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Abstract—The rapid integration and application of the 

Internet of Things in daily life have significantly improved 

connectivity and intelligent control to various devices. However, 

it has exposed such systems to increased susceptibility to cyber 

challenges, such as infiltration, data sovereignty, and cyber-

attacks. There is a need for an efficient and secure solution to 

these apparent security concerns which require complex social 

structures to adapt to various learning lessons quickly. The 

purpose of this study is to provide an inventive evolutionary 

operation to enhance the security of IoT networks and by 

integrating Convolutional Neural Networks and items of Grey 

Wolf Optimization algorithms – Standard GWO, Modified 

GWO and Advanced modified GWO. The GWOs were used to 

include surveillance accuracy layout, hence boosting detection 

accuracy. The action Lloyd testing found that smaller OWG 

intelligence (which achieved initially) unlimited interpretations 

which increased the percentage and was 97.4 %. This approach 

was further increased with FGWE, achieving 97.7 percentage, 

and 97.8 2.02% errors. The performance of both was 98.4 and 

97.5 for the two classes, respectively. The current study’s results 

reveal the effectiveness of computational development to 

enhancing secure IoT networks and offer a secure prototype for 

potential study to optimize the security structure. effet for 

keynote curricular scenarios due to the system cause and trusty 

security solutions. 

Keywords—IoT Security; Convolutional Neural Networks; 

Intrusion Detection; Adaptive Algorithms; Cybersecurity; 

Network Security; Adaptive Algorithms; Grey Wolf Optimization; 

Cyber Threat Detection.  

I. INTRODUCTION  

Artificial Intelligence is an essential component in the 

field of information security which makes it easier for 

identifying the cyber threats to the personnel. Deep learning 

algorithms, one of the AI techniques, may process several 

million events, providing a quick response to remote threats 

altogether. These systems, referred to as AI, are excellent at 

pattern recognition, “throwing away” e-malware, and 

training to identify the behaviors associated with 

ransomware. There are three types of malware, which is a 

swift technology with plans to disrupt, obtusely steal your 

information, and excepts for publishing side comments; they 

do it for money.  

However, in the AV-Test Threat Report, concerning this 

software, the numbers are getting worse and worse as the 

amount of malware program that occurs daily shines on 

prominent numbers with more than 35 million new malware 

being detected daily. 

In the past year, the total number of malware samples 

circulating has risen to 114 million, with January 2021 alone 

seeing over 607 million malware programs [1]. Hackers 

continually employ cunning techniques such as 

polymorphism [2], code obfuscations, and metamorphism 

[3], making it challenging for traditional anti-malware 

solutions to keep pace. Significant malware types include 

backdoors, password stealers, scanners, miners, DDoS 

attacks, and ransomware, among others [4]. 

Malware detection methodologies can be categorized into 

two groups: static and dynamic systems. Static systems 

employ symbolic execution to dissect code into components 

like opcode sequences, strings, function call graphs, and API 

sequences. In contrast, dynamic or behavioral analysis 

systems typically operate within a sandbox environment, 

aiming to detect malicious activities by emulating network 

behavior or capturing system calls. While effective at 

identifying covert behaviors, these systems are resource-

intensive and slow to react to targeted attacks on critical 

systems. They often fail to detect malware activity in 

controlled environments due to the limited number of attacks 

[5][6]. 

Given these limitations, this paper proposes a new method 

for enhancing IoT network security through the combination 

of CNNs with a series of Grey Wolf Optimization algorithms, 

namely Standard GWO, Modified GWO and Advanced 

Modified GWO. Presented algorithms were specifically 

developed to optimize network hyperparameters and increase 

the precision of intrusion detection while minimizing false 

positives under dynamic IoT conditions. Each of the 

algorithms was tested for effectiveness, and the results were 

presented in varying stages of their development, as set out in 

the Methodology section [7]. 

The growing insights of deep learning are increasingly 

applied across various domains, including fraud detection, 

malware processing, and image analysis, aiming to master 

complex patterns across multiple levels [8]-[13]. The 

introduction of Convolutional Neural Networks (CNNs), 

which have significantly contributed to advancements in deep 

learning, marked a new era of data training with multi-layer 

architectures and millions of parameters, handling datasets of 

considerable complexity. CNNs have proven essential in the 
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classification of time-series data and as a subfield in malware 

detection [14]-[15]. 

II. RELATED WORK 

This section will examine the research that relate to the 

Internet of Things (IoT) networking security in the context of 

Intrusions Detection (ID). It is mentioned as a factor 

according to performance outcomes as well as provides 

positive and negative aspects of the present system. 

Da Costa et al. [16] delivered an elaborate article aimed 

at bringing out an overview of different machine learning 

techniques implemented with the purpose of identifying IoT 

network intrusions. This review mainly emphasizes the 

machine-learning minority corresponds with the 

evolutionary- based processes. The primary objective of this 

work is to make the audience aware of the existing literature 

in this field of research and adds new material for academics 

who would want to learn about this security issue related to 

Internet of Things. The work is innovative and includes a lot 

of different security techniques that are used to protect 

computer networks and monitor intrusions in digital 

environment. Although these strategies are aimed at to limit 

several false alarms, they are, however, still being thought of 

as a big obstacle that needs to be taken care of in all previous 

research studies. 

In their article, Islam et al [17] aimed to distill the 

identified IoT profess by using a set of conventional and deep 

learning algorithms like SVM, DT, RF, LSTM, and DBN. 

Data analytics ways of doing things are put to use since they 

are both speedier than the other methods and more efficient 

in the actions that has not yet been discovered to come from 

acknowledged attacks. In essence, a primary objective of 

those framework’s lie in an intelligent, safe, and dependable 

IoT system which can detect its vulnerabilities, act as a strong 

wall during big scale cyber-attacks and perform a self-

recovery.  

This work provides a learning approach capable of 

detecting and enforcing security enforcement rules of not just 

a general case but also most of the very specific cases. 

Nimbalkar et al. [18] have made a close examination of the 

different feature selection techniques for the purpose of 

deriving the most effective intrusion detection system (IDS) 

against the threats in IoT networks. By the Information Gain 

(IG) and Criterion based on Ratio Margin (GR) selection 

models 50% of the features is reduced which is then provided 

to the JRip classifier for a proper detection. In addition, the 

authors aim to have a summary dataset after the operations of 

data preprocessing which include visualization, selection, 

cleaning and transformation. Furthermore, (accuracy of 

suggested classifier validates with and without IG and GR 

feature selection techniques is assessed. These techniques 

denoted in this study have proved effective in enhancing the 

classifiers performance. 

In their article, Hindy et al. [19] applied a thorough case 

study about intrusion detection and classification to evaluate 

the widest variety of machine learning techniques. For this 

task, the MQTT-IoT-IDS 2020 dataset must be used as the 

primary resource, which contains both the unidirectional and 

bidirectional attributes required for building a classifier with 

higher efficiency. The use of data-driven method in the paper 

by Alsaedi et. al. [20] aims at the detection of intrusions 

affecting both IoT and IIoT network using the telemetry ToN-

IoT dataset. The research direction aims at developing a new 

dataset for this case study which shall help with the overall 

preparation to large-scale networks for resilience and 

protection from the network recent cyber threats. Along with 

that, it analyzed some well-known and forthcoming datasets 

collectively covering this area of concern having been listed 

in Table I. 

