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Abstract—Despite substantial research on job shop 

scheduling (JSS), there is a gap owing to the lack of a unified 

framework that considers exact, heuristic, and metaheuristic 

methods for JSS. This study addressed this gap by presenting a 

comprehensive approach. The study offered following 

contributions in this regard: analyzed the exact optimization 

method for benchmarking, investigated a greedy algorithm 

(𝑮𝒓𝑨)  for faster solutions, and implemented a novel Greedy 

Randomized Adaptive Search Procedure (GRASP) to achieve 

high-quality solutions with computational effectiveness. 

Additionally, this study considered serious dynamic events 

(𝑺𝑫𝑬) such as new job arrivals (𝑵𝑱𝑨), rush order (𝑹𝑶), machine 

failures (𝑴𝑭), and scheduled machine maintenance (𝑺𝑴𝑴), as 

scheduling disruptions and proposed a proactive-reactive 

rescheduling strategy, with right-shift (𝑹𝑭) and regeneration 

( 𝑹𝒆𝒈)  methods using a hybrid (periodic and event-driven) 

policy to tackle them. Results showed that the exact methods are 

optimal but computationally intensive, 𝑮𝒓𝑨  are faster but 

suboptimal, and GRASP strike a balance, delivering high-

quality solutions with only a 3.43% gap from exact methods 

while maintaining computational efficiency. Additionally, 𝑹𝑭 

method effectively handled 𝑴𝑭,  while 𝑹𝒆𝒈  efficiently 

integrated 𝑵𝑱𝑨, 𝑹𝑶, and 𝑺𝑴𝑴. Overall, this study offered a 

comprehensive approach to JSS, enhancing applicability in 

manufacturing environments. 

Keywords—Job Shop Scheduling; Dynamic Events; GRASP; 

Proactive-Reactive Rescheduling. 

I. INTRODUCTION 

Scheduling is a critical decision-making problem in 

production and management systems [1]. It involves 

allocating jobs to machines to optimize certain objective 

function [1], [2]. Scheduling plays an important role in most 

manufacturing systems [3] and has diverse applications such 

as job allocation at workstations [4], machines in a workshop 

[5], and many others, contributing to variety of scheduling 

models [6]. Categorizing these scheduling models is crucial, 

as the methods for their resolution depend on the problem's 

nature [7]. These scheduling models are categorized as: (1) 

single machine, (2) parallel machines, (3) flow shop, (4) job 

shop, and (5) open shop.  

A comparison in terms of characteristics and complexity 

between these scheduling models has been provided in Fig. 

1, showing that singe and parallel machines models belong to 

P-class complexity problems, and solvable in polynomial 

time [8]. In contrast, flow shop and open shop are NP-hard, 

making them highly challenging as they cannot be solved in 

polynomial time [9]. On the other hand, job shop scheduling 

(JSS), is strongly NP-hard, showing even higher complexity. 

As compared to other scheduling models, JSS gained 

massive attention because it has: (1) real world applications 

[21], (2) broad engineering and social background [22], (3) 

significant influence on manufacturing efficiency [23], and 

(4) a great deal of scientific research value, making it a crucial 

factor in scheduling research. 

JSS consists assigning 𝑛 jobs to 𝑚 machines to optimize 

a specific objective function under imposed constraints [10], 

[11], [12], with each job following a predetermined routing 

[13], [14], [15]. Due to its strong NP-hard nature [17], [18], 

[19], JSS has been a challenge for over 50 years [16]. This 

inherent complexity of JSS makes obtaining an optimal 

solution challenging even for small-scale instances [20]. 

To address this inherent complexity of JSS, various 

techniques has been proposed [5]. These techniques range 

from exact methods (e.g., dynamic and constraint 

programming, branch and bound, and branch and cut), to 

metaheuristic techniques (e.g., genetic algorithms (GA) [24], 

simulated annealing (SA) [25], ant colony optimization 

(ACO) [26], and tabu search (TS) [27]. 

Even though JSS has been widely studied, the majority of 

JSS literature studied it in static conditions, with 

suppositions: (1) all relevant data is accessible at time zero 

[28], (2) job characteristics, such as the release date (𝑟𝑗), due 

date (𝑑𝑗), and processing time (𝑝𝑖𝑗), are known [29], (3) no 

dynamic event happens during processing, and (4) machines 

are always available (i.e., never break down or require 

maintenance) [30]. However, these assumptions are very 

restrictive in real-world settings [31]. 

In real-world, production environments are often 

dynamic, where JSS experiences dynamic events [32], [33], 

[34]. These dynamic events are happening frequently in JSS, 

leading to frequent system updates, causing nervousness, 

deviating the original schedule, and reducing the efficiency 

of scheduled execution [28], making the previously feasible 

schedule −  infeasible [35]. Thus, handling these dynamic 

events is of practical importance [6]. 
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Fig. 1. Scheduling models comparison  

Reference [36] classified these dynamic events into 

serious dynamic events (𝑆𝐷𝐸) , medium dynamic events 

(𝑀𝐷𝐸) and low dynamic events (𝐿𝐷𝐸) based on their impact 

on the scheduling system. Fig. 2 provides this classification 

and its implications on scheduling efficiency. 𝑆𝐷𝐸  impact 

the scheduling process up to an extent that the schedule 

becomes invalid and carrying with the same schedule would 

result in reduced efficiency. 𝑀𝐷𝐸, though less intense than 

𝑆𝐷𝐸,  still require measures as they pose challenges to 

scheduling efficiency by introducing disruptions. 𝐿𝐷𝐸, while 

low individually, can accumulate to affect scheduling 

efficiency by introducing delays. 

Based on the frequency of occurrence, we further 

categorized 𝑆𝐷𝐸  into regular serious events ( 𝑅𝑆𝐸)  and 

significant serious events (𝑆𝑆𝐸). 𝑅𝑆𝐸, like new job arrivals 

( 𝑁𝐽𝐴 ) and scheduled machine maintenance (𝑆𝑀𝑀),  are 

predictable, occurring at regular intervals as part of the 

normal production cycle. They require job priority 

adjustments and resource reallocation, respectively, and can 

be planned for in advance using proactive strategies. In 

contrast, 𝑆𝑆𝐸, such as rush orders (𝑅𝑂) and machine failures 

(𝑀𝐹), are less predictable and have a higher impact on the 

production schedule. 𝑆𝑆𝐸  require immediate attention to 

prevent substantial disruptions. They cause delays and 

necessitate reactive rescheduling to minimize downtime. 

