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Abstract—This article presents a robust optimal tracking control
approach for a Four Mecanum Wheeled Robot (FMWR) using
an online actor-critic reinforcement learning (RL) algorithm to
address the challenge of precise trajectory tracking problem in the
presence of mass eccentricity and friction uncertainty. In order to
handle these obstacles, a detailed dynamics model is derived using
Lagrange’s equation, and the Hamilton-Jacobi-Bellman (HJB)
equation is solved by iteration algorithm with policy evaluation
and improvement. The training laws of optimal control law and
value function are proposed after minimizing the modified Hamil-
tonian function. Moreover, to handle the time-varying property of
tracking error model, a transform is given with the addition of time
derivative term. Simulation Studies demonstrate the approach’s
effectiveness, significantly improving trajectory tracking accuracy
and robustness against disturbances. This research contributes to
mobile robotics by enhancing control precision and reliability in
dynamic environments.

Keywords—Optimal Control, Reinforcement Learning, Trajectory
Tracking, Friction Uncertainty

I. INTRODUCTION

In the field of robotics, the control of mobile robots is becom-
ing increasingly important for both industrial automation and
research activities. High precision, real-time performance, and
robustness to external disturbances are essential requirements
for the design of control systems for these robots. Among
various mobile robot designs, the Mecanum wheel stands out
because it can move in any direction while supporting high
loads [1]. This study addresses a specific problem: developing
a robust tracking control system for a Four Mecanum Wheeled
Robot (FMWR) that accounts for mass eccentricity using an
online actor-critic reinforcement learning algorithm.

Extensive research has been conducted on both system mod-
eling and tracking control algorithms to ensure that robots
can accurately and swiftly follow desired trajectories. The
dynamic model of a mobile robot equipped with four Mecanum
wheels is detailed in [2], [3], while its kinematic model and

the relationships between kinematics and platform dynamics
are presented in [4], [5]. A comprehensive dynamics model
that accounts for mass eccentricity and friction uncertainty is
provided in [6]. Additionally, a mathematical model integrating
both dynamic and kinematic aspects is analyzed and evaluated
in [7].

Several studies have focused on control design for mobile
robots. Enhancements in control performance for forward and
inverse motion have been achieved using an optimal PID
controller based on a differential evolution algorithm [7], as
well as a PID controller designed for more accurate point
tracking of the Mecanum robot [8]. Additionally, a nonlinear
Backstepping control law, validated for its efficiency, has been
applied based on the dynamic and kinematic model [9], [10].
A robot dynamics-based sliding mode controller for trajectory
tracking is presented in [11], [52]-[54], [56].

Reinforcement learning (RL) offers distinct advantages by
not requiring precise system models, as demonstrated in
[12]. For instance, a reinforcement learning controller in [13]
achieves optimal morality for wheeled mobile robots (WMR),
with control PD parameters determined within the action space.
However, continuous control remains a challenge due to the
decomposition of the action space into multiple subspaces.

Studies such as [14], [57]-[60] have designed reinforcement
learning algorithms for systemless MIMO routing uncertainty
with prioritized control of output signals. The steering control
algorithm for WMR, based on the proposed RL algorithm, was
examined considering system time delay and slip effects [15]-
[21], [63]-[70]. The RL algorithm for solving the optimal con-
trol solution for the Hamilton—Jacobi—Bellman (HJB) equation
facilitates policy evaluation and improvement [25]-[28], [71]-
[80]. Optimal regulation and tracking of nonlinear systems have
been addressed using an actor-critic architecture incorporating
both actor and critic neural networks (NNs) [20], [49]-[51].
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However, these methods typically solve the optimal control
problem offline, requiring multiple learning trials before the
controller is trained, without ensuring system stability during
the learning phase [22]-[24].

An intelligent actor-critic learning control method augmented
by a fuzzy broad learning system with output recurrent feedback
has been proposed for obstacle-avoiding trajectory tracking
of heterogeneous Mecanum-wheeled omnidirectional mobile
robots, accounting for unmodeled errors and varying parameters
in response to the working environment [35]-[48]. Furthermore,
the optimal tracking control for a three-omni-wheeled mobile
robot under external disturbances, using an online actor-critic
synchronous learning algorithm, was investigated in [34]. How-
ever, this study did not consider the impact of the robot’s center
of gravity deviation and changes in mass.