TABLE I.  OVERVIEW OF IOT SECURITY DATASETS 

Dataset 

Heterogeneity 

of IoT Data 

Sources 

Different 

Attack 

Scenarios 

Number 

of 

Features 

Number 

of 

Instances 

Scenario 

AWID No Yes 155 458,691 6 

ISCX No Yes 45 15,570 5 

NSL-KDD No No 42 125,973 2 

UNSW-IoT 
trace 

No No 8 1,000,000 7 

T-IIoT Yes Yes 52 50,000 9 

BoT-IoT No Yes 116 56,800 8 

LWSNDR No No 29 48,000 4 

KDD’99 No No 41 494,021 1 

UNSW-NB 

15 
No Yes 49 2,540,000 3 

 

Zhou et al. [21] put forward GNN based IoT security 

surveillance scheme. Same here, the hierarchical adversarial 

attack (HAA) generation algorithm was created to detect 

unknown attacks in a more precise manner. Moreover, along 

with RWR, a technique can be used which is helpful in 

assessing the vulnerability of the network by calculating the 

priority rating of the nodes. This work builds on the UNSW-

SOSR 2019 dataset available for free using the suggested 

model that will undergo comparison with most of the 

referenced model. On the other hand, this model is not so time 

efficient as the solution is predicted, it can be the main flaw 

of this work. Wahab, et al. [22] suggested utilizing a deep 

learning online technique in the detection of interplanetary 

networks intrusion. For the purpose of intrusion data stream 

detection, the data drift detection technique has been applied. 

The algorithm can detect a deviation in the characteristics. 

The suggested method involves sustainable strategy of 

providing dependable intrusion solution. An advantage of 

this mechanism is it provides support for both the previous 

standpoint drifting detection and the new one intrusion 

identification and recognition. Nonetheless, the presented 

deep neural network method faces high time and computation 

complexity. 

The authors [23] had an adaptive PSO stategeman 

incorporated into CNN algorithm to identify network 

intrusions from IoT devices. Surprisingly, the model targets 

a multi-type of intrusion detection architecture with a 

predictive probability and reliability level enhanced from 

current sys- tems. Beyond that, the highest probability is 

figured out by using the cross-entropy loss function. We are 

about to show you the performance of the proposed APSO-

CNN intrusion detection system which is assessed by the 

training loss and accuracy measures. 

In addition to this, berádalgawad et al. [24] have utilised 

bi-directional generations adversarial net- work (Bi-GAN) 
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for the recogntiñ of cyber incidents from the IoT 23 dataset. 

In the following study, the adversarial autoencoder has been 

utilized with its iterative counterpart, the Bi-GAN model, for 

identifying a multitude of attacks from the network. 

Furthermore, 10-fold cross-validation technique is 

incorporated in proving the adeptness and validation of the 

described procedure. In line with these findings, it can be 

inferred that the deep learning techniques used generationally 

will provide high accuracy levels and a good detection 

standard. 

Kumar created one of the specialized distributed intrusion 

detection systems for spotting DDoS attacks from the IoT 

networks [25]. In most cases, an IoT-based security 

mechanism needs to manage huge amounts of data which are 

generated from connected IoT devices in a distributed manner 

and apply appropriate algorithms applicable in feasible 

architecture. Shukla, et al. [26] demonstrated an artificial 

neural network (NN) intrusion detection method for IoT 

security. The poster presented a few machine learning 

methods utilizing as inside the IoT environment. Another 

prominent element underscored in the paper is how essential 

it is to choose the correct data for a model [27]. Discussions 

are made on the naive Bayesian network intrusion technique 

and its IDS as well. In essence, it stressed out the importance 

of the IoT event preparation process being properly classified 

as well as the consequences of using a multi-hidden naive 

Bayes multi-classifier model instead of the standard classifier 

model which found it more effective. On this basis, the OAI 

position voids the information [28] pertaining to the given 

node of a single IoT network, ruling that the node is only 

responsible for that particular node. Therefore, through scale 

this method can be augmented with the increasing number of 

sessions to the number of nodes under analysis. In [29] the 

authors propose a hierarchical fog computing-based 

hierarchy for Industry 5.0’s smart energy-supplying systems. 

It processes data-heavy analysis from the IIoT devices faster 

than classical cloud computing does, so adding ABE for 

security prevents any data leakages. 

Albasheer et al. [30] investigated network intrusion 

detection systems (NIDS) and the issues they are facing, for 

example, the number of false positives, different strategies of 

alert correlation, and the way NIDS have impact on network 

security. An AI-based, cross-platform VPN system for 

identifying and classifying attack risks developed by [31] 

researchers. The were proved the effectiveness of an AI 

extended gradient boosting (XgBoost) algorithm in 

cyberattack prevention and developing an AI system which 

could work together with a Cassandra big data system. In 

[32], researchers have suggested an on-field intrusion 

detection system (OMIDS) for electric vehicle networks 

which show high exactness for different threats. In [32], the 

authors discovered that supervised machine learning could be 

applied to IDS with a high accuracy. In [33], the authors 

raised “IntruDTree” as a machine learning based intrusion 

detection system created for the IoT. 

The literature review has proposed (Table II) that some 

strategies can be used to decrease the false positive rate, but 

at the same time, adding more training and labeling is needed. 

Nevertheless, there are some methods which are in the same 

direction and on the contrary of this reverse the process which 

results in reduction in false positives but at the cost of high 

computational costs for both training and testing. However, 

this is yet another important challenge for intrusion detection 

as real-time detection is quite relevant. 

TABLE II.  SUMMARY OF STATE-OF-THE-ART STUDIES FROM LITERATURE 

REVIEW 

Ref. 
Key 

Contributions 
Limitations Approach 

[19] Hindy 

et al. 

Focus on 

MQTT-IoT-
IDS 2020 

dataset and bi-

directional 
features 

No explicit 

mention of 
Limitations 

Case study on 

machine 
learning 

techniques 

for intrusion 
detection 

[24] 

Abdalgawad 

et al. 

Effective use 

of Bi-GAN and 
generative 

deep learning 

No specific 

limitations 

provided 

Bi-GAN 

model for 

detecting 
cyberattacks 

in IoT 

networks 

[22] Wahab 

et al. 

Detection of 
intrusion data 

streams with 

drift detection 

High 
computational 

and time 

complexity 

Online deep 

learning 

approach 
with data 

drift detection 

[17] Islam 

et al. 

Focus on quick 

implementation 

and effective 
handling of un- 

known events 

Limited 
discussion on 

computational 

efficiency 

Use of 
machine 

learning and 

deep learning 
algorithms 

for IoT threat 

detection 

[16] Da 

Costa et al. 

Comprehensive 

review of IoT 

intrusion 
detection 

techniques 

High false 

positive rate 

across 
research 

studies 

Review of 
machine 

learning 

techniques 
for IoT 

intrusion 

detection 

[18] 

Nimbalkar 

et al. 

Effective 

reduction of 

feature 
count for 

accurate 

detection 

Limited 

discussion on 
scalability for 

large datasets 

Feature 

selection 

techniques 
for enhancing 

IDS in IoT 

networks 

[25] Kumar 
et al. 

