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Abstract—Parallel robot systems have become increasingly 

applied due to significant advantages such as fast operating 

speed and high accuracy. Researchers are currently focusing on 

developing advanced control methods to increase the accuracy 

of this system. However, these advances face many challenges, 

including system dynamics and uncertain components in impact 

factors. Therefore, achieving a high level of accuracy remains a 

challenging problem and requires continued effort and careful 

research. This study proposes to use the Cerebellar Model 

Articulation Controller (CMAC) to estimate the nonlinear 

components of the system. By applying Lyapunov theory, this 

method focuses on adapting CMAC's online learning rules while 

ensuring stability and convergence. Besides using CMAC, the 

paper proposes a new signed distance method instead of sliding 

mode control (SMC) to handle input errors. This method aims 

to increase flexibility and adaptability and overcome the 

chattering of SMC in nonlinear systems. In particular, the 

research also adds a robust controller to ensure stability using 

Lyapunov to improve the system's accuracy. These 

recommendations increase the flexibility and accuracy of the 

control system, helping the system respond more quickly to 

changes and uncertainties in the operating environment. 

Finally, to demonstrate the effectiveness of the proposed 

controller, a five-bar parallel robot was chosen to conduct 

experiments in case situations. The results show that the 

proposed controller combined with signed distance achieves 

higher accuracy than other algorithms and is more stable in all 

cases mentioned in the research. 

Keywords—Cerebellar Model Articulation Controller; 

Adaptive Control; Robust Control; Signed Distance; Five-Bar 

Parallel Robot. 

I. INTRODUCTION 

In controlling complex nonlinear mechanical systems, 

controllers based on the mathematical model of the object 

often provide higher accuracy than methods not based on the 

mathematical model of the object. However, due to system 

uncertainties, such as model errors, parameter fluctuations, 

environmental disturbances, and initial deviations from the 

reference trajectory, obtaining an accurate dynamical model 

is complex and is not feasible. This uncertainty can reduce 

the accuracy of the system. In order to mitigate the impacts 

of uncertainty, numerous approaches have been devised, 

encompassing adaptive controllers [1]–[2], model predictive 

controllers [3]–[5], robust controllers [6]–[9], Lyapunov-

based controllers [10]–[11], and sliding mode controllers 

(SMC) [12]–[13]. Neural networks (NNs) are built from 

complex parallel structures, allowing them to approximate 

nonlinear functions with arbitrary accuracy. Using NN to 

analyze the stability of uncertain dynamical systems has 

become popular and effective [14]–[16]. However, 

continuously updating all NN weights in each learning cycle 

is a global and time-consuming process, which limits the 

effectiveness of multi-layer NNs in control problems actual 

control [17]–[20]. 

The SMC structure and neural network combination have 

been seen as a potential approach to improve the operating 

accuracy of nonlinear systems [21]–[25]. However, building 

accurate and reliable models often poses significant 

challenges, leading to lower-than-expected accuracy [26]. In 

addressing these obstacles, numerous researchers have 

embraced artificial neural networks (ANN) to tackle 

uncertain components within mathematical models, aiming to 

emulate ideal sliding mode control systems [27]. These 

efforts address the significant challenges posed by system 

uncertain components and nonlinearities, which are often 

difficult to represent using traditional models [28]. These 

descriptive systems have attracted widespread interest in the 

literature and have many practical applications, including 

economics, robotics, and electrical and chemical systems 

[29]–[30]. However, uncertain components always exist in 

actual control systems, including unmodeled characteristics, 

model errors, and uncertain components. These conditions 

can reduce control system accuracy and even cause 

instability. 

Besides the complexity of robot dynamics, one of the 

significant challenges for handling significant uncertain 

components in the dynamics [31]–[33]. The requirements for 

robot control systems include ensuring flexible tracking or 

coordination of a reference trajectory, which can vary over a 

specific period, along with processing uncertain situations. 

These are typically met through finite-time adaptive control 

methods [34]–[44]. Significant progress has been seen in the 

use of the Cerebellar Model Articulation Control (CMAC) 

paradigm [45]–[46] due to its fast convergence rate and good 

generalization ability in the identification and control of 
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complex dynamic systems [47]–[48]. Gradient descent 

algorithms such as backpropagation (BP) have been applied 

to optimize the parameter weights of the network model to 

minimize the approximation error [49]–[50]. This is a 

primary method for training CMAC models in system control 

applications. In addition, research on intelligent control has 

proposed methods to directly integrate human expertise into 

neural networks [51]–[57]. In references [48], [50], [53], and 

[54], some network structures were proposed combined with 

SMC. This is a remarkable step forward in the research and 

development of advanced control methods for nonlinear 

systems in general. However, although these controllers can 

adapt to actual systems, chattering emitted from the SMC can 

affect the system's accuracy. Chattering is a common problem 

in control systems, especially when using nonlinear methods 

such as SMC. The chattering can occur when the motion or 

control system is disturbed or unstable during operation. In 

these cases, although SMC can improve the accuracy and 

increase the system's flexibility, it can also introduce 

unwanted oscillations and increase instability in the system. 

