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Abstract—An improved indirect vector control (IVC) 

method for a wind energy conversion system (WECS) is 

presented in this research. Field-oriented control or indirect 

vector control as it is sometimes called is a very important 

element of contemporary WECS that employs DFIGs. This 

control strategy is pivotal for achieving high performance and 

efficiency of DFIG-based wind turbines because it offers direct 

control on the torque and power ratings of the generator. A 

doubly fed induction generator (DFIG) is used by the WECS to 

inject power to the grid. An adaptive network-based fuzzy 

inference system (ANFIS), which is proposed to replace 

traditional methods like linear PI controllers, is the basis for this 

IVC. In this paper we chose ANFIS controller over traditional 

linear Proportional-Integral (PI) controllers due to its ability to 

adapt and learn from the system, leading to improved 

performance. The rotor voltage is controlled by the proposed 

IVC in order to regulate the exchanged active and reactive 

power between the stator and the grid. In order to verify the 

proposed control in terms of performance and robustness, a 

comparative analysis between the proposed ANFIS and linear 

PI controllers for the WECS-DFIG system is performed by a 

simulation study in a MATLAB/Simulink environment. This 

analysis covers both the transient and steady states of operation. 

As a result, the proposed ANFIS controller shows improved 

efficiency and robustness compared to the linear PI controllers. 

This superiority stems from its ability to integrate the flexibility 

and effectiveness inherent in diverse artificial intelligence 

controllers, specifically the synergistic use of Neural Network 

(NN) and Fuzzy Logic (FL) algorithms. The ANFIS controller's 

adaptability to diverse operating conditions and its capability to 

learn and optimize its performance play pivotal roles in 

enhancing its control capabilities within the WECS-DFIG 

system. 

Keywords—Wind Energy; Double-Fed Induction Generator; 

WECS; Indirect Vector Control; Artificial Intelligence Controller; 

ANFIS. 

I. INTRODUCTION 

Distributed generation and renewable energy sources, 

such as wind and solar power, have garnered significant 

interest as a potential substitute to fulfill the world's energy 

requirements [1]. Wind power has gained global recognition 

due to two primary factors: the escalating costs associated 

with fossil fuels and the pressing need to curb CO2 emissions 

[2]. One of the most significant renewable energy sources 

today is wind energy, which is predicted to produce 2110 GW 

of power globally by 2030, accounting for up to 20% of 

global electricity consumption [3]. Wind energy sources are 

required to participate in electricity markets in many 

countries [4]. 

Variable-speed wind turbines are the most recent 

generation. The functioning of this type lowers mechanical 

stress, boosts energy efficiency, and enhances the caliber of 

electrical energy produced [5]. With its exceptional 

advantages, like large-scale production with decreased static 

converter losses and flexibility in operation, the variable-

speed wind tur-bine with a DFIG is the most widely used 

wind turbine technology available today. Moreover, it has the 

capacity to minimize mechanical stress on the turbine, 

regulate the flow of power, and enable fault ride-through [6]. 

A number of studies, including [7]-[10], have provided 

different DFIG control strategies for wind turbines. 

The unpredictability of wind patterns adds extra difficulty 

to the design of grid-integrated wind energy conversion 

systems (WECS). The fluctuating and ever-changing 

characteristics of wind present a significant obstacle to 

attaining steady and effective management of the energy 

conversion procedure. In the past, WECS has used traditional 

control techniques, such as conventional and linear 

controllers. However, their limitations in terms of efficiency 

and performance have prompted the exploration of 

alternative control strategies [11]. Concerning energy trading 

according to the time of day, taking into account the different 

levels of uncertainty in production and price throughout the 

day, it is important to minimize costs by introducing new 

ordering strategies that are cheaper than the traditional 

strategies [12]-[13]. Some control strategies are more 

effective and efficient than others. Vector control is one of 
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the most widely used methods for controlling electric 

machines. 

In industrial applications, vector control is a common 

method for controlling induction machines due to its high 

dynamic performance for controlling the speed and torque of 

AC machines [14]. In actuality, managing the power 

exchanges particularly the active and reactive power supplied 

to the grid is a necessary part of managing the DFIG through 

the vector control approach. These controllers consequently 

exhibit high response times, overshoot, and transient and 

steady-state faults [15]. Direct and indirect vector controls 

(IVC), also known as field-oriented control (FOC), are the 

two types of vector control. PI controllers are frequently used 

in FOC to provide nonlinear control of active and reactive 

power in WECS that is based on DFIG [16]-[17]. 