Numerous authors have studied the impact of 𝑆𝐷𝐸  on 

JSS. Reference [37] highlighted the impact of 𝑀𝐹  on 

scheduling and role of rescheduling in addressing them. 

Another study by [38] demonstrated how dynamic 

rescheduling maintains performance amid 𝑅𝑂 using reactive 

strategies. The benefits of dynamic scheduling for 𝑁𝐽𝐴 have 

been emphasized by [39]. Additionally, the importance of 

considering 𝑆𝑀𝑀  was highlighted by [40]. These studies 

collectively show that 𝑆𝐷𝐸  significantly affect scheduling 

and must be considered. Therefore, addressing 𝑆𝐷𝐸 through 

rescheduling is a primary focus of this study. 

Rescheduling is a process of updating the previously 

optimal schedule upon 𝑆𝐷𝐸  occurrence [8]. Significant 

literature exists on rescheduling, involving following aspects: 

rescheduling factor, rescheduling strategies, rescheduling 

policies, and rescheduling methods [37]. Literature 

emphasized that rescheduling should address two key 

questions: “how?” and “when?” [41], [42]. However, to 

effectively address all aspects of rescheduling, another 

important question must be considered: "with what?". 

1) “How” to reschedule: three strategies are used to 

address this: completely reactive (𝑅𝑎𝑐𝑡), proactive (𝑃𝑎𝑐𝑡), and 

proactive-reactive (𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡).  𝑅𝑎𝑐𝑡  strategy responds to 

disruptions based on real-time system information [43]. The 

drawback is that they act after dynamic events have already 

impacted the schedule. 𝑃𝑎𝑐𝑡  strategy, on the other hand, 

anticipate potential dynamic events and incorporate them into 

the initial schedule [44]. However, they do not accurately 

reflect the current state of the system since they rely on 

predictions [45]. The best approach is a 𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡  strategy, 

which combines the strength of both 𝑃𝑎𝑐𝑡  and 𝑅𝑎𝑐𝑡  by 

creating an initial schedule using the 𝑃𝑎𝑐𝑡  strategy  and 

updating it with 𝑅𝑎𝑐𝑡 strategy upon 𝑆𝑆𝐸 occurrence [46].  

2) “When” to reschedule: various policies are used to 

address this question: periodic (𝑝𝑒), event-driven (𝐸𝐷), and 

hybrid ( 𝐻𝑦𝑏).  A 𝑝𝑒  policy reschedules jobs upon 𝑅𝑆𝐸 

occurrence at regular intervals [37], offering stability but 

potentially compromises performance when 𝑆𝑆𝐸  occur [7]. 

The 𝐸𝐷 policy, on the other hand, effectively handles 𝑆𝑆𝐸 

but they can lead to frequent rescheduling, resulting in high 

computational costs. In contrast, a 𝐻𝑦𝑏  policy is very 

effective which combines the benefits of both policies (𝑝𝑒 

and 𝐸𝐷) by rescheduling 𝑅𝑆𝐸 at fixed intervals through 𝑝𝑒 

policy and rescheduling 𝑆𝑆𝐸  using 𝐸𝐷  policy [36]. This 

balanced approach, makes it a preferred choice in dynamic 

environments [41].
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Fig. 2. Dynamic events and their implications on scheduling  

3) “With what” to reschedule: three methods are used 

to address this question: partial (𝑝𝑎),  right-shift (𝑅𝐹), and 

regeneration (𝑅𝑒𝑔). A 𝑝𝑎 method targets affected operations, 

balancing stability and solution quality, but struggles with 

significant events. 𝑅𝐹  method, a simple and efficient 

approach, delays remaining operations to maintain feasibility 

[37], but it may cause delays. 𝑅𝑒𝑔 method reschedules all 

unprocessed operations, potentially optimizing the new 

schedule but at a higher computational cost [7].  

Each rescheduling approach offers distinct trade-offs. Our 

study examined a 𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡  strategy, identified as best 

approach for handling dynamic events based on previous 

research by [41]. While [41] examined JSS under events such 

as 𝑁𝐽𝐴 and 𝑀𝐹 with a 𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡 strategy, we expanded on 

this by considering 𝑆𝐷𝐸  such as 𝑁𝐽𝐴, 𝑅𝑂, 𝑆𝑀𝑀  and 𝑀𝐹 

instead of just two dynamic events and presented 𝑅𝐹  and 

𝑅𝑒𝑔 methods to reschedule jobs using a 𝐻𝑦𝑏 policy. The 𝑅𝐹 

method has the potential to handle 𝑀𝐹 as it provides a quick 

solution by delaying the affected operations without 

significant computational cost. On the other hand, the 𝑅𝑒𝑔 

method effectively integrate 𝑁𝐽𝐴 , 𝑅𝑂 , and 𝑆𝑀𝑀  by re-

optimizing the schedule from the point of disruption. This 

adopted rescheduling approach has the potential to respond 

to different types of 𝑆𝐷𝐸 in efficient way. 

In general, despite the vast body of research dedicated to 

addressing JSS problems, a significant gap exists in the 

literature (shown in Table I). As seen from Table I, existing 

studies have primarily focused on exploring either the exact 

optimization [47], heuristic methods [48], or metaheuristic 

techniques [27], [49] independently, lacking a unified 

framework that considers these methods. Additionally, most 

existing studies assume that job attributes, such as release 

dates, are known in advance [29] and often neglect the 

occurrence of 𝑆𝐷𝐸. These assumptions limit the applicability 

of solutions in real-world manufacturing, where dynamic 

events are common. Therefore, a study that unifies through 

developing and comparing the exact, heuristic, and 

metaheuristic methods while considering 𝑆𝐷𝐸  is critically 

needed to provide more realistic JSS solutions. 