Development 
of distributed 

intrusion 
detection 

system 

Limited 
details on the 

specific 
methodology 

used 

Distributed 
intrusion 

detection for 
DDoS attacks 

in IoT 

[21] Zhou et 

al. 

Innovative use 
of GNN for un- 

known attack 

detection 

Increased 

time 

consumption 
for 

predictions 

GNN-based 

intrusion 
detection 

using HAA 

and RWR 
techniques 

[26] Shukla 

et al. 

Examination of 

various 

machine 
learning 

methods in IoT 

No explicit 

discussion of 
limitations 

AI-based 

intrusion 
detection in 

IoT with 

focus on data 
selection 

[20] Alsaedi 

et al. 

Development 

of new dataset 

for 
IoT intrusion 

detection 

Limited 

information 

on 
performance 

evaluation 

Data-driven 

approaches 

for IoT and 
IIoT intrusion 

detection 

[23] Kan et 

al. 

Incorporation 

of PSO with 
CNN 

for improved 

reliability 

Limited 
details on 

how cross-

entropy loss 
is 

implemented 

Adaptive 
PSO-CNN 

model for 

multi-type 
intrusion 

detection 
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The deep learning (DL) scheme described in paper [34] is 

something novel and effective with a three-level model. An 

architecture which consists of Convolutional Neural Network 

(CNN) along with a Bidirectional Gated Recurrent Unit 

(BiGRU) has been proposed here for the purpose of 

identifying organized accused (intruders). The evaluation 

mechanism of the BiGRU Poem is a feature all to itself. As a 

counterpart of this, the accuracy of this method can be further 

increased by utilizing a nature-inspired optimization method 

called the Wild Horse Optimization (WHO) as a meta-

heuristic technique. 

In [35] a token IDS-DL-DDoS Botnet detection method 

is unearthed via an innovative ML technology. The resulting 

solution exploits the mixture from the normal traffic data and 

the regular traffic data of a malicious type along with a 

scalable DNN designed specifically for robust detection of 

IoT botnet threats. 

This extension is about intrusion detection systems (IDS) 

which is discussed in [36] when an ID super-parameters 

control system, termed HyConSys is presented. The network 

takes care of the extraction of significant data units of features 

that are readily labeled, and this involves the clustering 

process making use of the k-means algorithm. The system 

gains in integrity by involving the Proximal Policy 

Optimization (PPO) agent which supervises the IDS through 

adjustable learning and control functions. 

In [37], an approach of DL-based anticipatory ANN is 

presented that achieves better accuracy k-barrier computation 

for identification and mitigation of intrusion attacks on 

machine learning models. This approach takes advantage of 

four latent features, which are two regions of interest and two 

different frequency bands that are utilized in active sonar 

operation with a Monte Carlo simulation for the neural 

network elements and hence improve their estimating 

capability. 

In [38], a deep multilayer identification approach is 

introduced for intrusion detection, which operates in two 

stages: a pure understanding of what as well as a form of 

invasion it is. The quality of the final continued to look into 

introducing an oversampling approach is apply. Large 

numbers of tests are the main component of this approach to 

find out the efficiency across numerous scenarios and the 

application of oversampling techniques. 

The authors of IDS DDoSNet in [39] have presented a 

novel IDS, which contains a PSO-based feature extraction 

algorithm and is therefore intelligent. 

In [40], an animal detection system is suggested which is 

both low-cost, robust & scalable, based on DL and computer 

vision technology. The PIR system is powered by Raspberry 

Pi units, which crunch the image data to detect the presence 

of animal life. The MobileNetv2-SSD method is aimed at 

initial achievement of target detection and ResNet50 model 

mixed with Triplet Loss training is used to improve the 

accuracy of animal recognition. 

Moreover, it is discussed in [41] that a developed DL-

based methodology for automatic classification of animals is 

a better approach than the existing one. This system involves 

an alert unit which is attached to the deep CNN with an 

animal repulsion circuit. To extract the features from 

complicated images, deep CNNs are employed and afterward 

these features processed by means of Cross-CNN techniques. 

After the feature extraction is completed, the DL method 

utilizes the extracted features to precisely classify various 

animal types. 

In the world of the Internet of Things (IoT) the ability of 

phishing has inspired a repertoire of devices that are centered 

on apprehension and countermeasures. Mughaid and 

colleagues [42] designed an ML algorithm that splits the 

training and testing data for the identification of phishing 

attacks under the electronic mails. They compared three 

datasets to reach high precision detection rates. Abdulrahman 

et al. [43] created an ML method based on Random Forest 

classifiers to distinguish phishing sites and verify its benefits 

using a validity test. 

Jain and Gupta [44] developed the PHISH-SAFE 

structure with ML technology that involved URL features. 

The system examines fourteen URL attributes to establish the 

authenticity of web pages, by using Naive Bayes classifier 

and Support Vector Machine classifiers, on a big dataset of 

phishing and layered links. Huang et al. suggested a novel 

scheme for phishing website recognition through capsule 

based NN that consists of multi-layered processing to do the 

multi- dimensional feature extraction from the URLs. 

A study of the author that was done in [45] concentrated 

on key characteristics for phishing detection, employing the 

Fuzzy Rough Set Theory to pick the best features from 

benchmark datasets. The features were subsequently 

experimented on the usual classification algorithms for 

phishing detection purposes. In his work, Jain and Gupta [46] 

recommended a visual similarity and link patterns 

comparison to monitor fraudulent phishing activities in e-

banking and commercial websites. 

Azeez and colleagues [47] suggested an automatic 

whitelist detection approach of phishing. The links 

scrutinized included actual and visual links that were 

compared against a predefined set of trusted sites to ascertain 

their legitimacy. Additionally, [48] by Conghui et al. 

proposed a Convolutional Neural Network-based email 

phishing detection system (CNNPD) which categorizes the 

emails into phishing emails and normal emails. An 

innovation which employs the MFO-RELM for detecting 

threats by cyber-attackers was showcased in article [49] as a 

viable solution, proving its usefulness in detecting numerous 

threats involved in IoT network. The research work done by 

Ruiz-Villafranca, and his team is an instance of the 

application of MECInOT - it is an example of an open-source 

framework which constructs testing environments for general 

purpose IoT platforms and, employing tree-base ML 

algorithms, detects intelligent attacks on the constructs. 

One of the representatives of the TON Center, Rookard 

and Khojandi [50], proposed to apply reinforcement learning-

based network ISC that is based on huge database which is 

TON-IoT and Deep Q-Network (DQN) model to allow IoT 

systems to identify cyber-attacks effectively. To conclude, 

Mengash et al. [51] applied a method level integrator of an 

SRO framework and an ML enabled cybersecurity technique 
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that developed a system to identify instances of cyberbullying 

on social media platforms (SRO-MLCOSN). 

III. METHODOLOGY 

This paper presents and elaborates a sophisticated 

approach to the methodology of intrusion detection in the IoT 

device environment. The method starts from pre-processing 

Tun-IoT dataset to create a quality input (Fig. 1). The 

obtained data is then run through a feature selection method 

to separate informative attributes, which are then used to train 

a convolutional neural network. The algorithms integrated 

into CNN are applied to optimize performance. A few Grey 

Wolf Optimization have been used to enhance the model: first 

of all GWO which works to find the best values for 

parameters. The next two, Modified Grey Wolf Optimization 

has been designed explicitly in this study to select the best 

features and the best parameters for the previous select. 