In order to minimize the chattering phenomenon from the 

SMC, this study designed and integrated the signed distance 

method into the control system. This method benefits from 

tracking the trajectory of nonlinear systems more accurately 

and stably, with gratitude for applying the Lyapunov stability 

theory. This article introduces the CMAC neural network 

model to solve the problem of estimating and adapting to 

nonlinear factors to improve accuracy. Besides, the research 

proposes a signed distance method applied to CMAC to track 

trajectories in nonlinear systems with uncertain components 

to overcome the chattering phenomenon of SMC. In addition, 

the stability and convergence of the CMAC adaptive law are 

guaranteed by the Lyapunov theory. From there, Lyapunov's 

theory ensures the CMAC neural network system's 

convergence and signed distance. Finally, the proposed 

structure was experimented with on a five-bar parallel robot 

system with many different cases to confirm the reliability of 

the research. 

The main contributions of the research proposed in this 

article are summarized as follows: 

1. Signed-distance method: The research introduces the 

method of using signed distance to overcome the chattering 

phenomenon generated by SMC. 

2. CMAC controller: This approach combines the signed 

distance method with the CMAC neural network model to 

estimate and adapt to the nonlinear factors of the system. By 

using Lyapunov theory, the stability and convergence of the 

CMAC network structure and signed distance are guaranteed 

to improve the accuracy of system operation. 

3. Experiment: The structure is tested on a five-bar 

parallel robot with many different situations to ensure the 

honesty and reliability of the proposed method. 

The article is organized according to the following 

structure: Part 2 discusses the mathematical model of the 

five-bar parallel robot in detail. Next, in Part 3, the theory of 

the CMAC model is introduced. Part 4 delves into the robot's 

control system and describes how to analyze stability using 

Lyapunov. The testing process of the CMAC algorithm  

combined with the signed distance method is presented in 

Section 5. Finally, Section 6 summarizes and draws 

conclusions based on the information presented. 

II. DYNAMIC EQUATION DESCRIPTION 

The dynamics of a five-bar parallel robot system are 

expressed in the Lagrange following form: 

𝑴′(𝒒′)𝒒̈′ + 𝑪′(𝒒′, 𝒒̇′)𝒒̇′ + 𝒈′(𝒒′) = 𝝉 (1) 

where 𝒒′ = (𝑞1, 𝑞2, 𝑞3, 𝑞4)
𝑇 represents the robot's general 

coordinates. 𝒒′, 𝒒̇, 𝒒̈ ∈ 𝑅4×1 are the position, velocity, and 

joint acceleration vectors; 𝑴′(𝒒′) ∈ 𝑅4×4 is the moment of 

inertia matrix; 𝑪′(𝒒′, 𝒒̇′)  ∈ 𝑅4×4 are the centripetal force and 

the Coriolis force; 𝒈′(𝒒′) ∈ 𝑅4×1 is the gravity vector; 𝝉 is 

the control variable. 
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Fig. 1. Structure diagram of five-bar parallel robot 

 This study uses a robot model with five-bar parallel robot 

system as shown in Fig. 1 to evaluate the kinematic 

characteristics. The relationship between 𝑞3 and 𝑞4 is 

expressed based on 𝑞1 and 𝑞2 as follows [58]: 

𝑞4 = 𝑎𝑟𝑐𝑡𝑎𝑛 [
±√𝒜2(𝑞1, 𝑞2) + ℬ2(𝑞1, 𝑞2) − 𝒞2(𝑞1, 𝑞2)

𝒞(𝑞1, 𝑞2)
]

+  𝑎𝑟𝑐𝑡𝑎𝑛 [
ℬ(𝑞1, 𝑞2)

𝒜(𝑞1, 𝑞2)
] − 𝑞2 

(2) 

𝑞3 = 𝑎𝑟𝑐𝑡𝑎𝑛 [
𝜇(𝑞1, 𝑞2) + 𝑙4𝑠𝑖𝑛(𝑞2 + 𝑞4)

𝜆(𝑞1, 𝑞2) + 𝑙4𝑠𝑖𝑛(𝑞2 + 𝑞4)
] − 𝑞1 (3) 

𝒜(𝑞1, 𝑞2) = 2𝑙4𝜆(𝑞1, 𝑞2) 

ℬ(𝑞1, 𝑞2) = 2𝑙4𝜇(𝑞1, 𝑞2) 

𝒞(𝑞1, 𝑞2) = 𝑙3
2 − 𝑙4

2 − 𝜆2(𝑞1, 𝑞2) − 𝜇2(𝑞1, 𝑞2) 

𝜆(𝑞1, 𝑞2) = 𝑙2 𝑐𝑜𝑠(𝑞2) − 𝑙1 𝑐𝑜𝑠(𝑞1) + 𝑙5 

𝜇(𝑞1, 𝑞2) = 𝑙2 𝑠𝑖𝑛(𝑞2) − 𝑙1 𝑠𝑖𝑛(𝑞1) 

Moment of inertia matrix: 

𝑴′(𝒒′) =

[
 
 
 
𝑚11

′ 0 𝑚13
′ 0

0 𝑚22
′ 0 𝑚24

′

𝑚31
′ 0 𝑚33

′ 0

0 𝑚42
′ 0 𝑚44

′ ]
 
 
 

 (4) 

