this is really inefficient, for the copying 

part, the best chromosomes in each generation are copied (in 

this paper, the chromosomes with the smallest total error are 

chosen) to the next generation, which means that the good 

chromosomes are passed on and the best chromosomes are 

used. Following deduplication and random alterations to the 

entire group of contemporary chromosomes, the subsequent 

program execution indeed demonstrated an enhancement in 

efficiency compared to the initial implementation. Fig. 7 

shows the modified genetic algorithm's output diagram to 

adjust the neural network. Meanwhile, Fig. 8 illustrates the 

root mean value of the average error of each generation, 

where the average error of each data in the last generation is 

6.12195e-003. 

 

Fig. 7. Output diagram of the modified genetic algorithm to adjust the neural 

network 

 

Fig. 8. Root mean error (GA) of each generation 

Fig. 5 and Fig. 7 show the output diagrams for system 

identification using BP and GA, respectively, demonstrating 

their efficiency. Although the overall pattern appears to be 

identical, there are notable differences between the two. 

Despite the GA’s capacity to find the optimal solution 

throughout the full domain, it happens to be outperformed by 

BP in terms of precision. 

B. System Identification Using Fuzzy Neural System 

From Fig. 9, the output of the nonlinear system is defined 

as: 

𝑦𝑝(𝑘 + 1) = 𝑓(𝑦𝑝(𝑘), 𝑦𝑝(𝑘 − 1), 𝑦𝑝(𝑘

− 2), 𝑢(𝑘), 𝑢(𝑘 − 1)) 
(14) 

where Eq. (15) is the calculation function, 𝑦𝑝 is the output 

signal. 

𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) =
𝑥1 ∙ 𝑥2 ∙ 𝑥3 ∙ 𝑥5 ∙ (𝑥3 − 1) + 𝑥4

1 + 𝑥2
2 + 𝑥3

2  (15) 

The training input 𝑢(𝑘) can be calculated as: 

𝑢(𝑘) = 0.3 ⋅ 𝑠𝑖𝑛(
𝜋 ⋅ 𝑘

25
) + 0.1 ⋅ 𝑠𝑖𝑛(

𝜋 ⋅ 𝑘

32
) + 0.6 ⋅ 𝑠𝑖𝑛(

𝜋 ⋅ 𝑘

10
) (16) 

where the testing input 𝑢(𝑘) is given by (17). 
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𝑢(𝑘)

=

{
 
 

 
 𝑠𝑖𝑛(

𝜋 ⋅ 𝑘

25
)                                                                                      0 < 𝑘 < 250

1.0                                                                                                   250 ≤ 𝑘 < 500
−1.0                                                                                                500 ≤ 𝑘 < 750

0.3 ⋅ 𝑠𝑖𝑛(
𝜋 ⋅ 𝑘

25
) + 0.1 ⋅ 𝑠𝑖𝑛(

𝜋 ⋅ 𝑘

32
) + 0.6 ⋅ 𝑠𝑖𝑛(

𝜋 ⋅ 𝑘

10
)        750 ≤ 𝑘 < 1000

 

 (17) 

In simulation, the learning rate chosen for BP are 𝜂𝜔 =
0.1,  𝜂𝑚 = 0.1, 𝜂𝜎 = 0.1, 𝜂𝜃 = 0.1, and the total generation 

number is 100. Initial parameters [𝑚, 𝑣, 𝜔] for the neural 

network are chosen randomly between [-1,1]. Finally, the 

structure used for the FNN is 2-10-5-1, along with rule 

number of 5, and the parameter number equals to 35. Fig. 10 

shows the training result with 1000 samples between the red 

solid line (the reference output) and the blue dashed line (the 

system identification using FNN). 

