
Journal of Robotics and Control (JRC)

Volume 5, Issue 6, 2024

ISSN: 2715-5072, DOI: 10.18196/jrc.v5i6.22208 1626

 Journal Web site: http://journal.umy.ac.id/index.php/jrc Journal Email: jrc@umy.ac.id

A Model of Proactive-Reactive Job Shop

Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

Muhammad Usman Nisar 1*, Anas Ma’ruf 2, Andi Cakravastia 3, Abdul Hakim Halim 4
1, 2, 3, 4 Graduate Program of Industrial Engineering and Management, Bandung Institute of Technology, Bandung, Indonesia

Email: 1 33421701@mahasiswa.itb.ac.id, 2 maruf@itb.ac.id, 3 andi@itb.ac.id, 4 ahakimhalim@itb.ac.id

*Corresponding Author

Abstract—Despite substantial research on job shop

scheduling (JSS), there is a gap owing to the lack of a unified

framework that considers exact, heuristic, and metaheuristic

methods for JSS. This study addressed this gap by presenting a

comprehensive approach. The study offered following

contributions in this regard: analyzed the exact optimization

method for benchmarking, investigated a greedy algorithm

(𝑮𝒓𝑨) for faster solutions, and implemented a novel Greedy

Randomized Adaptive Search Procedure (GRASP) to achieve

high-quality solutions with computational effectiveness.

Additionally, this study considered serious dynamic events

(𝑺𝑫𝑬) such as new job arrivals (𝑵𝑱𝑨), rush order (𝑹𝑶), machine

failures (𝑴𝑭), and scheduled machine maintenance (𝑺𝑴𝑴), as

scheduling disruptions and proposed a proactive-reactive

rescheduling strategy, with right-shift (𝑹𝑭) and regeneration

(𝑹𝒆𝒈) methods using a hybrid (periodic and event-driven)

policy to tackle them. Results showed that the exact methods are

optimal but computationally intensive, 𝑮𝒓𝑨 are faster but

suboptimal, and GRASP strike a balance, delivering high-

quality solutions with only a 3.43% gap from exact methods

while maintaining computational efficiency. Additionally, 𝑹𝑭

method effectively handled 𝑴𝑭, while 𝑹𝒆𝒈 efficiently

integrated 𝑵𝑱𝑨, 𝑹𝑶, and 𝑺𝑴𝑴. Overall, this study offered a

comprehensive approach to JSS, enhancing applicability in

manufacturing environments.

Keywords—Job Shop Scheduling; Dynamic Events; GRASP;

Proactive-Reactive Rescheduling.

I. INTRODUCTION

Scheduling is a critical decision-making problem in

production and management systems [1]. It involves

allocating jobs to machines to optimize certain objective

function [1], [2]. Scheduling plays an important role in most

manufacturing systems [3] and has diverse applications such

as job allocation at workstations [4], machines in a workshop

[5], and many others, contributing to variety of scheduling

models [6]. Categorizing these scheduling models is crucial,

as the methods for their resolution depend on the problem's

nature [7]. These scheduling models are categorized as: (1)

single machine, (2) parallel machines, (3) flow shop, (4) job

shop, and (5) open shop.

A comparison in terms of characteristics and complexity

between these scheduling models has been provided in Fig.

1, showing that singe and parallel machines models belong to

P-class complexity problems, and solvable in polynomial

time [8]. In contrast, flow shop and open shop are NP-hard,

making them highly challenging as they cannot be solved in

polynomial time [9]. On the other hand, job shop scheduling

(JSS), is strongly NP-hard, showing even higher complexity.

As compared to other scheduling models, JSS gained

massive attention because it has: (1) real world applications

[21], (2) broad engineering and social background [22], (3)

significant influence on manufacturing efficiency [23], and

(4) a great deal of scientific research value, making it a crucial

factor in scheduling research.

JSS consists assigning 𝑛 jobs to 𝑚 machines to optimize

a specific objective function under imposed constraints [10],

[11], [12], with each job following a predetermined routing

[13], [14], [15]. Due to its strong NP-hard nature [17], [18],

[19], JSS has been a challenge for over 50 years [16]. This

inherent complexity of JSS makes obtaining an optimal

solution challenging even for small-scale instances [20].

To address this inherent complexity of JSS, various

techniques has been proposed [5]. These techniques range

from exact methods (e.g., dynamic and constraint

programming, branch and bound, and branch and cut), to

metaheuristic techniques (e.g., genetic algorithms (GA) [24],

simulated annealing (SA) [25], ant colony optimization

(ACO) [26], and tabu search (TS) [27].

Even though JSS has been widely studied, the majority of

JSS literature studied it in static conditions, with

suppositions: (1) all relevant data is accessible at time zero

[28], (2) job characteristics, such as the release date (𝑟𝑗), due

date (𝑑𝑗), and processing time (𝑝𝑖𝑗), are known [29], (3) no

dynamic event happens during processing, and (4) machines

are always available (i.e., never break down or require

maintenance) [30]. However, these assumptions are very

restrictive in real-world settings [31].

In real-world, production environments are often

dynamic, where JSS experiences dynamic events [32], [33],

[34]. These dynamic events are happening frequently in JSS,

leading to frequent system updates, causing nervousness,

deviating the original schedule, and reducing the efficiency

of scheduled execution [28], making the previously feasible

schedule − infeasible [35]. Thus, handling these dynamic

events is of practical importance [6].

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1627

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

Fig. 1. Scheduling models comparison

Reference [36] classified these dynamic events into

serious dynamic events (𝑆𝐷𝐸) , medium dynamic events

(𝑀𝐷𝐸) and low dynamic events (𝐿𝐷𝐸) based on their impact

on the scheduling system. Fig. 2 provides this classification

and its implications on scheduling efficiency. 𝑆𝐷𝐸 impact

the scheduling process up to an extent that the schedule

becomes invalid and carrying with the same schedule would

result in reduced efficiency. 𝑀𝐷𝐸, though less intense than

𝑆𝐷𝐸, still require measures as they pose challenges to

scheduling efficiency by introducing disruptions. 𝐿𝐷𝐸, while

low individually, can accumulate to affect scheduling

efficiency by introducing delays.

Based on the frequency of occurrence, we further

categorized 𝑆𝐷𝐸 into regular serious events (𝑅𝑆𝐸) and

significant serious events (𝑆𝑆𝐸). 𝑅𝑆𝐸, like new job arrivals

(𝑁𝐽𝐴) and scheduled machine maintenance (𝑆𝑀𝑀), are

predictable, occurring at regular intervals as part of the

normal production cycle. They require job priority

adjustments and resource reallocation, respectively, and can

be planned for in advance using proactive strategies. In

contrast, 𝑆𝑆𝐸, such as rush orders (𝑅𝑂) and machine failures

(𝑀𝐹), are less predictable and have a higher impact on the

production schedule. 𝑆𝑆𝐸 require immediate attention to

prevent substantial disruptions. They cause delays and

necessitate reactive rescheduling to minimize downtime.

Numerous authors have studied the impact of 𝑆𝐷𝐸 on

JSS. Reference [37] highlighted the impact of 𝑀𝐹 on

scheduling and role of rescheduling in addressing them.

Another study by [38] demonstrated how dynamic

rescheduling maintains performance amid 𝑅𝑂 using reactive

strategies. The benefits of dynamic scheduling for 𝑁𝐽𝐴 have

been emphasized by [39]. Additionally, the importance of

considering 𝑆𝑀𝑀 was highlighted by [40]. These studies

collectively show that 𝑆𝐷𝐸 significantly affect scheduling

and must be considered. Therefore, addressing 𝑆𝐷𝐸 through

rescheduling is a primary focus of this study.

Rescheduling is a process of updating the previously

optimal schedule upon 𝑆𝐷𝐸 occurrence [8]. Significant

literature exists on rescheduling, involving following aspects:

rescheduling factor, rescheduling strategies, rescheduling

policies, and rescheduling methods [37]. Literature

emphasized that rescheduling should address two key

questions: “how?” and “when?” [41], [42]. However, to

effectively address all aspects of rescheduling, another

important question must be considered: "with what?".

1) “How” to reschedule: three strategies are used to

address this: completely reactive (𝑅𝑎𝑐𝑡), proactive (𝑃𝑎𝑐𝑡), and

proactive-reactive (𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡). 𝑅𝑎𝑐𝑡 strategy responds to

disruptions based on real-time system information [43]. The

drawback is that they act after dynamic events have already

impacted the schedule. 𝑃𝑎𝑐𝑡 strategy, on the other hand,

anticipate potential dynamic events and incorporate them into

the initial schedule [44]. However, they do not accurately

reflect the current state of the system since they rely on

predictions [45]. The best approach is a 𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡 strategy,

which combines the strength of both 𝑃𝑎𝑐𝑡 and 𝑅𝑎𝑐𝑡 by

creating an initial schedule using the 𝑃𝑎𝑐𝑡 strategy and

updating it with 𝑅𝑎𝑐𝑡 strategy upon 𝑆𝑆𝐸 occurrence [46].

2) “When” to reschedule: various policies are used to

address this question: periodic (𝑝𝑒), event-driven (𝐸𝐷), and

hybrid (𝐻𝑦𝑏). A 𝑝𝑒 policy reschedules jobs upon 𝑅𝑆𝐸

occurrence at regular intervals [37], offering stability but

potentially compromises performance when 𝑆𝑆𝐸 occur [7].

The 𝐸𝐷 policy, on the other hand, effectively handles 𝑆𝑆𝐸

but they can lead to frequent rescheduling, resulting in high

computational costs. In contrast, a 𝐻𝑦𝑏 policy is very

effective which combines the benefits of both policies (𝑝𝑒

and 𝐸𝐷) by rescheduling 𝑅𝑆𝐸 at fixed intervals through 𝑝𝑒

policy and rescheduling 𝑆𝑆𝐸 using 𝐸𝐷 policy [36]. This

balanced approach, makes it a preferred choice in dynamic

environments [41].

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1628

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

Fig. 2. Dynamic events and their implications on scheduling

3) “With what” to reschedule: three methods are used

to address this question: partial (𝑝𝑎), right-shift (𝑅𝐹), and

regeneration (𝑅𝑒𝑔). A 𝑝𝑎 method targets affected operations,

balancing stability and solution quality, but struggles with

significant events. 𝑅𝐹 method, a simple and efficient

approach, delays remaining operations to maintain feasibility

[37], but it may cause delays. 𝑅𝑒𝑔 method reschedules all

unprocessed operations, potentially optimizing the new

schedule but at a higher computational cost [7].

Each rescheduling approach offers distinct trade-offs. Our

study examined a 𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡 strategy, identified as best

approach for handling dynamic events based on previous

research by [41]. While [41] examined JSS under events such

as 𝑁𝐽𝐴 and 𝑀𝐹 with a 𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡 strategy, we expanded on

this by considering 𝑆𝐷𝐸 such as 𝑁𝐽𝐴, 𝑅𝑂, 𝑆𝑀𝑀 and 𝑀𝐹

instead of just two dynamic events and presented 𝑅𝐹 and

𝑅𝑒𝑔 methods to reschedule jobs using a 𝐻𝑦𝑏 policy. The 𝑅𝐹

method has the potential to handle 𝑀𝐹 as it provides a quick

solution by delaying the affected operations without

significant computational cost. On the other hand, the 𝑅𝑒𝑔

method effectively integrate 𝑁𝐽𝐴 , 𝑅𝑂 , and 𝑆𝑀𝑀 by re-

optimizing the schedule from the point of disruption. This

adopted rescheduling approach has the potential to respond

to different types of 𝑆𝐷𝐸 in efficient way.

In general, despite the vast body of research dedicated to

addressing JSS problems, a significant gap exists in the

literature (shown in Table I). As seen from Table I, existing

studies have primarily focused on exploring either the exact

optimization [47], heuristic methods [48], or metaheuristic

techniques [27], [49] independently, lacking a unified

framework that considers these methods. Additionally, most

existing studies assume that job attributes, such as release

dates, are known in advance [29] and often neglect the

occurrence of 𝑆𝐷𝐸. These assumptions limit the applicability

of solutions in real-world manufacturing, where dynamic

events are common. Therefore, a study that unifies through

developing and comparing the exact, heuristic, and

metaheuristic methods while considering 𝑆𝐷𝐸 is critically

needed to provide more realistic JSS solutions.

This study makes several contributions in this regard:

First, it establishes computational constraints and analyzes

the complexity of finding optimal schedules using the exact

optimization techniques. The optimal solutions obtained

through the exact methods are then served as benchmarks for

optimality. While the exact method guaranteed optimal

solutions, they turned out to be computationally expensive for

medium to large instances. To address this, a greedy

algorithm (𝐺𝑟𝐴) has been examined to obtain quick locally

optimal solutions. Though 𝐺𝑟𝐴 obtained faster solutions, it

struggled with optimality. To overcome this, a novel Greedy

Randomized Adaptive Search Procedure (GRASP) algorithm

is employed, with a more focused and directed procedure for

operations swapping considering operations with significant

tardiness contribution. This approach balanced exploration

and exploitation, improving solution quality. Additionally,

this study addresses dynamic JSS scenario involving 𝑆𝐷𝐸

such as 𝑁𝐽𝐴 , 𝑅𝑂 , 𝑀𝐹 , and 𝑆𝑀𝑀 . A comprehensive

rescheduling procedure using a 𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡 strategy is

implemented, featuring 𝑅𝐹 and 𝑅𝑒𝑔 methods with a

𝐻𝑦𝑏 (𝑝𝑒 and 𝐸𝐷) policy. Our research has practicality and

real-world relevance in automotive, electronics

manufacturing, and other companies.

The rest of the paper is organized as follows: Section II

provides a literature review, Section III defines the JSS

problem and develops mathematical model; Section IV

presents approaches to solve JSS including the exact method,

𝐺𝑟𝐴 and GRASP; Section V provides experimental setup,

Section VI presents the rescheduling procedure; Section VII

provides the results and discussion, followed by the study

conclusion and future work.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1629

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

TABLE I. LITERATURE STUDY ON JSS SHOWING THE POTENTIAL GAP IN STUDIES

References 𝐄𝐱𝐚𝐜𝐭 𝐇𝐞𝐮𝐫𝐢𝐬𝐭𝐢𝐜 𝐆𝐑𝐀𝐒𝐏

𝐒𝐞𝐫𝐢𝐨𝐮𝐬 𝐃𝐲𝐧𝐚𝐦𝐢𝐜 𝐞𝐯𝐞𝐧𝐭𝐬 (𝐒𝐃𝐄) 𝐒𝐭𝐫𝐚𝐭𝐞𝐠𝐲 𝐏𝐨𝐥𝐢𝐜𝐲 𝐌𝐞𝐭𝐡𝐨𝐝

𝑵𝑱𝑨 𝑹𝑶 𝑴𝑭 𝑺𝑴𝑴
𝑷𝒂𝒄𝒕

− 𝑹𝒂𝒄𝒕
𝑯𝒚𝒃 𝑹𝑭&𝑹𝒆𝒈

[47], [48], [57], [77] ✓

[24], [25], [26], [27], [36], [49], [58],

[59], [60], [63], [78], [79], [80], [81], [82]
 ✓

[68] ✓

[83], [84] ✓ ✓ ✓

[41], [85], [86], [87], [88] ✓ ✓ ✓ ✓ ✓

This study ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

II. LITERATURE REVIEW

A. Related to JSS

JSS has attracted significant attention from scholars,

which has resulted in the development of a wide range of

approaches to address its complexity. From the exact

methods like branch-and-bound [57] and mathematical

programming [47] to heuristic approaches like shifting

bottleneck [48], and dispatching rules [58], [59], as well as to

metaheuristic approaches such as TS [49], GA [60], SA [61],

[62], and ACO [63], a plethora of solutions have been

proposed by different authors. The GRASP, on the other

hand, is a promising approach for solving JSS problems as it

efficiently explores the larger search space by combining

local search strategies with both greedy and random phases.

Compared to other metaheuristic approaches, GRASP is

competitive in solution quality and computational efficiency

and is easier to implement and tune [50]: requiring only a few

parameters to tune, such as the Restricted Candidate List

(RCL) and the number of iterations [51]. [52] demonstrated

GRASP's consistent performance in delivering high-quality

solutions across various combinatorial optimization

problems. Over the past decade, GRASP has been effectively

applied to various combinatorial problems [53], [54], [55],

[56]. Overall, GRASP is especially well-suited for handling

JSS problems because of its adaptability and flexibility.

B. Related to JSS and GRASP

 The literature provides a considerable body of research

proving the GRASP's successful application in various

sectors. These domains include production and

manufacturing systems (including discrete manufacturing

parts [64], flowshop [65], [66], just-in-time scheduling [67],

JSS [68], flexible job shop scheduling (FJSS) [51], [69], [70],

[71], and industrial line balancing [72], etc.), routing and

logistics (which involves mixed Chinese postman problem

[54], traveling salesman problem [73], [74], and vehicle

scheduling problem [75][76].

 Among the existing research, the study by [68] stands out.

They investigated the GRASP approach, which combines

greedy and randomized components, by constructing an RCL

based on a threshold value and selecting elements

probabilistically from the RCL. Their method assigns equal

probability to each option in the RCL, emphasizing

randomness in the selection process.