Despite these advancements, a significant gap persists in the
literature concerning the integration of mass eccentricity into
the control scheme for FMWR. Most existing studies either
neglect mass eccentricity or address it inadequately, resulting in
suboptimal control performance. This research bridges this gap
by developing a robust tracking control system that incorporates
mass eccentricity through an online actor-critic reinforcement
learning algorithm. Section II presents the kinematic and dy-
namic modeling of the FMWR. Section III details the design
of the controller using the online actor-critic algorithm. Section
IV provides the results of simulation experiments, followed by
a discussion in Section V. Finally, Section VI concludes the
paper, summarizing the key findings and contributions.

In this paper, we present a novel approach to developing
a robust tracking control scheme for a Fast Mobile Wheeled
Robot (FMWR), utilizing an online actor-critic algorithm to
specifically tackle the challenge posed by mass eccentricity.
Our primary aim is to ensure precise adherence to a predefined
trajectory within the shortest possible timeframe and with
minimal deviation. This research significantly advances the
field of mobile robot control by seamlessly integrating mass
eccentricity into the control scheme, effectively addressing a
notable gap in the existing literature.

Our experimental results underscore the efficacy of the
proposed control system, demonstrating its ability to guide
the robot along the desired trajectory with remarkable accu-
racy and efficiency, thus bolstering the overall performance
and reliability of FMWR in practical applications. Section II
elucidates the kinematic and dynamic modeling of the FMWR,
laying the foundation for our subsequent controller design
discussed in Section III, which leverages the online actor-
critic algorithm. Section IV presents the outcomes of simulation
experiments, providing valuable insights discussed further in
Section V. Finally, Section VI concludes the paper, summarizing
the key findings and contributions made throughout our research
endeavor.

II. THE FOUR MECANUM WHEEL MOBILE ROBOT
A. Kinematic of FMWR

The mecanum wheel is designed with passive rollers placed
around the main wheel, ensuring the robot can move in all
directions. The FMWR model uses four active wheels guided
independently by four special motors. Robot moving, the rollers
convert part of the translation force into horizontal sliding force,
helping the robot move flexibly in many different directions.
Let’s consider the wheel frame in the robot coordinate [5] being
shown in Fig. 1.
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Fig. 1. The four mecanum wheel robot in the world frame

In the case of no slipping occurs along the contact of roller’s
axis, the same velocity can also be computed from the wheel’s
rotation speed as:

[sin(a+B8+47v)—cos(a+B+7v)—1cos(8+7)|R(0)G = r¢ cosy

ey
where « is angle of GA with horizontal axis, § is the angle
between the vector G A and the main wheel axis, and vy = 459 is
the deflection angle of the passive roller. The geometric center
G to the wheel center A is [, and r is the main wheel’s radius.
The orientation of the inertia frame with respect to the robot
frame can be expressed as matrix

cosf sinf 0
R(#) = |—sinf cos® 0O )
0 0 1

where 60 is the angle between axes Xp and X. In the next
section, We will construct the kinematic and dynamic equations
for FMWR.

In the considered FMWR, assuming that ach mecanum wheel
is controlled respectively by an independent motor as arranged
in Fig. 1 with wheel has equal radius and distances. The
parameters «, 3 and  for each wheel are presented in Table I.
and substituted into equation (1)

TABLE I. THE PARAMETERS OF EACH MECANUM WHEEL

Wheels (e 77 ,87 Yi
1 tan—1(b/a) —tan—1(b/a) (m/2+7/4)
2 m —tan—1(b/a) tan—1(b/a) —(n/2+7/4)
3 7 +tan 1(b/a) | —tan"1(b/a) (/2 + m/4)
4 27 + tan—1(b/a) tan—1(b/a) —(n/2+ 7/4)
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After computation, the Jacobian matrix is identified as fol-
lows:

Vv2/2 V2/2

Isin(n/4 — «

( ) .
yo| v e e | [0
—V2/2 —V/2/2 sin(n/4 —a) 0 0 1
—V/2/2  V/2/2  lsin(n/4 —«)
3)

The forward kinematic equation of the FMWR can be obtained
as follows:

i 1
g | =-(V2/2)rJ" g; (4)
’ b1

where Jt = (JTJ)_1 JT is the pseudoinverse of J. The
velocities of wheels and angular velocities are determined by

IR cosf@ sinf 0 T
Y R | = | —sinf cosf 0 y %)
0 0 0 1 0

B. Dynamic of FMWR

Consider the FMWR to be show in Fig. 2, where G, G’ are
the geometric and mass center, respectively [5].