This study makes several contributions in this regard: 

First, it establishes computational constraints and analyzes 

the complexity of finding optimal schedules using the exact 

optimization techniques. The optimal solutions obtained 

through the exact methods are then served as benchmarks for 

optimality. While the exact method guaranteed optimal 

solutions, they turned out to be computationally expensive for 

medium to large instances. To address this, a greedy 

algorithm (𝐺𝑟𝐴) has been examined to obtain quick locally 

optimal solutions. Though 𝐺𝑟𝐴 obtained faster solutions, it 

struggled with optimality. To overcome this, a novel Greedy 

Randomized Adaptive Search Procedure (GRASP) algorithm 

is employed, with a more focused and directed procedure for 

operations swapping considering operations with significant 

tardiness contribution. This approach balanced exploration 

and exploitation, improving solution quality. Additionally, 

this study addresses dynamic JSS scenario involving 𝑆𝐷𝐸 

such as 𝑁𝐽𝐴 , 𝑅𝑂 , 𝑀𝐹 , and 𝑆𝑀𝑀 . A comprehensive 

rescheduling procedure using a 𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡  strategy is 

implemented, featuring 𝑅𝐹  and 𝑅𝑒𝑔  methods with a 

𝐻𝑦𝑏 (𝑝𝑒  and 𝐸𝐷) policy. Our research has practicality and 

real-world relevance in automotive, electronics 

manufacturing, and other companies.  

The rest of the paper is organized as follows: Section II 

provides a literature review, Section III defines the JSS 

problem and develops mathematical model; Section IV 

presents approaches to solve JSS including the exact method, 

𝐺𝑟𝐴  and GRASP; Section V provides experimental setup, 

Section VI presents the rescheduling procedure; Section VII 

provides the results and discussion, followed by the study 

conclusion and future work. 
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TABLE I.  LITERATURE STUDY ON JSS SHOWING THE POTENTIAL GAP IN STUDIES 

References 𝐄𝐱𝐚𝐜𝐭 𝐇𝐞𝐮𝐫𝐢𝐬𝐭𝐢𝐜 𝐆𝐑𝐀𝐒𝐏 

𝐒𝐞𝐫𝐢𝐨𝐮𝐬 𝐃𝐲𝐧𝐚𝐦𝐢𝐜 𝐞𝐯𝐞𝐧𝐭𝐬 (𝐒𝐃𝐄) 𝐒𝐭𝐫𝐚𝐭𝐞𝐠𝐲 𝐏𝐨𝐥𝐢𝐜𝐲 𝐌𝐞𝐭𝐡𝐨𝐝 

𝑵𝑱𝑨 𝑹𝑶 𝑴𝑭 𝑺𝑴𝑴 
𝑷𝒂𝒄𝒕

− 𝑹𝒂𝒄𝒕 
𝑯𝒚𝒃 𝑹𝑭&𝑹𝒆𝒈 

[47], [48], [57], [77] ✓           

[24], [25], [26], [27], [36], [49], [58], 

[59], [60], [63], [78], [79], [80], [81], [82] 
 ✓          

[68]   ✓         

[83], [84]  ✓   ✓     ✓    

[41], [85], [86], [87], [88]  ✓   ✓   ✓   ✓  ✓   

This study ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  

II. LITERATURE REVIEW 

A. Related to JSS 

JSS has attracted significant attention from scholars, 

which has resulted in the development of a wide range of 

approaches to address its complexity. From the exact 

methods like branch-and-bound [57] and mathematical 

programming [47] to heuristic approaches like shifting 

bottleneck [48], and dispatching rules [58], [59], as well as to 

metaheuristic approaches such as TS  [49], GA [60], SA [61], 

[62], and ACO [63], a plethora of solutions have been 

proposed by different authors. The GRASP, on the other 

hand, is a promising approach for solving JSS problems as it 

efficiently explores the larger search space by combining 

local search strategies with both greedy and random phases. 

Compared to other metaheuristic approaches, GRASP is 

competitive in solution quality and computational efficiency 

and is easier to implement and tune [50]: requiring only a few 

parameters to tune, such as the Restricted Candidate List 

(RCL) and the number of iterations [51]. [52] demonstrated 

GRASP's consistent performance in delivering high-quality 

solutions across various combinatorial optimization 

problems. Over the past decade, GRASP has been effectively 

applied to various combinatorial problems [53], [54], [55], 

[56]. Overall, GRASP is especially well-suited for handling 

JSS problems because of its adaptability and flexibility.  

B. Related to JSS and GRASP 

 The literature provides a considerable body of research 

proving the GRASP's successful application in various 

sectors. These domains include production and 

manufacturing systems (including discrete manufacturing 

parts [64], flowshop [65], [66], just-in-time scheduling [67], 

JSS [68], flexible job shop scheduling (FJSS) [51], [69], [70], 

[71], and industrial line balancing [72], etc.), routing and 

logistics (which involves mixed Chinese postman problem 

[54], traveling salesman problem [73], [74], and vehicle 

scheduling problem [75][76]. 

 Among the existing research, the study by [68] stands out. 

They investigated the GRASP approach, which combines 

greedy and randomized components, by constructing an RCL 

based on a threshold value and selecting elements 

probabilistically from the RCL. Their method assigns equal 

probability to each option in the RCL, emphasizing 

randomness in the selection process. 

In contrast, our proposed methodology takes a more 

guided approach. We utilize problem-specific information, 

on the initial solution generated in the construction stage, 

through tardiness-based local search procedure considering 

operations with a significant tardiness contribution value, to 

enhance the quality of the local search. Additionally, random 

operation swaps and a restart mechanism have been used to 

extend the search procedure and prevent convergence to local 

optima, resulting in high-quality solutions with 

computational effectiveness. 

C. Related to JSS and Rescheduling 

Rescheduling is a process of updating the previously 

optimal schedule upon 𝑆𝐷𝐸 occurrence [8]. Rescheduling is 

crucial in uncertain manufacturing environments [89], [90]. 

It minimizes tardiness penalties, and ensure timely order 

delivery, thereby enhancing efficiency and responsiveness. 

Various authors have contributed to the existing literature on 

rescheduling. [37] provided a comprehensive framework for 

understanding rescheduling research, while [91] conducted a 

literature review on executing production schedules in the 

face of unexpected disruptions. Additionally, [3] surveyed 

dispatching rules for dynamic environments, and [38] 

explored dynamic scheduling in manufacturing systems. 

Current research on rescheduling focuses on following 

aspects: Rescheduling factor, rescheduling strategies, 

rescheduling policies, and rescheduling methods [37].  

1) Rescheduling factors: Addressed single-machine 

scheduling with 𝑁𝐽𝐴 for tardiness related objective function 

[43]. Proposed a technique for dynamic JSS with random 

𝑁𝐽𝐴  and 𝑀𝐹  [41]. Managed 𝑀𝐹  in JSS to minimize 

tardiness [92]. Considered 𝑁𝐽𝐴, aiming to minimize 

weighted tardiness [93]. Analyzed rescheduling under 𝑁𝐽𝐴, 

evaluating schedule stability and efficiency using total 

completion time and weighted tardiness [94]. 