In contrast, our proposed methodology takes a more

guided approach. We utilize problem-specific information,

on the initial solution generated in the construction stage,

through tardiness-based local search procedure considering

operations with a significant tardiness contribution value, to

enhance the quality of the local search. Additionally, random

operation swaps and a restart mechanism have been used to

extend the search procedure and prevent convergence to local

optima, resulting in high-quality solutions with

computational effectiveness.

C. Related to JSS and Rescheduling

Rescheduling is a process of updating the previously

optimal schedule upon 𝑆𝐷𝐸 occurrence [8]. Rescheduling is

crucial in uncertain manufacturing environments [89], [90].

It minimizes tardiness penalties, and ensure timely order

delivery, thereby enhancing efficiency and responsiveness.

Various authors have contributed to the existing literature on

rescheduling. [37] provided a comprehensive framework for

understanding rescheduling research, while [91] conducted a

literature review on executing production schedules in the

face of unexpected disruptions. Additionally, [3] surveyed

dispatching rules for dynamic environments, and [38]

explored dynamic scheduling in manufacturing systems.

Current research on rescheduling focuses on following

aspects: Rescheduling factor, rescheduling strategies,

rescheduling policies, and rescheduling methods [37].

1) Rescheduling factors: Addressed single-machine

scheduling with 𝑁𝐽𝐴 for tardiness related objective function

[43]. Proposed a technique for dynamic JSS with random

𝑁𝐽𝐴 and 𝑀𝐹 [41]. Managed 𝑀𝐹 in JSS to minimize

tardiness [92]. Considered 𝑁𝐽𝐴, aiming to minimize

weighted tardiness [93]. Analyzed rescheduling under 𝑁𝐽𝐴,

evaluating schedule stability and efficiency using total

completion time and weighted tardiness [94].

2) Rescheduling strategies: various authors have

categorized it differently. For example, [37] and [95]

categorized four types of rescheduling strategies:

𝑅𝑎𝑐𝑡 , 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 (𝑃𝑝𝑎𝑐𝑡) − 𝑅𝑎𝑐𝑡 , 𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡 and robust

𝑃𝑎𝑐𝑡 . Similarly, [96] covered four types of rescheduling

strategies: completely 𝑅𝑎𝑐𝑡 , 𝑃𝑝𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡 , robustness-based,

and knowledge-based. Presented a hybrid method that

combines 𝑃𝑎𝑐𝑡 𝑎𝑛𝑑 𝑅𝑎𝑐𝑡 strategies [97]. In [83] studied

𝑃𝑝𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡 strategy along with 𝑃𝑎𝑐𝑡 strategy. In [98] gave

an overview of completely 𝑅𝑎𝑐𝑡 , robust, and pre- 𝑅𝑎𝑐𝑡

strategies. In [93] introduced a 𝑃𝑝𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡 strategy for

manufacturing control systems, focusing on 𝑁𝐽𝐴.

3) Rescheduling policies: In [99] outlined the

rescheduling policies (𝑝𝑒 , 𝐸𝐷, 𝐻𝑦𝑏). In [100] compared

𝑝𝑒 𝑎𝑛𝑑 𝐸𝐷 rescheduling policies for 𝑁𝐽𝐴 . In [101]

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1630

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

introduced analytical methods for 𝑝𝑒 𝑎𝑛𝑑 𝐸𝐷 policies. In

[85] presented a 𝑝𝑒 𝑎𝑛𝑑 𝐸𝐷 rolling horizon policy for DJSS.

In [42] defined a 𝐻𝑦𝑏 policy for DJSS to manage process

delay and 𝑅𝑂 . In [41] proposed a rescheduling policy for

solving DJSS with 𝑁𝐽𝐴 𝑎𝑛𝑑 𝑀𝐹 . In [36] proposed a 𝐻𝑦𝑏

policy to address frequent changes.

4) Rescheduling methods: they are divided into three

types: (1) 𝑃𝑎 [43], [46], [85], [102], [103], (2) 𝑅𝐹 [36], [99],

[104], and (3) 𝑅𝑒𝑔 [42], [97], [105]. Reference [106]

demonstrated different ways to schedule jobs in a machine

for rescheduling process—scheduling new jobs after

completing current ones, immediately scheduling new jobs,

and inserting new jobs into idle time during scheduling.

5) Rescheduling job scheme: Along with other

rescheduling aspects, another important aspect is

rescheduling jobs scheme. Various authors have categorized

rescheduling jobs scheme differently. Categorized it as jobs

not processing yet and in-process jobs [92]. Categorized them

as jobs waiting for processing and jobs waiting to be

scheduled [42]. Divided them into available jobs, jobs in the

jobs window, and already finished jobs [85].

III. PROBLEM FORMULATION

JSS consists of a set of machines as denoted by 𝑀 =
 {𝑀1, 𝑀2 … , 𝑀𝑚} and a corresponding set of jobs as

represented by 𝐽 = {𝐽1, 𝐽2, . . , 𝐽𝑛}. Each job comprises a series

of operations, 𝑂𝑗 = {𝑂𝑗1, 𝑂𝑗2 , . . , 𝑂𝑗𝑙}. These operations must

be processed following a predetermined technological order,

which cannot be changed. Each job is assigned a release date

(𝑟𝑗), and a due date (𝑑𝑗) and each job is allocated on a machine

in 𝑀 to be processed with a given uninterrupted processing

time (𝑝𝑖𝑗). Each machine can process one job at a time, and

each job can be processed only once on a given machine. A

job revisit over the same machine is not allowed, and

processing of a job must not be interrupted. All the jobs must

be scheduled on machines such that the precedence constraint

among different operations of different jobs on the same

machine and the dependency constraint among different

operations of the same job, must be observed. The objective

is to minimize the total tardiness of all jobs.

A flowchart has been presented, as seen in Fig. 3,

outlining the approach adopted in this study. The flowchart

begins with defining the JSS problem. It then details the

development of the exact methods, greedy algorithm (𝐺𝑟𝐴),

and GRASP. Finally, it includes conducting a case study,

experimental setup, rescheduling procedure, results and

discussions, followed by summarizing conclusion and future

research.

D. Mathematical Notions

Sets:

Set of machines 𝑀 = {𝑀1, 𝑀2, … , 𝑀𝑚}

Set of jobs 𝐽 = {𝐽1, 𝐽2, . . , 𝐽𝑛}

Set of operations 𝑂 = {𝑂1, 𝑂2, … , 𝑂𝑙}

Set of rescheduling periods R = {𝑅1, 𝑅2, . . , 𝑅𝑞 }

Set of unfinished jobs 𝐽𝑢 = 𝐽1
𝑢, 𝐽2

𝑢, … , 𝐽𝑛𝑢
𝑢

Set of new jobs 𝐽𝑛 = 𝐽1
𝑛, 𝐽2

𝑛, … , 𝐽𝑛𝑛
𝑛

Index:

Machine index 𝑖 = {1,2, . . , 𝑚}

Jobs index 𝑗 = {1,2, . . , 𝑛}

Previous machine index 𝑖′ = {2,3, . . , 𝑚}

Operation index 𝑘 = {1,2, … , 𝑙}

Last operation of job index 𝑗𝑚

Last machine index 𝑖𝑚

Rescheduling index q = {1,2, . . , r}

Unfinished jobs index 𝑗′

New jobs index 𝑗′′

Parameters:

Number of machines 𝑚𝑖

Number of jobs 𝑛𝑗

Release date 𝑟𝑗

Processing time 𝑝𝑖𝑗

Due date 𝑑𝑗

Rescheduling point Rq

Rescheduling interval 𝑇𝑞 = [𝑅𝑞−1, 𝑅𝑞]

Number of unfinished jobs 𝑛𝑗′
′

Number of new jobs 𝑛
𝑗"
"

Last operation on a machine 𝑗𝑚

Penalty value 𝑉

Variables:

Start time 𝑆𝑖𝑗

Finish time 𝐶𝑖𝑗

Binary variable for jobs

assignment on machine 𝑖
𝑋𝑖𝑗𝑘

Availability status for machine at

rescheduling point
𝐴𝑆𝑀

𝑖

𝑅𝑞

Availability status for jobs at

rescheduling point
𝐴𝑆𝑀

𝑗

𝑅𝑞

Availability time for machine 𝐴𝑇𝑀
𝑖

𝑅𝑞

Availability time for job 𝐴𝑇𝑀
𝑗

𝑅𝑞

Performance measure:

Total tardiness of all jobs 𝛴
𝑗𝜖𝐽

𝑇𝑗

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1631

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

Fig. 3. Research methodology flowchart

E. Mathematical Model

Minimize (𝛴
𝑗𝜖𝐽

𝑇𝑗) (1)

Subject to:

𝑆𝑖𝑗 ≥ 0, ∀ i ∈ M, j ∈ J (2)

𝑆𝑖𝑗1
≥ 𝑟𝑗 , ∀ 𝑖 (3)

𝑆𝑖′𝑗 + 𝑝𝑖′𝑗 ≤ 𝑆𝑖𝑗 , ∀ i′, i ∈ 𝑀, j ∈ J (4)

𝑆𝑖𝑗 + 𝑝𝑖𝑗 ≥ 𝑆𝑖𝑘 + 𝑉(1 − 𝑋𝑖𝑗𝑘), ∀ 𝑖 ∈ 𝑀 𝛿 𝑗, 𝑘 ∈ 𝐽, 𝑗

≠ 𝑘
(5)

𝑋𝑖𝑗𝑘 + 𝑋𝑖𝑘𝑗 = 1, ∀ 𝑖 ∈ 𝑀 𝛿 𝑗, 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘 (6)

∑ 𝑋𝑖𝑗𝑘 ≤ 1, ∀ 𝑖 ∈ 𝑀 𝛿 𝑗, 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘

𝑖∈𝑀

 (7)

𝐶𝑖𝑗 = 𝑆𝑖𝑗 + 𝑝𝑖𝑗 , ∀ 𝑗 (8)

𝑇𝑗 = max (0, 𝐶𝑖𝑗𝑓
− 𝑑𝑗) , ∀ 𝑗 (9)

Equation (1) shows the objective function which is to

minimize the total tardiness. Tardiness is the delay beyond a

job's due date. We aim to complete jobs as close to their due

dates as possible, reducing delays and improving efficiency.

Constraint (2) ensures that jobs cannot start before time zero.

Constraint (3) ensures that each job can only start processing

after its release date. This is crucial for modeling realistic

scenarios. Constraint (4) provides that dependency

relationship among different operations of the same job is

respected. This constraint ensures that operations are

executed in the correct order. Constraint (5) ensures that the

precedence relationship among operations of different jobs

on the same machine is respected. This is important for

maintaining the correct sequence of operations when multiple

jobs share the same machine. Constraint (6) assures that

operations from different jobs cannot be processed

concurrently on the same machine. This reflects the practical

limitation that a machine can only process one operation at a

time. Constraint (7) guarantees that the machine processes at

most one job at a time. This constraint is essential to avoid

overlaps and conflicts in job assignments to machines.

Constraint (8) computes the completion time for each job,

while constraint (9) calculates the each job’s tardiness.

To make the model more realistic, some assumptions in

the defined model will be relaxed, bringing it closer to real-

world scenario. This includes the introduction of 𝑆𝐷𝐸 like

𝑁𝐽𝐴, 𝑅𝑂, 𝑆𝑀𝑀, and 𝑀𝐹, and the introduction of

rescheduling procedure to tackle them. To incorporate these

assumptions into the model, following constraints are added.

At the rescheduling point, the machines occupied in

processing other jobs, marked as "busy", and symbolized as

𝐵𝑚. While machines not engaged in processing any other job

are labelled as "available" and represented as 𝐴𝑚. Similarly,

at the rescheduling point, certain jobs may be processed on

other machines, marked as “busy" and symbolized with 𝐵𝑗 .

Conversely, jobs not processing on any other machines are

labelled as "available" and represented by the symbol 𝐴𝑗.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1632

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

The mathematical formulation is given below for

checking the rescheduling point, availability status and

availability time for machines and jobs.

𝑅𝑞 = {0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
1, 𝑖𝑓 𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑎𝑟𝑟𝑖𝑣𝑒𝑑 𝑦𝑒𝑡

 (10)

𝐴𝑆𝑀
𝑖

𝑅𝑞 = {𝐵𝑚, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝐴𝑚, 𝑖𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑎𝑛𝑦 𝑗𝑜𝑏,

 (11)

𝐴𝑆𝑀
𝑗

𝑅𝑞 = {
𝐵𝑗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐴𝑗, 𝑖𝑓 𝑗𝑜𝑏 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑜𝑛 𝑎𝑛𝑦 𝑚𝑎𝑐ℎ𝑖𝑛𝑒,
 (12)

𝐴𝑇𝑀
𝑖

𝑅𝑞 ≥ 𝐶𝑖𝑗𝑚
, ∀𝑗𝑚 (13)

𝐴𝑇𝑀
𝑗

𝑅𝑞 ≥ 𝐶𝑖𝑗𝑚
, ∀𝑖 (14)

Constraint (10) verifies whether the rescheduling point

arrived yet. This ensures that rescheduling decisions for

periodic rescheduling are made at the rescheduling points.

Constraints (11) and (12) examine the availability status of

machine 𝑖 and job 𝑗 respectively, at a given point,

determining whether the machine and job are available for

processing or currently busy. Constraints (13) and (14)

compute the machine availability time and job availability

time for each machine and each job respectively.

To compute the new start times for each job at 𝑅𝑞 , the

following mathematical formulation is given as follows.

𝑆𝑖𝑗𝑢 ≥ 𝑚𝑎𝑥(𝑅𝑞 , 𝐴𝑇𝑀
𝑖

𝑅𝑞) , ∀ 𝑖 ∈ 𝑀, 𝑗𝑢 ∈ 𝐽′, 𝑞 ∈ 𝑅 (15)

𝑆𝑖𝑗𝑛 ≥ 𝑚𝑎𝑥(𝑅𝑞 , 𝐴𝑇𝑀
𝑖

𝑅𝑞) , ∀ 𝑖 ∈ 𝑀, 𝑗𝑛 ∈ 𝐽𝑛, 𝑞 ∈ 𝑅 (16)

𝑆𝑖𝑗𝑢 + 𝑝𝑖𝑗𝑢 ≥ 𝑆𝑖𝑘𝑢 + 𝑉(1 − 𝑋𝑖𝑗𝑢𝑘𝑢), ∀𝑗𝑢 , 𝑘𝑢

∈ 𝐽𝑢, 𝑗𝑢 ≠ 𝑘𝑢 , 𝑖 ∈ 𝑀
(17)

𝑆𝑖𝑗𝑛 + 𝑝𝑖𝑗𝑛 ≥ 𝑆𝑖𝑘𝑛 + 𝑉(1 − 𝑋𝑖𝑗𝑛𝑘𝑛), ∀𝑗𝑛 , 𝑘𝑛

∈ 𝐽𝑛, 𝑗𝑛 ≠ 𝑘𝑛 , 𝑖 ∈ 𝑀
(18)

Constraints (15) and (16) specify the start times of all

outstanding operations of old jobs that were still in-process

when rescheduling point arrived and new jobs that arrived

before the rescheduling point, respectively. Constraints (17)

and (18) compute the start times of sequential operations of

unfinished operations and newly arriving jobs, respectively.

In the next section, the solution methods such as the exact

method, 𝐺𝑟𝐴 and GRASP are presented to solve the

developed JSS problem.

IV. APPROACHES TO ADDRESS JSS

To solve the developed JSS problem, our study employs

the ft06 JSS instance from [107] as a case example. The ft06,

having six machines and six jobs with six operations each,

serves as a challenging benchmark due to its complexity,

especially given that JSS with more than two machines show

exponential growth in alternative schedules [108]. By

applying our proposed methodologies to ft06, we aim to

demonstrate a step-by-step procedure for solving JSS and

validate our approach's performance.

For this purpose, a hypothetical manufacturing company

scenario has been generated and named as “hypothetical ft06

bike manufacturing company”. The hypothetical ft06 bike

manufacturing company produces 6 different types of bikes

(jobs) namely mountain bike (𝐽1), road bike (𝐽2), hybrid bike

(𝐽3), cruiser bike (𝐽4), electric bike (𝐽5), and folding bike (𝐽6).

Each bike requires 6 operations, including frame cutting

and shaping, frame welding, painting the frame, assembling,

inspection, and packaging. Each bike processes its operations

on 6 different available machines with a predefined routing:

cutting and shaping machine (𝑀1), welding machine (𝑀2),

painting machine (𝑀3) , CNC machine (𝑀4) , assembly

machine (𝑀5), and inspection machine (𝑀6). After they are

done with their processes on all the machines, they are

dispatched for shipping.

The routing at which each job will visit each machine is

shown in Table II and the parameters such as processing time

(𝑝𝑖𝑗), release date (𝑟𝑗), and due date (𝑑𝑗) are known and given

in Table III. From Table II and Table III, each job follows its

specific sequence of operations across different machines,

with varying processing times for each operation. For

example, 𝐽1 begins its first operation on 𝑀3, requiring 1 time

unit. After finishing on 𝑀3, 𝐽1 proceeds to 𝑀1 for its second

operation, requiring 3 times unit, and so on. This pattern

persists for other operations of 𝐽1 and for other jobs. The

generated data in Table II and Table III will be used to test

the exact method, 𝐺𝑟𝐴, and GRASP in following sections.