Nonetheless, the IVC is a more useful and effective approach 

because it determines the rotor position based on the motor's 

speed feedback signal. When compared to direct vector 

control, this vector control provides superior dynamic 

performance overall [18]. 

The present study aims to use an Adaptive Neuro-Fuzzy 

Inference System (ANFIS) controller to construct an 

intelligent Indirect Vector Control (IVC) approach for a 

wind-driven DFIG. Artificial neural networks (ANNs) and 

fuzzy logic systems are combined in ANFIS, a technology 

that is widely used in artificial intelligence, machine learning, 

and control systems [19]. The proposed model ANFIS also 

known as Adaptive Neuro-Fuzzy Inference System applies 

the integration of neural networks and fuzzy logic for an 

efficient control of Wind Energy Conversion Systems 

abbreviated WECS. Hence the ability of ANFIS to learn 

nonlinear relationships between input data and predict output 

values makes it optimize power production by responding to 

the dynamic parameters such as output voltage. This 

integration of fuzzy logic and neural networks make ANFIS 

more suitable for such systems because it can cope up with 

the dynamic behavior of the wind turbine systems which is 

very unpredictable in nature than any other method provides 

more efficient and less costly solution to the enhancement of 

the energy production [20]. Real time learning capability of 

the system in finding the required control parameters for 

WECS yield better performances and flexibility of its control 

strategies with regard to fluctuations in wind speeds and 

conditions. The indirect vector control strategy architecture 

based on the adaptive network-based fuzzy inference system 

(ANFIS) has the remarkable feature of rapid convergence 

while integrating the flexibility of fuzzy logic with the 

suppleness of neural networks [21]. Overall, ANFIS 

optimizes controller performance by providing better control 

of load and wind speed variations in WECS using DFIGs. 

The hybrid model exhibits efficacy in simulating intricate 

and nonlinear correlations between input and output data, 

making it especially fitting for tackling the dynamic and 

unpredictable characteristics of wind turbine systems. To put 

it briefly, the ANFIS controller advances intelligent control 

systems in renewable energy applications by utilizing fuzzy 

logic's interpretability and ANNs' learning capabilities to 

improve DFIG control precision. 

The wind turbine power system's dynamic reaction is 

enhanced following a fault with the usage of the ANFIS 

controller [22]. Its purpose is to maximize torque and regulate 

voltage when there are wind turbines and other disturbances. 

Via utilizing an appropriate learning technique based on the 

error equation, the ANFIS controller modifies the neural 

network's parameters. High precision, minimal oscillation, 

and ripple have been demonstrated in the suggested ANFIS 

controller's ability to maintain optimal performances under a 

variety of disturbances. It effectively stabilizes the system 

quickly, making it a suitable choice for controlling power 

systems of wind turbines [23]. 

The proposed ANFIS-based approach in DFIG-based 

wind energy systems has significantly improved control 

precision, enhanced system stability, and optimized overall 

energy conversion efficiency. ANFIS, which integrates fuzzy 

logic control and artificial neural networks, offers a reliable 

control method for systems where exact mathematical 

modeling is complex or impractical [24]. 

An improved ANFIS-based direct torque and flux control 

scheme has demonstrated better dynamic performance and 

more precise control of electromechanical torque and stator 

current across various wind speeds, outperforming basic 

fuzzy logic and conventional PI controllers [25]. 

Furthermore, the ANFIS controller plays a crucial role in 

maintaining output voltage stability and consistent supply 

frequency in grid-connected DFIG-based wind energy 

systems, even under varying load conditions and turbulent 

wind speeds [26]. 

The paper is structured as follows: In Sec. 2, the wind 

energy conversion system's dynamic model is displayed. This 

includes modeling the WECS, notably the lumped model of 

the wind turbine, as well as modeling the DFIG. In Sec. 3, the 

objectives of setup and control are discussed. In Sec. 4, the 

implemented control strategies are explained. In Sec. 5, the 

simulated results of the two control approaches are 

introduced and discussed using the real wind profile of El 

Hocima, Morocco. A conclusion and some ideas are 

presented in Section 6, highlighting the importance of 

intelligent IVC for improving the efficiency and 

dependability of DFIG-based wind energy systems. 

Description and modeling of the pro-posed system. 