𝑚11
′ = 𝑚1𝜏1

2 + 𝑚3(𝑙1
2 + 𝜏3

2 + 𝑙1𝜏3𝑐𝑜𝑠(𝑞3 + 𝛿3)) + 𝐽1 + 𝐽3 

𝑚13
′ = 𝑚3(𝜏3

2 + 𝑙1𝜏3𝑐𝑜𝑠(𝑞3 + 𝛿3)) + 𝐽3 
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𝑚31
′ = 𝑚13

′  

𝑚22
′ = 𝑚2𝜏2

2 + 𝑚4(𝜏2
2 + 𝜏4

2 + 𝑙2𝜏4𝑐𝑜𝑠(𝑞4 + 𝛿4)) + 𝐽2 + 𝐽4 

𝑚24
′ = 𝑚4(𝜏3

2 + 𝑙2𝜏4𝑐𝑜𝑠(𝑞4 + 𝛿4)) + 𝐽4 

𝑚42
′ = 𝑚24

′  

𝑚33
′ = 𝑚3𝜏3

2 + 𝐽3 

𝑚44
′ = 𝑚4𝜏4  

2 + 𝐽4 

Centripetal force is expressed as: 

𝑪′(𝒒′, 𝒒̇′) = [

𝛾1𝑞̇3 0 𝛾1(𝑞̇1 + 𝑞̇3) 0

0 𝛾2𝑞̇4 0 𝛾2(𝑞̇2 + 𝑞̇4)

−𝛾1𝑞̇1 0 0 0
0 −𝛾2𝑞̇2 0 0

] (5) 

𝛾1 = −𝑚3𝑙1𝜏3𝑠𝑖𝑛(𝑞3 + 𝛿3) 

𝛾2 = −𝑚4𝑙2𝜏4𝑠𝑖𝑛(𝑞4 + 𝛿4) 

Gravity matrix: 

𝒈′(𝒒′) = 9.81 × [

𝑔1

𝑔2

𝑔3

𝑔4

] (6) 

𝑔1
′ = (𝑚1𝜏1 + 𝑚3𝑙1)𝑐𝑜𝑠(𝑞1 + 𝛿1) + 𝑚3𝜏3𝑐𝑜𝑠(𝑞1 + 𝑞3 + 𝛿3) 

𝑔2
′ = (𝑚2𝜏2 + 𝑚4𝑙2)𝑐𝑜𝑠(𝑞2 + 𝛿2) + 𝑚4𝜏4𝑐𝑜𝑠(𝑞2 + 𝑞4 + 𝛿3) 

𝑔3
′ = 𝑚3𝜏3𝑐𝑜𝑠(𝑞1 + 𝑞3 + 𝛿3) 

𝑔4
′ = 𝑚4𝜏4𝑐𝑜𝑠(𝑞2 + 𝑞4 + 𝛿4) 

However, the five-bar parallel robot system has only two 

control positions, represented by 𝒒 = (𝑞1, 𝑞2)
𝑇 ; so there are 

only two control signals 𝝉 = (𝝉1, 𝝉2)
𝑇
. The system's dynamic 

model is determined in [58]–[60] as (7) to (9). 

𝑴(𝒒′)𝒒̈ + 𝑪(𝒒′, 𝒒̇′)𝒒̇ + 𝑳𝑚𝒒̇ + 𝒈(𝒒′) = 𝝉 (7) 

𝒒 = [
1 0 0 0
0 1 0 0

]𝒒′ = 𝜌𝒒′ (8) 

𝒒′ = 𝜎(𝒒) (9) 

Here, 𝑳𝑚 is the viscosity of the motor in the system. The 

components of the matrix in equation (7) are calculated as 

follows: 𝑴(𝒒′) = 𝜌𝑇(𝒒′)𝑴′(𝒒′)𝜌(𝒒′);  𝑪(𝒒′, 𝒒̇′) =
𝜌𝑇(𝒒′)𝑪′(𝒒′)𝜌(𝒒′); 𝒈(𝒒′) = 𝜌𝑇(𝒒′)𝑔′(𝒒′). 

In the nonlinear system, the state vector equation of the 

robot arm system is expressed: 

𝒒̈(𝑡) = −
𝑪(𝒒′, 𝒒̇)𝒒̇ + 𝑩𝑚𝒒̇ + 𝒈(𝒒′)

𝑴(𝒒′)
+

𝝉

𝑴(𝒒′)
= 𝑓(𝒙, 𝑡) + 𝑔(𝒙, 𝑡)𝝉 

 (10) 

in which, 𝑓(𝒙, 𝑡) = −
𝑪(𝒒′,𝒒̇)𝒒̇+𝑩𝑚𝒒̇+𝒈(𝒒′)

𝑴(𝒒′)
 and 𝑔(𝒙, 𝑡) =

1

𝑴(𝒒′)
 

are nonlinear dynamic functions that are difficult to 

determine. Therefore, it is impractical to design a controller 

based on an exact mathematical model of the object. For 

example, if the actual values of 𝑓(𝒙, 𝑡), 𝑔(𝒙, 𝑡) were exactly 

known and denoted by 𝐹0(𝒙, 𝑡), 𝐺0(𝒙, 𝑡) respectively. Where 

𝐹0(𝒙, 𝑡), 𝐺0(𝒙, 𝑡) are nominal components that do not change 

and 𝐿(𝒙, 𝑡) is defined as the sum of the uncertain components 

exist in the system. The state vector 𝒙(𝑡) =

[𝑥𝑇  𝑥̇𝑇   …   𝑥(𝑛−1)𝑇] are the components of the state vector 

of the joint. Therefore, equation (10) is rewritten as (11): 