 

Fig. 9. The block diagram of the FNN for nonlinear systems identification 

 

Fig. 10. Training result of nonlinear system identification 

The data presented in Table I illustrates the efficiency of 

the proposed method by considering the relationship between 

the number of rules, Root Mean Square Error (RMSE), and 

computation time. As the number of rules increases from 2 to 

20, witnessing a consistent decrease in RMSE, indicating an 

enhancement in accuracy. More specifically, the RMSE 

decreases from 0.0324 with 2 rules to 0.02347 with 20 rules, 

demonstrating that the method's precision improves with an 

increasing number of rules. However, this improvement in 

accuracy is accompanied by a substantial rise in computation 

time, which escalates from 0.393489 seconds for 2 rules to 

2.532497 seconds for 20 rules. This pattern suggests a trade-

off between achieving lower RMSE and higher computation 

time. 

A more detailed analysis reveals that the initial increment 

in the number of rules from 2 to 5 results in a minor 

improvement in RMSE (from 0.0324 to 0.03213) alongside a 

moderate increase in computation time (from 0.393489 to 

0.731853 seconds). More significant improvements in RMSE 

are observed when the number of rules is increased from 5 to 

15, with the RMSE decreasing from 0.03213 to 0.02623 and 

computation time rising from 0.731853 to 1.941199 seconds. 

However, the improvement in RMSE begins to exhibit 

diminishing returns as the number of rules increases from 15 

to 20, with RMSE only slightly decreasing from 0.02623 to 

0.02347, while the computation time still increases 

significantly from 1.941199 to 2.532497 seconds. 

These findings highlight the necessity of balancing 

accuracy and computational efficiency. The FNN takes into 

consideration both RMSE and computation time in 

performance evaluations, along with the presence of GA and 

BP algorithms to optimize computation times for varied 

scenarios. 

TABLE I.  EFFICIENCY OF THE PROPOSED METHOD 

Rule number RMSE Times 

2 0.0324 0.393489 

5 0.03213 0.731853 

10 0.03021 1.333072 

15 0.02623 1.941199 

20 0.02347 2.532497 

IV. CONCLUSION 

This paper presented an intelligent control technique 

based on fuzzy neural networks, with the back-propagation 

algorithm and the genetic algorithm used for adjustment. The 

results demonstrate the effectiveness of these algorithms in 

achieving error convergence efficiently and rapidly. From 

each step of the two algorithms, analysis of the average error 

value per generation reveals that the back-propagation 

algorithm consistently reduces the RMSE at 6.0235e-003 for 

each data point, indicating superior efficiency. Although the 

RMSE graph of the genetic algorithm is also decreasing at 

most, there exist several generations of errors where it is 

maintained at a fixed value of 6.12195e-003. The incident can 

be improved by the adjustment of the proportion between 

Crossover and Mutation. By increasing the Mutation’s 

probability, it is more likely to achieve the desired output, 

with the drawback of increased computation time. However, 

from the situation, despite the genetic algorithm’s capability 

to search for the best solution in the entire domain, it appears 

to be surpassed by the backpropagation algorithm in terms of 

efficiency. The genetic algorithm is inspired by natural 

selection and generational evolution, leading to the idea of 

combining its global optimization capabilities with the 

convergence efficiency of the back-propagation algorithm. 

This hybrid approach aims to ensure continuous error 

reduction while avoiding the local minima that can trap the 

back-propagation algorithm. The GA phase explores the 

global solution space, while the BP phase fine-tunes solutions 

for local optimality. Adaptive parameter tuning, parallel 

processing, and regularization techniques further enhance the 

method's performance and robustness. Overall, by integrating 

the back-propagation algorithm into the genetic algorithm’s 

mating process and using mutation to escape local optima, the 
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proposed GA-BP hybrid maintains high efficiency and 

effectiveness. As a result, the proposed approach can be 

implemented in a variety of applications in the prediction and 

identification of nonlinear systems for overcoming certain 

challenges. Finally, more advanced algorithms such as 

differential evolution (DE) or balancing composite motion 

optimization (BCMO) can be implemented for improved 

efficiency and optimization. 
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