The proposed WECS's general structure is depicted in 

Fig. 1. An IVC controller using an adaptive network-based 

fuzzy inference system (ANFIS) governs the rotor of a grid-

connected DFIG in this system. A rotor-side converter (RSC) 

connected to a grid-side converter (GSC) is being managed 

by the controller. 

 
Fig. 1. Proposed WECS based on a grid-connected DFIG 
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II. DESCRIPTION AND MODELING OF THE PROPOSED 

SYSTEM 

A. Modeling of Wind Turbine  

In order to transform wind energy into electrical energy, 

a turbine was created in the last century. Wind energy is 

transformed into mechanical energy and used to drive an 

electric generator [23]-[25]. Although wind turbines can have 

two or three blades, three-bladed wind turbines are the most 

widely utilized on both land and water [26]. Equations can be 

used to express the power and torque generated by a wind 

turbine [27]: 

𝑃𝑡 = 𝐶𝑝𝑃𝑤 =
1

2
𝐶𝑝(𝜆, 𝛽)𝜌𝑆𝑣

3 (1) 

𝑇𝑎𝑒𝑟 =
1

2𝛺𝑡
𝜌𝜋𝑅2𝑉3𝐶𝑃(𝜆, 𝛽) (2) 

The power coefficient (𝐶𝑝), an important factor, is used to 

calculate the wind turbine power. The value of 𝐶𝑝, which is 

influenced by the angle at which the turbine blades interact 

the wind, has a maximum value of 0.59. The value of 𝐶𝑝 can 

be mathematically evaluated by: 

𝐶𝑝 ( 𝜆, 𝛽) = 0 . 5 (
116

𝜆𝑖
− 0.4𝛽 − 5) 𝑒𝑥𝑝 (

−21

𝜆𝑖
) + 0.0068 𝜆 (3) 

A crucial parameter of a wind turbine that determines the 

highest power rate that can be drawn from the wind is the tip 

speed ratio (TSR). It holds equal significance to the power 

coefficient. The wind turbine being studied in the paper has a 

specific TSR, which is described by (5). 

1

𝜆𝑖
 =  

1

𝜆 + 0.08𝛽
 −

0.035

𝛽3 + 1
 (4) 

𝜆 =
𝜔𝑡𝑅

𝑉
 (5) 

where 𝜔𝑡 is the turbine speed, 𝛽 is the blade pitch angle (in 

degrees), and 𝜆 is the tip-speed-ratio. 

The graphical representation of (3) is illustrated in Fig. 2. 

The Fig. 2 shows that the maximum value of 𝐶𝑝(𝜆, 𝛽) is 

0.4798, which occurs when 𝛽 is 0° and λopt is 8.124. 

 
Fig. 2. Graphical illustration of relationship (3) 

Formulation (6) explains how the torque and speed of the 

electric generator and turbine are related to each other. It 

shows that the turbine has a greater torque compared to the 

electric generator, but the electric generator has a higher 

speed than the turbine. 

{
𝑇𝑚 =

𝑇𝑎𝑒𝑟
𝐺

𝜔𝑚  =  𝐺𝜔𝑡

 (6) 

where 𝜔𝑡 is the turbine speed, G is the gearbox ratio, Taer is 

the aerodynamic torque. 

The mechanical part of the turbine-generator system is 

illustrated by equation (7), which also establishes how the 

electric machine operates as an electric generator or as a 

motor. 

𝐽
𝑑𝜔𝑚
𝑑𝑡

= 𝑇𝑚 − 𝑇𝑔 − 𝐶𝑓 (7) 

where 𝜔𝑚 is the generator's mechanical speed, 𝑇𝑚 is the shaft 

torque, 𝑇𝑔 is the developed generator's torque. 

B. Modeling of DFIG 

The dynamic equations for the voltages, fluxes, and active 

and reactive powers of the DFIG in the reference d-q park are 

given by the following formulas [28]. 