𝒒̈(𝑡) = 𝐹0(𝒙, 𝑡) + 𝐺0(𝒙, 𝑡)𝜏 + 𝐿(𝒙, 𝑡) (11) 

Control in nonlinear systems poses an important 

challenge. The error 𝒆(𝑡) ∈ 𝑅𝑛×1 must be continuously 

monitored and defined by subtracting the desired value 𝒒𝒅(𝑡) 

from the actual value of the system 𝒒(𝑡). The system's 

tracking error is described as (12): 

𝒆(𝑡) = 𝒒𝒅(𝑡) − 𝒒(𝑡) (12) 

The tracking error of the system is represented in vector 

form as (13): 

𝒆(𝑡) = [𝑒𝑇  𝑒̇𝑇 , … , 𝑒(𝑛−1)𝑇]
𝑇

 (13) 

If assume that the components 𝐹0(𝒙, 𝑡), 𝐺0(𝒙, 𝑡) and the 

sum of the uncertain components 𝐿(𝒙, 𝑡) have been 

determined, then the ideal controller can be designed as (14): 

𝜏𝐼𝐷𝐸𝐴𝐿 = 𝑮0
−1[𝒒̈𝑑 − 𝑭0(𝒙) − 𝑳(𝒙) + 𝑲𝑇𝒆] (14) 

However, the problem is that it is impossible to accurately 

determine the parameters of the component 𝑳(𝒙, 𝑡). 

Therefore, the study proposes a control system described in 

detail in Chapter IV. 

𝜏𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 = 𝜏𝐶𝑀𝐴𝐶 + 𝜏𝑅𝐶  (15) 

The primary controller in this control structure is 𝜏𝐶𝑀𝐴𝐶  

to approximate the ideal controller. The aim is to maintain 

𝜏𝐶𝑀𝐴𝐶  as closely aligned with 𝜏𝐼𝐷𝐸𝐴𝐿  as possible. 

Additionally, a robust controller (𝜏𝑅𝐶) is introduced to 

mitigate any approximation errors that arise. 

The study [55] establishes that the systematic tracking 

error 𝒆 is consolidated into signed distance 𝑑𝑠𝑖 ∈ 𝑅𝑛×1. This 

variable denotes the actual distance between 𝒆 and the sliding 

surface and is shown in Fig. 2: 

𝑒̇ + 𝜆𝑒 = 0 (16) 

e

e

0sd

sd
e ( e, e )

0
=

+
e

e




0sd

 

Fig. 2. Description of signed distance and sliding surface 

where 𝜆 is the constants. The distance between the system 

tracking error 𝒆 and the sliding surface is defined: 

𝑑𝑠 =
𝑒̇ + 𝜆𝑒

√1 + 𝜆2
= Υ(𝑒̇ + 𝜆𝑒) (17) 

where Υ =
1

√1+𝜆2
 is the derivative of (17). Apply the 

equations (12) and (15): 
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𝑑̇𝑠 = Υ(𝑒̈ + 𝜆𝑒̇) = Υ(−𝑭0(𝒙, 𝑡)

+ 𝑮𝟎(𝒙, 𝑡)(𝜏𝐶𝑀𝐴𝐶 + 𝜏𝑅𝐶)

+ 𝒒̈(𝑡) − 𝑳(𝒙, 𝑡) + 𝜆𝑒̇) 

(18) 

The energy function of the system is defined: 

𝑉(𝑑𝑠(𝑡)) =
1

2
𝑑𝑠

2(𝑡) (19) 

Multiplying equations (15) and (16): 

𝑑𝑠(𝑡)𝑑̇𝑠(𝑡)

= −Υ(𝑑𝑠(𝑡)𝑭0(𝒙, 𝑡)

− 𝑑𝑠(𝑡)𝑮𝟎(𝒙, 𝑡)(𝜏𝐶𝑀𝐴𝐶+𝜏𝑅𝐶+𝑑𝑠(𝑡)(𝒒̈(𝑡)−𝑳(𝒙,𝑡)+𝜆𝑒̇)) 
(20) 

III. CONTROLLERS DESIGN  

A. Definition of CMAC controller 

Fig. 3 describes the CMAC network structure including 

Input space, Association memory space, Receptive-field 

space, Weight memory space, Output space. Details of the 

classes are described as follows:  

1) Input space X: This is a continuous 

multidimensional input space. Each input state variable 𝑑𝑠𝑖 is 

divided into separate elements and defined in a particular 

space for each value 𝑋 = [𝑑𝑠1, 𝑑𝑠2]
𝑇 ∈ 𝑅𝑛. 

2) Association Memory Space, A: In this association 

memory space is defined as (21): 

𝜇𝑖𝑘(𝑑𝑠i) = 𝑒𝑥𝑝 [
−(𝑑𝑠i − 𝑚𝑖𝑘)

2

𝜎𝑖𝑘
2 ] (21) 

where 𝑚𝑖𝑘 is a translation parameter and 𝜎𝑖𝑘 is dilation. 