TABLE II. ROUTING FOR A FT06 HYPOTHETICAL MANUFACTURING

Jobs Routing

J1 𝑀3(𝑂1) – 𝑀1(𝑂2) – 𝑀2(𝑂3) – 𝑀4(𝑂4) – 𝑀6(𝑂5) – 𝑀5(𝑂6)

J2 𝑀2(𝑂1) – 𝑀3(𝑂2) – 𝑀5(𝑂3) – 𝑀6(𝑂4) – 𝑀1(𝑂5) – 𝑀4(𝑂6)

J3 𝑀3(𝑂1) – 𝑀4(𝑂2) – 𝑀6(𝑂3) – 𝑀1(𝑂4) – 𝑀2(𝑂5) – 𝑀5(𝑂6)

J4 𝑀2(𝑂1) – 𝑀1(𝑂2) – 𝑀3(𝑂3) – 𝑀4(𝑂4) – 𝑀5(𝑂5) – 𝑀6(𝑂6)

J5 𝑀3(𝑂1) – 𝑀2(𝑂2) – 𝑀5(𝑂3) – 𝑀6(𝑂4) – 𝑀1(𝑂5) – 𝑀4(𝑂6)

J6 𝑀2(𝑂1) – 𝑀4(𝑂2) – 𝑀6(𝑂3) – 𝑀1(𝑂4) – 𝑀5(𝑂5) – 𝑀3(𝑂6)

TABLE III. PARAMETERS FOR FT06 HYPOTHETICAL MANUFACTURING

Processing Time Moutain bike (𝑱𝟏) Road bike (𝑱𝟐) Hybrid bike (𝑱𝟑) Cruiser bike (𝑱𝟒) Electric bike (𝑱𝟓) Folding bike (𝑱𝟔)

Cutting machine (𝑴𝟏) 3 10 9 5 3 10

Welding machine (𝑴𝟐) 6 8 1 5 3 3

Painting machine (𝑴𝟑) 1 5 5 5 9 1

CNC machine (𝑴𝟒) 7 4 4 3 1 3

Assembly machine (𝑴𝟓) 6 10 7 8 5 4

Inspection machine (𝑴𝟔) 3 10 8 9 4 9

Duedate (𝒅𝒋) 72 31 56 61 52 72

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1633

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

F. Exact Method

The exact methods are optimization methods that

guarantee finding the globally optimal solution to a problem

[109]. The exact methods include branch-and-bound [57],

mathematical programming [47], and many other. The

rationale behind using the exact method is: (1) to define the

scope of the study, (2) to ensure that the found solution is the

best possible one [110], and (3) benchmarking for evaluating

the performance of other approximate methods.

The exact method is employed on hypothetical ft06

manufacturing scenario to find the optimal solution. The

exact method identifies the sequence of operations for each

bike (job) on each machine to minimize the total tardiness.

The resulting optimal solution serves as a benchmark for

evaluating 𝐺𝑟𝐴 and GRASP. By comparing the solutions

obtained through 𝐺𝑟𝐴 and GRASP with those obtained from

the exact method, we evaluate the performance and

effectiveness of these approaches.

To implement the exact method, a programming software

has been employed on the ExpertBook, equipped with a 64-

bit operating system and an 11th generation Intel(R)

Core(TM) i7-1165G7 @ 2.80GHz CPU using 8.00 GB of

RAM. The process starts with formulating the problem as a

mixed-integer non-linear programming (MINLP) model,

incorporating all relevant constraints. The input data,

including 𝑝𝑖𝑗 , 𝑟𝑗, 𝑑𝑗 and job routing, is prepared and fed into

the programming software. The programming software then

applies the exact algorithm to exhaustively explore the

solution space and find the optimal solution. Upon

completion, the optimization results are recorded, including

start times (𝑆𝑖𝑗), finish times (𝐶𝑖𝑗), computational times, job

tardiness and total tardiness.

The Table IV presents 𝑆𝑖𝑗 and 𝐶𝑖𝑗 for hypothetical ft06

bike manufacturing company scenario. Based on these

results, a Gantt chart is drawn in Fig. 4 to visualize and verify

the solutions’ correctness, particularly in terms of precedence

relationship among operations. In Fig. 4, each bar represents

an operation, with the values indicating its 𝑆𝑖𝑗 and 𝐶𝑖𝑗 on that

specific machine. For example, 𝐽3 ’s first operation on

machine 𝑀3 is shown as (5
0) indicating that 𝐽1 starts at 0 times

unit and finishes at 5 times unit.

1 Input: 𝛺 , 𝛷 , ℎ

2 Initialization: s= {} //Initialize an empty solution set.

3 while: ∃(𝐽, 𝑂) ∈ 𝛺 𝑠. 𝑡. (𝐽, 𝑂) ∉ 𝑠 //Include all operations.

4 ∀(𝐽, 𝑂) ∈ 𝛺

5 compute:𝑓(𝑠 ∪ {(𝐽, 0)}) = ℎ(𝑠, {(𝐽, 𝑂)})

6 find:(𝐽, 0) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐽,𝑂)𝑖∈𝛺\𝑧 ℎ(𝑠, {𝐽, 𝑂})

7 𝑠 = 𝑠 ∪ {𝐽, 𝑂} //Add the selected operations to s-set.

8 Return s

Fig. 4. Pseudocode for greedy algorithm

The exact method, while providing optimal solutions,

becomes computationally costly as problem size increases,

limiting their practicality for even moderately sized instances

[110] [109]. As a result, applications of the exact method

become limited by computational demands. Furthermore, the

exact methods are not well-suited to handle dynamic events

effectively, as they require re-solving the entire problem

when 𝑆𝐷𝐸 occur, which can be computationally expensive or

even infeasible. These reasons necessitate the search for other

heuristic approaches. Consequently, our research implements

𝐺𝑟𝐴 as an alternative method to address these challenges.

G. Greedy Algorithm

Greedy algorithm (𝐺𝑟𝐴) is a heuristic approach that uses

a local heuristic (ℎ) to build candidate solutions to

optimization problems step by step. It begins with an empty

solution and keeps adding a finite set of elements to the

current partial solution [109], [111]. This process iterates until

a complete candidate solution is achieved.

The rationale for implementing 𝐺𝑟𝐴 is threefold: (1) It

offers a trade-off between computational efficiency and

scalability [112], (2) it provides approximate solutions

quickly, even for large scale problems, enhancing

computational efficiency, and (3) It can be adapted to

incorporate the dynamic events.

A finite set of elements (Ω), partial solution (𝑠𝑝), search

space (F), and objective function ((Φ) are some of 𝐺𝑟𝐴’s key

elements. A finite set of elements (𝛺) represents the set of all

operations that need to be scheduled.

𝛺 = {(𝐽, 𝑂)|𝐽 = 𝐽1, 𝐽2, . . , 𝐽𝑛 & 𝑂 = 𝑂1, 𝑂2, … , 𝑂𝑙} (19)

The partial solution (𝑠𝑝) represents a subset of operations

that have been scheduled so far.

𝑠𝑝 ⊂ 𝛺 (20)

 Search space (𝐹) consists of all possible partial solutions

that can be generated. It represents all possible combinations

of operations that can be scheduled.

Ϝ ⊂ 2𝛺 (21)

The objective function (𝛷) maps a partial solution to a

real number representing the objective value of the solution.

𝛷: 2𝛺 → ℝ (22)

A detailed pseudocode has been given for 𝐺𝑟𝐴 in Fig. 5.

The 𝐺𝑟𝐴 takes Ω (finite set of elements), Φ (objective

function), and ℎ (local heuristic) as inputs (line 1). 𝐺𝑟𝐴

initializes an empty solution set 𝑠 (line 2) and continues until

all operations are included in the solution (line 3). For each

operation (𝐽, 𝑂) not yet in the solution (line 4): it computes

the value of adding this operation to the current solution using

the local heuristic ℎ (line 5). It selects the operation that

minimizes total tardiness (line 6). The selected operation is

added to the solution set 𝑠 (line 7). The algorithm returns the

completed solution s (line 8).

The 𝐺𝑟𝐴 is applied to hypothetical ft06 bike

manufacturing company scenario. The 𝐺𝑟𝐴 processes data

about machines (cutting, welding, painting, assembling,

inspection, packaging) and bikes (mountain, road, hybrid,

cruiser, electric, folding). Starting with an empty solution, it

uses the heuristic to incrementally build a solution by adding

operations to the partial solution. Feasible solutions are

updated as operations are added. The process repeats until a

complete, feasible sequence of operations is obtained.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1634

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

Fig. 5. Gantt chart for ft06 hypothetical manufacturing using exact method

TABLE IV. RESULTS OBTAINED THROUGH EXACT METHOD FOR FT06 HYPOTHETICAL MANUFACTURING

(𝑺𝒊𝒋, 𝑪𝒊𝒋)
Frame cutting and

shaping (𝑶𝟏)

Frame welding

(𝑶𝟐)

Painting the frame

(𝑶𝟑)

Assembling

(𝑶𝟒)

Inspection

(𝑶𝟓)

Packaging

(𝑶𝟔)

Tardiness

(units)

Moutain bike (𝑱𝟏) (5,6) (6,9) (16,22) (30,37) (38,41) (42,48) 0

Road bike (𝑱𝟐) (0,8) (8,13) (13,23) (28,38) (38,48) (48,52) 21

Hybrid bike (𝑱𝟑) (0,5) (5,9) (9,17) (18,27) (27,28) (48,56) 0

Cruiser bike (𝑱𝟒) (8,13) (13,18) (22,27) (27,30) (30,38) (45,54) 0

Electric bike (𝑱𝟓) (13,22) (22,25) (25,30) (41,45) (48,52) (52,53) 11

Folding bike (𝑱𝟔) (13,16) (16,19) (19,28) (28,38) (38,42) (42,43) 0

Computational time 2.11 (sec)

The Table V presents the results obtained, after applying

𝐺𝑟𝐴, for hypothetical ft06 bike manufacturing company

scenario in terms of 𝑆𝑖𝑗 , 𝐶𝑖𝑗 , tardiness and computational

time. Notably, the tardiness value increased for 𝐺𝑟𝐴

compared to the exact method, with 𝐽2, 𝐽3 and 𝐽5 showing an

increase in tardiness from 21, 0, and 11 to 23, 4 and 13,

respectively. The final feasible solution is presented as Gantt

chart in Fig. 6. Each bar on Gantt chart represents an

operation, with the values indicating its 𝑆𝑖𝑗 and 𝐶𝑖𝑗 for each

machine.

TABLE V. INITIAL SOLUTION FOR FT06 IN CONSTRUCTION PHASE OF

GRASP

Machine Complete solution

Cutting machine (𝑀1)
𝐽1(𝑂2), 𝐽4(𝑂2), 𝐽3(𝑂4), 𝐽6(𝑂4),

𝐽2(𝑂5), 𝐽5(𝑂5)

Welding machine (𝑀2)
𝐽2(𝑂1), 𝐽4(𝑂1), 𝐽6(𝑂1), 𝐽1(𝑂3),

𝐽5(𝑂2), 𝐽3(𝑂4)

Painting machine (𝑀3)
𝐽3(𝑂1), 𝐽1(𝑂1), 𝐽2(𝑂1), 𝐽5(𝑂1),

𝐽4(𝑂3), 𝐽6(𝑂6)

CNC machine (𝑀4)
𝐽3(𝑂2), 𝐽6(𝑂2), 𝐽4(𝑂4), 𝐽1(𝑂4),

𝐽2(𝑂6), 𝐽5(𝑂6)

Assembly machine

(𝑀5)

𝐽2(𝑂3), 𝐽5(𝑂3), 𝐽4(𝑂5), 𝐽6(𝑂5),

𝐽1(𝑂6), 𝐽3(𝑂6)

Inspect. machine (𝑀6)
𝐽3(𝑂3), 𝐽6(𝑂3), 𝐽2(𝑂4), 𝐽1(𝑂5),

𝐽5(𝑂4), 𝐽4(𝑂6)

Results showed that while 𝐺𝑟𝐴 offers significant

computational efficiency compared to the exact method, it

cannot guarantee global optimal solutions [109], [113]. This

limitation arises because the 𝐺𝑟𝐴 minimizes computational

time by making locally optimal decisions without exhaustive

searches, resulting in the 𝐺𝑟𝐴 getting stuck in local optima.

Consequently, the 𝐺𝑟𝐴 struggles to explore the larger

solution space, leading to suboptimal solution. Additionally,

𝐺𝑟𝐴 generates only a single solution, which is most likely

suboptimal [111], and an incorrect decision in early stage

may lead to poor solutions in the end [111]. These limitations

highlight the need for more advanced optimization

techniques. To address these limitations, we proposed a novel

GRASP algorithm with a more directed operation swapping

procedure aiming to enhance solution quality while

maintaining computational efficiency.

H. Greedy Randomized Adaptive Search Procedure

GRASP is an iterative method that effectively solves

combinatorial optimization problems [109], striking a

balance between greediness and randomness in the search for

optimal solutions [111]. The GRASP algorithm is chosen for

this research due to its: (1) efficient balance of exploration

and exploitation in search spaces [109], (2) ability to produce

high-quality solutions efficiently, (3) easier implementation

[50], and (4) proven efficiency in various optimization

problems, including single machine [53], the Chinese

postman routing [54], flow shop [55], and JSS [56].

As compared to other approximate methods, GRASP

offers several advantages: (1) it requires only two parameters

to tune (the candidate list and the number of iterations) [51],

(2) it is highly scalable for JSS problems, as its computational

effort does not grow exponentially with the problem size, (3)

it adapts quickly to dynamic events by regenerating solutions

and applying local search to accommodate the new problem

state, and (4) its randomized component introduces

diversification, enabling exploration of diverse solution

spaces, potentially finding better solutions.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1635

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

Fig. 6. Gantt chart for hypothetical ft06 bike manufacturing using 𝐺𝑟𝐴

TABLE VI. RESULTS OBTAINED THROUGH GREEDY ALGORITHM FOR FT06 HYPOTHETICAL MANUFACTURING

(𝑺𝒊𝒋, 𝑪𝒊𝒋)
Frame cutting

and shaping (𝑶𝟏)

Frame

welding (𝑶𝟐)

Painting the

frame (𝑶𝟑)

Assembling

(𝑶𝟒)

Inspection

(𝑶𝟓)

Packaging

(𝑶𝟔)

Tardiness

(units)

Mountain bike (𝑱𝟏) (0,1) (1,4) (19,25) (25,32) (44,47) (47,52) 0

Road bike (𝑱𝟐) (0,8) (15,20) (20,30) (30,40) (40,50) (50,54) 23

Hybrid bike (𝑱𝟑) (1,6) (6,10) (10,18) (18,27) (27,28) (53,60) 4

Cruiser bike (𝑱𝟒) (8,13) (13,18) (20,25) (32,35) (35,43) (47,56) 0

Electric bike (𝑱𝟓) (6,15) (16,19) (30,35) (40,44) (50,53) (54,55) 13

Folding bike (𝑱𝟔) (13,16) (16,19) (19,28) (28,38) (43,47) (47,48) 0

Computational time 0.01 (sec)

GRASP consists of two phases: the construction phase,

which provides an initial feasible solution that is built using

a heuristic algorithm, and the local search phase, which is

applied on initial solution from construction phase.

1) Construction phase: For our approach, 𝐺𝑟𝐴 has

been applied to hypothetical ft06 bike manufacturing

scenario to generate the initial feasible solution. 𝐺𝑟𝐴

constructs this solution by starting with an empty solution and

keep adding operations to the partial solution until a complete

feasible sequence of operations is achieved. The initial

solution obtained from the construction phase is given in

Table VI showing the sequence in which each machine

performed operations.

2) Local search phase: A novel local search phase is

employed on the initial solution from construction phase,

using intensification and diversification concepts. Through

these concepts, the algorithm explores promising regions

with a more directed approach to guide the search procedure

in promising regions of the solution space, rather than just

random swaps as in typical GRASP. This approach focuses

on the operations contributing significantly to the total

tardiness values in the initial feasible solution. By directing

the local search on operations with a significant tardiness

contribution value, the algorithm effectively leverages for

improvement within the area of the current solution.

Furthermore, a random restart and random swapping

procedure have been introduced to prevent the solution from

getting stuck in local optima. A pseudocode is presented for

the local search in Fig. 7, with the symbols used in

pseudocode in Table VII.

TABLE VII. SYMBOLS USED IN PSEUDOCODE FOR GRASP

Notion Meaning Notion Meaning

𝑠 Initial solution 𝑝𝑟𝑒𝑗𝑘 Predecessor

𝑇𝑗 Job Tardiness 𝑠𝑢𝑐𝑗𝑘 Successor

𝑎 Max. iterations 𝐼 Iterations

𝑐 Restart interval R Random start

𝑘 Operations 𝑆𝑏𝑒𝑠𝑡 Current best

𝑏 Max. stuck iterations 𝑟1, 𝑟2
Random

Operations

𝑇𝑗𝑘
Operation tardiness

contribution

The algorithm takes an initial solution from construction

phase as input (line 1). Then, it computes the tardiness of each

job (line 2) and the tardiness contribution of each operation

(line 3). A job's tardiness is the difference between its

completion time past due date and the tardiness contribution

of an operation is the amount of how much an operation

contributes to total tardiness. The operations are listed then in

the descending order of their tardiness contribution values

(line 4). The parameters of algorithms include the maximum

number of iterations (line 5), the maximum number of stuck

iterations (line 6), and the number of iterations after which a

random restart would occur (line 7).