Secondly, Advanced Grey Wolf Optimization has been 

implemented to optimize the Grey Wolf Optimization 

performance by using the advanced algorithm structure.  

The Advanced Modified Grey Wolf Optimization 

combines the strengths and mitigates the weaknesses of both 

MGWO algorithm, i.e., new pattern search and existing 

proven computational pathway and is desined ot strie a 

delicate balance between these two, ensuring both robustness 

and adaptability of the model. Each variant has been tested 

against specific performance indicators to assess efficiency 

and accuracy. that helps to increase the accuracy and 

reliability substantially of the Intrusion Detection Systems in 

IoT. A model with advanced computational methods not only 

increases the accuracy of detection but is also well-

interpretable and usable for the end users.  

As a result, it is also anticipated to show a clear 

improvement in the detection and response time (real-time 

detection), false positives and negatives, and response time 

dealing with a variety of increased security threats such as 

zero-day attcks, enhancing the robustness of the system. 

These enhancements are essential in the case of deploying in 

security criticl conotexts, as they will ensure efficient 

protection against attacks. 

 

Fig. 1. Proposed Scheme 

A. ToN_IoT Overview 

The ToN_IoT datasets [52] introduced and referenced in 

and are cutting-edge and designed to facilitate the testing and 

evaluation of cybersecurity mechanisms in Internet of Things 

and Industrial Internet of Things systems. The naming 

ToN_IoT encapsulates the all-encompassing coverage of 

telemetry data from both IoT and IIoT sensors, including 

operating system data from well-supported platforms, such as 

Windows 7 and 10, Ubuntu 14 and 18 TLS, and also, 

extensive network traffic data, specifically making them an 

optimal resource for security analysis. These datasets result 

from a comprehensive setup from UNSW Canberra Cyber, 

School of Engineering and Information Technology located 

at the Australian Defence Force Academy. Through robust 

efforts, the data collection procedure is structured in parallel 

processing mechanisms controlled environment in real-scale 

networks established purposely to meet these requirements. 

An experimental device to emulate the IoT and Industry 4.0 

settings was developed by the IoT Lab.  

A variety of components are incorporated, such as virtual 

machines, physical set-systems, hack platforms, and cloud 

and fog computing technologies, and meticulously 

orchestrated to emulate the vast network architecture 

intricacies, as typically observed in IIoT environments. The 

heterogeneity of these records carries normal operational and 

cyber scenario data ranging from different forms of 

cybersecurity threats as well. Attacks triggered different 

hacking techniques deployed in different parts of the network 

such as web apps, IoT gateways, and computers. The hacking 

techniques employed are mainly DoS, DDoS, and the 

ransomware attacks designed specifically to determine the 

systems` resilience and adaptability incorporating every 

common and emerging cybersecurity threat. This 

comprehensive dataset does not only allow an exceptional 

platform to evaluate various AI implementations in 

cybersecurity but also is the forefront data in the development 

and validation of AI algorithms and other security solutions. 

Therefore, the dataset caters not only to the research domain 

but as well as the practitioners in conducting studies that 

ensure IIoT augmented cybersecurity malgines the increasing 

cybersecurity threats. 

B. Preprocessing 

The step of preprocessing is the most significant of all 

steps, here the data is being prepared in such a way that that 

it is suitable for the model training and the subsequent 

analysis. The process starts with dividing the dataset to come 

up with the feature vectors and the target. The feature 

constant ′X′ is derived by dropping the ’label’ and type 

columns from the imputed dataset; as a result, it isolates the 

set of variables associated with the intrusion detection 

system. Concurrently, two label sets are created: y1 is 

designed for the purpose of a classification task, whereas, y2 

is created with multi-task learning scenarios or alternative 

analyses. 

The subject y1 is screened to find out the number of a 

special classes, which determine an architecture of the model 

via an output layer’s dimensionality. The number of classes 

precisely is what determines the organization of the final 

classification layer of the neural network. This is also a 

precondition especially for those prediction methods such as 

one-hot-encoding which follows. 

After separating features and labels the feature set X 

undergoes normalization which is borne out. A 
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MinMaxScaler is used typically to bring the ranges of 

features to fixed range, for example [0, 1]. Therefore, when 

scaling the gradient descent optimization algorithm that is 

used during a deep learning model’s training, this will occur 

more efficiently by working its way on the smoother error 

surface. 

Furthermore, through close checking of X, the existing 

presence of NaN (Not a Number) is checked, and if it is 

detected then this may lead to a reduction in the learning 

process. NaN values may be indicating incomplete data sets 

or errors in the data collecting processes. Therefore, most 

likely, they should either be imputed or eliminated. the model 

evaluation operation will be carried out by the 

evaluate_classifier, a custom function defined for this 

purpose. This function will be responsible for measuring the 

accuracy of the classifier on the test set using variety of 

metrics such as classifier accuracy, error rate, confusion 

matrix, and a detailed report on classification containing 

precision, recall, F1-scores for each class. This plotting 

routine also creates a confusion matrix to help interpret model 

performance with a matrix and also sensitivity and specificity 

for a more precise observation. Finally, we come to the data 

splitting into the training and testing subsets with the testing 

one being about 20% of the original dataset. This segregation 

or put this separation is paramount for the model assessment 

on the unseen data, thus producing a good speculation of the 

model’s generalization capacity. 

C. Feature Selection 

Feature selection is a technique that helps to wade out the 

most significant features that can contribute to the 

performance of the model in prediction among the features 

which contain data information. This is called a very 

important step, as it not only lets the model achieve higher 

performance level by mean of cutting redundancy and noise 

but boosts computational efficiency. 

With a hybrid objective function that combines F-score 

with features of statistical distribution such as kurtosis and 

skewness [53]-[56] and normalizes by the standard deviation, 

the memory of each feature will have its own weight in the 

model. The features that are measured to have higher F- 

scores are often considered to have better predictive power 

with respect to the dependent variable.  

Although features with extreme values of kurtosis and 

skewness may aid in the stability or reduce the risk of bias in 

the model, they are subtracted from the F-score in the fitness 

calculation as they may also introduce bias into the model or 

even instability. For the sake of fairness, the variance 

normalization has been used to escape the role of one feature 

becoming too large and, thus, getting more prominence in 

selected features. 

Next, forward selection works as a wrapping that 

underlies a hybrid objective function of the feature selection 

by iterative method. Through trial and improvement, vitality 

is added gradually; one feature added at a time until the 

innocuous model is maximized in terms of performance 

demonstration, or a pre-defined number of stable cycles are 

reached.  

Among features, metrics including F-score, skewness, 

kurtosis, and variance are computed to provide attitude to 

multi-dimensional distribution changes of these metrics 

before feature selection and afterward. 

The figures presented, identified as Fig. 2, Fig. 3, Fig. 4, 

and Fig. 5, violin plots to visualize the distribution of various 

statistical metrics across all features compared to those that 

have been selectively retained, referred to as "Leave Out" 

features. Violin plots are particularly effective for this 

purpose as they provide a clear illustration of the data's 

distribution and density across different values, represented 

along the y-axis. The width of each plot at different points 

along the y-axis reflects the concentration of data points, 

offering a visual representation of frequency. 