3) Receptive-Field Space, R: The definition of the 

receptive field function is showed as (22): 

𝑏𝑗𝑘 = ∏𝜇𝑖𝑘(𝑑𝑠i)

𝑛𝑖

𝑖=1

= 𝑒𝑥𝑝 [∑
−(𝑑𝑠i − 𝑚𝑖𝑘)

2

𝜎𝑖𝑘
2

𝑛𝑖

𝑖=1

] (22) 

Receptive fields can be expressed as vectors in the 

following manner: 

𝚫 = [𝑏1 … 𝑏2 … 𝑏𝑛𝑘
]
𝑇
𝜖 𝑅𝑛𝑘 

4) Weight memory space W: Each position of 𝜟 in this 

layer adjusts to a specific value denoted by: 

𝑾 = [𝑤11 ⋯𝑤1𝑘 ⋯𝑤𝑗1 ⋯𝑤𝑗𝑘] (23) 

5) Output space O: The output of CMAC is the sum of 

the weights, each multiplied by the superblock's 

corresponding activation value. The mathematical 

representation of the output can be described as (24): 

𝑶 = ∑ ∑ 𝑊𝑗𝑘 ∏𝜇𝑖𝑘

𝑛𝑖

𝑖=1

𝑛𝑘

𝑘=1

𝑛𝑗

𝑗=1

 (24) 

For 𝑖 = 1,2, … , 𝑛𝑖 , 𝑗 = 1,2, … , 𝑛𝑗 , 𝑘 = 1,2, … , 𝑛𝑘. 

jkb
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Fig. 3. Architecture of a CMAC 

B. The Online Learning Rules 

CMAC is described as in equation (24), in which the 

adaptation laws of CMAC are designed as in equations (25), 

(27), (28), and the robust controller is designed as in 

equations (26).  

1) The update rule for the weight layer is derived as 

follows:   

𝑊̇̂ = −𝛽̇̂𝑤Υ𝚫𝑑𝑠(𝑡) (25) 

𝜏𝑅𝐶 = (2𝑅2)−1[(𝐼 + 𝚫2)𝑅2 + 𝐼]𝑑𝑠
𝑇(𝑡) (26) 

where 𝑅 = 𝑑𝑖𝑎𝑔[𝜁1, 𝜁2] is the learning rate of the robust 

controller for the system to converge; 𝛽̇̂𝑤’is positive learning 

rate for the output weight memory 𝑤𝑗𝑘 . 

2) The law for updating the parameters in the Gauss 

function is given as follows: 

𝑚̇̂𝑖𝑘 = 𝛽̇̂𝑚Υ𝑑𝑠(𝑡)𝑤̂𝑗𝑘 (27) 

𝜎̇̂𝑖𝑘 = 𝛽̇̂𝜎Υ𝑑𝑠(𝑡)𝑤̂𝑗𝑘 (28) 

where 𝛽̇̂𝑚, 𝛽̇̂𝜎  are positive learning rates for the translation 

𝑚̂𝑖𝑘 and dilation 𝜎̂𝑖𝑘. 

IV. ANALYZE CONTROL STRUCTURES 

Fig. 4 depicts an overview of the adaptive CMAC 

scheme, which includes three parts: signed distance, CMAC 

controller, and robust controller. An optimal parameter 

𝑢𝐶𝑀𝐴𝐶
∗  is used to estimate 𝜏𝐼 𝐷 𝐸 𝐴 𝐿 with a robust controller: 

𝜏𝐼 𝐷 𝐸 𝐴 𝐿 = 𝜏𝐶𝑀𝐴𝐶
∗ + 𝜚 = 𝑊∗𝑇T + 𝜚 (29) 

However, in practical cases, made by estimating the nonlinear 

components: 

𝜏𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 = 𝜏𝐶𝑀𝐴𝐶 + 𝜏𝑅𝐶 = 𝑊̂𝑇𝚫 + 𝜏𝑅𝐶  (30) 

The Lyapunov function of this structure has the form: 

𝐿(𝑠(𝑒), 𝑊̂) =
1

2
𝑑𝑠

2 +
1

2
𝑡𝑟[𝑊̂𝑇 𝜂̇̂𝑊

−1𝑊̂] (31) 

Apply Eq. (20), (25), (26) and derivative of Eq. (31): 
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𝐿̇(𝑑𝑠(𝑡), 𝑊̂) = 𝑑𝑠
𝑇(𝑡)𝑑𝑠̇(𝑡) + 𝑡𝑟 [𝑊̂𝑇 𝛽̇̂𝑊

−1𝑊̇̂]

= −Υ(𝑑𝑠(𝑡)𝑭0(𝒙, 𝑡)

− 𝑑𝑠(𝑡)𝑮𝟎(𝒙, 𝑡)(𝑊̂𝑇𝚫

+ (2𝑅2)−1[(𝐼 + 𝚫2)𝑅2 + 𝐼]𝑑𝑠
𝑇(𝑡)

+ 𝑑𝑠(𝑡)(𝒒̈(𝑡) − 𝑳(𝒙, 𝑡) + 𝜆𝑒̇))

+ 𝑡𝑟 [𝑊̂𝑇 𝛽̇̂𝑊
−1𝑊̇̂]