The random restart is a technique to avoid local optima by

introducing randomization into the search process. The initial

solution is set to the initial best solution (line 8). The

algorithm’s main loop runs for the 𝑎 number of iterations

(line 9). For each operation with a tardiness contribution

greater than a predefined value (line 10), the algorithm

searches neighborhood movements: swapping the operation

with its predecessor (lines 13-19), its successor (lines 20–26)

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1636

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

and at different positions within the same machine (lines 27–

34).

1 Input: 𝑠 //initial solution

2 Calculate: 𝑇𝑗(𝑠) //calculate tardiness of each job

3 Calculate: 𝑇𝑗𝑘(𝑠) //calculate tardiness contribution

4 𝑇𝑗𝑘 = 𝑠𝑜𝑟𝑡 [𝑇𝑗𝑘2
, . . , 𝑇𝑗𝑘

𝑙′
] //list down operations

5 max_iterations = 𝑎

6 max_stuck = 𝑏

7 Restart_interval = 𝑐

8 𝑆𝑏𝑒𝑠𝑡 = 𝑠 //initial best solution

9 while iteration < 𝑎

10 for 𝑘 in 𝑇𝑗𝑘: //Iterate over operations sorted

11 if 𝑇𝑗𝑘𝑞
> 𝑣𝑎𝑙𝑢𝑒

12 𝒇𝒊𝒏𝒅: 𝑝𝑟𝑒𝑗𝑘,𝑠𝑢𝑐𝑗𝑘(𝑇𝑗𝑘𝑞
) //find predecessor

13 𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝒔𝒘𝒂𝒑(𝑠, 𝑇𝑗𝑘𝑞
, 𝑝𝑟𝑒𝑗𝑘) //swap

14 if (𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑):

15 𝑠 = 𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 //accept current solution

16 I={}

17 else:

18 I+=1

19 iteration += 1 // Increment the iteration

20 𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝒔𝒘𝒂𝒑(𝑠, 𝑇𝑗𝑘𝑞
, 𝑠𝑢𝑐𝑗𝑘) //swap

21 if (𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑):

22 𝑠 = 𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 //accept current solution

23 I={}

24 else:

25 I+=1

26 iteration += 1 // Increment the iteration

27 𝒇𝒐𝒓 𝑜𝑡ℎ𝑗𝑘 in 𝑇𝑗𝑘𝑞
: //Insert at all positions

28 𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝒔𝒘𝒂𝒑(𝑠, 𝑇𝑗𝑘𝑞
, 𝑜𝑡ℎ𝑗𝑘) //swap opt.

with all 29 if (𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑):

30 𝑠 = 𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 //accept solution

31 I={}

32 else:

33 I+=1

34 iteration += 1

35 if iteration= 𝑐

36 Select 𝑟1(𝑠), 𝑟2(𝑠) //randomly select operation

37 𝑠 = 𝑠𝑤𝑎𝑝(𝑠, 𝑟1, 𝑟2) //swap random operation

38 I={}

39 else:

40 𝐼 +=1

41 iteration += 1

42 if 𝐼 ≥ 𝑏 //stuck reached the threshold

43 𝑠 = 𝑅(𝑠) //perform random swapping

44 I={}

45 if 𝑆𝑖𝑚𝑝𝑜𝑣𝑒𝑑:

46 𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝑠 //accept best solution

47 iteration +=1

48 return 𝑆𝑏𝑒𝑠𝑡

Fig. 7. Pseudocode for GRASP algorithm

If any of these neighborhood movements result in a better

solution (in terms of total tardiness), the current solution is

updated/modified (lines 15, 21, and 30). After a certain

number of iterations, the algorithm determines if a random

restart (𝑐) would occur (lines 35-41). If the solution keeps

stuck (𝑏) for a specific number of iterations with the same

objective function value, random swapping will be done

(lines 42-44). After exploring all operations, the algorithm

updates the best solution if it is better than the previously

found best solution (line 48).

3) Intensification: The algorithm first calculates each

operation's contribution to total tardiness in the initial

solution. It then creates a sorted list of operations in

decreasing order of tardiness contribution. Iterating through

this list, the algorithm prioritizes operations with high

tardiness impact. It performs a series of swaps, moving these

operations to positions of predecessors, successors, and other

operations on the same machine. This process continues until

a predefined criterion is met. After each swap, the algorithm

evaluates its impact on total tardiness. If the swap minimizes

total tardiness, the new solution is accepted.

4) Diversification: The algorithm employs

diversification to search multiple regions of the solution

space and avoiding local optima. Our algorithm has two

diversification techniques: random swap, if the solution gets

stuck for a certain number of iterations and random start, after

a specified time. The random swap enhances diversity by

incorporating randomization into operations swapping,

preventing the algorithm from being stuck in local optima.

Random restart allows the algorithm to explore a wider

solution space, resulting in better solution.

The GRASP algorithm has been applied to a hypothetical

ft06 bike manufacturing scenario. During the construction

phase, an initial solution, representing the sequence of

operations on each machine, is generate, refer to Table VI.

GRASP then calculates the tardiness of each job in this initial

solution, identifies operations with significant tardiness

values, and computes their contributions to the total tardiness,

as seen in Table VIII.

TABLE VIII. COMPUTING JOB TARDINESS AND TARDINESS

CONTRIBUTION OF OPERATIONS

Jobs 𝑻𝒋 𝑻𝒋𝒌

𝐽1 0 𝑂1: 0, 𝑂2: 0, 𝑂3: 0 , 𝑂4: 0 , 𝑂5: 0 , 𝑂6: 0

𝐽2 21 𝑂1: 0, 𝑂2: 0, 𝑂3: 0, 𝑂4: 7, 𝑂5: 10, 𝑂6: 4

𝐽3 0 𝑂1: 0, 𝑂2: 0, 𝑂3: 0 , 𝑂4: 0 , 𝑂5: 0 , 𝑂6: 0

𝐽4 0 𝑂1: 0, 𝑂2: 0, 𝑂3: 0 , 𝑂4: 0 , 𝑂5: 0 , 𝑂6: 0

𝐽5 11 𝑂1: 0, 𝑂2: 0, 𝑂3: 0 , 𝑂4: 3 , 𝑂5: 7 , 𝑂6: 1

𝐽6 0 𝑂1: 0, 𝑂2: 0, 𝑂3: 0 , 𝑂4: 0 , 𝑂5: 0 , 𝑂6: 0

From Table VIII, the road bike's (𝐽2) operation (𝑂5) on the

frame cutting and shaping machine (𝑀1) has the highest

tardiness contribution, taking 10 times unit. GRASP

identifies its predecessor (folding bike’s (𝐽6) operation 𝑂4)

and successor (electric bike’s (𝐽5) operation 𝑂5). It then

swaps 𝐽2’s operation 𝑂5 with its predecessor, successor, and

other neighboring operations on the same machine. If an

improvement is found, the solution is updated. This process

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1637

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

repeats operations with a specific tardiness contributions

value until predefined criteria are met. The Table IX presents

the results obtained for hypothetical ft06 bike manufacturing

company scenario in terms of 𝑆𝑖𝑗 , 𝐹𝑖𝑗, 𝑇𝑗 and computational

time. Additionally, the final solution is visualized as Gantt

chart in Fig. 8. Each bar on Gantt chart represents an

operation, with the values indicating its 𝑆𝑖𝑗 and 𝐶𝑖𝑗 on that

machine.

The results obtained for ft06 instance using the exact

method, 𝐺𝑟𝐴, GRASP and the previous studies, such as [68]

and [114], are compared (as shown in Table X). While these

studies used makespan as the objective function (with an

optimal value of 55, consistent with our findings upon

evaluation), our study focused on the total tardiness. Thus,

only the comparison between computational times has been

made. The Table X shows that our exact method achieved a

total tardiness value of 32 in 2.11 sec. The 𝐺𝑟𝐴 was faster

with computational time of 0.001 sec but had a higher

tardiness value of 40. In contrast, GRASP achieved the

optimal total tardiness value of 32 in 0.003 sec, balancing

computational efficiency and solution quality. Also, previous

studies on ft06 instance reported longer computational times,

such as 0.37 sec in [68] and less than 1 sec in [114], as

compared to our approach. These results highlight the

efficiency of our novel GRASP, in solving the ft06 instance.

V. EXPERIMENTAL SETUP

To expand the validation of the effectiveness of our exact,

𝐺𝑟𝐴 and GRASP, experiments were conducted considering

two scenarios: (1) hypothetical JSS instances, and (2)

benchmark instances from [48], [107], [115], [116]. The

instances are categorized as small (≤ 25 operations, e.g.,

5 × 5), medium (26-100 operations, e.g., 10 × 10), and

large(>100 operations, e.g., 11 × 11 or greater) [68]. The

evaluation has been made in terms of computational

effectiveness and solution quality.

I. In terms of computational effectivenss

1) Hypothetical JSS Instances and exact method

Small to large hypothetical JSS instances from 2 × 2 to

20 × 20 were generated, where the number of operations for

every job matches the total number of machines, based on the

technique by [117]. Parameters (𝑝𝑖𝑗 , 𝑟𝑗 , and 𝑑𝑗) were

randomly generated in MS Excel and routing for each job has

been defined. The exact method was implemented in a

programming software for instances up to 10 × 10, running

each instance 10 times to account for variations. From these

runs, the mean (𝑥̅), the standard deviation (𝑆𝐷) and the

coefficient of variability (𝐶𝑉) have been calculated to

evaluate the solution quality. Results were obtained only upto

9 × 9 instance but for 10 × 10 instance, despite running the

optimization process in programming software for 172800

sec (48 hours), we had to stop the optimization process

without reaching optimality, highlighting computational

challenges for large instances in the exact method. A line

chart in Fig. 9 presents visualization for computational time

trends for the results obtained for small to medium instances,

with each line representing a distinct test run and the bold

black line showing the average. The line chart shows the

exponential growth in computational time with problem size.

Fig. 8. Gantt chart for ft06 manufacturing using GRASP algorithm

TABLE IX. RESULTS OBTAINED THROUGH GRASP ALGORITHM FOR FT06 HYPOTHETICAL MANUFACTURING

 (𝑺𝒊𝒋, 𝑪𝒊𝒋)
Frame cutting

and shaping (𝑶𝟏)

Frame

welding (𝑶𝟐)

Painting the

frame (𝑶𝟑)

Assembling

(𝑶𝟒)

Inspection

(𝑶𝟓)

Packaging

(𝑶𝟔)

Tardiness

(units)

Moutain bike (𝑱𝟏) (5,6) (6,9) (16,22) (30,37) (38,41) (42,48) 0

Road bike (𝑱𝟐) (0,8) (8,13) (13,23) (28,38) (38,48) (48,52) 21

Hybrid bike (𝑱𝟑) (0,5) (5,9) (9,17) (18,27) (27,28) (48,56) 0

Cruiser bike (𝑱𝟒) (8,13) (13,18) (22,27) (27,30) (30,38) (45,54) 0

Electric bike (𝑱𝟓) (13,22) (22,25) (25,30) (41,45) (48,52) (52,53) 11

Folding bike (𝑱𝟔) (13,16) (16,19) (19,28) (28,38) (38,42) (42,43) 0

Computational time 0.003 (sec)

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1638

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

TABLE X. COMPARISON OF RESULTS FOR EXACT METHOD, 𝐺𝑟𝐴 AND

GRASP WITH OTHER STUDIES FOR FT06 JSS INSTANCE

Methods Computational time Objective function

Exact method 2.11 32

𝐺𝑟𝐴 algorithm 0.001 40

GRASP algorithm 0.003 32

GRASP (in [68]) 0.37 -

GRASP (in [114]) <1 -

2) Benchmark instances and exact method

Benchmark instances such as ft10, abz5, abz6, orb01,

orb02, orb03, orb04, orb05, ta01, ta02, and ta03 are medium

to large instances. The exact methods prove impractical for

these instances, just like 10 × 10 instance from hypothetical

JSS instance, due to computational time constraints. This

limitation necessitates exploring alternative techniques like

𝐺𝑟𝐴 to obtain near optimal solutions within reasonable time

for medium to large instances.

3) Hypothetical JSS instances and 𝐺𝑟𝐴

 Using the data generated for small to large hypothetical

instances, GrA was tested using programming software, with

each instance run 10 times. Based on the results obtained

from 𝐺𝑟𝐴, a line chart has been drawn, as shown in Fig. 10,

to compare the computational effectiveness between the

exact method and 𝐺𝑟𝐴 for small to medium instances. The

line chart shows an exponential growth in computational time

for small to medium instances when using the exact method.

However, this significantly reduced when using 𝐺𝑟𝐴. It

confirms the computational effectiveness of 𝐺𝑟𝐴 in finding

faster solutions than the exact method for small to medium

instance. For the medium to large instances, 𝐺𝑟𝐴 yielded

consistent total tardiness value with varying but significantly

smaller computational time each run (refer to Table XIII).

4) Benchmark instances and 𝐺𝑟𝐴

The same experimental procedure was applied to

benchmark instances using 𝐺𝑟𝐴. The results are presented in

Table XIV, showing consistent total tardiness and varying but

significantly smaller computational times than exact method.

5) Hypothetical JSS instances and GRASP

The GRASP algorithm was tested, with each instance run

10 times. Across each run, the obtained results for GRASP

for the total tardiness and computational time showed

variability but significantly smaller than the exact method and

𝐺𝑟𝐴. It was expected due to GRASP’s randomized

construction and local search phase. A comparison between

computational times for small to medium instances obtained

from the exact method, 𝐺𝑟𝐴 and GRASP has been presented

in Fig. 11. It can be seen from Fig. 11 that GRASP shows

significant reduced computational times compared to the

exact method, though slightly higher but still acceptable

compared to 𝐺𝑟𝐴. For example, for 9 × 9, the computational

time for the exact method is 23758.62 sec, 𝐺𝑟𝐴 is 1.34𝑒−3 sec

and GRASP is 2.18𝑒−1 sec. Similarly, for medium to large

instances, results are presented in Table XIII, showing that

GRASP consistently outperforms 𝐺𝑟𝐴 in solution quality and

the exact method in terms of computational effectiveness.

6) Benchmark instances and GRASP

We also conducted experiments for GRASP using

benchmark instances. The results obtained from these

experiments are presented in Table XIV, showing a similar

trend of significantly minimizing the computational time than

the exact method, as with GRASP in hypothetical instances.

Fig. 9. Computational times obtained using exact method for a range of hypothetical test instances for JSS

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1639

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

Fig. 10. Computational time comparison between exact method and 𝐺𝑟𝐴 for hypothetical test instances

Fig. 11. Computational time comparison between exact method, GA and GRASP algorithm for hypothetical test instances

J. In Terms of Solution Quality

In addition to evaluating computational efficiency, it is

crucial to evaluate the solution quality in JSS. High-quality

solutions ensure that production goals are achieved. To

achieve this, we calculated the percentage gap between the

exact method and the 𝐺𝑟𝐴 , as well as between the exact

method and the GRASP. This comparison is critical to

determine how closely each solution approximates the

optimal solutions provided by the exact method.

1) Exact method and 𝐺𝑟𝐴

Fig. 12 presents a bar chart showing the percentage gap

between the exact method and 𝐺𝑟𝐴 (blue), and the exact

method and GRASP (red) for small to medium instances. The

bar chart reveals that while the 𝐺𝑟𝐴 is computationally

efficient, it has an average percentage gap of 13.82%. This

means that, on average, the solutions generated by the 𝐺𝑟𝐴

are 13.82% less optimal compared to the exact method.

2) 𝐺𝑟𝐴 and GRASP

In contrast to percentage gap between the exact method

and 𝐺𝑟𝐴, the GRASP shows a remarkable improvement with

an average percentage gap of only 3.43%, highlighting its

superior accuracy in producing solutions closer to the optimal

(refer to Fig. 12).

Table XIII presents percentage gap across various test

instances, consistently showing that the GRASP algorithm

outperforms the 𝐺𝑟𝐴 in terms of solution quality. For

instance, in the 4 × 4 the 𝐺𝑟𝐴 has a percentage gap of

20.12%, whereas the GRASP reduced this to 0.00%.

Similarly, in the 8 × 8 instance, the percentage gap dropped

from 19.85% for 𝐺𝑟𝐴 to 5.83% for GRASP. These results

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1640

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

highlight the reliability of the GRASP in maintaining high

solution quality across different problem sizes.

Fig. 12. Percentage error for 𝐺𝑟𝐴 and GRASP with exact method

VI. RESCHEDULING PROCEDURE

Since production environments are often dynamic and

unpredictable, where they experience dynamic events [32],

[33], [34], that deviate the original schedule, reducing the

efficiency and quality of scheduled execution [28]. To tackle

them, rescheduling has emerged as a primary focus of

contemporary scheduling research and a topic of global

interest [36].

 In order to bring together the various aspects of

rescheduling, which have often been studied separately in

previous research, a comprehensive rescheduling framework

has been presented, as seen in Fig. 13. Our framework

combines multiple rescheduling elements, including

rescheduling factors, strategies, policies, methods,

environments, and performance evaluation. This holistic

approach provides a more complete understanding of the

rescheduling process, which is crucial for both theoretical

development and practical applications.