0

Fig. 2. Schematic of the FMWR

The total kinetic energy E of the mobile robot including those
of the platform and four Mecanum wheels can be computed as
below:

4 4
mpvave + L0+ Y mui(rén)? + Y L¢E| (6)
=1 =1

E=-
2

where my, is the mass of the platform, and m,,; is the mass of

the ith wheel; I; is the moment of inertia of the platform, and
I; is the moment inertia of the ¢th wheel about its main axis.

The system moves on the ground, the gravitational potential
energy of the system 7' = 0, The sum of the kinetic energies
of the body and wheels is: L = EF 4+ T

4 4
1. 1. ., 1 L, 1 9
L= imbvc,vc;/—&—iIbG +§ ;:1 Mayi (T104) +§ ;:1 Lio; (7)

Using the Lagrange’s equations [30]:

d (0L OL
p (aqi - 8qi> = Qi ®)

where Q;, (i = 1,2,3) is torque generalized, ¢; = [z,y,0]T is
generalized coordinate vector, f; is the contact friction force of
the wheel with the floor, can be derived as follows [29]:

The dynamic equations for FMWR:

M(q)G+ C(q,q)q + BS = Bt €))
where
T T
T:[Tl T2 T3 74] 7f=[f1 fa f3 f4] ;
¢ =rfdiag | sen(p1) sen(p2) sen(gs) sen () |
M= [mij}gxg 7m11 =my +4 (mw + TLQ) ;
mao :mb+4(mw+ %2) ymi2 = ma1 = 0;
mi13 = m31 = myp (disinf + da cos ) ;
mao3 = m32 = my (—di cos O + da sin 0)
mas =my (d2 +d3) + I, + 8 (mw + T%) 1?sin?(m/4 — )
AT
0 0 0
C = 0 0 0
mpf (di cosf — dasind) myf (d1sinf + da cos) 0 |
—(cosf —sinf) —(sin@ +cosf) —+/2lsin(n/4 — ) IN
B 1| —(cos®+sinf) —(sind—cosb) —V/2lsin(r/4 — a)
T cos@ — sin 6 sin @ + cos 6 —V/2lsin(r/4 — )
cos @ + sin 6 sin@ — cos 6 —/2lsin(n/4 — a) |
(10)

According to equation (5), it obtains the kinematic equation of
FMWR as follows:

vy = R(0)q 1L
Taking the time derivative of equation (11), it implies that:
bg = R(0)j + 0R(0)q (12)
Equation (9) implies the following equality:
j=M"'B'r— M 'BT¢ - M~'Cq (13)

Substituting (13) into equation (12), it obtains that:

Vg = R(O)M-1BTT — R(O)M~1BT¢ — R(O)R(9)~1
M~1Cv, + 0R(6)R(0) 1v,
(14)
Substituting, can obtain the following dynamic equation of
FMWR as below:

vg = f(q)vg + 3(q)T + g(q)d(q, vy) 15)

where - o
f(a) = [6R(O)REO) "~ M~'C

() = R(O)M ' B"
fd(q,vg) = —R(OM™'BT¢
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The problem of controlling a robot to follow a set trajectory
q-(t) in a short time with a low cost function. The dynamic
model (15) is rewritten as:

i = F(@) + g(2)7 + g(x)d (g, v,) (16)
where
= (" )T,
@) = @l (Fla)vg) )T, (17)

g(z) = (03x3,9(q)")T

To develop RL technique for time-invariant systems, we refer-
ence system expressed by

&y = hy(z) (18)
We defining the tracking error as e =z — x,
¢ = f(@) + g(@)7 = ho(o) o)
= f(x) = he(zr) + 9(2)7 + g(z)u
where u=7—17, ,
7 (xr) = g7 (@) (R (2,) = f(21)) (20)

By employing a new concatenated state as z = (e’ z1)7, then

the dynamics of z is formulated by an invariant-time system as

z2=F(z)+ G(z)u (21)
where
f(@) = he(zr) + g(2)70 (z)
Flz) = ( () ) CGla) = ( 0o )

III. CONTROLLER DESIGN ON THE ONLINE ACTOR-CRITIC
ALGORITHM

A. Controller design

To control the robot with equation (21) to follow the
trajectory, we use the HJB function with the following the
Hamiltonian function [34] is given by