≤  𝑑𝑠
𝑇(𝑡)𝐺0(𝑥, 𝑡)(𝑊̂𝑇𝚫

+ (2𝑅2)−1[(𝐼 + 𝚫2)𝑅2+𝐼] ∙ 𝑑𝑠
𝑇(𝑡)

+ 𝑑𝑠(𝑡)(𝑞̈(𝑡) − 𝐿(𝑥, 𝑡)

= −
1

2
𝑑𝑠

𝑇(𝑡) 𝑑𝑠(𝑡)

−
1

2
[[

𝑑𝑠(𝑡)

𝜁
− 𝜁𝜚]

𝑇

[
𝑑𝑠(𝑡)

𝜁
− 𝜁𝜚]]

−
1

2
[[𝚫𝑑𝑠

𝑇(𝑡) − 𝑊̂]
𝑇
[𝚫𝑑𝑠

𝑇(𝑡)

− 𝑊̂]] − 𝑊̂[Υ𝚫𝑑𝑠(𝑡)]

≤ −
1

2
𝑑𝑠

𝑇(𝑡) 𝑑𝑠(𝑡) +
1

2
𝜁2𝜚𝑇𝜚

− 𝑊̂[Υ𝚫𝑑𝑠(𝑡)] 

(32) 

Integrating equation (32) from 𝑡 = 0 to 𝑡 = 𝑇: 

𝐿(𝑇) − 𝐿(0)  ≤ −
1

2
∫ ∑(𝑑𝑠𝑖

2 − 𝜁𝑖
2𝜚𝑖

2 − 𝑤̂𝑖
2)

𝑛

𝑖=1

𝑇

0

 (33) 

Then, equation (33) is rewritten as: 

𝐿(𝑇) − 𝐿(0)  ≤ −
1

2
∑ ∫ 𝑑𝑠𝑖

2 (𝑡)𝑑𝑡
𝑇

0
𝑛
𝑖=1 +

1

2
∑ 𝜁𝑖

2 ∫ 𝜚𝑖
2(𝑡)𝑑𝑡

𝑇

0
𝑛
𝑖=1 +

1

2
∑ ∫ 𝑤̂𝑖

2(𝑡)𝑑𝑡
𝑇

0
𝑛
𝑖=1   

(34) 

The system will completely reach steady state when: 

1

2
∑ ∫ 𝑑𝑠𝑖

2 (𝑡)𝑑𝑡
𝑇

0
𝑛
𝑖=1 ≤  𝐿(0) +

1

2
∑ ∫ 𝑤̂𝑘

2(𝑡)𝑑𝑡
𝑇

0
𝑚
𝑖=1 +

1

2
∑ 𝜁𝑖

2 ∫ 𝜚𝑖
2(𝑡)𝑑𝑡

𝑇

0
𝑛
𝑖=1 =

1

2
𝑑𝑠

𝑇(0)𝑑𝑠(0) +
1

2
∑ 𝜁𝑖

2 ∫ 𝜚𝑖
2(𝑡)𝑑𝑡

𝑇

0
𝑛
𝑖=1 +

1

2
∑ ∫ 𝑤̂𝑖

2(𝑡)𝑑𝑡
𝑇

0
𝑛
𝑖=1   

(35) 
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Fig. 4. Diagram depicting the CMAC control system  

V. EXPERIMENT RESULTS 

In this part, the research was conducted to verify and 

compare the proposed method with other methods on a 5-bar 

parallel robot system. This decision was made based on the 

complexity of the system's mechanical structure while 

establishing an accurate mathematical model. During 

operation, common interactions create uncertain components 

that cannot be precisely determined. In addition, the viscosity 

and friction coefficients change during operation, causing 

additional control difficulties. In particular, the CMAC 

network is designed with signed distances to solve complex 

problems and can handle uncertainties in the system. The 

detailed mathematical model described in section II, 

including equations (7)-(9) and detailed parameters in Table 

I, plays an important role in understanding the system 

dynamics to allow verification of the CMAC controller. 

Table II talks about the network structure parameters when 

performing simulation experiments. 

TABLE I.  MODEL PARAMETERS WHEN SIMULATION 

Symbol Parameters 

𝑳𝟏, 𝑳𝟐, 𝑳𝟑, 𝑳𝟒, 𝑳𝟓 0.127m 

𝒎𝟏,𝒎𝟐,𝒎𝟑,𝒎𝟒 0.065kg 

𝑳𝒎 [1,1] 

𝜹𝟏, 𝜹𝟐, 𝜹𝟑, 𝜹𝟒 1 

TABLE II.  CMAC NETWORK STRUCTURAL PARAMETERS 

Symbol Parameters 

𝝀 200 

𝒏𝒌 11 

𝜷̇̂𝒘, 𝜷̇̂𝒎, 𝜷̇̂𝝈 0.25 

𝒎 (-1 1) 

𝝈 1.2 

 

Fig. 5 presents the robot system's structure, introducing 

main components such as motors, connections, and encoders. 