In our study, we examined a dynamic scenario at

hypothetical ft06 bike manufacturing company. The

production environment of the case example is subjected to

𝑆𝐷𝐸 (i.e., 𝑁𝐽𝐴, 𝑅𝑂, 𝑀𝐹 and 𝑆𝑀𝑀) necessitating

rescheduling strategy. To address this, we have implemented

a 𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡 strategy that incorporates 𝑅𝐹 and 𝑅𝑒𝑔

methods using a 𝐻𝑦𝑏 (𝑝𝑒 and 𝐸𝐷) policy. The adopted

rescheduling methodology is presented as a flowchart in Fig.

15. The rescheduling methodology starts with obtaining the

initial schedule, which is then executed in production

environment. The algorithm continuously monitors for any

𝑆𝐷𝐸. When such an event occurs, it is categorized as either

machine-related, job-related, or other.

For machine-related events, the algorithm further

categorizes if the event is a 𝑀𝐹 . If yes, an 𝐸𝐷 policy is

immediately implemented using a 𝑅𝐹 method. This involves

forwarding the schedule to account for the disruption,

computing the new machine availability status and time, and

determining the remaining processing time for jobs. If the

machine-related event is 𝑆𝑀𝑀 , a 𝑝𝑒 policy is applied at

predefined rescheduling points. For job-related events, the

algorithm checks if the event is a 𝑅𝑂 or 𝑁𝐽𝐴. If it is a 𝑅𝑂, an

𝐸𝐷 policy is applied, which schedules 𝑅𝑂 immediately. If it

is 𝑁𝐽𝐴, a 𝑝𝑒 policy is implemented at the rescheduling point.

For rescheduling jobs upon dynamic events, the algorithm

computes the machine and job availability statuses and times

at the rescheduling point. Completed operations are removed

from the new schedule, and a new rescheduling scheme is

created for the remaining jobs while including newly arriving

jobs. The algorithm then computes new start times for each

operation based on the job and machine availability times and

executes the new scheduling plan. This process continues

iteratively, with the algorithm re-evaluating and rescheduling

as needed until all operations are finished, at which point the

process ends.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1641

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

Fig. 13. Rescheduling framework [36], [37], [38], [43], [46], [85], [87], [95], [97], [102], [105], [106], [119]

K. Periodic rescheduling (𝑝𝑒)

 In this study, 𝑝𝑒 policy is implemented by dividing the

entire time horizon into specific intervals, known as

rescheduling points. A pseudocode for 𝑝𝑒 has been presented

in Fig. 14, where the decision criteria involve determining the

next rescheduling point 𝑅𝑞. Jobs arriving after 𝑅𝑞−1 are

ignored until the next rescheduling point 𝑅𝑞 is reached. At

𝑅𝑞, the algorithm reschedules the jobs. The schedule is then

updated to reflect these changes. The algorithm terminates

when all jobs finished process.

1

Initialize 𝑞 = 0

2 Initialize 𝑅𝑞 = 0

3 while NotAllJobsProcessed:

4 𝑞 = 𝑞 + 1

5 𝑅𝑞=determineReschedulingPoint (𝑅𝑞−1)

6 IgnoreJobsArrivingAfter (𝑅𝑞−1)

7 ReschedulingJobsAt 𝑅𝑞

8 If newJobsArrivingAfter 𝑅𝑞−1

9 RescheduleJobsAt(𝑅𝑞)

10 UpdateSchedule()

11 end

Fig. 14. Pseudocode for periodic rescheduling

1) New job arrival

Three rescheduling points are considered: 𝑡 = 15 , 𝑡 =
30, and 𝑡 = 45 to schedule the 𝑁𝐽𝐴.

a) Case I: New mountain bike arrival: At time 𝑡 = 12,

a new job involving the production of mountain bikes arrives.

According to the 𝑝𝑒 policy, this job is delayed until the next

rescheduling point at 𝑡 = 15. At 𝑡 = 15, a 𝑅𝑒𝑔 method is

employed. The algorithm first calculates the availability of

machines and jobs on their status at 𝑡 = 15 (shown in Table

XVI). Based on this information, it determines the earliest

start times for each job. Operations that have already been

completed by 𝑡 = 15 are excluded from the rescheduling

process. The jobs that were still processing when

rescheduling point arrived, are neglected. The newly arrived

jobs, along with the unfinished operations of existing jobs,

are included in the rescheduling procedure in Fig. 15.

During the periodic rescheduling process at 𝑡 = 15 , a

situation arose where the algorithm needed to select between

two jobs (𝐽4 and 𝐽7), which are scheduled to start on the same

machine (𝑀3) at the same time (𝑡 = 22). To address this, we

examined five priority rules: Earliest Due Date (EDD),

Remaining Operations, Remaining Processing Time, First in

First Out (FIFO), and Critical Ratio (CR). Although these

rules produced similar results with total tardiness value of 35

for each scenario, our approach focused on EDD due to its

proven effectiveness in minimizing job tardiness.

b) Case II: Regular interval with no new jobs: At the

second rescheduling point, 𝑡 = 30, no new jobs arrive. As a

result, the scheduling process continues uninterrupted, and

the system maintains its current schedule.

c) Case III: Subsequent new job arrival: At time 𝑡 =
40 , another new job arrives, this time involving the

production of electric bikes. Like the previous case, this job

is delayed until the next rescheduling point at 𝑡 = 45. At this

point, the algorithm again calculates machine and job

availability to determine the earliest start times for all jobs,

like the rescheduling procedure for new job arrival at 𝑡 = 15.
Completed operations are removed, while new and remaining

jobs are included in the 𝑅𝑒𝑔 rescheduling process. The

algorithm also checks if two or more jobs start their

operations on the same machine at the same time after the

rescheduling process.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1642

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

The final solution incorporating new jobs arrival at 𝑡 =
15 and 𝑡 = 45 can be visualized in Gantt chart that has been

provided in Fig. 16. The results demonstrate that the 𝑝𝑒

policy effectively accommodates new jobs by rearranging the

schedule dynamically at rescheduling points.

Fig. 15. Proposed rescheduling procedure

2) Scheduled machine maintenance (𝑆𝑀𝑀)

 For the 𝑆𝑀𝑀 , a 𝑝𝑒 policy is again employed. In this

scenario, 𝑀4 is scheduled for maintenance at time 𝑡 = 30,

requiring 10 times unit to complete the maintenance task.

This means that no job can be scheduled on 𝑀4 during the

maintenance period from 𝑡 = 30 to 𝑡 = 40. At 𝑡 = 30, the

𝑀4 is goes under maintenance and jobs that were supposed to

be processed on 𝑀4 during that time are delayed accordingly.

For example, operation 𝑂4 of 𝐽1 was scheduled on 𝑀4 at 𝑡 =
30 but it will be delayed until 𝑡 = 40. The results of 𝑆𝑀𝑀

are visualized using Gantt chart, as shown in Fig. 17.

L. Event-driven (𝐸𝐷) Rescheduling

Two 𝑆𝑆𝐸 are considered for event-driven rescheduling:

𝑀𝐹, and 𝑅𝑂. These events necessitate immediate

adjustments to the production schedule.

1) Machine failure (𝑀𝐹)

For 𝑀𝐹, the 𝑅𝐹 method is applied. This method involves

shifting the operations scheduled on the failed machine

forward in time to account for the downtime.

a) Scenario 1: Machine 3 (𝑀3) fails: In this scenario,

at time 𝑡 = 20, machine 𝑀3 fails while job 𝐽5 is processing

on it. Job 𝐽5 started its operation on 𝑀3 at 𝑡 = 13 and

required 9 times unit to complete, but the machine broke

down at 𝑡 = 20. Machine 𝑀3 needs 10 time unit to recover

and will be available again at 𝑡 = 30 . The 𝑅𝐹 method is

employed on machine 𝑀5 which right shifts the operation of

𝐽5 on 𝑀5 and the remaining processing time for job 𝐽5 is

recalculated.

Since 𝐽5 had processed for 7-time unit before the

breakdown (from 𝑡 = 30 to 𝑡 = 20.), it needs 2 more-time

units to complete its operation. Job 𝐽5 restarts its operation on

𝑀3 at 𝑡 = 30, immediately after the machine is repaired, and

completes at 𝑡 = 32.

b) Scenario 2: Machine 6 (𝑀6) fails: At time 𝑡 = 46,

machine 𝑀6 fails while job 𝐽1 is processing on it. Job 𝐽1

started its operation on 𝑀6 at 𝑡 = 45 and required 3-time

units to complete, but the machine broke down at 𝑡 = 46. The

𝑅𝐹 method is again employed, which right-shifts the

operations of 𝐽1 by the amount of time required to repair the

machine. Machine 𝑀6 needs 10 time units to restore the

machine and will be available again at 𝑡 = 56. The remaining

processing time for job 𝐽1 is recalculated.

Since 𝐽1 had processed for 1 time unit before the

breakdown (from 𝑡 = 45 to 𝑡 = 46), it needs 2 more-time

units to complete its operation. Job 𝐽1 restarts its operation on

𝑀6 at 𝑡 = 56, immediately after the machine is repaired, and

completes at 𝑡 = 58 . The results of machine failure are

visualized using Gantt chart, as shown in Fig. 18.

2) Rush orders (𝑅𝑂)

𝑅𝑂 are urgent jobs that need to be incorporated into the

current schedule with high priority. The rescheduling process

for 𝑅𝑂 involves evaluating the current machine availability

and job availability and integrating the 𝑅𝑂 into the

production flow in order to minimize total tardiness.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1643

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

Fig. 16. Periodic rescheduling for new jobs arrival at 𝑡 = 15, 30 and 45

Fig. 17. Periodic rescheduling at t=30 for machine scheduled maintenance

Fig. 18. Event-driven rescheduling at t=20 and t=46 for M3 and M6 failure using right-shift rescheduling methods

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1644

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

a) Scenario 1: Hybrid bike rush order: A RO for a

hybrid bike arrives at 𝑡 = 35. ED policy is required based on

the routing for the hybrid bike. At 𝑡 = 35, the algorithm first

calculates the availability of machines and jobs. The earliest

start times for each operation of the hybrid bike are

computed, considering the machine's availability and the

job's routing requirements, without waiting for the next

rescheduling point to arrive. The schedule is updated

accordingly to reflect the inclusion of the RO.

b) Scenario 2: Electric bike rush order: the second RO

of electric bike arrives at 𝑡 = 40 . The algorithm again

calculates the machine and job availabilities and based on

that, it calculates the earliest start time, at the point where the

event arrived, without waiting for the periodic rescheduling

point to arrive and the schedule is updated to integrate the

new RO. The results of RO are visualized using Gantt chart,

as shown in Fig. 19.

 Finally, the Table XVII compares different rescheduling

methods applied to a hypothetical ft06 bike manufacturing

company under various dynamic events. The focus is on the

total tardiness value before and after rescheduling, which

serves as a key performance metric.

 𝑅𝑎𝑐𝑡 strategies tend to slightly increase tardiness when

responding to 𝑆𝑆𝐸 and increasing total tardiness from 32 to

33 for 𝑅𝑂 and to 38 for 𝑀𝐹. Proactive strategies, however,

result in higher tardiness when integrating 𝑁𝐽𝐴 or

accommodating 𝑆𝑀𝑀 . This trend aligns with the findings

presented in research [68], where the 𝐸𝐷 policy provided

better results than the 𝑝𝑒 policy.

VII. RESULTS AND DISCUSSIONS

This section presents the main findings for the exact

method, 𝐺𝑟𝐴, and GRASP in terms of: (1) solution quality,

and (2) computational efficiency. The findings are divided

into five parts:

(1) Results based on small to medium hypothetical JSS

instances,

(2) Results based on medium to large hypothetical JSS

instances,

(3) Results based on small to large well-known benchmark

JSS instances,

(4) Results comparison with the similar studies in literature,

(5) Strengths and limitations.

M. Results Based on Small to Medium Hypothetical JSS

Instances

 For small to medium hypothetical JSS instances: Table XI

compares total tardiness values and percentage gap obtained

from the exact method, 𝐺𝑟𝐴 and GRASP. Experiments

showed the exact method provided optimal solutions, serving

as a benchmark for 𝐺𝑟𝐴 and GRASP (refer to Table XI).

Both, 𝐺𝑟𝐴 and GRASP achieved optimal or near-optimal

solutions for smaller instances (up to 4 × 4), GRASP

outperformed 𝐺𝑟𝐴 for larger instances. The percentage gap

between the exact method and 𝐺𝑟𝐴 increased with problem

size, for example, 15.18% for the 7 × 7 instance. In contrast,

GRASP maintained a relatively low percentage error, with a

maximum of 4.94% for the 7 × 7 instance, demonstrating

better solution quality.

 Computationally, the exact method was efficient for small

instances but grew exponentially, taking about 23758.62 sec

(around 6.6 hours) for the 9 × 9 instance (refer to Table XII).

The results for 10 × 10 could not reach optimality even after

running the optimization process for 48 hours.

 The 𝐺𝑟𝐴, on the other hand, showed significantly lower

computational times, for small to medium instances being in

the order of 𝑒−4 sec (as seen in Table XII). For small to

medium instance, 𝐺𝑟𝐴 ’s computational time was only

1.34𝑒−3 sec. Both 𝐺𝑟𝐴 and the exact method displayed low

𝑆𝐷 and 𝐶𝑉, indicating consistent computational times across

runs.

GRASP balanced computational efficiency and solution

quality between the exact method and 𝐺𝑟𝐴 (refer to Table

XII). For smaller instances, GRASP's times were comparable

to the exact method, around 𝑒−2 sec or less. As problem size

increased, GRASP maintained low computational times, with

a maximum of 0.218 seconds for the 9 × 9 instance, staying

within a reasonable range. GRASP showed slightly higher

standard deviation in computational times due to its

randomized nature. Despite this variability, GRASP

outperformed 𝐺𝑟𝐴 in terms of solution quality. With a lower

average percentage error (3.43%) compared to 𝐺𝑟𝐴

(13.82%), GRASP demonstrated superiority in maintaining

high quality solutions while managing computational

efficiency.

Fig. 19. Event-driven rescheduling for hybrid bike and electric bike arrival at t=30 and t=40

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1645

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

TABLE XI. COMPARISON OF TOTAL TARDINESS VALUES BETWEEN EXACT METHOD, GREEDY ALGORITHM, AND GRASP FOR SMALL TO MEDIUM

HYPOTHETICAL JSS INSTANCES

Test

Instance

EM GA GRASP EM GA GRASP EM GA GRASP percentage Gap

𝒙̅ 𝑺𝑫 𝑪𝑽 EM&GA EM&GRASP

2×2 14 14 14 0.00 0.00 0.00 0.00 0.00 0.00 0.00% 0.00%

3×3 64 77 64 0.00 0.00 0.00 0.00 0.00 0.00 20.31% 0.00%

4×4 169 203 176.1 0.00 0.00 9.70 0.00 0.00 0.06 20.12% 4.20%

5×5 271 322 284.3 0.00 0.00 10.27 0.00 0.00 0.04 18.82% 4.90%

6×6 361 386 370.5 0.00 0.00 4.65 0.00 0.00 0.01 6.93% 2.63%

7×7 593 683 622.3 0.00 0.00 7.00 0.00 0.00 0.01 15.18% 4.94%

8×8 821 984 868.9 0.00 0.00 21.92 0.00 0.00 0.02 19.85% 5.83%

9×9 1066 1166 1119 0.00 0.00 27.99 0.00 0.00 0.02 9.38% 4.97%

Avg. - - - - - - 0.00 0.00 0.02 13.82% 3.43%

𝐸𝑀: exact method; 𝐺𝐴: greedy algorithm; 𝑥̅: mean; 𝑆𝐷: standard deviation; 𝐶𝑉: coefficient of variation

TABLE XII. COMPARISON OF COMPUTATIONAL VALUES BETWEEN EXACT METHOD, GREEDY ALGORITHM, AND GRASP FOR SMALL TO MEDIUM

HYPOTHETICAL JSS INSTANCES

Test

Instance

EM GA GRASP EM GA GRASP EM GA GRASP

𝒙̅ 𝑺𝑫 𝑪𝑽

2×2 8.0𝑒−2 1.00𝑒−4 6.88𝑒−3 1.33𝑒−2 3.173𝑒−4 2.241𝑒−3 1.67𝑒−1 3.16𝑒−4 3.26𝑒−1

3×3 8.2𝑒−2 0.00 4.26𝑒−2 9.19𝑒−3 0.00 5.62𝑒−2 1.12𝑒−1 0.00 1.31

4×4 1.53𝑒−1 1.67𝑒−4 3.02𝑒−2 4.92𝑒−2 2.70𝑒−4 2.92𝑒−3 3.21𝑒−1 1.62 9.70𝑒−2

5×5 2.99𝑒−1 4.21𝑒−4 4.31𝑒−2 3.16𝑒−3 4.90𝑒−4 6.11𝑒−3 1.05𝑒−2 1.16 1.41𝑒−1

6×6 7.11𝑒−1 4.51𝑒−4 5.61𝑒−2 3.93𝑒−3 4.98𝑒−4 2.82𝑒−3 5.52𝑒−2 1.10 5.02𝑒−2

7×7 2.03 9.02𝑒−4 8.94𝑒−2 1.82𝑒−2 4.59𝑒−4 6.24𝑒−3 8.99𝑒−3 5.09𝑒−1 6.97𝑒−2

8×8 553.092 9.57𝑒−4 1.64𝑒−1 115.39 1.56𝑒−4 2.16𝑒−2 2.08𝑒−1 1.63𝑒−1 1.31𝑒−1

9×9 23758.62 1.34𝑒−3 2.18𝑒−1 322.46 4.82𝑒−4 1.81𝑒−2 1.35𝑒−2 3.58𝑒−1 8.30𝑒−2

Avg. - - - - - - 0.11 1.00 0.27

N. Results Based on Medium to Large Hypothetical JSS

Instances

For medium to large hypothetical JSS instances, 𝐺𝑟𝐴 and

GRASP gained significance due to the computational

limitations of the exact methods. A comparative analysis for

instances ranging from 10×10 to 20×20 showed that 𝐺𝑟𝐴 's

maintained low computational times (from 1.96𝑒−3 sec for

the 10 × 10 instance to 1.94 𝑒−2 sec for the 20 × 20

instance) (refer to Table XIII). Additionally, 𝐺𝑟𝐴 's low

𝑆𝐷and 𝐶𝑉 indicated consistent computational times across

multiple runs. In contrast, GRASP exhibited computational

times close to those of the 𝐺𝑟𝐴, ranging from 1.48𝑒−1 sec for

the 10 × 10 instance to 48.76 sec for the 20 × 20 instance.