The stator voltages are given by: 

{
𝑉𝑑𝑠 = 𝑅𝑠𝐼𝑑𝑠 +

𝑑𝜙𝑑𝑠
𝑑𝑡

− 𝜙𝑞𝑠𝜔𝑠

𝑉𝑞𝑠 = 𝑅𝑠𝐼𝑞𝑠 +
𝑑𝜙𝑞𝑠

𝑑𝑡
+ 𝜙𝑑𝑠𝜔𝑠

 (8) 

The rotor voltages are given by: 

{
𝑉𝑑𝑟 = 𝑅𝑟𝐼𝑑𝑟 +

𝑑𝜙𝑑𝑟
𝑑𝑡

− 𝜙𝑞𝑟(𝜔𝑠 − 𝜔𝑟)

𝑉𝑞𝑟 = 𝑅𝑟𝐼𝑞𝑟 +
𝑑𝜙𝑞𝑟

𝑑𝑡
+ 𝜙𝑑𝑟(𝜔𝑠 −𝜔𝑟)

 (9) 

The developed torque is evaluated by: 

𝑇𝑔 =
3

2
𝑝𝐿𝑚(𝐼𝑞𝑠𝐼𝑑𝑟 − 𝐼𝑑𝑠𝐼𝑞𝑟) (10) 

With, Vds, Vqs, Vdr and Vqr are the d-q components of stator 

and rotor voltages, in turns. Ids, Iqs, Idr and Iqr are the d-q 

components of stator and rotor currents, respectively. φds, φqs, 

φdr and φqr are the d-q parts of stator and rotor fluxes, 

respectively. Where Ls, Lr, Rs, and Rr stand for the 

inductances and winding resistances of the rotor and stator, 

respectively. Lm is the magnetizing inductance. ɷs, ɷr are the 

angular frequencies of the stator and rotor, p is the DFIG’s 

pole pairs.  

III. PROPOSED CONTROL STRATEGY  

A. Flux Orientation Technique 

Field-Oriented Control (FOC) or vector control is 

selected due to its capacity to allow the mannered and 

optimum control of motor speed and torque, whereby 

the stator current is divided to segments that produce the 

torque and flux, respectively [5]. This technique uses a 

technique to transform the 3-phase AC voltage and current 

signals into a rotating reference frame to control the flow 

of stator currents and segregate them in to torque and flux 

components. Through implementing the PI controller, the 

Park inverse transform flux orientation method helps in 

generating the control signals of the motor drive depending 

on the torque and flux values to be attained, thus supporting 
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the managerial and organizational goal of efficient and valid 

operational control of induction motors in different 

applications [6]. Also, other measures such as the loss 

reduction controllers and the new vector control techniques 

improve the performance and efficiency of induction motor 

drives, especially in applications like electric vehicles where 

energy management is a critical factor. In this paper, vector 

control approach using the stator flux orientation is used. 

Along the direct axis, the field is orientated and rotated. The 

d-q axis alignment to the stator flux is shown in Fig. 3. 

 
Fig. 3. d-q axis orientation to the stator flux 

Then we have: Φds=Φs and Φqs=0. Therefore, the 

developed torque of (10) then becomes: 

 𝑇𝑔 = −
3

2
𝑝𝐿𝑚(𝐼𝑑𝑠𝐼𝑞𝑟) (11) 

This selection is not made randomly. This is supported by 

the fact that the generator is frequently connected to a high-

power network with steady voltage and frequency, which 

results in a stator flux statement for the DFIG. For high power 

machines, it is typical to assume that the stator winding 

resistance is ignored [29]. However, the system of (8) can be 

simplified as follows: 

𝑉𝑑𝑠 = 0
𝑉𝑞𝑠 = 𝑉𝑠 = 𝜙𝑠𝜔𝑠

 (12) 

The stator active and reactive powers are calculated by: 

{
𝑃𝑠 =

3

2
(𝑉𝑑𝑠𝐼𝑑𝑠 + 𝑉𝑞𝑠𝐼𝑞𝑠)

𝑄𝑠 =
3

2
(𝑉𝑞𝑠𝐼𝑑𝑠 − 𝑉𝑑𝑠𝐼𝑞𝑠)

 (13) 

From (12) and (13), we obtain: 

{
𝑃𝑠 =

3

2
𝑉𝑠𝐼𝑞𝑠

𝑄𝑠 =
3

2
𝑉𝑠𝐼𝑑𝑠

 (14) 

Stator currents are given by: 

{
 

 𝐼𝑑𝑠 =
𝜙𝑠 − 𝐿𝑚𝐼𝑑𝑟

𝐿𝑠

𝐼𝑞𝑠 =
𝐿𝑚
𝐿𝑠
𝐼𝑞𝑟

 (15) 

The rotor voltages are obtained by substituting equation (15) 

with (9). 