2) Rescheduling strategies: various authors have 

categorized it differently. For example, [37] and [95] 

categorized four types of rescheduling strategies: 

𝑅𝑎𝑐𝑡 , 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 (𝑃𝑝𝑎𝑐𝑡) − 𝑅𝑎𝑐𝑡 , 𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡  and robust 

𝑃𝑎𝑐𝑡 . Similarly, [96] covered four types of rescheduling 

strategies: completely 𝑅𝑎𝑐𝑡 , 𝑃𝑝𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡 , robustness-based, 

and knowledge-based. Presented a hybrid method that 

combines 𝑃𝑎𝑐𝑡  𝑎𝑛𝑑 𝑅𝑎𝑐𝑡  strategies [97]. In [83] studied 

𝑃𝑝𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡  strategy along with 𝑃𝑎𝑐𝑡 strategy. In [98] gave 

an overview of completely 𝑅𝑎𝑐𝑡 , robust, and pre- 𝑅𝑎𝑐𝑡 

strategies. In [93] introduced a 𝑃𝑝𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡  strategy for 

manufacturing control systems, focusing on 𝑁𝐽𝐴. 

3) Rescheduling policies: In [99] outlined the 

rescheduling policies ( 𝑝𝑒 , 𝐸𝐷, 𝐻𝑦𝑏 ). In [100] compared 

𝑝𝑒  𝑎𝑛𝑑 𝐸𝐷  rescheduling policies for 𝑁𝐽𝐴 . In [101]  
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introduced analytical methods for 𝑝𝑒  𝑎𝑛𝑑 𝐸𝐷 policies. In 

[85] presented a 𝑝𝑒  𝑎𝑛𝑑 𝐸𝐷 rolling horizon policy for DJSS. 

In [42] defined a 𝐻𝑦𝑏 policy for DJSS to manage process 

delay and 𝑅𝑂 . In [41] proposed a rescheduling policy for 

solving DJSS with 𝑁𝐽𝐴 𝑎𝑛𝑑 𝑀𝐹 . In [36] proposed a 𝐻𝑦𝑏 

policy to address frequent changes. 

4) Rescheduling methods: they are divided into three 

types: (1) 𝑃𝑎   [43], [46], [85], [102], [103], (2) 𝑅𝐹 [36], [99], 

[104], and (3) 𝑅𝑒𝑔  [42], [97], [105]. Reference [106] 

demonstrated different ways to schedule jobs in a machine 

for rescheduling process—scheduling new jobs after 

completing current ones, immediately scheduling new jobs, 

and inserting new jobs into idle time during scheduling. 

5) Rescheduling job scheme: Along with other 

rescheduling aspects, another important aspect is 

rescheduling jobs scheme. Various authors have categorized 

rescheduling jobs scheme differently. Categorized it as jobs 

not processing yet and in-process jobs [92]. Categorized them 

as jobs waiting for processing and jobs waiting to be 

scheduled [42]. Divided them into available jobs, jobs in the 

jobs window, and already finished jobs [85]. 

III. PROBLEM FORMULATION 

JSS consists of a set of machines as denoted by 𝑀 =
 {𝑀1, 𝑀2 … , 𝑀𝑚}  and a corresponding set of jobs as 

represented by 𝐽 = {𝐽1, 𝐽2, . . , 𝐽𝑛}. Each job comprises a series 

of operations, 𝑂𝑗 = {𝑂𝑗1, 𝑂𝑗2 , . . , 𝑂𝑗𝑙}. These operations must 

be processed following a predetermined technological order, 

which cannot be changed. Each job is assigned a release date 

(𝑟𝑗), and a due date (𝑑𝑗) and each job is allocated on a machine 

in 𝑀 to be processed with a given uninterrupted processing 

time (𝑝𝑖𝑗). Each machine can process one job at a time, and 

each job can be processed only once on a given machine. A 

job revisit over the same machine is not allowed, and 

processing of a job must not be interrupted. All the jobs must 

be scheduled on machines such that the precedence constraint 

among different operations of different jobs on the same 

machine and the dependency constraint among different 

operations of the same job, must be observed. The objective 

is to minimize the total tardiness of all jobs. 

A flowchart has been presented, as seen in Fig. 3, 

outlining the approach adopted in this study. The flowchart 

begins with defining the JSS problem. It then details the 

development of the exact methods, greedy algorithm (𝐺𝑟𝐴), 

and GRASP. Finally, it includes conducting a case study, 

experimental setup, rescheduling procedure, results and 

discussions, followed by summarizing conclusion and future 

research. 

D. Mathematical Notions 

Sets:  

Set of machines 𝑀 = {𝑀1, 𝑀2, … , 𝑀𝑚} 

Set of jobs 𝐽 =  {𝐽1, 𝐽2, . . , 𝐽𝑛} 

Set of operations 𝑂 = {𝑂1, 𝑂2, … , 𝑂𝑙} 

Set of rescheduling periods R = {𝑅1, 𝑅2, . . , 𝑅𝑞  } 

Set of unfinished jobs 𝐽𝑢 = 𝐽1
𝑢, 𝐽2

𝑢, … , 𝐽𝑛𝑢
𝑢  

Set of new jobs 𝐽𝑛 = 𝐽1
𝑛, 𝐽2

𝑛, … , 𝐽𝑛𝑛
𝑛  

Index:  

Machine index 𝑖 = {1,2, . . , 𝑚} 

Jobs index 𝑗 = {1,2, . . , 𝑛} 

Previous machine index 𝑖′ = {2,3, . . , 𝑚} 

Operation index 𝑘 = {1,2, … , 𝑙} 

Last operation of job index 𝑗𝑚  

Last machine index 𝑖𝑚  

Rescheduling index q = {1,2, . . , r} 

Unfinished jobs index 𝑗′
 

New jobs index 𝑗′′
 

Parameters:  

Number of machines 𝑚𝑖  

Number of jobs 𝑛𝑗  

Release date 𝑟𝑗  

Processing time 𝑝𝑖𝑗  

Due date 𝑑𝑗  

Rescheduling point Rq 

Rescheduling interval 𝑇𝑞 = [𝑅𝑞−1, 𝑅𝑞] 

Number of unfinished jobs 𝑛𝑗′
′

 

Number of new jobs 𝑛
𝑗"
"

 

Last operation on a machine 𝑗𝑚  

Penalty value 𝑉 

Variables:  