H(z,u,7V) = 2%,(2) + 27 Qz + uT () Ru(z)
—V(2) + TV (2)(F(2) + G(2)u(2))

With the optimal function clearly defined as follows:

(22)

V*(z) = min / e 72 (2) + 27 Qz + uT Ru)ds

uem(Q) Jy 23)

The optimal control signals is

1
u*(z) = arg min [H(z,u,vV*(2)] = —=R'GT(2)yV*(2)
uem(Q) 2
(24)
The control system follows the structure of Online Actor -
Critic. The signal control from the Actor will be continuously

updated and included in the system size when the signal control
is optimal as shown in Fig. 3.

a(x)
FMWR

Actor

7(x)

Critic

Fig. 3. Control diagram online AC

For optimal control, we use the online actor—critic algorithm
to solve the HIB equation using a single-layer NN as

V*(2) = WTo(2) + e4(2) (25)

where W is an ideal constant weight vector, the number of
neurons is N, €,(z) is the approximation error.

Based on formulas (25) and optimal control, the Actor NNs
and Critic NNs approximation for the optimal policy are given
by:

a(z, W,) = —%R‘lGT(z) v o7 (2)W, (26)

where Wc and Wa a are the estimates.

The signal control is determined as follows: (20), the tracking
controller 7 of FWMR can be obtained as

= —LRGT(2) 7 6T ()W + g* (20 (e (2) —

; fan)

27
Using the approximations @ and V:

N o o _ 1. o
H(z,We, Wo) = X3, (2) + 27 Qz + ZWaTDlwa

(28)
o o 1 ~
—AWle+ W v ¢(F = SGRTIGT v ¢"Wo)
Define the Bellman error as § = H — H *
~ o _ 1.4 o
_ )2 T LT
0(z, We, W) = A3,(2) + 21 Qz + 4Wa DWW, 29)

+WI(Vo(F + Gt) — v¢)

Training critic NN to minimize the integral error, The tuning
law for the actor NN is developed as

. =T
Wa - _nal(Wa - Wc) - TIaQWa + %DIWU.LWC (30)
My
where 7,1 > 0, 152 > 0 and 7, > 0 are tuning parameters

B. Stability Analysis

Considering the candidate Lyapunov function for the stability
of the system
1
21

1

V() = V*(t) + T

WI O (OWe(t) + =— W () Wa(t)

€29}

Minh Dong Nguyen, Reinforcement Learning-Based Trajectory Control for Mecanum Robot with Mass Eccentricity

Considerations



Journal of Robotics and Control (JRC)

ISSN: 2715-5072

1440

In which the optimal cost function has the following derivative:
Vit =WT g ¢! — LWTDiW, + el (F
—%GR’IGT v T W,)

From the HJB equation (III-A), we can rewrite the optimal cost

function determined can be rewritten as:

. _ 1
V) = =X3,(2) — 2T Qz +yWTo + ZWTDlW

(32)

1. 1.
S Wa DIW + WS 7 ¢D2 v ey (33)
1
7V ey, Dy 7 &y + 760 (2)
into the derivative of V(t) yields
. 1 Wwla
V(t) = -2, (2) — eTQe — ZWTDlW T (3
~WIAW, — WL AW, + WI AW, + WIB; + B,
where
1 1ot
T e W ) S WAl
2 2 Na 4 mg
1
A = Lpw T e
4 mg Na
1 1 T TNa2
31=§D1W+ V(ng V€U—*D1Wm W + TW

By = W'+ Z V ey D2 v e +760(2)

The boundness ofe,, and /e, positive constants k1, ko, k3 such
that ||Bi| < k1, || Bel| < w2, [[(1/4)D1(3" /mq)WI| < k.
Using the Young’s inequality, (34) becomes

) ﬂ ¥ Nal +77a2 i~
V(t) < —gllel” - H@HWCHQ - THWaHZ

1 1 =
(2 (2 +)> W
| Na1 + Na2 R € [ Nal Tk
21q 5 2 Na
~ e ~ ~
x|[Wal 2 + L . o

where ¢ = Apin (Q). Choose (5/402) (1/2€)((Ma1/na)+k3)
and ((1a1+7a2/20a) > K3+(€/2)((a1/Ma)+k3) (35) becomes

V(t) < —@nl[¢][* + @2l C]] + r2
Applying (23) and (26) gives

1 ~
ut = fiR’lGT(quT(z)Wa + Vey)
According one can get
1
w* — 4| < ————=b,(byp.be + b:2) = by, (36)

where b, is a positive constant Therefore, the tracking error
dynamics of the FMWR (21) is eventually bounded uniformly,
which further shows that the state ¢(t) can track the desired

trajectory qr(t).