{
 

 𝑉𝑑𝑟 = 𝑅𝑟𝐼𝑑𝑟 + 𝜎𝐿𝑟
𝑑𝐼𝑑𝑟
𝑑𝑡

− 𝜔𝑠 𝑔𝜎𝐿𝑟𝐼𝑞𝑟

𝑉𝑞𝑟 = 𝑅𝑟𝐼𝑞𝑟 + 𝜎𝐿𝑟
𝑑𝐼𝑞𝑟

𝑑𝑡
+ 𝜔𝑠 𝑔𝜎𝐿𝑟𝐼𝑑𝑟 + 𝑔

𝑀

𝐿𝑠
𝑉𝑠

 (16) 

All these equations are the main pillars of the Block diagram 

of the simplified model of the DFIG shown in Fig. 4. 

 
Fig. 4. Block diagram of the simplified model of the DFIG 

B. Decoupled Control of Active and Reactive Powers Using 

ANFIS Controller 

To manage the rotor powers and currents, an independent 

control system is implemented that takes into account the 

coupling factors and compensates for them [30]. This method 

is called indirect method. It introduces techniques of artificial 

intelligence; in this article we use the technique of Neuro-

Flow (ANFIS). A neural fuzzy network is a hybrid artificial 

intelligence system that combines fuzzy logic and artificial 

neural networks to infer fuzzy set and fuzzy rule parameters 

from data. The desired network is constructed using 

MATLAB's ANFIS toolbox, and all data is gathered into a 

unique matrix. Because the neural network has a great 

capacity for learning and the fuzzy system offers good 

knowledge, the benefits of merging these two complimentary 

techniques into one system improve the overall performance, 

which is known as the neuro-fuzzy system [31]. On the other 

hand, when fuzzy rules are injected into a neural network, the 

initialization of the network parameters becomes stable and 

obvious. As a result, the computation time needed for the 

identification is much decreased. 

Fig. 5 shows the representation of the DFIG using the 

indirect vector control scheme. Four controllers are used to 

control the power, torque and field current. In the present 

work, these controllers are ANFIS type fuzzy logic 

controllers. The inverter used to control both the voltage and 

frequency of the voltage applied to the motor is controlled 

using the space vector pulse width modulation method. 

 
Fig. 5. The proposed indirect vector control bloc diagram using the 

(Adaptive Network Based Fuzzy Inference System) ANFIS 

IV. ANFIS MODEL 

A. ANFIS Architecture 

The neuro-fuzzy adaptive inference system (ANFIS) 

under study makes use of a 5-layer MLP neural network. In a 

Takagi-Sugeno fuzzy inference system, each layer represents 

the realization of a single step. For the sake of simplicity, we 
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will assume that the fuzzy inference system has two inputs (x 

and y) and an output (f). Furthermore, presuming that there 

are two Takagi-Sugeno fuzzy rules in the rule base [32]. 

Rule1: If x is A1 and y is B1 THEN 

𝑓1 =  𝑝1 𝑥 + 𝑞1 𝑦 + 𝑟1 (17) 

Rule 2: If x is A2 and y is B2 THEN 

𝑓2 =  𝑝2 𝑥 + 𝑞2 𝑦 + 𝑟2 (18) 

Fig. 6 illustrates the five-layer architecture of the ANFIS. 

 
Fig. 6. Architecture of ANFIS controllers 

The number of neurons in the first layer of the ANFIS 

architecture in this design is equal to the number of fuzzy 

subsets in the inference system that is being studied. Every 

neuron uses its transfer function to determine how true a 

given fuzzy subset is. The requirement that it be derivable is 

the only limitation on the selection of this transfer function. 

As in the literature, the operational and modifiable 

parameters of the Gaussian function are the center and the 

gradient of the Gaussian function [33]. The following 

represents the activation function of first layer neuron (i): 

𝑓𝑖
1 = 𝜇𝐴𝑖(𝑥) (19) 

where 𝐴𝑖 is a fuzzy subset that corresponds to the variable x, 

and x is the input to neuron i. Stated differently, it represents 

the degree to which a given x satisfies 𝐴𝑖 and serves as the 

membership function of 𝐴𝑖. Since we select μ𝐴𝑖(x) to be 

either trapezoidal, Gaussian, or triangular with a minimum of 

0 and a maximum of 1, the generalized functions of the 

triangle and Gaussian forms are displayed in (20) and (21), 

respectively [34]. 