Start time 𝑆𝑖𝑗  

Finish time 𝐶𝑖𝑗  

Binary variable for jobs 

assignment on machine 𝑖 
𝑋𝑖𝑗𝑘  

Availability status for machine at 

rescheduling point 
𝐴𝑆𝑀

𝑖

𝑅𝑞
 

Availability status for jobs at 

rescheduling point 
𝐴𝑆𝑀

𝑗

𝑅𝑞
 

Availability time for machine 𝐴𝑇𝑀
𝑖

𝑅𝑞
 

Availability time for job 𝐴𝑇𝑀
𝑗

𝑅𝑞
 

Performance measure:  

Total tardiness of all jobs 𝛴
𝑗𝜖𝐽

𝑇𝑗  
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Fig. 3. Research methodology flowchart 

E. Mathematical Model 

Minimize ( 𝛴
𝑗𝜖𝐽

𝑇𝑗) (1) 

Subject to:  

𝑆𝑖𝑗 ≥ 0, ∀ i ∈ M, j ∈ J (2) 

𝑆𝑖𝑗1
≥ 𝑟𝑗 , ∀ 𝑖 (3) 

𝑆𝑖′𝑗 + 𝑝𝑖′𝑗 ≤ 𝑆𝑖𝑗 , ∀ i′, i ∈ 𝑀, j ∈ J (4) 

𝑆𝑖𝑗 + 𝑝𝑖𝑗 ≥ 𝑆𝑖𝑘 + 𝑉(1 − 𝑋𝑖𝑗𝑘), ∀ 𝑖 ∈ 𝑀 𝛿  𝑗, 𝑘 ∈ 𝐽, 𝑗

≠ 𝑘 
(5) 

𝑋𝑖𝑗𝑘 + 𝑋𝑖𝑘𝑗 = 1, ∀ 𝑖 ∈ 𝑀 𝛿 𝑗, 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘 (6) 

∑ 𝑋𝑖𝑗𝑘 ≤ 1, ∀ 𝑖 ∈ 𝑀 𝛿 𝑗, 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘 

𝑖∈𝑀

 (7) 

𝐶𝑖𝑗 = 𝑆𝑖𝑗 + 𝑝𝑖𝑗 , ∀ 𝑗 (8) 

𝑇𝑗 = max (0, 𝐶𝑖𝑗𝑓
− 𝑑𝑗) , ∀ 𝑗 (9) 

Equation (1) shows the objective function which is to 

minimize the total tardiness. Tardiness is the delay beyond a 

job's due date. We aim to complete jobs as close to their due 

dates as possible, reducing delays and improving efficiency. 

Constraint (2) ensures that jobs cannot start before time zero. 

Constraint (3) ensures that each job can only start processing 

after its release date. This is crucial for modeling realistic 

scenarios. Constraint (4) provides that dependency 

relationship among different operations of the same job is 

respected. This constraint ensures that operations are 

executed in the correct order. Constraint (5) ensures that the 

precedence relationship among operations of different jobs 

on the same machine is respected. This is important for 

maintaining the correct sequence of operations when multiple 

jobs share the same machine. Constraint (6) assures that 

operations from different jobs cannot be processed 

concurrently on the same machine. This reflects the practical 

limitation that a machine can only process one operation at a 

time. Constraint (7) guarantees that the machine processes at 

most one job at a time. This constraint is essential to avoid 

overlaps and conflicts in job assignments to machines. 

Constraint (8) computes the completion time for each job, 

while constraint (9) calculates the each job’s tardiness. 

To make the model more realistic, some assumptions in 

the defined model will be relaxed, bringing it closer to real-

world scenario. This includes the introduction of 𝑆𝐷𝐸  like 

𝑁𝐽𝐴,  𝑅𝑂,  𝑆𝑀𝑀,  and 𝑀𝐹,  and the introduction of 

rescheduling procedure to tackle them. To incorporate these 

assumptions into the model, following constraints are added.  

At the rescheduling point, the machines occupied in 

processing other jobs, marked as "busy", and symbolized as 

𝐵𝑚. While machines not engaged in processing any other job 

are labelled as "available" and represented as 𝐴𝑚. Similarly, 

at the rescheduling point, certain jobs may be processed on 

other machines, marked as “busy" and symbolized with 𝐵𝑗 . 

Conversely, jobs not processing on any other machines are 

labelled as "available" and represented by the symbol 𝐴𝑗.  
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The mathematical formulation is given below for 

checking the rescheduling point, availability status and 

availability time for machines and jobs. 

𝑅𝑞 = {0,   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
1,   𝑖𝑓 𝑟𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑎𝑟𝑟𝑖𝑣𝑒𝑑 𝑦𝑒𝑡

 (10) 

𝐴𝑆𝑀
𝑖

𝑅𝑞 = {𝐵𝑚,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝐴𝑚,   𝑖𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑎𝑛𝑦 𝑗𝑜𝑏,

 (11) 

𝐴𝑆𝑀
𝑗

𝑅𝑞 = {
𝐵𝑗,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐴𝑗,   𝑖𝑓 𝑗𝑜𝑏 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑜𝑛 𝑎𝑛𝑦 𝑚𝑎𝑐ℎ𝑖𝑛𝑒,
 (12) 

𝐴𝑇𝑀
𝑖

𝑅𝑞 ≥ 𝐶𝑖𝑗𝑚
, ∀𝑗𝑚 (13) 

𝐴𝑇𝑀
𝑗

𝑅𝑞 ≥ 𝐶𝑖𝑗𝑚
, ∀𝑖 (14) 

Constraint (10) verifies whether the rescheduling point 

arrived yet. This ensures that rescheduling decisions for 

periodic rescheduling are made at the rescheduling points. 

Constraints (11) and (12) examine the availability status of 

machine 𝑖  and job 𝑗  respectively, at a given point, 

determining whether the machine and job are available for 

processing or currently busy. Constraints (13) and (14) 

compute the machine availability time and job availability 

time for each machine and each job respectively. 

To compute the new start times for each job at 𝑅𝑞 , the 

following mathematical formulation is given as follows.  