Although GRASP showed higher variability in

computational times, as indicated by slightly higher standard

deviations and coefficients of variation, this is expected due

to its randomized nature and sophisticated search procedures.

Despite this, GRASP outperformed 𝐺𝑟𝐴 in solution quality.

The mean total tardiness values for 𝐺𝑟𝐴 ranges from 1937

for the 10×10 instance to 6697 for the 20×20 instance, with

no variability across runs. While GRASP consistently

achieved lower total tardiness values compared to 𝐺𝑟𝐴, with

mean values ranging from 1296.2 for the 10 × 10 instance to

6080.5 for the 20 × 20 instance. Although GRASP showed

non-zero 𝑆𝐷, indicating variability in solution quality across

multiple runs, it consistently delivered better results than

𝐺𝑟𝐴. This highlights GRASP's superiority in handling larger-

scale JSS instances, balancing computational efficiency with

higher solution quality.

O. Results Based on Small to Large Well-Known

Benchmark JSS Instances

To further validate the efficacy and generalize the

findings of the proposed scheduling approaches, we

conducted an extensive evaluation using benchmark JSS

instances. The instances considered include abz5, abz6, ft10,

orb01, orb02, orb03, orb04, orb05, ta01, ta02, and ta03,

which encompass varying sizes and complexities.

Table XIV demonstrates 𝐺𝑟𝐴′𝑠 consistent computational

times across all instances (1.00𝑒−3 sec for the ft10 instance

to 9.74𝑒−4 sec for the orb05 instance), indicating stable and

efficient performance in terms of computational

effectiveness. GRASP, despite its sophisticated search

mechanism, maintains similarly small times close to those of

𝐺𝑟𝐴, ranging from 2.78 sec for the ta02 instance to 6.73𝑒−1

sec for the orb05 instance.

In terms of solution quality, the GRASP algorithm

consistently outperformed the 𝐺𝑟𝐴 across all benchmark

instances by achieving lower total tardiness values (refer to

Table XIV). For example, for abz6, the mean total tardiness

value was minimized from 7614 with 𝐺𝑟𝐴 to 5067.7 with

GRASP. Similarly, for orb04, it minimized from 8444 with

𝐺𝑟𝐴 to 5104.1 with GRASP. This trend held across other

benchmark instances as well, showing GRASP’s superior

performance and effectiveness in providing high quality

solutions, especially for larger and more complex instances.

In summary, for small and medium-sized instances, the

exact method is preferable due to its ability to find optimal

solutions, despite longer computational times compared to

the 𝐺𝑟𝐴 (refer to Table XI and Table XII). However, as the

problem size increases, the computational advantage of the

𝐺𝑟𝐴 becomes more pronounced, albeit compromised solution

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1646

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

quality (refer to Table XIII and Table XIV). GRASP emerged

as a practical alternative for larger instances, providing near-

optimal solutions within reasonable computational times,

outperforming the 𝐺𝑟𝐴 . Thus, while 𝐺𝑟𝐴 is suitable for

limited computational resources, GRASP is recommended

for achieving high-quality solutions in larger and more

complex scheduling environments within reasonable amount

of time.

P. Results Comparison with the Similar Studies in

Literature

We provided a comprehensive comparison between

existing studies and our study demonstrating significant

improvements in computational efficiency (refer to Table

XV). For example, the computational time for the ft06

instance was reduced from 0.37 sec in previous studies [114]

to 0.003 sec. Similarly, for the ft10 instance, our approach

reduced the time from 173.2 sec for [68] to 6.19𝑒−1 sec in

our study. This trend of improved computational efficiency is

consistently observed across all orb instances, with times

notably lower than those previously reported.

While our study used total tardiness as the objective

function instead of makespan, solution quality was confirmed

through comparative analysis using hypothetical JSS

instances (refer to Fig. 12 and Table XI). The results

demonstrate our approach's effectiveness in achieving high-

quality solutions with significantly reduced computational

times, offering practical insights into GRASP method's

scalability and efficiency.

Q. Strengths and Limitations

One of the strengths of this study is the thorough

comparison across a wide range of instance sizes, which

offers a clear understanding of each method's performance.

The inclusion of benchmark instance results and comparisons

with previous studies adds robustness to our findings.

However, the study's reliance on hypothetical data may not

fully capture the complexities of real-world scheduling

problems. Challenges include integrating real-time data with

the rescheduling procedure, which can be improved using IoT

devices and sensors. Decision-making under uncertainty is

also critical in rescheduling for which more dynamic events

could be incorporated into the model. Future research could:

(1) Incorporate more dynamic events for decision-making

under uncertainty,

(2) Extend analysis to real-world data with diverse objective

functions (e.g., makespan, flow time), and

(3) Leverage predictive analytics (machine learning, digital

twins) to forecast disruptions.

TABLE XIII. COMPARISON OF COMPUTATIONAL TIME AND OBJECTIVE FUNCTION BETWEEN GREEDY ALGORITHM, AND GRASP FOR HYPOTHETICAL

LARGE INSTANCES

 GA GRASP

 Computational Times Objective Function Computational Time Objective Function

Instances 𝒙̅ 𝑺𝑫 CV 𝒙̅ 𝑺𝑫 𝑪𝑽 𝒙̅ 𝑺𝑫 𝑪𝑽 𝒙̅ 𝑺𝑫 𝑪𝑽

10 × 10 1.96𝑒−3 5.58𝑒−4 2.85𝑒−1 1937 0 0 3.54 1.48𝑒−1 4.19𝑒−2 1296.2 14.41 1.11𝑒−2

11 × 11 2.58𝑒−3 4.83𝑒−4 1.87𝑒−1 1653 0 0 4.93 1.38𝑒−1 2.80𝑒−2 1545.2 14.14 9.15𝑒−3

12 × 12 3.40𝑒−3 4.53𝑒−4 1.33𝑒−1 2048 0 0 6.87 2.25𝑒−1 3.28𝑒−2 1870.5 19.35 1.03𝑒−2

13 × 13 4.34𝑒−3 4.78𝑒−4 1.01𝑒−1 4783 0 0 9.52 5.83𝑒−1 6.13𝑒−2 3020.4 88.92 2.94𝑒−2

14 × 14 7.91𝑒−3 5.45𝑒−3 6.89𝑒−1 5228 0 0 12.98 4.03𝑒−1 3.11𝑒−2 3127.5 46.05 1.47𝑒−2

15 × 15 6.78𝑒−3 6.13𝑒−4 9.03𝑒−2 6058 0 0 16.70 7.48𝑒−1 4.48𝑒−2 3702.3 82.14 2.22𝑒−2

16 × 16 8.50𝑒−3 5.37𝑒−4 6.32𝑒−2 5675 0 0 21.96 1.03 4.67𝑒−2 4168 67.54 1.62𝑒−2

17 × 17 1.00𝑒−2 7.83𝑒−4 7.81𝑒−2 6247 0 0 28.01 1.68 6.00𝑒−2 4722.8 48.39 1.03𝑒−2

18 × 18 1.37𝑒−2 3.87𝑒−3 2.83𝑒−1 6436 0 0 35.26 3.89 1.10𝑒−1 5281.4 48.56 9.19𝑒−3

19 × 19 1.73𝑒−2 8.84𝑒−3 5.12𝑒−1 5264 0 0 42.78 3.18 7.44𝑒−2 4929.2 26.38 5.35𝑒−3

20 × 20 1.94𝑒−2 5.48𝑒−3 2.82𝑒−1 6697 0 0 48.76 2.92 5.98𝑒−2 6080.5 17.68 2.91𝑒−3

Avg. - - 2.47𝑒−1 - - 0 - - 5.37𝑒−2 - - 1.28𝑒−2

TABLE XIV. COMPARISON OF COMPUTATIONAL TIME AND OBJECTIVE FUNCTION FOR BENCHMARK JSS INSTANCES

Instance
Greedy Algorithm GRASP

Computational Times Objective Function Computational Time Objective Function

 𝒙̅ 𝑺𝑫 CV 𝒙̅ 𝑺𝑫 𝑪𝑽 𝒙̅ 𝑺𝑫 𝑪𝑽 𝒙̅ 𝑺𝑫 𝑪𝑽

abz5 2.58𝑒−3 3.39𝑒−3 1.31 7179 0 0 5.97𝑒−1 3.37𝑒−1 5.64𝑒−1 6123.3 136.57 2.23𝑒−2

abz6 1.44𝑒−3 2.71𝑒−3 1.88 7614 0 0 5.66𝑒−1 1.24𝑒−1 2.18𝑒−1 5067.7 168.55 3.33𝑒−2

ft10 1.00𝑒−3 3.88𝑒−4 3.85𝑒−1 6897 0 0 6.19𝑒−1 1.36𝑒−1 2.19𝑒−1 5538.3 177.82 3.21𝑒−2

orb01 5.12𝑒−4 5.41𝑒−4 1.06 8726 0 0 6.19𝑒−1 5.13𝑒−2 8.29𝑒−2 6507.6 300.82 4.62𝑒−2

orb02 8.06𝑒−4 4.26𝑒−4 5.28𝑒−1 5660 0 0 5.87𝑒−1 1.16𝑒−1 1.98𝑒−1 4288.3 240.90 5.62𝑒−2

orb03 7.21𝑒−4 4.99𝑒−4 6.91𝑒−1 9540 0 0 5.20𝑒−1 1.14𝑒−1 2.20𝑒−1 5707 363.37 6.37𝑒−2

orb04 1.13𝑒−3 3.49𝑒−4 3.09𝑒−1 8444 0 0 9.63𝑒−1 1.81𝑒−1 1.88𝑒−1 5104.1 301.49 5.91𝑒−2

orb05 9.74𝑒−4 6.478𝑒−4 6.65𝑒−1 11232 0 0 6.73𝑒−1 2.20𝑒−1 3.27𝑒−1 4823.4 406.65 8.43𝑒−2

ta01 2.22𝑒−3 4.10𝑒−4 1.85𝑒−1 74894 0 0 3.40 5.73𝑒−1 1.69𝑒−1 74182.8 253.81 3.42𝑒−3

ta02 2.90𝑒−3 7.63𝑒−4 2.63𝑒−1 55035 0 0 2.78 3.57𝑒−1 1.28𝑒−1 55035 0 0

ta03 2.88𝑒−3 6.81𝑒−4 2.37𝑒−1 73210 0 0 2.83 5.41𝑒−1 1.91𝑒−1 73210 0 0

Avg. - - 6.82𝑒−1 - - 0 - - 2.28𝑒−1 - - 3.64𝑒−2

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1647

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

TABLE XV. COMPARISON OF COMPUTATIONAL TIME BETWEEN BENCHMARK JSS INSTANCES AND OUR STUDY

Benchmark instances Previous studies Avg. values from our study

ft06
0.37 [68],

< 1 [114]
0.003

ft10 173.2 [68] 6.19𝑒−1

abz5 2.53 [56] 5.97𝑒−1

abz6 2.26 [56] 5.66𝑒−1

orb01 46.75 [56] 6.19𝑒−1

orb02 11.45 [56] 5.87𝑒−1

orb03 33.32 [56] 5.20𝑒−1

orb04 1.94 [56] 9.63𝑒−1

orb05 14.61 [56] 6.73𝑒−1

TABLE XVI. MACHINES AVAILABILITY (ATM) AND JOBS AVAILABILITY (JAT) FOR FT06 HYPOTHETICAL BIKE MANUFACTURING COMPANY AT T=15

𝑴𝒊 Status 𝑨𝑻𝑴 𝑱𝒋 Status 𝑱𝑨𝑻 Next machine Earliest start time

𝑀1 Busy 18 𝐽1 Available 16 𝑀2 16

𝑀2 Busy 16 𝐽2 Busy 23 𝑀6 23

𝑀3 Busy 22 𝐽3 Busy 18 𝑀1 18

𝑀4 Busy 15 𝐽4 Busy 22 𝑀3 22

𝑀5 Busy 23 𝐽5 Busy 22 𝑀2 22

𝑀6 Busy 17 𝐽6 Busy 16 𝑀4 16

TABLE XVII. COMPARISON OF DIFFERENT RESCHEDULING METHODS FOR A HYPOTHETICAL FT06 BIKE MANUFACTURING COMPANY

Rescheduling

Strategy

Rescheduling

method

Rescheduling

policy
Dynamic event

Total tardiness before

rescheduling

Total tardiness after

rescheduling

Reactive Regenerative Event-driven 2-rush orders 32 33

Reactive Right shift Event-driven 2- Machine fails 32 38

Proactive Regenerative Periodic 2- new jobs arrival 32 38

Proactive Regenerative Periodic
Scheduled machine

maintenance
32 43

VIII. CONCLUSION

This study addressed the complex NP-hard JSS problem,

focusing on the challenges posed by serious dynamic events

(𝑆𝐷𝐸) such as new job arrivals (𝑁𝐽𝐴), rush orders (𝑅𝑂),

machine failures (𝑀𝐹) and scheduled machine maintenance

(𝑆𝑀𝑀). The research objective was to develop and compare

the exact methods, a Greedy Algorithm (𝐺𝑟𝐴), and a novel

Greedy Randomized Adaptive Search Procedure (GRASP) to

efficiently solve JSS problems under various conditions. The

study contributed by developing an exact method for

benchmarking, 𝐺𝑟𝐴 for faster solutions and a novel GRASP

algorithm featuring a directed operations swapping procedure

to achieve high-quality solutions with computational

efficiency. Additionally, a proactive-reactive (𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡)

rescheduling strategy in handling 𝑆𝐷𝐸 such as 𝑁𝐽𝐴 , 𝑅𝑂 ,

𝑆𝑀𝑀 , and 𝑀𝐹 using a right shift (𝑅𝐹) and regeneration

(𝑅𝑒𝑔) methods at hybrid (𝐻𝑦𝑏) policy have been

implemented. The main findings of the study are:

a) The exact method: it provided optimal benchmarks

for small to medium instances, ranging from 2 × 2 to 9 × 9,
while demonstrating exponential computational growth,

reaching 23758.62 sec (approximately 6.6 hours) for a 9 × 9

instance. Exact method showed limited applicability to

medium to large instances due to computational complexity,

for example, the optimal solution for 10 × 10 instance could

not be obtained even after 48 hours.

b) 𝐺𝑟𝐴: GrA offered faster solutions compared to the

exact method for small to medium instances. For 9 × 9

instance, GrA’s computational time was only 1.34e−3 sec

which was 23758.62 sec for the same instance using the exact

method. Additionally, GrA showed a higher average

percentage gap of 13.82% for small to medium instances

when compared with the exact methods. Because of this

reason, it has a limited suitability for scenarios requiring high

solution quality. However, the GrA demonstrated significant

computational efficiency for medium to large and benchmark

instances. For example, it achieved computational times of

1.96e−3 for 10 × 10 and 1.94 e−2 for 20 × 20 . This

efficiency was also evident in benchmark instances, where

computational times were consistently in the order of e−3 .

These results suggest that the GrA might be more suitable for

applications where quick approximate solutions are preferred

over optimal.

c) GRASP: GRASP consistently outperformed both

exact and GrA approaches with average percentage gap of

only 3.43% for small to medium instances, compared to GrA's

13.82%. It also demonstrated superior performance for

medium to large instances. For example, for 10 × 10 ,

GRASP reduced the total tardiness value from 1937 in GrA

to 1296.2, and for 20 × 20 instances, from 6697 to 6080.5,

while maintaining reasonable computational time. Similarly,

for benchmark instances, GRASP showed significant

improvements. In the case of abz05, the objective function

value was reduced from 7179 using GrA to 6123.3 with

GRASP, demonstrating 14.7% improvement for this

instance. This improvement was consistent among all other

benchmark instances. Moreover, GRASP achieved

remarkable reductions in computational time for benchmark

instances from literature: for the ft06 instance, the time

decreased from 0.37 seconds in previous studies to 0.003

seconds, and for the ft10 instance, from 173.2 seconds to

0.619 seconds. These results highlight GRASP's ability to

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1648

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

consistently yield high-quality solutions efficiently across

various instance sizes, from small to large, as well as for

established benchmark problems. The research also

demonstrated the effectiveness of the proactive-reactive

(Pact − Ract) rescheduling strategy in handling SDE such as

NJA, RO, SMM, and MF.