µ(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑥 − 𝑎

𝑏 − 𝑎
,
𝑐 − 𝑥

𝑐 − 𝑏
) , 0 ) (20) 

µ(𝑥) = 𝑒𝑥𝑝 (−
(𝑥 − 𝑎)2

𝜎2
) (21) 

The collection of parameters, denoted as {𝑎, 𝑏, 𝑐, 𝜎}, 
represent distinct variants of the language variable 𝐴𝑖′𝑠 

membership function. Changes in the values of these 

parameters are accompanied by changes in the function of the 

previous form. The parameters of the membership function 

are the ones found in this layer. 

In contrast, the second hidden layer of the ANFIS 

architecture is used to determine the premises' level of 

activation. This layer consists of neurons that represent each 

rule premise. These neurons are in charge of calculating the 

degree of truth of each premise and receiving as input the 

degree of truth of the various fuzzy subsets that comprise it. 

These neurons' activation functions are determined by the 

operators (AND or OR) included in the rules. The first layer's 

neurons i activation function can be stated as follows: 

𝑊𝑘 =  µ 𝐴𝑖 (𝑥) × µ 𝐴𝑖(𝑦) (22) 

where 𝑖 denotes the number of 𝑥 partitions, 𝑗 the number of 

𝑦 partitions, and 𝑘 the number of rules. 

The rule weight normalization corresponds to the third 

layer, the ratio between the rule weight 𝑖 and the total of all 

rule weights is calculated. 

𝑤̅𝑘 =
wk

∑𝑤
 (23) 

This layer output is called the normalized weights. For the 

fourth layer, each node 𝑖 in this layer is a node evaluated by 

𝑓𝑘
4 = 𝑤̅𝑘 × 𝑓𝑘 = 𝑤̅𝑘𝑥(𝑝𝑘𝑥 + 𝑞𝑘𝑦 + 𝑟) (24) 

where {𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖} is the set of parameters and 𝑤̅𝑘 is the third 

layer's output. We refer to these parameters as the subsequent 

parameters. 

The inputs and outputs from the preceding layer are 

integrated in the output layer, which is the fifth layer. As a 

result, the single node is a constant node, and the total 

outcome is obtained by summarizing the signal set that 

follows: 

𝑓5 =∑𝑤̅𝑘𝑥

𝑘

𝑓𝑘
4 (25) 

The decision unit, fuzzification interface, database, rule 

base, and defuzzification interface are the five functional 

components that make up the ANFIS structure [35]. The 

neuro-fuzzy system that was built is a Sugeno system of first 

order with a single input and seven distribution membership 

functions. Seven if-then rules comprise it. Fig. 7 shows the 

basic architecture of the created neuro-fuzzy system with the 

error signal of the controlled variable, i.e., active or reactive 

power or current, as input. 

 
Fig. 7. Internal structure of the proposed ANFIS controller 

The learning process makes use of the hybrid 

backpropagation method. As a result, the training data that is 

utilized comes from comprehensive vector controller 

simulations. Additionally, Fig. 8 displays the input 

membership functions for the active and reactive power 

controllers. 
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Fig. 8. Input membership functions for active and reactive power controllers 

Based on the input membership functions Fig. 9 illustrates 

the Neuro-Fuzzy learning error for the power controller. 

 
Fig. 9. Neuro-Fuzzy learning error for the power controller 

V. EVALUATION RESULTS 

A thorough simulation research was carried out to test the 

proposed IVC technique using the DFIG and adaptive net-

work-based fuzzy inference system (ANFIS) for the wind 

energy conversion system (WECS). The simulation involved 

the utilization of two distinct wind profiles: step and random 

wind. This section of the paper is dedicated to presenting and 

analyzing the simulation results, with a particular focus on 

the performance of the ANFIS controller in response to these 

two wind profiles. The discussion unfolds in two parts, firstly 

highlighting the outcomes obtained under step wind 

conditions and subsequently delving into the implications of 

employing random wind profiles. Through this exploration, a 

nuanced understanding of the controller's effectiveness and 

adaptability to diverse wind scenarios is tested. 

Table I lists the DFIG and wind turbine's specifications. 

A comparative study is conducted between two control 

systems, namely IVC-ANFIS and IVC-PI, concerning the 

reference track, power ripple, stator current's harmonics and 

system robustness. This portion of the work also takes into 

account the robustness to changes in the DFIG parameter and 

the harmonic distortion of the stator current. 