To perform experiments and collect data, we integrated the 

NI PCIe-6351 board with the computer and used Simulink 

software on the Matlab platform to control the robot arm. The 

control structure uses the CMAC control system combined 

with the signed distance method to enhance the accuracy of 

the five-bar parallel robot system. This combined approach 

was chosen to ensure operational efficiency and flexible 

adaptability to different conditions and environments. The 

study's objective is to demonstrate the superiority of using 

CMAC with the signed distance method compared to other 

control methods. Experimental results will be presented in 

two main parts. Part A will focus on comparing the accuracy 

between CMAC combined with the signed distance method 

and with CMAC combined with SMC and RBF in the 

absence of uncertainty components present to verify the 

contribution of the study rescue. Part B will focus on 

comparing the accuracy between CMAC and the signed 

distance method and algorithms as in part A but in the case 

of an uncertainty component affecting the system during 

operation. All algorithms will be implemented and tested on 

Quanser's 2-DOF robotic system, as detailed in Figure 6. This 

experiment will provide clear evidence of the superior 

accuracy of CMAC combined with the signed distance 

method compared to other methods based on parameters such 

as error and mean squared error. 
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Fig. 5. Experimental system 

 

Fig. 6. Quanser's 2 DOF Robot model 

A. Experimental Results in the Absence of Uncertain 

Components 

Fig. 7 shows the difference between the actual and 

reference positions of the robot joints. CMAC can maintain a 

stable and accurate position for both cases using signed 

distances and SMC. However, CMAC is combined with 

SMC to encounter the chattering problem of SMC. Therefore, 

combining CMAC with signed distance solves this problem 

of SMC by improved path tracking and chattering 

elimination. Meanwhile, the RBF algorithm can also 

maintain position and handling. However, its efficiency is 

worse than that of CMAC in both cases. 

Fig. 8 describes the accuracy of the control algorithms in 

this study. Using CMAC in combination with signed 

distances to minimise errors between the actual and reference 

positions of the robot joints while avoiding chattering. 

However, as combining CMAC with SMC, the error 

increases due to the influence of the chattering phenomenon 

from SMC. However, the RBF algorithm is not better than 

CMAC in both combinations. 

Fig. 9 shows the control voltage diagram in this 

experiment. It is easy to see that RBF has a wider control 

voltage. The accuracy is not better than that of CMAC in both 

cases. However, when combining CMAC with SMC, a stable 

voltage can be achieved like CMAC combined with the 

signed distance which is impossible due to the chattering. 

 

 

 

Fig. 7. Actual position relative to the robot's 𝜽𝑨 and 𝜽𝑩 reference positions 

 

 

Fig. 8. 𝜽𝑨 and 𝜽𝑩 error of the robot system during actual operation 

 

 

Fig. 9. Control voltage of the robot system 
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Fig. 10 shows the difference between the actual trajectory 

and the reference trajectory. CMAC combined with signed 

distance is superior to that combined with SMC and RBF 

regarding tracking ability track trajectory. This demonstrates 

the high flexibility and adaptability of the algorithm proposed 

in this article. 

 

Fig. 10. Actual trajectory compared to reference trajectory when the 
robot system is in actual operation 

In Table III, CMAC combined with signed distance 

shows the best accuracy with the values of 𝑒𝐴 and 𝑚𝑠𝑒𝐴 are 

0.825×10-3 and 0.682×10-3, respectively. In contrast, RBF has 

the lowest results of 𝑒𝐴 and 𝑚𝑠𝑒𝐴 are 10.75×10-3 and 

3.044×10-3, respectively. Then, CMAC with signed distance 

still leads to demonstrate the stability and accuracy of this 

method with values of𝑒𝐴 and 𝑚𝑠𝑒𝐴 are -0.534×10-3 and 

0.382×10-3, respectively. Therefore, CMAC with signed 

distance, which is higher accuracy than RBF, shows lower 

accuracy than that of but still provides an acceptable orbit 

tracking with corresponding 𝑒𝐴 and 𝑚𝑠𝑒𝐴 values of 4.798×10-

3 and 1.586×10-3 along with the corresponding 𝑒𝐵 and 𝑚𝑠𝑒𝐵 

values of -0.796×10-3 and 2.104×10-3. 

TABLE III.  THE ACTUAL OPERATION DATA SHEET DOES NOT INCLUDE 

ANY UNCERTAIN COMPONENTS 

Symbol 

CMAC with 

Signed Distance 

(×10-3) 

CMAC with 

SMC 

(×10-3) 

RBF 

(×10-3) 

𝒆𝑨 0.825 4.798 10.75 

𝒎𝒔𝒆𝑨 0.682 1.586 3.044 

𝒆𝑩 -0.534 -0.796 0.968 

𝒎𝒔𝒆𝑩 0.382 2.104 5.715 

B. Experimental Results in Case of Inclusion of Uncertain 

Component 

In order to evaluate the effectiveness of the proposed 

CMAC structure, it is necessary to estimate the uncertain 

components. The define the uncertainty components at time 

𝑡 = 4 seconds as follows: 𝐿(𝒙, 𝑡) = 𝑡𝑙 + 𝑓𝑙. Where 𝑡𝑙 =
[0.05 ∗ cos(𝑡) ∗ 𝑠𝑖𝑔𝑛(𝑞1 ∗ 𝑞2);  −0.01 ∗ sin(𝑡)] and 𝑓𝑙 =
[0.01 ∗ cos(𝑡) ;  −0.05 ∗ cos(𝑡) ∗ 𝑠𝑖𝑔𝑛(𝑞1 ∗ 𝑞2)]. 