In Fig. 2, which focuses on the distribution of F-scores, 

the violin plot reveals a notably narrower distribution for the 

selected features as opposed to the broader distribution 

observed across all features. This narrowing indicates that 

features with lower F-scores, which likely contribute less to 

predictive accuracy, have been effectively filtered out during 

the feature selection process. Such refinement highlights the 

effectiveness of the selection criteria in enhancing the 

model's focus on more predictive elements, thereby 

streamlining the feature set to improve model performance 

and reduce computational complexity. 

 

Fig. 2. Distribution of the F-scores 

In Fig. 3 This diagram illustrates the skewness in the 

distribution of feature values. The skewness measure helps in 

understanding the asymmetry of the data distribution in 

relation to the normal distribution. The plot suggests that 

selected features tend to have a distribution that is more 

symmetric compared to the complete set, which may 

contribute to better model performance by focusing on more 

statistically balanced features. 

In Fig. 4 the plot focuses on the kurtosis of feature 

distributions. Kurtosis is a measure of the "tailedness" of the 

probability distribution. The selected features show a sharper 

peak in their distribution, which might indicate a greater 

outlier presence or heavier tails, factors that can influence 

model sensitivity and robustness. 

In the next Fig. 5 the following can be seen: the variance 

of the features, where a higher variance in the selected 

features compared to the full set suggests a preference for 
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features with more variability in the data, potentially 

enhancing the model's ability to capture more complex 

patterns. 

 

Fig. 3. The Skewness Distribution 

 

Fig. 4. The Kurtosis distribution 

 

Fig. 5. Variance distribution 

The apotheosis of this process comes after weaving the 

selected feature columns into this new data frame into which 

only the features which we required are included. These two 

lists now make up the training dataset. The labels for multi-

assembly status are concatenated and are saved to a CSV file 

for future use. Thus, the feature selection phase is completed, 

and our predictive models will be reliable and robust. 

D. CNN Architecture 

The CNN architecture, described in [57], is prepared to 

thoroughly analyze and process the extracted relevant 

characteristics highlighted above. This architecture is laid out 

according to a series of layers, all of which are programmed 

to perform several individual tasks that together allowed the 

model to look for intricate patterns in the dataset. The initial 

layer of the CNN is the flattening layer, containing 

predetermined filters and kernel sizes. Convolutional layers 

operate by gliding the kernel across input data and, in doing 

so, scan these data points for local features or patterns. The 

filter and kernel widths are critical architecture parameters as 

they determine how broad or narrow the composite feature 

field will be, allowing the model to focus on the pertinent 

pieces of data. The activation layer is next using a linear 

rectified unit function, usually. This layer introduces non-

linearity into the input, making it simpler for the model to 

detect complicated and non-linear relation characteristics. 

This will allow CNN to generalize better and then learn from 

a varied input dataset. The max-pooling layer is the next. This 

layer decreases the dimensions of the obtained maps 

previously generated by a variety of other layers. This is 

accomplished by keeping the most pertinent characteristics 

detected by the preceding layer against the variant input. This 

approach becomes more efficient in subsequent steps because 

fewer parameters are required to compute the subsequent 

layers. A flattening approach is implemented. Since the 

preceding step provides spatially arranged characteristics, 

they must all be refocused into an input vector to configure 

it. 

Next, the fully connected layer is added after the previous 

layer. Also called the dense layer, this serves as the ‘control 

center’ where the weight of how important the feature is 

computed in making predictions. Reduction in the number of 

neurons is done in the layer-wise manner, which turns into a 

model, and reduction in the number of high level features 

leads to a very simple model called an output layer. The last 

layer contains the following layer in this CNN, which is 

terminally ending layer containing softmax activation 

function [58]. This function develops the requirement of the 

input that needs to do the classification of the prediction. 

Further, it develops a probability distribution over the classes. 

Probability serves or shows the confidence of the input form 

to the given data how the layer will make the classification of 

the feature within the layer. This essential in multi 

classification class where the input features may be classified 

in more than one class. Finally, compilation of the model to 

choose the gradient function and optimizer which acts as the 

guide during compilation. In deciding the loss the guide 

predictor that measures how the model ought to maintain 

during the detection level the loss is used as a guideline to the 

optimizer which helps the loss addition to the model to 

minimize the loss. In conclusion, the described method gives 

a step to step description of CNN architectural impact in 

terms of classification of inputs of data complex. The use of 

the linear and a non-linear layer processed in an effective way 

due to the high dimensionality of the data which can easily 

identify patterns with high accuracy. 

E. CNN+GWO Architecture and Parameters 

In reference [59], the authors propose integrating Grey 

Wolf Optimization to enhance the architecture of 

Convolutional Neural Network. GWO is integrated to 

effectively finetune critical hyperparameters of the network 

based on its robust capability for global search and 
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optimization. It mimics a social hierarchy and hunting 

strategy of the grey wolves in the wild. Such critical 

optimization can explore complex hyperparameters space of 

CNNs to optimize and achieve high performance without 

significant computational costs. GWO has multiple roles 

based on the social structure of wolves, and proposed 

solutions can take the form of an alpha, beta, or delta. These 

roles direct the optimization procedure, with the alpha 

representing the best current solution. In each subsequent 

iteration of GWO, the positions of candidate solutions are 

updated, and their movement represents wolves’ movement 

towards the prey. In this metaphorical scenario, GWO helps 

find optimal configuration and also ensures a search that 

avoids local minima. The candidates are different sets of 

hyperparameters, including the number of filters and sizes of 

filters in the convolutional layers of CNN. The optimal 

configuration of hyperparameters will result from dynamic 

adjustments made to the positions of each candidate. The 

adjustment is done through an iterative process of GWO per 

their fitness based on their performance in predicting 

outcomes using CNN. The process continues until an optimal 

solution is met, which is the best balance of filter numbers 

and sizes. 

The range of values explored during this optimization 

process, particularly in terms of the diversity of filter sizes 

and the depth of convolutional layers, is essential: in order for 

the CNN to be able to learn to differentiate between features 

in the input data regardless of whether they are large-scale 

structures or fine details, the optimization process must 

establish a method to ensure that the desired diversity of filter 

dimensions is achieved. In other words, one of the main goals 

of employing GWO during optimization is not to end up with 

the best CNN architecture proven to be the most accurate, but 

to develop one that can also generalize better across datasets 

and problems. Once the optimization process is complete, the 

best-performing configuration is selected using the results of 

GWO. Generally, this configuration features widely 

optimized numbers of filters, typically ranging from 64 to 

256, and kernel sizes spanning 2×2 pixel regions up to 5×5. 

Once the ideal configuration is determined, the model is 

trained on the entire dataset for validation and testing. The 

finalized, GWO-optimized model is then tested extensively 

on novel data to ensure that it performs similarly on training 

data and generalizes well. By following this thorough 

procedure and utilizing the results of the bio-inspired GWO 

optimization method, the CNN model created for this 

application is able to achieve high generalization capabilities 

and robust performance, which is necessary for most pattern-

detection applications one might deploy it in. Ultimately, the 

incorporation of the GWO into the training process uses the 

hyperparameter space to better refine the architecture and 

function of the model for the desired application. Therefore, 

the natural metaheuristic optimization method discussed 

herein can be used to increase the interoperability, efficiency, 

and sophistication of deep learning by creating better 

optimized models. 