While the study presented promising results, it is limited

using historical data, a single objective function, and the

consideration of only 𝑆𝐷𝐸 . Future research could address

these limitations:

(1) By incorporating a wider range of dynamic events,

including medium and more serious events. These

dynamic events lead to continuous system updates,

causing nervousness, deviations from the original

schedule, and reduced execution efficiency.

(2) By empirical validation using real production data that

could further enhance the practical relevance and

implementation viability of the proposed methods.

(3) By exploring the performance of the JSS under multi

objective functions, such as makespan or flow time

Furthermore, to provide monitoring, control, and

prediction capabilities for JSS amidst dynamic events, JSS

could be integrated with Digital Twin (DT) technology. DT

has the potential to detect these dynamic events in real-time,

offering immediate insights and enabling rapid responses.

DT technology bridges the physical and virtual JSS

environments by enabling real-time mapping and

bidirectional interaction. This integration allows for the

collection of detailed real-time information on machines,

jobs, operations, equipment, inventory, and work-in-progress

(WIP). By combining operational data, environmental

changes, and dynamic events from the physical JSS with

virtual data, DT technology facilitates real-time information

flow. It enhances rescheduling by continuously comparing

physical JSS data with its virtual counterpart to detect events

in real time. When an event occurs, DT triggers a

rescheduling policy, sending updated data to the virtual JSS.

The virtual JSS then reschedules the unfinished operations

using built-in algorithms and provides the optimal schedule

back to the physical JSS's Manufacturing Execution System

(MES), enabling dynamic scheduling and reducing

deviations between planned and actual schedules.

However, the practical implementation of integrating JSS

with DT presents several challenges:

1) The need for data acquisition and processing

capabilities: real-time data from IoT sensors must be

accurately collected, processed, and transmitted to the DT.

The study by [118] could be used for this purpose, who

developed a prototype for integrating sensors with IoT to

track system components to obtain data. They used the

collected data to update the production schedule within an

ERP system. This prototype could be used to extend our

research to enable real-time monitoring capabilities.

2) The integration of cyber and physical world with

JSS: utilizing Industry 4.0 concepts such as CPS can greatly

enhance the capability of production systems to be managed,

monitored, and controlled, ultimately improving production

scheduling, and rapid response, in industrial processes.

Our research has practicality and real-world relevance in

automotive manufacturing, electronics manufacturing, and

other companies. The findings highlight the potential of our

approach to enhance efficiency, highlighting the need for

continued research in this area.

REFERENCES

[1] H. Numaguchi, W. Wu, and Y. Hu, “Two-machine job-shop

scheduling with one joint job,” Discrete Appl Math (1979), vol. 346,
pp. 30–43, Mar. 2024, doi: 10.1016/j.dam.2023.11.037.

[2] K. Tamssaouet and S. Dauzère-Pérès, “A general efficient

neighborhood structure framework for the job-shop and flexible job-

shop scheduling problems,” Eur J Oper Res, vol. 311, no. 2, 2023,
doi: 10.1016/j.ejor.2023.05.018.

[3] M. Ðurasević and D. Jakobović, “A survey of dispatching rules for
the dynamic unrelated machines environment,” Expert Syst Appl,

vol. 113, 2018, doi: 10.1016/j.eswa.2018.06.053.

[4] M. Ortíz-Barrios, A. Petrillo, F. De Felice, N. Jaramillo-Rueda, G.
Jiménez-Delgado, and L. Borrero-López, “A dispatching-fuzzy ahp-

topsis model for scheduling flexible job-shop systems in industry 4.0
context,” Applied Sciences, vol. 11, no. 11, 2021, doi:
10.3390/app11115107.

[5] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems, Sixth
Edition. Springer Cham, 2022, doi: 10.1007/978-3-031-05921-6.

[6] D. Karunakaran. Active Learning Methods for Dynamic Job Shop
Scheduling using Genetic Programming under Uncertain

Environment. Doctoral dissertation, Open Access Te Herenga Waka-
Victoria University of Wellington, 2019.

[7] K. Tliba, T. M. L. Diallo, O. Penas, R. Ben Khalifa, N. Ben Yahia,

and J. Y. Choley, “Digital twin-driven dynamic scheduling of a

hybrid flow shop,” J Intell Manuf, vol. 34, no. 5, 2023, doi:
10.1007/s10845-022-01922-3.

[8] D. Wang, Y. Yin, and Y. Jin. Rescheduling Under Disruptions in
Manufacturing Systems: Models and Algorithms. Uncertainty and

Operations Research, 2020.

[9] M. R. Singh and R. Mishra. A study on flexible flow shop and job
shop scheduling using meta-heuristic approaches. Doctoral
dissertation, National Institute of Technology, Rourkela, 2014.

[10] M. Saqlain, S. Ali, and J. Y. Lee, “A Monte-Carlo tree search

algorithm for the flexible job-shop scheduling in manufacturing

systems,” Flex Serv Manuf J, vol. 35, no. 2, pp. 548-571, 2022, doi:
10.1007/s10696-021-09437-4.

[11] F. Zhang, Y. Mei, and M. Zhang, “A new representation in genetic

programming for evolving dispatching rules for dynamic flexible job
shop scheduling,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), pp. 33-49, 2019, doi: 10.1007/978-3-030-16711-
0_3.

[12] S. R. Kamali, T. Banirostam, H. Motameni, and M. Teshnehlab, “An
immune-based multi-agent system for flexible job shop scheduling

problem in dynamic and multi-objective environments,” Eng Appl
Artif Intell, vol. 123, 2023, doi: 10.1016/j.engappai.2023.106317.

[13] S. Shahbazi, S. M. Sajadi, and F. Jolai, “A Simulation-Based

Optimization Model for Scheduling New Product Development
Projects in Research and Development Centers,” Iranian Journal of
Management Studies, vol. 10, no. 4, 2017.

[14] G. Da Col and E. C. Teppan, “Industrial-size job shop scheduling
with constraint programming,” Operations Research Perspectives,
vol. 9, 2022, doi: 10.1016/j.orp.2022.100249.

[15] H. Wang, J. Cheng, C. Liu, Y. Zhang, S. Hu, and L. Chen, “Multi-

objective reinforcement learning framework for dynamic flexible job

shop scheduling problem with uncertain events,” Appl Soft Comput,
vol. 131, 2022, doi: 10.1016/j.asoc.2022.109717.

[16] E. Nawara and G. Hassanein, “Solving the job-shop scheduling

problem by arena simulation software,” International Journal of
Engineering Innovation & Research, vol. 2, no. 2, 2013.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1649

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

[17] S. Afsar, C. R. Vela, J. J. Palacios, and I. González-Rodríguez,
“Mathematical models and benchmarking for the fuzzy job shop

scheduling problem,” Comput Ind Eng, vol. 183, 2023, doi:
10.1016/j.cie.2023.109454.

[18] K. Kurowski, T. Pecyna, M. Slysz, R. Różycki, G. Waligóra, and J.

Wȩglarz, “Application of quantum approximate optimization

algorithm to job shop scheduling problem,” Eur J Oper Res, vol. 310,
no. 2, 2023, doi: 10.1016/j.ejor.2023.03.013.

[19] M. Vali, K. Salimifard, A. H. Gandomi, and T. J. Chaussalet,
“Application of job shop scheduling approach in green patient flow

optimization using a hybrid swarm intelligence,” Comput Ind Eng,
vol. 172, 2022, doi: 10.1016/j.cie.2022.108603.

[20] R. Zhang, S. Song, and C. Wu, “A hybrid artificial bee colony

algorithm for the job shop scheduling problem,” Int J Prod Econ,
vol. 141, no. 1, 2013, doi: 10.1016/j.ijpe.2012.03.035.

[21] M. M. Gohareh and E. Mansouri, “A simulation-optimization

framework for generating dynamic dispatching rules for stochastic
job shop with earliness and tardiness penalties,” Comput Oper Res,
vol. 140, 2022, doi: 10.1016/j.cor.2021.105650.

[22] H. Xiong, S. Shi, D. Ren, and J. Hu, “A survey of job shop scheduling

problem: The types and models,” Computers and Operations
Research, vol. 142. 2022. doi: 10.1016/j.cor.2022.105731.

[23] Y. Fang, C. Peng, P. Lou, Z. Zhou, J. Hu, and J. Yan, “Digital-Twin-

Based Job Shop Scheduling Toward Smart Manufacturing,” IEEE

Trans Industr Inform, vol. 15, no. 12, 2019, doi:
10.1109/TII.2019.2938572.

[24] S. Habbadi, B. Herrou, and S. Sekkat, “Job Shop Scheduling
Problem Using Genetic Algorithms,” 5th European International

Conference on Industrial Engineering and Operations Management,
2023, doi: 10.46254/eu05.20220592.

[25] F. M. Defersha, D. Obimuyiwa, and A. D. Yimer, “Mathematical

model and simulated annealing algorithm for setup operator

constrained flexible job shop scheduling problem,” Comput Ind Eng,
vol. 171, 2022, doi: 10.1016/j.cie.2022.108487.

[26] H. Nazif, “An effective meta-heuristic algorithm to minimize
makespan in job shop scheduling,” Industrial Engineering and

Management Systems, vol. 18, no. 3, 2019, doi:
10.7232/iems.2019.18.3.360.

[27] B. Firme, J. Figueiredo, J. M. C. Sousa, and S. M. Vieira, “Agent-

based hybrid tabu-search heuristic for dynamic scheduling,” Eng

Appl Artif Intell, vol. 126, 2023, doi:
10.1016/j.engappai.2023.107146.

[28] M. Zhang, F. Tao, and A. Y. C. Nee, “Digital Twin Enhanced
Dynamic Job-Shop Scheduling,” J Manuf Syst, vol. 58, 2021, doi:
10.1016/j.jmsy.2020.04.008.

[29] L. Liu, K. Guo, Z. Gao, J. Li, and J. Sun, “Digital Twin-Driven
Adaptive Scheduling for Flexible Job Shops,” Sustainability
(Switzerland), vol. 14, no. 9, 2022, doi: 10.3390/su14095340.

[30] M. Ghaleb, S. Taghipour, and H. Zolfagharinia, “Real-time

integrated production-scheduling and maintenance-planning in a

flexible job shop with machine deterioration and condition-based
maintenance,” J Manuf Syst, vol. 61, 2021, doi:
10.1016/j.jmsy.2021.09.018.

[31] E. Teppan, “Types of Flexible Job Shop Scheduling: A Constraint

Programming Experiment,” in ICAART, no. 3, pp. 516-523, 2022,
doi: 10.5220/0010849900003116.

[32] K. Li, Q. Deng, L. Zhang, Q. Fan, G. Gong, and S. Ding, “An

effective MCTS-based algorithm for minimizing makespan in

dynamic flexible job shop scheduling problem,” Comput Ind Eng,
vol. 155, 2021, doi: 10.1016/j.cie.2021.107211.

[33] Z. Zhuang, Y. Li, Y. Sun, W. Qin, and Z. H. Sun, “Network-based
dynamic dispatching rule generation mechanism for real-time

production scheduling problems with dynamic job arrivals,” Robot

Comput Integr Manuf, vol. 73, 2022, doi:
10.1016/j.rcim.2021.102261.

[34] S. Tian, T. Wang, L. Zhang, and X. Wu, “Real-time shop floor

scheduling method based on virtual queue adaptive control:
Algorithm and experimental results,” Measurement, vol. 147, 2019,
doi: 10.1016/j.measurement.2019.05.080.

[35] A. Tighazoui, C. Sauvey, and N. Sauer, “Predictive-reactive strategy

for identical parallel machine rescheduling,” Comput Oper Res, vol.
134, 2021, doi: 10.1016/j.cor.2021.105372.

[36] L. J. Song, H. P. Gu, S. Y. Jin, and H. Zhao, “Rescheduling methods
for manufacturing firms applying make-to-order strategy,”

International Journal of Simulation Modelling, vol. 14, no. 4, 2015.

[37] G. E. Vieira, J. W. Herrmann, and E. Lin, “Rescheduling
manufacturing systems: A framework of strategies, policies, and

methods,” in Journal of Scheduling, vol. 6, pp. 39-62, 2003, doi:
10.1023/A:1022235519958.

[38] D. Ouelhadj and S. Petrovic, “A survey of dynamic scheduling in

manufacturing systems,” Journal of Scheduling, vol. 12, no. 4. 2009.
doi: 10.1007/s10951-008-0090-8.

[39] L. Mönch, J. W. Fowler, and S. J. Mason. Production Planning and

Control for Semiconductor Wafer Fabrication Facilities: Modeling,
Analysis, and Systems, vol. 52. Springer Science & Business Media,
2013.

[40] A. K. Jain and H. A. Elmaraghy, “Production

scheduling/rescheduling in flexible manufacturing,” Int J Prod Res,
vol. 35, no. 1, 1997, doi: 10.1080/002075497196082.

[41] L. Zhang, L. Gao, and X. Li, “A hybrid intelligent algorithm and

rescheduling technique for job shop scheduling problems with

disruptions,” International Journal of Advanced Manufacturing

Technology, vol. 65, no. 5–8, 2013, doi: 10.1007/s00170-012-4245-
6.

[42] M. Wang, P. Zhang, P. Zheng, J. He, J. Zhang, and J. Bao, “An

Improved Genetic Algorithm with Local Search for Dynamic Job

Shop Scheduling Problem,” in IEEE International Conference on
Automation Science and Engineering, pp. 766-771, 2020, doi:
10.1109/CASE48305.2020.9216737.

[43] M. A. Aloulou and M.-C. Portmann, “An Efficient Proactive-

Reactive Scheduling Approach to Hedge Against Shop Floor

Disturbances,” in Multidisciplinary Scheduling: Theory and
Applications, pp. 223-246, 2005, doi: 10.1007/0-387-27744-7_11.

[44] D. Rahmani, M. Heydari, A. Makui, and M. Zandieh, “A new

approach to reducing the effects of stochastic disruptions in flexible
flow shop problems with stability and nervousness,” International

Journal of Management Science and Engineering Management, vol.
8, no. 3, 2013, doi: 10.1080/17509653.2013.812332.

[45] Z. Yahouni, N. Mebarki, and Z. Sari, “Evaluation of a new decision-

aid parameter for job shop scheduling under uncertainties,” RAIRO -
Operations Research, vol. 53, no. 2, 2019, doi: 10.1051/ro/2017073.

[46] V. Rahimi, J. Arkat, and H. Farughi, “Reactive scheduling

addressing unexpected disturbance in cellular manufacturing
systems,” International Journal of Engineering, Transactions A:
Basics, vol. 34, no. 1, 2021, doi: 10.5829/IJE.2021.34.01A.18.

[47] S. Fatemi-Anaraki, R. Tavakkoli-Moghaddam, M. Foumani, and B.

Vahedi-Nouri, “Scheduling of Multi-Robot Job Shop Systems in

Dynamic Environments: Mixed-Integer Linear Programming and
Constraint Programming Approaches,” Omega (United Kingdom),
vol. 115, 2023, doi: 10.1016/j.omega.2022.102770.

[48] J. Adams, E. Balas, and D. Zawack, “Shifting Bottleneck Procedure

For Job Shop Scheduling.,” Manage Sci, vol. 34, no. 3, 1988, doi:
10.1287/mnsc.34.3.391.

[49] S. Mahmud, A. Abbasi, R. K. Chakrabortty, and M. J. Ryan, “Multi-

operator communication based differential evolution with sequential

Tabu Search approach for job shop scheduling problems,” Appl Soft
Comput, vol. 108, 2021, doi: 10.1016/j.asoc.2021.107470.

[50] E. J. Kontoghiorghes. Handbook of parallel computing and statistics.

CRC Press, 2005, doi: 10.1198/tech.2008.s912.

[51] M. Rajkumar, P. Asokan, N. Anilkumar, and T. Page, “A GRASP

algorithm for flexible job-shop scheduling problem with limited
resource constraints,” Int J Prod Res, vol. 49, no. 8, 2011, doi:
10.1080/00207541003709544.

[52] P. Festa and M. G. C. Resende, “An annotated bibliography of

GRASP – Part I: Algorithms,” International Transactions in

Operational Research, vol. 16, no. 1, 2009, doi: 10.1111/j.1475-
3995.2009.00663.x.

[53] S. R. Gupta and J. S. Smith, “Algorithms for single machine total

tardiness scheduling with sequence dependent setups,” Eur J Oper
Res, vol. 175, no. 2, 2006, doi: 10.1016/j.ejor.2005.05.018.

[54] A. Corberán, R. Martí, and J. M. Sanchis, “A GRASP heuristic for
the mixed Chinese postman problem,” Eur J Oper Res, vol. 142, no.
1, 2002, doi: 10.1016/S0377-2217(01)00296-X.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1650

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

[55] G. Prabhaharan, B. S. H. Khan, and L. Rakesh, “Implementation of
grasp in flow shop scheduling,” International Journal of Advanced

Manufacturing Technology, vol. 30, no. 11–12, 2006, doi:
10.1007/s00170-005-0134-6.