TABLE I.  SPECIFICATIONS OF WIND GENERATION SYSTEM 

Parameters Value Parameters Value 

Blades 3 Irn  8.5 A 

Rotor radius R 1 m Pole pairs, p 2 

Gearbox ratio G 3 fs  50 Hz 

𝑓 

0.0027 

(N.m.s/rad) 
Rs  1.18 Ω 

𝐽 0.04 kg.m² Rr 1.66 Ω 

Pn 1.5 KW Ls  0.20 H 

Vs 220 / 380 V Lr  0.18 H 

Isn 5.2 A Lm  0.17 H 

A. Insights from Step Wind Simulation 

The simulation study is the main focus of the analysis of 

the proposed IVC method using an adaptive network-based 

fuzzy inference system (ANFIS) for a WECS-DFIG system. 

It reveals the effectiveness of the controller in response to 

the step wind profiles shown in Fig. 10. 

 
Fig. 10. Wind profiles 

The rotor speed is shown in Fig. 11, which clarifies how 

step wind affects the system's rotational behaviour. This plot 

provides a good illustration of the rotor speed's response 

under the ANFIS control method by capturing the dynamic 

nature of the speed over time.  

 
Fig. 11. Mechanical rotor speed (rpm) under step wind 

Upon examining Fig. 12(a) and Fig. 12(b), it is evident 

that there is a notable convergence towards the reference 

values for both reactive and active power. It's interesting to 

note that the harvested active power, which can range from 

500W to 1400W, can fluctuate greatly with even a slight 

change in wind speed. It is obvious that active power 

generation rises with increasing wind speed and falls with 

decreasing wind speed. Even in the event that wind speed 

fluctuates, a constant unity power factor is ensured on the 

network side by maintaining the reference value of reactive 

power at zero. 

 
(a) Active power 

 
(b) Reactive power 

Fig. 12. (a) Active power. (b) Reactive power 
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The relationship between stator currents, rotor currents, 

and the applied wind speed profile is highlighted in Fig. 

13(a), (b), (c), and (d), demonstrating a measurable 

association between these three variables. The Fig.s clearly 

illustrate how wind variations impact the stator and rotor 

current magnitudes. Remarkably, the currents peak at 3 A, 

which denotes the highest possible power flow in the system. 

This reliance on the wind profile emphasises the critical role 

that outside environmental factors play in figuring out how 

the system acts. 

 
(a) Stator Isabc observed under the PI case of step wind 

 
(b) Stator Isabc observed under the ANFIS case of step wind 

 
(c) Rotor Irabc observed under the PI case of step wind 

 
(d) Rotor Irabc observed under the ANFIS case of step wind 

Fig. 13. Stator and Rotor currents PI and ANFIS controllers case step wind 

In Fig. 14, the system's power factor is visually depicted, 

indicating an approximate value of 0.98. The graphical 

representation reveals distinct undulations, directly 

associated with the operational dynamics and variations in 

wind speed 

 
Fig. 14.  Power Factor case step wind test 

The results of the FFT (Fast Fourier Transform) studies 

of the generated stator are shown in Fig. 15. The following 

are the main factors that we took into account:  

• Sampling Rate (Fs): To prevent aliasing, the sampling 

rate is double the maximum frequency. 

• Window Function: Before running the FFT on the time-

domain signal, the window function Hamming is applied. 

• Window Length (N): The number of data points that are 

used in each FFT computation is known as the window 

length. 

• Overlap: 50%. 

• Zero Padding: The time domain signal was terminated 

before running the FFT 

• Averaging: To lessen the impact of noise, multiple FFTs 

are averaged. 

• Window Scaling: To adjust for amplitude loss caused by 

windowing, a scaling factor of 1.5 was employed. 

• Handling of DC Component: Eliminate the DC (0 Hz) 

component from the FFT results. 

• Normalization: Power spectral density measurements 

were obtained by normalizing the FFT results. 

 
Fig. 15. THD of the current induced utilizing the two controllers under step 

wind test improved net 

B. Evaluating ANFIS Performance under Random Wind 

Profiles 

The wind profile used to test our model is based on wind 

data recorded in Al Hoceima, Morocco, for a duration of 10 

seconds as illustrated in Fig. 16. 
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Fig. 16. Wind profile for the referral tracking test 

The rotor speed in Fig. 17 provides important information 

on how wind affects the system's rotational behaviour. The 

graphic clearly illustrates the dynamic nature of the rotor 

speed by showing its behaviour over time. 