F. CNN+Modified GWO Architecture and Parameters 

In many other future studies of searching for better 

performance in CNNs, MGWO [60] can be utilized as a 

replacement to optimize those network hyperparameters, 

such as the number of convolutional filters and the size of the 

convolutional kernel. The method used in the study is 

intended to modify the original algorithm of GWO in the 

domain of deep learning by incorporating new fixtures to the 

initially and update mechanisms. Therefore, the method is 

anticipated to be efficient and accurate if it is implemented. 

Convolutional one of CNN starts with the MGWO deciding 

the ideal number filters and the kernel size. This layer is the 

central that allows for extraction of the features from the data 

inputs. After the result, the introduction of ReLU nonlinearity 

is the next. Max pooling layer is presented herein to discard 

the non-critical features and it makes focus on the main 

torments. After the loss function and the non-linear activation 

function, the flatten output goes to a sequence of dense layers 

with the last one being a softmax layer, which predicts the 

probability distribution is over two classes. 

Since MGWO is inspired by a social structure of grey 

wolves’ group and the hunting setting, which gives the best 

solution for the given interval, targeting on the policyholder 

problems and deciding the payout and the number of jobs, 

also filters 16-256, the size of kernel 2-5 is set. These 

confines are used for both inclusion and elimination, thereby 

enabling search space that can cover all reasonable values and 

at the same time be focused on the most reasonable among 

them. However, simultaneously, each of the wolves and 

equivalent solution candidates have been assigned smart start 

scripts. These scripts offer conservative addition of kernel 

size and number of filters and estimate wolf’s position in the 

next iterations based on their fitness, which is mobilized as 

an attribute of the CNN when the same hyperparameter is 

trained. The modifications performed by wolves are made 

through vertical dynamic adjustment coefficients which 

modified by alpha, the top-notch solution, beta and delta 

which are female for the rest. The cycle of adaptation is the 

most vital part of the evolutionary capacity of the GWO so 

that there is a balance of population based on the search space 

search and most promising solution. The cycle is repeated by 

the network so that the wolves are updated and this iterative 

process leads the wolves to the best configurations that are 

more robust for the CNN. At the end of the cycle, the best 

solution is selected and the best array of filter sizes, number 

of filters, and a kernel size is determined which make sure 

that all through the training and validation of CNN it can 

achieve the model accuracy. 

For the CNN+MGWO, having already determined the 

best parameters for the optimal environment, that CNN is 

trained over some a set number of epochs and with a specific 

batch size, and its performance is likewise monitored. Using 

training loss, validation loss and accuracy curve gives the 

network learning and visualize the training process each and 

every epoch. These illustrative instruments are able to be 

trustworthy on the matters is the model’s convergence and 

also effectiveness of the training level. To sum up the 

CNN+MGWO, therefore, it puts forth that CNNs’ potent 

characteristic in the field of the feature learning side and, in 

the other side, MGWO has a very strong optimal technique. 

Thus an embracement of hybrid techniques not only render 

deep learning networks architecture-wise, in a highly 

adaptive and efficient way but also provides a good reference 
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for the smart utilization of the bio-inspired algorithm in the 

field of artificial intelligence. 

G. CNN+Modified GWO + Advanced GWO (AMGWO) 

Architecture and Parameters 

The architecture of the Convolutional Neural Network 

(CNN) is significantly enhanced through the integration of 

two sophisticated optimization strategies: the Modified Grey 

Wolf Optimizer (MGWO) and the Advanced Grey Wolf 

Optimizer (AGWO) [61]. This dual optimization strategy not 

only aims at refining the primary architectural elements of the 

CNN, such as the number of convolutional filters and the 

kernel sizes, but also meticulously fine-tunes these elements 

to achieve outstanding accuracy and precision during training 

phases. 

In the initial stages of the CNN development, the 

architecture employs a convolutional layer whose 

configuration is dynamically shaped based on the outcomes 

derived from the AGWO method. This layer forms the 

foundation of the network by extracting crucial features from 

the input data. The next element is the non-linear activation 

function, which is typically Rectified Linear Unit responsible 

for enabling the network to learn complex patterns from the 

data. The third layer is the max pooling layer which reduces 

the spatial dimensions of the data. This not only aids in 

reducing computational complexities but also ensures that the 

most essential features are preserved. This enhances the 

model’s generalization power by utilizing the model’s 

strengths effectively. The process continues as the vectors 

and tensors get flattened and converted into a 1-D vector. 

This is essential in preparing the data for the final 

classification. The data then proceeds through several fully 

connected layers that reduce the booming dimension of the 

data until it reaches the softmax layer. This layer is important 

since it outputs a probability distribution over the various 

classes, enabling quantifiable inferences into the network’s 

predictions. The AMGWO is an application of intelligent 

adaptive mechanisms that allow on-the-go adjustments based 

on the CNN’s performance landscape, is an advanced 

innovation derived from the normal GWO’s modification and 

addition.  

Inspired by the social structure of grey wolves and their 

hunting dynamics, the AMGWO utilizes a pack of candidate 

solutions to effectively navigate the hyperparameter space. 

Each candidate is referred to as a ‘wolf’ and is tasked with 

adjusting their position in the search space through a set of 

heuristic rules that rely on their different performances or 

‘fitness’. This process allows the network to dynamically 

identify optimal parameter spaces hence balancing the 

exploratory landscape and that of exploitation, continually 

optimizing the performance. 

The AMGWO algorithm executes in a pre-defined 

hyperparameters range which includes the filter number’s 

adjustment within the 32 to 256 range and kernel size in terms 

of pixels of 2 times 2 to 5 times 5. The optimization is 

conducted in an iterative manner where the position of 

wolves is repositioned after considering their updated fitness 

score at each step. The aim of this process is to converge on 

a set of hyperparameters that results in an optimal 

classification of the network concerning the validation 

datasets. Following the identification of an optimal setting, 

an elaborate training is developed, which is performed over 

many epochs.  

Under this training phase, the CNN performance is 

monitored continuously using the training and validation loss 

and accuracy visualization. This analysis is vital in 

understanding how learning is happening in the network and 

hence to make an adequate adjustment to facilitate proper 

convergence without overfitting.  

Finally, the CNN+AMGWO is an elaborate evaluation 

based on a comprehensive metric-based evaluation. The 

evaluation is executed using a diverse performance metrics 

that evaluate the ability of the model using the loss and 

accuracy metrics, and the performance of the classifier. This 

is an essential evaluation metric as it is vital in determining 

the practicality of the model in real-world scenarios. It 

ensures the network is reliable and capable of achieving 

desirable solutions over various datasets and conditions. Thus 

shows the effectiveness of the CNN model reinforced by 

AGWO is effective in complex pattern recognition. 

IV. EXPERIMENT RESULTS 

The results obtained from applying different optimization 

techniques sequentially—Standard Grey Wolf Optimizer, 

Modified GWO, and Advanced Modified GWO – reveal 

optimization of the performance metrics of the CNN model. 

The metrics as shown in a table below reveal how each 

optimization technique (SGWO, MGWO, and AMGWO) 

improves the accuracy, error rate, sensitivity, and specificity 

of the model.  