[56] R. M. Aiex, S. Binato, and M. G. C. Resende, “Parallel GRASP with

path-relinking for job shop scheduling,” in Parallel Computing, vol.
29, no. 4, pp. 393-430, 2003. doi: 10.1016/S0167-8191(03)00014-0.

[57] K. Morikawa, K. Nagasawa, and K. Takahashi, “Job shop scheduling

by branch and bound using genetic programming,” in Procedia
Manufacturing, vol. 39, 1112-1118, 2019.

[58] L. Zhang, Y. Hu, C. Wang, Q. Tang, and X. Li, “Effective

dispatching rules mining based on near-optimal schedules in
intelligent job shop environment,” J Manuf Syst, vol. 63, 2022, doi:
10.1016/j.jmsy.2022.04.019.

[59] M. Paul, R. Sridharan, and T. R. Ramanan, “Scheduling of an

assembly job shop: A case study based on hydraulic manufacturing

industry,” in Materials Today: Proceedings, vol. 47, pp. 4988-4992,
2021, doi: 10.1016/j.matpr.2021.04.341.

[60] C. H. Akarsu and T. Küçükdeniz, “Job shop scheduling with genetic

algorithm-based hyperheuristic approach,” International Advanced

Researches and Engineering Journal, vol. 6, no. 1, 2022, doi:
10.35860/iarej.1018604.

[61] S. Chakraborty and S. Bhowmik, “Job Shop Scheduling using

Simulated Annealing,” Hooghly Engineering & Technology College,
vol. 1, no. 1, pp. 69-73, 2013.

[62] M. H. Ali, A. Saif, and A. Ghasemi, “Robust Job Shop Scheduling

with Condition-Based Maintenance and Random Breakdowns,” in
IFAC-PapersOnLine, vol. 55, no. 10, pp. 1225-1230, 2022, doi:
10.1016/j.ifacol.2022.09.557.

[63] K. S. Sundari, “Makespan Minimization in Job Shop Scheduling,”
International Journal of Engineering and Management Research,
vol. 11, no. 1, 2021, doi: 10.31033/ijemr.11.1.31.

[64] J. F. Bard and T. A. Feo, “Note—Operations Sequencing in Discrete

Parts Manufacturing,” Manage Sci, vol. 35, no. 2, 1989, doi:
10.1287/mnsc.35.2.249.

[65] H. Akrout, B. Jarboui, A. Rebaï, and P. Siarry, “New Greedy

Randomized Adaptive Search Procedure based on differential

evolution algorithm for solving no-wait flowshop scheduling

problem,” in 2013 International Conference on Advanced Logistics

and Transport, ICALT 2013, pp. 327-334, 2013, doi:
10.1109/ICAdLT.2013.6568480.

[66] A. Sayah, S. Aqil, and M. Lahby, “Minimizing Maximum Tardiness

in a Distributed Flow Shop Manufacturing Problem under No-
Waiting and Sequence Dependent Setup Time Constraints,” in

Proceedings - SITA 2023: 2023 14th International Conference on

Intelligent Systems: Theories and Applications, pp. 1-6, 2023, doi:
10.1109/SITA60746.2023.10373688.

[67] M. Laguna and J. L. G. Velarde, “A search heuristic for just-in-time
scheduling in parallel machines,” J Intell Manuf, vol. 2, no. 4, 1991,
doi: 10.1007/BF01471113.

[68] A. Baykasoğlu and F. S. Karaslan, “Solving comprehensive dynamic
job shop scheduling problem by using a GRASP-based approach,”

Int J Prod Res, vol. 55, no. 11, 2017, doi:
10.1080/00207543.2017.1306134.

[69] T. Witkowski, P. Antczak, and A. Antczak, “Solving the flexible

open-job shop scheduling problem with GRASP and Simulated

Annealing,” in Proceedings - International Conference on Artificial

Intelligence and Computational Intelligence, AICI 2010, vol. 2, pp.
437-442, 2010, doi: 10.1109/AICI.2010.212.

[70] A. Baykasoğlu and F. S. Madenoğlu, “Greedy randomized adaptive

search procedure for simultaneous scheduling of production and

preventive maintenance activities in dynamic flexible job shops,”
Soft comput, vol. 25, no. 23, 2021, doi: 10.1007/s00500-021-06053-
0.

[71] T. Witkowski, A. Antczak, and P. Antczak, “Using GRASP for

optimization of flow production in FJSP problem with transportation

operations,” in Proceedings - International Conference on Natural
Computation, pp. 1255-1261, 2012.

[72] M. Essafi, X. Delorme, and A. Dolgui, “A GRASP heuristic for

sequence-dependent transfer line balancing problem,” in IFAC
Proceedings Volumes (IFAC-PapersOnline), vol. 42, no. 4, pp. 762-
767, 2009, doi: 10.3182/20090603-3-RU-2001.0500.

[73] A. N. Júnior and L. R. Guimarães, “A greedy randomized adaptive
search procedure application to solve the travelling salesman

problem,” International Journal of Industrial Engineering and
Management, vol. 10, no. 3, 2019, doi: 10.24867/IJIEM-2019-3-243.

[74] Z. Liu et al., “A graph neural networks-based deep Q-learning

approach for job shop scheduling problems in traffic management,”
Inf Sci (N Y), vol. 607, 2022, doi: 10.1016/j.ins.2022.06.017.

[75] J. B. Atkinson, “A greedy randomised search heuristic for time

constrained vehicle scheduling and the incorporation of a learning
strategy,” Journal of the Operational Research Society, vol. 49, no.
7, 1998, doi: 10.1057/palgrave.jors.2600521.

[76] J. Xie, X. Li, L. Gao, and L. Gui, “A hybrid genetic tabu search
algorithm for distributed flexible job shop scheduling problems,” J
Manuf Syst, vol. 71, 2023, doi: 10.1016/j.jmsy.2023.09.002.

[77] W. Y. Ku and J. C. Beck, “Mixed Integer Programming models for

job shop scheduling: A computational analysis,” Comput Oper Res,
vol. 73, 2016, doi: 10.1016/j.cor.2016.04.006.

[78] S. Meeran and M. S. Morshed, “A hybrid genetic tabu search

algorithm for solving job shop scheduling problems: A case study,”

Journal of Intelligent Manufacturing, vol. 23, no. 4. 2012. doi:

10.1007/s10845-011-0520-x.

[79] M. A. Salido, J. Escamilla, A. Giret, and F. Barber, “A genetic
algorithm for energy-efficiency in job-shop scheduling,”

International Journal of Advanced Manufacturing Technology, vol.
85, no. 5–8, 2016, doi: 10.1007/s00170-015-7987-0.

[80] R. Zhang and R. Chiong, “Solving the energy-efficient job shop

scheduling problem: A multi-objective genetic algorithm with
enhanced local search for minimizing the total weighted tardiness

and total energy consumption,” J Clean Prod, vol. 112, 2016, doi:
10.1016/j.jclepro.2015.09.097.

[81] J. Zhu, Z. H. Shao, and C. Chen, “An improved whale optimization

algorithm for job-shop scheduling based on quantum computing,”

International Journal of Simulation Modelling, vol. 18, no. 3, 2019,
doi: 10.2507/IJSIMM18(3)CO13.

[82] Z. Zhang, Z. L. Guan, J. Zhang, and X. Xie, “A novel job-shop
scheduling strategy based on particle swarm optimization and neural

network,” International Journal of Simulation Modelling, vol. 18,
no. 4, 2019, doi: 10.2507/IJSIMM18(4)CO18.

[83] P. Lou, Q. Liu, Z. Zhou, H. Wang, and S. X. Sun, “Multi-agent-based

proactive-reactive scheduling for a job shop,” International Journal

of Advanced Manufacturing Technology, vol. 59, no. 1–4, 2012, doi:
10.1007/s00170-011-3482-4.

[84] I. Paprocka, “Evaluation of the effects of a machine failure on the
robustness of a job shop system-proactive approaches,”

Sustainability (Switzerland), vol. 11, no. 1, 2019, doi:
10.3390/su11010065.

[85] J. Fang and Y. Xi, “A rolling horizon job shop rescheduling strategy

in the dynamic environment,” International Journal of Advanced
Manufacturing Technology, vol. 13, no. 3, 1997, doi:
10.1007/BF01305874.

[86] M. A. Adibi, M. Zandieh, and M. Amiri, “Multi-objective scheduling
of dynamic job shop using variable neighborhood search,” Expert
Syst Appl, vol. 37, no. 1, 2010, doi: 10.1016/j.eswa.2009.05.001.

[87] Z. Li, “Multi-task scheduling optimization in shop floor based on

uncertainty theory algorithm,” Academic Journal of Manufacturing
Engineering, vol. 17, no. 1, 2019.

[88] F. Echsler Minguillon and N. Stricker, “Robust predictive–reactive

scheduling and its effect on machine disturbance mitigation,” CIRP
Annals, vol. 69, no. 1, 2020, doi: 10.1016/j.cirp.2020.03.019.

[89] S. Luo, L. Zhang, and Y. Fan, “Dynamic multi-objective scheduling

for flexible job shop by deep reinforcement learning,” Comput Ind
Eng, vol. 159, 2021, doi: 10.1016/j.cie.2021.107489.

[90] L. Liu, “Outsourcing and rescheduling for a two-machine flow shop

with the disruption of new arriving jobs: A hybrid variable
neighborhood search algorithm,” Comput Ind Eng, vol. 130, 2019,
doi: 10.1016/j.cie.2019.02.015.

[91] H. Aytug, M. A. Lawley, K. McKay, S. Mohan, and R. Uzsoy,

“Executing production schedules in the face of uncertainties: A

review and some future directions,” in European Journal of
Operational Research, vol. 161, no. 1, pp. 86-110, 2005, doi:
10.1016/j.ejor.2003.08.027.

Journal of Robotics and Control (JRC) ISSN: 2715-5072 1651

Muhammad Usman Nisar, A Model of Proactive-Reactive Job Shop Scheduling to Tackle Uncertain Events with Greedy

Randomized Adaptive Search Procedure

[92] Y. F. Wang, Y. F. Zhang, J. Y. H. Fuh, Z. D. Zhou, P. Lou, and L.
G. Xue, “An integrated approach to reactive scheduling subject to

machine breakdown,” in Proceedings of the IEEE International

Conference on Automation and Logistics, ICAL 2008, pp. 542-547,
2008, doi: 10.1109/ICAL.2008.4636210.

[93] J. F. Jimenez, E. Gonzalez-Neira, and G. Zambrano-Rey, “An

adaptive genetic algorithm for a dynamic single-machine scheduling
problem,” Management Science Letters, vol. 8, no. 11, 2018, doi:
10.5267/j.msl.2018.8.011.

[94] B. Yang, “Single machine rescheduling with new jobs arrivals and

processing time compression,” International Journal of Advanced

Manufacturing Technology, vol. 34, no. 3–4, 2007, doi:
10.1007/s00170-006-0590-7.

[95] K. Muhamadin et al., “A Review for Dynamic Scheduling in

Manufacturing,” Type: Double Blind Peer Reviewed International
Research Journal Publisher: Global Journals Online, vol. 18, no. 5,
2018.

[96] K. Murakami and H. Morita, “A Method for Generating Robust

Schedule under Uncertainty in Processing Time (< Special Issue>

TOTAL OPERATIONS MANAGEMENT),” International Journal

of Biomedical Soft Computing and Human Sciences: the official

journal of the Biomedical Fuzzy Systems Association, vol. 15, no. 1,
pp. 45-50, 2010.

[97] L. H. Wu, X. Chen, X. D. Chen, and Q. X. Chen, “The research on

proactive-reactive scheduling framework based on real-time
manufacturing information,” in Materials Science Forum, vol. 626,
pp. 789-794, 2009.

[98] X. Wen, X. Lian, Y. Qian, Y. Zhang, H. Wang, and H. Li, “Dynamic
scheduling method for integrated process planning and scheduling

problem with machine fault,” Robot Comput Integr Manuf, vol. 77,
2022, doi: 10.1016/j.rcim.2022.102334.

[99] M. M. Tawfeek, Y. M. Sadek, and A. M. K. El-kharbotly, “Study of

event-driven and periodic rescheduling on a single machine with
unexpected disruptions,” Independent Journal of Management &
Production, vol. 10, no. 1, 2019, doi: 10.14807/ijmp.v10i1.838.

[100] L. K. Church and R. Uzsoy, “Analysis of periodic and event-driven
rescheduling policies in dynamic shops,” Int J Comput Integr Manuf,
vol. 5, no. 3, pp. 153–163, 1992, doi: 10.1080/09511929208944524.

[101] G. E. Vieira, J. W. Herrmann, and E. Lin, “Analytical models to

predict the performance of a single-machine system under periodic

and event-driven rescheduling strategies,” Int J Prod Res, vol. 38,
no. 8, 2000, doi: 10.1080/002075400188654.

[102] Y. Gao, Y. S. Ding, and H. Y. Zhang, “Job-shop scheduling

considering rescheduling in uncertain dynamic environment,” in
2009 International Conference on Management Science and

Engineering - 16th Annual Conference Proceedings, ICMSE 2009,
pp. 380-384, 2009, doi: 10.1109/ICMSE.2009.5317409.

[103] R. Barták and M. Vlk, “Reactive recovery from machine breakdown

in production scheduling with temporal distance and resource
constraints,” in ICAART 2015 - 7th International Conference on

Agents and Artificial Intelligence, Proceedings, vol. 2, pp. 119-130,
2015, doi: 10.5220/0005215701190130.

[104] Y. Sang, J. Tan, and W. Liu, “A new many-objective green dynamic

scheduling disruption management approach for machining
workshop based on green manufacturing,” in Journal of Cleaner

Production, vol. 297, 126489, 2021, doi:
10.1016/j.jclepro.2021.126489.

[105] A. Tighazoui, C. Sauvey, and N. Sauer, “New efficiency-stability

criterion in a rescheduling problem with dynamic jobs weights,” in

7th International Conference on Control, Decision and Information
Technologies, CoDIT 2020, vol. 1, pp. 475-480, 2020, doi:
10.1109/CoDIT49905.2020.9263807.

[106] A. S. Muhamad and S. Deris, “Rescheduling for JSSP and FJSSP

using Clonal Selection Principle Approach–A Theory,” Journal

Information And Technology Management (JISTM), vol. 1, no. 1, pp.
10-17, 2016.

[107] H. Fisher and G. L. Thompson, “Probabilistic Learning

Combinations of Local Job-Shop Scheduling Rules,” in Industrial
Scheduling, 1963.

[108] W. Hassanein, G. M. Nawara, and E. S. Wael Hassanein, “Solving
the Job-Shop Scheduling Problem by Arena Simulation Software

Productivity View project Solving the Job-Shop Scheduling Problem

by Arena Simulation Software,” International Journal of
Engineering Innovations and Research, vol. 2, no. 2, p. 161, 2014.

[109] E. G. Talbi. Metaheuristics: From Design to Implementation. John
Wiley & Sons, 2009, doi: 10.1002/9780470496916.

[110] J. Zhang, G. Ding, Y. Zou, S. Qin, and J. Fu, “Review of job shop

scheduling research and its new perspectives under Industry 4.0,” J
Intell Manuf, vol. 30, no. 4, 2019, doi: 10.1007/s10845-017-1350-2.

[111] R. Martí, P. M. Pardalos, and M. G. C. Resende. Handbook of

heuristics. Springer Publishing Company, Incorporated, 2018, doi:
10.1007/978-3-319-07124-4.

[112] K. R. Baker and D. Trietsch. Principles of Sequencing and
Scheduling. John Wiley & Sons, 2018, doi:
10.1002/9780470451793.

[113] S. Strassl and N. Musliu, “Instance space analysis and algorithm
selection for the job shop scheduling problem,” Comput Oper Res,
vol. 141, 2022, doi: 10.1016/j.cor.2021.105661.

[114] J. A. S. Gromicho, J. J. Van Hoorn, F. Saldanha-Da-Gama, and G. T.

Timmer, “Solving the job-shop scheduling problem optimally by

dynamic programming,” Comput Oper Res, vol. 39, no. 12, 2012,
doi: 10.1016/j.cor.2012.02.024.

[115] E. Taillard, “Benchmarks for basic scheduling problems,” Eur J

Oper Res, vol. 64, no. 2, 1993, doi: 10.1016/0377-2217(93)90182-
M.

[116] D. Applegate and W. Cook, “Computational study of the job-shop
scheduling problem,” ORSA journal on computing, vol. 3, no. 2,
1991, doi: 10.1287/ijoc.3.2.149.

[117] L. Duan and B. Eng. Applying Systematic Local Search To Job Shop

Scheduling Problems. Doctoral dissertation, Simon Fraser
University, 2006.

[118] S. C. Adisasmito, P. D. Pamungkas, and A. Ma’Ruf, “Real-time

monitoring design for make-to-order industry,” in AIP Conference
Proceedings, vol. 2470, no. 1, 2022, doi: 10.1063/5.0080747.

[119] J. M. Framinan, V. Fernandez-Viagas, and P. Perez-Gonzalez,

“Using real-time information to reschedule jobs in a flowshop with
variable processing times,” Comput Ind Eng, vol. 129, 2019, doi:
10.1016/j.cie.2019.01.036.