 
Fig. 17. Mechanical rotor speed (rpm) 

As can be seen in Fig. 18(a) and Fig. 18(b), there is a 

notable convergence of the active and reactive power towards 

their references. It is noteworthy that a mere fluctuation in 

wind speed can result in a significant variance in the extracted 

active power, which can vary from 550W to 1500W. It is 

evident that the active power (Ps) increases with increasing 

wind speed and falls with decreasing wind speed. On the grid 

side, a unit power factor is ensured by maintaining the 

reference value for reactive power at zero. 

 
(a) Active power 

 
(b) Reactive power 

Fig. 18. Active and reactive stator power under random wind test 

The data in Fig. 19 (a), (b), (c), and (d) demonstrate how 

the rotor currents, stator currents and the wind speed, 

correlate with each other. The effect of wind variation on the 

stator and rotor current magnitudes is amply illustrated by 

these data. Interestingly, the currents show a maximum value 

of 4A for each, which denotes the highest possible electrical 

flow levels in the system. This reliance on the wind profile 

emphasizes how important external environmental elements 

are in influencing how well the system operates. 

 
(a) Stator Isabc observed under the PI case of random wind 

 
(b) Stator Isabc observed under the ANFIS case of random wind 

 
(c) Rotor Irabc observed under the PI case of random wind 

 
(d) Rotor Irabc observed under the ANFIS case of random wind 

Fig. 19. Stator and Rotor currents PI and ANFIS controllers’ case random 

wind 

The power factor of the system is shown graphically in 

Fig. 20, where it is about equal to 1. There are also 

fluctuations on the plot, which are related to the way the 

system works and the variations in wind speed. 

 
Fig. 20. Power Factor case random wind 
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In Fig. 21, the net improvement in THD of the current 

generated by employing the two techniques is visually 

represented. The data presented offers valuable insights into 

the effectiveness of these methods in enhancing the purity 

and efficiency of the current waveform, providing a 

quantitative measure of the improvements achieved. 

 
Fig. 21. Total improvement in THD of the current generated by combining 

the two techniques 

TABLE II.  COMPARING RESULTS WITH LITERATURE'S REFERENCE 

CONTROL STRATEGIES 

References Strategies  THD (%) 

 [36] 
DPC control using L-filter 10.79 

DPC control using LCL-filter 4.05 

 [37] Second order SMC 3.13 

 [38] 
Integral SMC 9.7 

Multi-resonant-based SMC 3.2 

 [39] 
Virtual flux DPC 4.2 

DPC 4.9 

Proposed strategy  IVC based on ANFIS 2.62 

 

In order to demonstrate the results of the proposed IVC-

ANFIS, it is essential to compare it with other techniques in 

the literature. However, it should be noted that it is rare to 

find similar studies carried out under the same conditions. 

This limits the possibility of comparison. According to Table 

II, the proposed IVC-ANFIS using ANFIS controllers shows 

a higher efficiency in THD reduction compared to other 

controllers used in the literature. Overall, the results show the 

performance of the proposed control approach in achieving 

accurate, robust, and fast response control while reducing 

internal and external disturbances. 

VI. CONCLUSION 

This paper presents an Adaptive Neuro-Fuzzy Inference 

System (ANFIS) controller-based indirect vector control 

(IVC) method for a doubly fed induction generator (DFIG) 

and compares its performance with a proportional-integral 

(PI) controller. According to the simulation results, the 

suggested ANFIS-based method outperforms the IVC-PI 

controller and performs better under comparable operating 

conditions. Furthermore, while using IVC-ANFIS control 

instead of IVC-PI control, the stator current's Total Harmonic 

Distortion (THD) is significantly decreased. Furthermore, the 

ANFIS controller efficiently controls both active and reactive 

power by modifying generator torque and speed according to 

the wind speed variation. These results highlight the 

effectiveness and resilience of the artificial intelligence-

based indirect vector control method for DFIG systems for 

Wind Energy Conversion Systems (WECS). Moreover, it has 

been demonstrated that the application of IVC-ANFIS 

control results in improved turbine lifespan, increased 

monitoring system dependability, and favourable technical, 

financial, and environmental performance outcomes. 
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