𝑆𝑖𝑗𝑢 ≥ 𝑚𝑎𝑥(𝑅𝑞 , 𝐴𝑇𝑀
𝑖

𝑅𝑞) , ∀ 𝑖 ∈ 𝑀, 𝑗𝑢 ∈ 𝐽′, 𝑞 ∈ 𝑅 (15) 

𝑆𝑖𝑗𝑛 ≥ 𝑚𝑎𝑥(𝑅𝑞 , 𝐴𝑇𝑀
𝑖

𝑅𝑞) , ∀ 𝑖 ∈ 𝑀, 𝑗𝑛 ∈ 𝐽𝑛, 𝑞 ∈ 𝑅 (16) 

𝑆𝑖𝑗𝑢 + 𝑝𝑖𝑗𝑢 ≥ 𝑆𝑖𝑘𝑢 + 𝑉(1 − 𝑋𝑖𝑗𝑢𝑘𝑢), ∀𝑗𝑢 , 𝑘𝑢  

∈ 𝐽𝑢, 𝑗𝑢 ≠ 𝑘𝑢 , 𝑖 ∈ 𝑀 
(17) 

𝑆𝑖𝑗𝑛 + 𝑝𝑖𝑗𝑛 ≥ 𝑆𝑖𝑘𝑛 + 𝑉(1 − 𝑋𝑖𝑗𝑛𝑘𝑛), ∀𝑗𝑛 , 𝑘𝑛  

∈ 𝐽𝑛, 𝑗𝑛 ≠ 𝑘𝑛 , 𝑖 ∈ 𝑀 
(18) 

Constraints (15) and (16) specify the start times of all 

outstanding operations of old jobs that were still in-process 

when rescheduling point arrived and new jobs that arrived 

before the rescheduling point, respectively. Constraints (17) 

and (18) compute the start times of sequential operations of 

unfinished operations and newly arriving jobs, respectively. 

In the next section, the solution methods such as the exact 

method, 𝐺𝑟𝐴  and GRASP are presented to solve the 

developed JSS problem. 

IV. APPROACHES TO ADDRESS JSS 

To solve the developed JSS problem, our study employs 

the ft06 JSS instance from [107] as a case example. The ft06, 

having six machines and six jobs with six operations each, 

serves as a challenging benchmark due to its complexity, 

especially given that JSS with more than two machines show 

exponential growth in alternative schedules [108]. By 

applying our proposed methodologies to ft06, we aim to 

demonstrate a step-by-step procedure for solving JSS and 

validate our approach's performance. 

For this purpose, a hypothetical manufacturing company 

scenario has been generated and named as “hypothetical ft06 

bike manufacturing company”. The hypothetical ft06 bike 

manufacturing company produces 6 different types of bikes 

(jobs) namely mountain bike (𝐽1), road bike (𝐽2), hybrid bike 

(𝐽3), cruiser bike (𝐽4), electric bike (𝐽5), and folding bike (𝐽6).  

Each bike requires 6 operations, including frame cutting 

and shaping, frame welding, painting the frame, assembling, 

inspection, and packaging. Each bike processes its operations 

on 6 different available machines with a predefined routing: 

cutting and shaping machine (𝑀1), welding machine (𝑀2), 

painting machine (𝑀3) , CNC machine (𝑀4) , assembly 

machine (𝑀5), and inspection machine (𝑀6). After they are 

done with their processes on all the machines, they are 

dispatched for shipping.  

The routing at which each job will visit each machine is 

shown in Table II and the parameters such as processing time 

(𝑝𝑖𝑗), release date (𝑟𝑗), and due date (𝑑𝑗) are known and given 

in Table III. From Table II and Table III, each job follows its 

specific sequence of operations across different machines, 

with varying processing times for each operation. For 

example,  𝐽1 begins its first operation on 𝑀3, requiring 1 time 

unit. After finishing on 𝑀3, 𝐽1 proceeds to 𝑀1 for its second 

operation, requiring 3 times unit, and so on. This pattern 

persists for other operations of 𝐽1  and for other jobs. The 

generated data in Table II and Table III will be used to test 

the exact method, 𝐺𝑟𝐴, and GRASP in following sections. 

TABLE II.  ROUTING FOR A FT06 HYPOTHETICAL MANUFACTURING 

Jobs Routing 

J1  𝑀3(𝑂1) – 𝑀1(𝑂2) – 𝑀2(𝑂3) – 𝑀4(𝑂4) – 𝑀6(𝑂5) – 𝑀5(𝑂6) 

J2 𝑀2(𝑂1) – 𝑀3(𝑂2) – 𝑀5(𝑂3) – 𝑀6(𝑂4) – 𝑀1(𝑂5) – 𝑀4(𝑂6) 

J3 𝑀3(𝑂1) – 𝑀4(𝑂2) – 𝑀6(𝑂3) – 𝑀1(𝑂4) – 𝑀2(𝑂5) – 𝑀5(𝑂6) 

J4 𝑀2(𝑂1) – 𝑀1(𝑂2) – 𝑀3(𝑂3) – 𝑀4(𝑂4) – 𝑀5(𝑂5) – 𝑀6(𝑂6) 

J5 𝑀3(𝑂1) – 𝑀2(𝑂2) – 𝑀5(𝑂3) – 𝑀6(𝑂4) – 𝑀1(𝑂5) – 𝑀4(𝑂6) 

J6 𝑀2(𝑂1) – 𝑀4(𝑂2) – 𝑀6(𝑂3) – 𝑀1(𝑂4) – 𝑀5(𝑂5) – 𝑀3(𝑂6) 

 

 

TABLE III.  PARAMETERS FOR FT06 HYPOTHETICAL MANUFACTURING 

Processing Time Moutain bike (𝑱𝟏) Road bike (𝑱𝟐) Hybrid bike (𝑱𝟑) Cruiser bike (𝑱𝟒) Electric bike (𝑱𝟓) Folding bike (𝑱𝟔) 

Cutting machine (𝑴𝟏) 3 10 9 5 3 10 

Welding machine (𝑴𝟐) 6 8 1 5 3 3 

Painting machine (𝑴𝟑) 1 5 5 5 9 1 

CNC machine (𝑴𝟒) 7 4 4 3 1 3 

Assembly machine (𝑴𝟓) 6 10 7 8 5 4 

Inspection machine (𝑴𝟔) 3 10 8 9 4 9 

Duedate (𝒅𝒋) 72 31 56 61 52 72 
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F. Exact Method 

The exact methods are optimization methods that 

guarantee finding the globally optimal solution to a problem 

[109]. The exact methods include branch-and-bound [57], 

mathematical programming [47], and many other. The 

rationale behind using the exact method is: (1) to define the 

scope of the study, (2) to ensure that the found solution is the 

best possible one [110], and (3) benchmarking for evaluating 

the performance of other approximate methods. 