IV. SIMULATION AND RESULTS

In this section, we present a simulation for the Four Mecanum
robot model based on MATLAB Simulink environment. The
parameters of FMWR: m; = 12 kg, m,,=0.313kg, a=0.2 m,
b=0.3 m, r = 0.0508 m, I = 0.5 kg.m?, I, = 4.0378 x 10~*
kg.m?, g=9.8 m/s? And the controller parameters are chosen
as

2(0)= (15 1.5 14 0 0 0)"
WC(O) = 600 x 151m17 WQ(O) =6 X 151><1,F(0) =10 x 151.

we choose Q = Ig and R = I3 the control gains
are 7. = 2,1 = 2,m,2 = 0.001,n, = 0.001,8 =
0.001,y = 0.0001,» = 0.002. The reference trajectory q, =
[sin (¢) cos (¢) cos (0.5¢)] 7.

Simulation results are shown in Figs. 4-6. The system state
continues to approach reference trajectory at S5s. We can see
simulation results, the neural network weights W, and W,
converge. The robot’s real trajectory also tends to follow the
set trajectory at 5s. The corresponding control torques of the
four Mecanum wheels are shown in Fig. 5(b) maximum is 7;
= [11.6 6.15 6.15 11.6] Nm, In Fig. 6, the first ten critic
and actor weights finally converge to W,=(-226.6 560.3 578.7
973.9 328.5 81.9 666 501.1 4229 647.3) and W_= (-226.5
560.1 578.5 973.6 328.4 81.8 665.8 501 422.8 647) It can be
seen from Fig. 5(b) The robot’s moving trajectory followed
the trajectory set with the reinforcement learning algorithm,
deviating from the trajectory set at 16 seconds is within the
error range [0.00262 -0.0274 0.0218].

() (b)

0 25
Time (s)

(b)

Fig. 5. (a) Control signal. (b) the tracking error
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Fig. 6. Weights of the critic and the actor networks

In the simulation, we consider the platform having eccen-
tricity with d; = dy = 0.02m, and the mass has variation
Amy, = 3kg. Second simulation results are shown in Figs. 7-9.

From Fig. 8(a) we know that the undesired displacement
along the x-axes and y-axes are can be kept within 0.0041
0.0052 m and -0.00385 -0.00371 m, respectively, and the
orientation 6 error is within 0.0312 0.0321 rad. In Fig. 9, the
first ten critic and actor weights finally converge to W,=(-223.1
558.6 577.8 967.1 343.4 81.4 665.7 506.7 423.1 646.6) and
W.=(-223.2 558.8 578 967.4 343.5 81.45 665.98 506.85 423.3
646.8).

(@ (b)

i

Fig. 9. Weights of the critic and the actor networks

ime (5) Time (5)

The corresponding control torques shown in Fig. 8(b) maxi-
mum is 7; = [12.06 6.45 6.45 12.06]T7 Nm, the control torque

is lower compared to the results from the [61], [62] study,
this reflects the optimality of the designed method. Indicating
that the algorithm is practical and energy saving in real-
world applications. Control system for FMWR ensures minimal
deviation from the preset trajectory, even in the presence of
mass eccentricity and dynamic uncertainties.

V. CONCLUSION

This study proposes a robust optimal tracking control ap-
proach for a Four Mecanum Wheeled Robot (FMWR) in the
presence of mass eccentricity and friction uncertainty using an
online actor-critic synchronous RL algorithm. The completed
mathematical model of mecanum robot is established through
Lagrange’s equation. Moreover, the modified Hamiltonian func-
tion is generated under the discount factor influence. By min-
imizing its square, the training laws of actor and critic NNs
are proposed to obtain RL algorithm. Moreover, the tracking
problem and the convergence of learning algorithm are guar-
anteed by Lyapunov stability theory. Simulation experiments
demonstrated the efficacy of the proposed method, significantly
improving trajectory tracking accuracy and robustness against
disturbances. The results revealed that our control system
ensures minimal deviation from the preset trajectory, even in the
presence of mass eccentricity and dynamic uncertainties. Future
investigation should involve the extension to the experiment
systems.
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