The accuracy of the model is an indication of how many 

of the model’s predictions are correct. The trend shows a 

progressive increase of accuracy from 97.4% to 97.4%, 

97.5% & 97.9% as the optimization techniques are applied. 

The increase in accuracy from 97.4% for the standalone CNN 

model to 97.9 compounded with AMGWO demonstrates how 

GWO methods can be used to fine-tune a model for various 

datasets.  

The error rate, which is the inverse of accuracy, shows 

how often the model is making mistakes in predictions. The 

error rate reduced from 2.59% to 2.0%, 2.04%, and 2.02%, 

revealing that the model is making fewer mistakes and has 

been refined.  

The sensitivity is the true positive rate showing how well 

the model can spot positive instances. Sensitivity for the CNN 

model is 97.3% increasing to 98.5% as AMGWO is applied, 

which demonstrates that the model predicts actual positives 

without missing them.  

The specificity is the true negative rate which indicates 

the model’s ability to spot negative instances. It increased 

from 97.5% through. It shows that the model misidentifies 

few negatives as positives or classes well the class labels 

leading to less false alarms. All the above improvements are 

not just numerical improvements but rather developments 

that make a model strong. Such improvements are critical for 

models that are to be utilized in fields where there should be 

high reliability. This includes fields such as medical 

diagnostics, autonomous or self-driving vehicles, and 
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cybersecurity in such a case as shown in this article. These 

methods of algorithms are viable and applicable not only in 

ensuring the highest levels of accuracy are attained but also 

ensuring that the models can distinguish a true attack from 

activities that are not in a complicated pattern. 

TABLE III.  SUMMARY OF EXPERIMENTAL RESULTS  

Model Accuracy 
Error 

Rate 
Sensitivity Specificity 

CNN 0.974 0.0259 0.973/0.975 0.975/0.973 

CNN+GWO 0.977 0.0228 0.964/0.993 0.993/0.964 

CNN+MGWO 0.978 0.0211 0.975/0.983 0.983/0.975 

CNN+AMGWO 0.979 0.0202 0.976/0.985 0.985/0.976 

 

Fig. 6 presents a bar graph used as a local explanation tool 

within the context of Explainable AI to clarify how a 

convolutional neural network (CNN) model predicts a 'class 

attack'. This type of visualization elucidates the influence of 

various input features on the model's decision-making 

process. Each bar indicates the weight or importance of a 

specific characteristic of the input data in determining 

whether the input is classified as an attack. 

 

Fig. 6. Explainable AI 

The green bars in the graph depict features that contribute 

positively towards the classification of an input as an attack. 

These include features such as ‘synack <= 0.86’ and ‘src_pkts 

> 0.87’, which are represented by large features with positive 

weight, meaning that once the actual input feature values 

exceed this threshold, it drastically increases the probability 

of predicting an attack. These bars’ size further explains how 

influential the feature is on the model’s final output.  

Additionally, red bars demonstrate that the feature has 

negative influence on the model’s accuracy in its prediction 

of the input, thus referred to as a scenario that mimics an 

attack or one of least concern. Red features, such as 

‘ct_state_ttl <= 1.00’, provide a substantial size feature with 

a negative effect, which reduces the probability of predicting 

an input as an attack whenever the feature has a value. The 

feature thresholds, for instance, ‘<= 0.00’ and ‘> 0.60’ next 

to each feature, shows the point at which the influence of the 

feature changes from positive to negative and vice versa.  

Additionally, for the categorical feature, expressions such 

as ‘service = 0’ show how a particular category affects the 

prediction of an attack. This figure is important in the 

experimental setup since it shows the bridge between model 

outputs and the humanly understandable reason. It 

demonstrates the most influential features in the model’s 

decision virgin. This reason helps in validating the model’s 

prediction and might reveal possible areas of improvement in 

the model.  

By analyzing how different features affect the model's 

predictions, researchers can identify which aspects of the data 

are most predictive of attacks, potentially leading to 

improvements in feature engineering and model training. 

This level of interpretability is crucial in applications like 

cybersecurity, where the justification for a model's decision 

to flag an activity as an attack is as important as the accuracy 

of the prediction itself. 

The discussion section of our research paper further 

deeply explores the implications of our findings. Similarly, 

we revisit the core research questions and provide an 

overview of how our findings are positioned in light of 

existing knowledge in the artificial intelligence and 

cybersecurity domain.  

Indeed, by considering the various application of GWO 

strategies to enhance the accuracy of CNN models and 

optimize their operational efficiency, our findings offer 

critical insides into how this can be achieved under real-world 

scenarios. Our empirical analysis portrays an improved 

accuracy performance with CNN models following the 

application of GWO variants – Standard GWO, MGWO, and 

AMGWO. Already a strong standalone model with accuracy 

performance of 97.4%, the successive application of GWO 

strategies systematically enhance the model performance 

Notably, it’s the overall improvement in the 

generalization of these models that underlines the 

significance of models’ performance in diverse and dynamic 

security threats in ensuring the balance of sensitivity and 

specificity. Notably, the achieved balance provides a 

comprehensive approach to the elimination of bias, naturally 

present in most datasets, which can skew model output and 

cause less reliable systems.  

Additionally, the reported improved sensitivity in 

MGWO and AMGWO used models prove to be a critical 

attribute. Particularly, improved sensitivity means the models 

can identify and classify true positive instances effectively. 

This is a critical attribute in cybersecurity, given oversight or 

wrongly classifying a true threat without adequate sensitivity 

rates can be extremely costly. Significantly, it offers a 

judicious and responsive security approach, emphasizing that 

the optimized models are capable of minimizing false 

positives. 

The scope of these technical advancements is, from a 

practical perspective, immense in the various cybersecurity 

uses. For instance, in intrusion detection systems , this level 

of accuracy and rate of errors indicates that the system can 

detect minor subtle and sophisticated cyber threats with 

improved accuracy. Such capability can be of significant 

importance in a scenario where the agents of an attack on a 

machine apply sophisticated methodologies, evading 

unsophisticated mechanisms.  

The model’s increased sensitivity level enables the 

accurate detection of vague anomalies rays that may signal 

towards a security breach and enhanced specificity ensures 

that the daily network operations are not falsely detected as 

threats, reducing the rate of false alarms that may cause 
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disruptions. The applications of this CNN model 

optimization are not limited to the traditional IT setup but go 

further to include the security and monitoring of IoT devices 

and the financial systems.  

In the latter case, the model optimization will be vital in 

the detection and fight against fraud and theft which will be 

a significant improvement in the financial transaction 

domain. Generally, it is possible to assert that the CNN model 

optimization facilitated by evolutionary algorithms like 

GWO, not only improve the accuracy levels and efficiency 

but dramatically widen the application areas and significance. 

Therefore, this research highlights the importance of 

continuous improvement on the machine learning algorithms 

considering the growing levels of cyber insecurity. It 

perfectly captures the importance of the technical 

improvements triggered by the machine learning innovations 

and the cybersecurity measures to the many interconnected 

data systems globally. 

V. COMPARATIVE ANALYSIS  

The table presents a detailed comparative analysis of the 

proposed Adaptive Particle Swarm Optimization 

Convolutional Neural Network (APSO-CNN) algorithm with 

several related works in the field of IoT network intrusion 

detection. All key performance metrics were considered for 

comparison: accuracy, precision, recall, F-score, training 

time, and training time.  