The exact method is employed on hypothetical ft06 

manufacturing scenario to find the optimal solution. The 

exact method identifies the sequence of operations for each 

bike (job) on each machine to minimize the total tardiness. 

The resulting optimal solution serves as a benchmark for 

evaluating 𝐺𝑟𝐴  and GRASP. By comparing the solutions 

obtained through 𝐺𝑟𝐴 and GRASP with those obtained from 

the exact method, we evaluate the performance and 

effectiveness of these approaches. 

To implement the exact method, a programming software 

has been employed on the ExpertBook, equipped with a 64-

bit operating system and an 11th generation Intel(R) 

Core(TM) i7-1165G7 @ 2.80GHz CPU using 8.00 GB of 

RAM. The process starts with formulating the problem as a 

mixed-integer non-linear programming (MINLP) model, 

incorporating all relevant constraints. The input data, 

including 𝑝𝑖𝑗 , 𝑟𝑗, 𝑑𝑗 and job routing, is prepared and fed into 

the programming software. The programming software then 

applies the exact algorithm to exhaustively explore the 

solution space and find the optimal solution. Upon 

completion, the optimization results are recorded, including 

start times (𝑆𝑖𝑗), finish times (𝐶𝑖𝑗), computational times, job 

tardiness and total tardiness.   

The Table IV presents 𝑆𝑖𝑗  and 𝐶𝑖𝑗  for hypothetical ft06 

bike manufacturing company scenario.  Based on these 

results, a Gantt chart is drawn in Fig. 4 to visualize and verify 

the solutions’ correctness, particularly in terms of precedence 

relationship among operations.  In Fig. 4, each bar represents 

an operation, with the values indicating its 𝑆𝑖𝑗  and 𝐶𝑖𝑗 on that 

specific machine. For example, 𝐽3 ’s first operation on 

machine 𝑀3 is shown as (5
0) indicating that 𝐽1 starts at 0 times 

unit and finishes at 5 times unit. 

1 Input:  𝛺 , 𝛷 , ℎ  

2 Initialization: s= {}  //Initialize an empty solution set. 

3 while: ∃(𝐽, 𝑂) ∈ 𝛺 𝑠. 𝑡. (𝐽, 𝑂) ∉ 𝑠  //Include all operations. 

4  ∀(𝐽, 𝑂) ∈  𝛺   

5   compute:𝑓(𝑠 ∪ {(𝐽, 0)}) = ℎ(𝑠, {(𝐽, 𝑂)}) 

6  find:(𝐽, 0) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐽,𝑂)𝑖∈𝛺\𝑧 ℎ(𝑠, {𝐽, 𝑂})  

7  𝑠 = 𝑠 ∪ {𝐽, 𝑂} //Add the selected operations to s-set. 

8 Return s 

Fig. 4. Pseudocode for greedy algorithm  

The exact method, while providing optimal solutions, 

becomes computationally costly as problem size increases, 

limiting their practicality for even moderately sized instances 

[110] [109]. As a result, applications of the exact method 

become limited by computational demands. Furthermore, the 

exact methods are not well-suited to handle dynamic events 

effectively, as they require re-solving the entire problem 

when 𝑆𝐷𝐸 occur, which can be computationally expensive or 

even infeasible. These reasons necessitate the search for other 

heuristic approaches. Consequently, our research implements 

𝐺𝑟𝐴 as an alternative method to address these challenges. 

G. Greedy Algorithm 

Greedy algorithm (𝐺𝑟𝐴) is a heuristic approach that uses 

a local heuristic (ℎ)  to build candidate solutions to 

optimization problems step by step. It begins with an empty 

solution and keeps adding a finite set of elements to the 

current partial solution [109], [111]. This process iterates until 

a complete candidate solution is achieved.  

The rationale for implementing 𝐺𝑟𝐴 is threefold: (1) It 

offers a trade-off between computational efficiency and 

scalability [112], (2) it provides approximate solutions 

quickly, even for large scale problems, enhancing 

computational efficiency, and (3) It can be adapted to 

incorporate the dynamic events.  

A finite set of elements (Ω), partial solution (𝑠𝑝), search 

space (F), and objective function ((Φ) are some of 𝐺𝑟𝐴’s key 

elements. A finite set of elements (𝛺) represents the set of all 

operations that need to be scheduled. 

𝛺 = {(𝐽, 𝑂)|𝐽 = 𝐽1, 𝐽2, . . , 𝐽𝑛 & 𝑂 = 𝑂1, 𝑂2, … , 𝑂𝑙} (19) 

The partial solution (𝑠𝑝) represents a subset of operations 

that have been scheduled so far. 

𝑠𝑝 ⊂ 𝛺 (20) 

       Search space (𝐹) consists of all possible partial solutions 

that can be generated. It represents all possible combinations 

of operations that can be scheduled. 

Ϝ ⊂ 2𝛺 (21) 

The objective function (𝛷) maps a partial solution to a 

real number representing the objective value of the solution. 

𝛷: 2𝛺 → ℝ (22) 

A detailed pseudocode has been given for 𝐺𝑟𝐴 in Fig. 5. 

The 𝐺𝑟𝐴  takes Ω (finite set of elements), Φ (objective 

function), and ℎ  (local heuristic) as inputs (line 1). 𝐺𝑟𝐴 

initializes an empty solution set  𝑠 (line 2) and continues until 

all operations are included in the solution (line 3). For each 

operation (𝐽, 𝑂) not yet in the solution (line 4): it computes 

the value of adding this operation to the current solution using 

the local heuristic ℎ  (line 5). It selects the operation that 

minimizes total tardiness (line 6). The selected operation is 

added to the solution set 𝑠 (line 7). The algorithm returns the 

completed solution s (line 8). 