Fig. 11 shows the stability and accuracy of CMAC in 

maintaining the position of the robot joints. Despite uncertain 

components at 𝑡 = 4𝑠, CMAC is superior to the RBF 

algorithm and can still stabilize and maintain high accuracy 

control. Although RBF can hold position and handling, its 

accuracy is not as good as CMAC's, especially when 

including uncertain components. It is worth noting that 

CMAC, combined with signed distance, successfully solved 

the chattering problem of CMAC combined with SMC while 

improving accuracy and eliminating chattering during 

control.  

 

 

Fig. 11. Actual position relative to the robot's 𝜽𝑨 and 𝜽𝑩 reference 
positions 

Fig. 12 depicts the effectiveness of CMAC in handling 

uncertainties in actual environments, especially at time 𝑡 =
4𝑠. CMAC combined with signed distance provides higher 

accuracy and lower error than other methods. This result is a 

testament to the effectiveness of the proposed method in 

maintaining stability and coping with fluctuations and its 

suitability in practical applications. 

 

 

Fig. 12. 𝜽𝑨 and 𝜽𝑩 error of the robot system during actual operation 

Fig. 13 shows the control voltage diagrams of different 

methods in this experiment. It is easy to see that although 

RBF has a more control voltage range, its accuracy is 

different from CMAC in both cases, especially at time 𝑡 =
 4𝑠. When there were uncertain components, the voltage of 

the methods changed. However, the CMAC combined with 

the signed distance remained stable. Similar to the previous 

experiment, the voltage of CMAC combined with SMC 

varies significantly in a range of values of the chattering. 
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Fig. 13. The control voltage of the robot system in the case includes an 
uncertain component 

Fig. 14 shows a comparison chart between the actual and 

reference trajectories. This figure shows that the combination 

of CMAC and signed distance outperforms the combination 

of CMAC combinations with SMC or RBF in trajectory 

tracking. This is a testament to the flexibility and high 

adaptability of the algorithm proposed in the study. The 

accuracy of different control methods can be evaluated by 

visually comparing the actual and reference trajectories. This 

result clarifies the power of CMAC combined with signed 

distance in achieving efficient and accurate trajectory 

tracking and emphasizes the algorithm's flexibility under 

variable environmental conditions. 

 

Fig. 14. Actual trajectory compared to reference trajectory when the 
robot system is in actual operation 

Based on the data from Table IV, the CMAC method 

using signed distance has the best stability and accuracy in 

estimating the uncertain components. In comparing to 

CMAC using SMC and RBF, CMAC with signed distance 

can handle and adapt to uncertain components with according 

values of 𝑒𝐴 and 𝑒𝐵 are 0.985×10-3 and -0.581×10-3, 

respectively. The results showed that the proposed structure 

can achieve relatively high accuracy when operating in an 

environment with uncertain composition. As considering 

𝑚𝑠𝑒𝐴 and 𝑚𝑠𝑒𝐵, CMAC with signed distance, which 

continues to hold the lowest values of 0.119×10-3 and 

0.942×10-3, respectively, compared to CMAC using SMC 

and RBF. This shows that CMAC with signed distance 

maintains higher accuracy and is more stable than the 

remaining methods in uncertain environments. 

TABLE IV.  THE ACTUAL OPERATION DATA SHEET INCLUDE UNCERTAIN 

COMPONENTS 

Symbol 
CMAC with Signed 

Distance (×10-3) 

CMAC with 

SMC (×10-3) 

RBF 

(×10-3) 

𝒆𝑨 0.985 5.30 6.60 

𝒎𝒔𝒆𝑨 0.119 2.14 18.6 

𝒆𝑩 -0.581 0.612 0.247 

𝒎𝒔𝒆𝑩 0.942 2.52 9.27e 

 

VI. CONCLUSION AND DISCUSSION 

This study is an important step forward in researching and 

applying new control methods in five-bar parallel robots. The 

choice of this experimental object is due to the mechanical 

complexity of the system, which makes it challenging to build 

an accurate mathematical model. However, this research has 

achieved remarkable results by combining engineering and 

creativity in applying a new control method based on 

adaptability and learning. The proposed method solves the 

problem of uncertain components existing in the system and 

enhances flexibility, stability and accuracy compared to other 

methods, such as RBF. Chapter 5 of the study demonstrates 

the feasibility and ability to overcome the chattering 

phenomenon of SMC. This success opens up many potential 

applications in important fields such as UAVs, robotics, 

engines, etc. This research is an important contribution to the 

field of five-bar parallel robotics and opens up new 

opportunities for applying efficient and flexible control 

methods in actual application.  

Although this research has achieved significant progress 

in applying the new control method based on CMAC 

combined with signed distance to five-bar parallel robots, it 

still must be considered and overcome. One of the limitations 

of CMAC is that the adaptive parameters are fixed and 

difficult to change in complex and multivariate 

environments. This can reduce system accuracy when faced 

with fluctuations in the system. In order to overcome this, 

new approaches, such as integrating wavelet networks or 

using Brain Emotional Learning, can enhance the system's 

adaptive and processing capabilities. These methods can 

improve system accuracy and performance in more complex 

environments. However, it should be noted that applying new 

methods also requires careful consideration and control to 

ensure system stability and reliability. Therefore, future 

research can focus on developing new integration methods 

carefully and thoroughly testing them before implementation 

in actual applications. 
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