APSO-CNN had the highest accuracy among all models 

considered, which implies its ability to identify normal and 

malicious activities accurately in the IoT network. Thus the 

algorithm has a robust performance in all kinds of intrusion 

scenarios. Further, APSO-CNN achieved high precision and 

recall. High precision indicates that the algorithm had a low 

false positive rate and rarely marks the normal network 

activity as intrusion.  

Similarly, High recall indicated APSO-CNN had high 

power to detect most of the intrusion activity with little false 

negative. In addition to a balanced F-score, APSO-CNN 

implies that there is no possibility of one standard surpassing 

the other.  

In terms of computational time efficiency APSO was 

more effective compared to other methods. Even though the 

Network time epitomizes the highest training time, it is not 

too slow for the high accuracy it demonstrates. This is an 

efficient testing tree; therefore, an optimal method can be 

used for testing real-time applications.  

The overall performance and reliability comparison in a 

3-type IoT network intrusion task portrays a high and 

efficient reliance on the proposed method. It depicts the high-

performance evaluation surpasses all the compared methods 

with robust performance. The paper confirms the high 

differences the proposed method has against the current 

methods. Assessment Measuring System. 

VI. CONCLUSION 

The current study integrates deep learning and 

evolutionary computation to present the performance 

difference of CNNs depending on the Wolves Optimizer 

variants. The sequential implementation of Genetic 

Algorithm, Modified GA, and Advanced and Modified GWO 

incorporated in the CNN were examined to visualize how 

each optimization algorithm dynamically adjusts model 

parameters, leading to incremental enhancement in predicting 

accuracy and deterioration in error rate. As denoted here, 

these optimization strategies are all intertwined, 

demonstrating their contributions, which lead to the regular 

staircase in terms of maximizing accuracy.  

The AMGWO-optimized CNN gained the best 

achievement, the smallest error rate and highest accuracy and, 

therefore, supports the suggested hypothesis that nature-

inspired algorithms exhibit capacity advances in the course of 

learning machines. The implications of all these outcomes are 

vital. The optimized model specifically showed equally 

balanced sensitivity and specificity, marking every model as 

highly reliable and therefore applicable in the real world, such 

as health and safety professional scenarios, which require the 

best prototype that could be trusted. The optimized model has 

high sensitivity; therefore, it will help every case targeted and 

positively identified as required. The model too is specific, 

meaning identified cases are always on the positive side. 

Overall, the integration of evolutionary algorithms with 

deep learning has a great promise in various areas. The 

utilization of GWO-based optimization for enhancing CNN 

models opens broad prospects for industries such as 

healthcare, finance, and cybersecurity. Specifically, more 

accurate models can ensure that patients receive proper 

diagnosis and treatment by detecting diseases with the 

highest reliability. In finance, CNN models improved by 

GWO-inspired algorithms can enhance the prediction of risks 

and benefits, support better decision-making, and identify 

frauds. In the field of cybersecurity, fine-tuning CNNs using 

GWO techniques will allow building more sensitive and 

specific intrusion detection systems, thereby ensuring proper 

protection against attacks.  

Furthermore, the current paper provides valuable 

information on the nature and functioning of CNN 

optimization using GWO-inspired approaches. This 

information is essential for practical implementation and has 

great implications for the development of powerful and 

human-like AI systems. Further studies can explore the 

application of GWO-based optimization to other DL models 

outside CNNs, such as RNNs or Transformers, or discrete 

GWO techniques to address existing drawbacks of CNN 

models, such as a small number of samples or reduced 

computational efficiency.  

Thus, research in this area can significantly contribute to 

the development of intelligent systems and the provision of 

more effective solutions for complicated problems in varied 

fields. The consistent use of language and the evident 

professionalism of the approach to presenting the topic 

underscores the clear reflection of research findings and their 

implications. In this way, the paper guides further research on 

the subject and demonstrates the potential of merging 

evolutionary algorithms with DL for the creation of strong 

and practical AI systems. 
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TABLE IV.  TABLE OF COMPARATIVE ANALYSAIS 

Reference Key Contributions Approach Accuracy 

Our work 
Optimization of CNN using 

GWO variants 

Evolutionary algorithms 
for optimizing CNN in 

cybersecurity 

CNN : 0.974 

CNN+GWO : 0.977 

CNN+MGWO :0.978 
CNN+AMGWO : 0.979 

[19] Hindy et 
al. 

Focus on MQTT-IoT-IDS 

2020 dataset and bi-

directional features 

Case study on machine 

learning techniques for 

intrusion detection 
RBFN showed superior performance with up to 89.7%. 

[24] 

Abdalgawad 

et al. 

Effective use of Bi-GAN 

and generative deep 

learning 

Bi-GAN model for 

detecting cyberattacks in 

IoT networks 

C&C-PartOfAHorizontalPortScan and C&C-HeartBeat, recorded the 
lowest F1-scores (0.93). 

[22] Wahab et 

al. 
Detection of intrusion data 

streams with drift detection 

Online deep learning 
approach with data drift 

detection 
- 

[17] Islam et 

al. 

Focus on quick 
implementation and 

effective handling of 

unknown events 

Use of machine learning 
and deep learning 

algorithms for IoT threat 

detection 

SVM showed the highest accuracy across NSL-KDD, IoTDevNet, and 

DS2OS datasets with scores up to 99.84%. 

[16] Da Costa 

et al. 

Comprehensive review of 

IoT intrusion detection 

techniques 

Review of machine 

learning techniques for IoT 

intrusion detection 
- 

[18] 
Nimbalkar et 

al. 

Effective reduction of 
feature count for accurate 

detection 

Feature selection 
techniques for enhancing 

IDS in IoT networks 

- Demonstrated that reducing the number of features through 
sophisticated selection methods could maintain or even enhance the 

accuracy and efficiency of IDS. 

[25] Kumar et 

al. 
Development of distributed 

intrusion detection system 

Distributed intrusion 
detection for DDoS attacks 

in IoT 

Experiments were conducted on a Tyrone PC with specific hardware 

specifications. 

[21] Zhou et 

al. 
Innovative use of GNN for 

unknown attack detection 

GNN-based intrusion 

detection using HAA and 
RWR techniques 

The proposed method demonstrated a reduction in classification 

precision by more than 30% in state-of-the-art GNN models, GCN and 
JK-Net, using UNSW-SOSR2019 dataset. 

[26] Shukla et 

al. 

Examination of various 

machine learning methods 
in IoT 

AI-based intrusion 

detection in IoT with focus 
on data selection 

- 

[20] Alsaedi et 

al. 

Development of new 
dataset for IoT intrusion 

detection 

Data-driven approaches for 
IoT and IIoT intrusion 

detection 

- binary classification CART achieved the highest scores in accuracy 

(0.88), precision (0.90), recall (0.88), and F-score (0.88). 

- multi-class classification CART again performed best with scores of 
0.77 in accuracy, precision, recall, and F-score. 

[23] Kan et al. 
Incorporation of PSO with 

CNN for improved 

reliability 

Adaptive PSO-CNN model 

for multi-type intrusion 

detection 

The results, validated through five traditional indicators and accuracy 

statistics from 10 independent experiments, demonstrate that the APSO-
CNN algorithm is effective and reliable for detecting multi-type IoT 

network intrusion attacks. 
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