The 𝐺𝑟𝐴  is applied to hypothetical ft06 bike 

manufacturing company scenario. The 𝐺𝑟𝐴  processes data 

about machines (cutting, welding, painting, assembling, 

inspection, packaging) and bikes (mountain, road, hybrid, 

cruiser, electric, folding). Starting with an empty solution, it 

uses the heuristic to incrementally build a solution by adding 

operations to the partial solution. Feasible solutions are 

updated as operations are added. The process repeats until a 

complete, feasible sequence of operations is obtained. 
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Fig. 5. Gantt chart for ft06 hypothetical manufacturing using exact method 

TABLE IV.  RESULTS OBTAINED THROUGH EXACT METHOD FOR FT06 HYPOTHETICAL MANUFACTURING 

(𝑺𝒊𝒋, 𝑪𝒊𝒋) 
Frame cutting and 

shaping (𝑶𝟏) 

Frame welding 

(𝑶𝟐) 

Painting the frame 

(𝑶𝟑) 

Assembling 

(𝑶𝟒) 

Inspection 

(𝑶𝟓) 

Packaging 

(𝑶𝟔) 

Tardiness 

(units) 

Moutain bike (𝑱𝟏) (5,6) (6,9) (16,22) (30,37) (38,41) (42,48) 0 

Road bike (𝑱𝟐) (0,8) (8,13) (13,23) (28,38) (38,48) (48,52) 21 

Hybrid bike (𝑱𝟑) (0,5) (5,9) (9,17) (18,27) (27,28) (48,56) 0 

Cruiser bike (𝑱𝟒) (8,13) (13,18) (22,27) (27,30) (30,38) (45,54) 0 

Electric bike (𝑱𝟓) (13,22) (22,25) (25,30) (41,45) (48,52) (52,53) 11 

Folding bike (𝑱𝟔) (13,16) (16,19) (19,28) (28,38) (38,42) (42,43) 0 

Computational time 2.11 (sec) 

The Table V presents the results obtained, after applying 

𝐺𝑟𝐴, for hypothetical ft06 bike manufacturing company 

scenario in terms of 𝑆𝑖𝑗 , 𝐶𝑖𝑗 , tardiness and computational 

time. Notably, the tardiness value increased for 𝐺𝑟𝐴 

compared to the exact method, with 𝐽2, 𝐽3 and 𝐽5 showing an 

increase in tardiness from 21, 0, and 11 to 23, 4 and 13, 

respectively. The final feasible solution is presented as Gantt 

chart in Fig. 6. Each bar on Gantt chart represents an 

operation, with the values indicating its 𝑆𝑖𝑗  and 𝐶𝑖𝑗 for each 

machine. 

TABLE V.  INITIAL SOLUTION FOR FT06 IN CONSTRUCTION PHASE OF 

GRASP 

Machine Complete solution 

Cutting machine (𝑀1) 
𝐽1(𝑂2), 𝐽4(𝑂2), 𝐽3(𝑂4), 𝐽6(𝑂4), 

𝐽2(𝑂5), 𝐽5(𝑂5) 

Welding machine (𝑀2) 
𝐽2(𝑂1), 𝐽4(𝑂1), 𝐽6(𝑂1), 𝐽1(𝑂3), 

𝐽5(𝑂2), 𝐽3(𝑂4) 

Painting machine (𝑀3) 
𝐽3(𝑂1), 𝐽1(𝑂1), 𝐽2(𝑂1), 𝐽5(𝑂1), 

𝐽4(𝑂3), 𝐽6(𝑂6) 

CNC machine (𝑀4) 
𝐽3(𝑂2), 𝐽6(𝑂2), 𝐽4(𝑂4), 𝐽1(𝑂4), 

𝐽2(𝑂6), 𝐽5(𝑂6) 

Assembly machine 

(𝑀5) 

𝐽2(𝑂3), 𝐽5(𝑂3), 𝐽4(𝑂5), 𝐽6(𝑂5), 

𝐽1(𝑂6), 𝐽3(𝑂6) 

Inspect. machine (𝑀6) 
𝐽3(𝑂3), 𝐽6(𝑂3), 𝐽2(𝑂4), 𝐽1(𝑂5), 

𝐽5(𝑂4), 𝐽4(𝑂6) 

 

Results showed that while 𝐺𝑟𝐴  offers significant 

computational efficiency compared to the exact method, it 

cannot guarantee global optimal solutions [109], [113]. This 

limitation arises because the 𝐺𝑟𝐴 minimizes computational 

time by making locally optimal decisions without exhaustive 

searches, resulting in the 𝐺𝑟𝐴 getting stuck in local optima. 

Consequently, the 𝐺𝑟𝐴  struggles to explore the larger 

solution space, leading to suboptimal solution. Additionally, 

𝐺𝑟𝐴 generates only a single solution, which is most likely 

suboptimal [111], and an incorrect decision in early stage 

may lead to poor solutions in the end [111]. These limitations 

highlight the need for more advanced optimization 

techniques. To address these limitations, we proposed a novel 

GRASP algorithm with a more directed operation swapping 

procedure aiming to enhance solution quality while 

maintaining computational efficiency. 

H. Greedy Randomized Adaptive Search Procedure 

GRASP is an iterative method that effectively solves 

combinatorial optimization problems [109], striking a 

balance between greediness and randomness in the search for 

optimal solutions [111]. The GRASP algorithm is chosen for 

this research due to its: (1) efficient balance of exploration 

and exploitation in search spaces [109], (2) ability to produce 

high-quality solutions efficiently, (3) easier implementation 

[50], and (4) proven efficiency in various optimization 

problems, including single machine [53], the Chinese 

postman routing [54], flow shop [55], and JSS [56]. 

As compared to other approximate methods, GRASP 

offers several advantages: (1) it requires only two parameters 

to tune (the candidate list and the number of iterations) [51],  

(2) it is highly scalable for JSS problems, as its computational 

effort does not grow exponentially with the problem size, (3) 

it adapts quickly to dynamic events by regenerating solutions 

and applying local search  to accommodate the new problem 

state, and (4) its randomized component introduces 

diversification, enabling exploration of diverse solution 

spaces, potentially finding better solutions. 
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Fig. 6. Gantt chart for hypothetical ft06 bike manufacturing using 𝐺𝑟𝐴

TABLE VI.  RESULTS OBTAINED THROUGH GREEDY ALGORITHM FOR FT06 HYPOTHETICAL MANUFACTURING 

(𝑺𝒊𝒋, 𝑪𝒊𝒋) 
Frame cutting 

and shaping (𝑶𝟏) 

Frame 

welding (𝑶𝟐) 

Painting the 

frame (𝑶𝟑) 

Assembling 

(𝑶𝟒) 

Inspection 

(𝑶𝟓) 

Packaging 

(𝑶𝟔) 

Tardiness 

(units) 

Mountain bike (𝑱𝟏) (0,1) (1,4) (19,25) (25,32) (44,47) (47,52) 0 

Road bike (𝑱𝟐) (0,8) (15,20) (20,30) (30,40) (40,50) (50,54) 23 

Hybrid bike (𝑱𝟑) (1,6) (6,10) (10,18) (18,27) (27,28) (53,60) 4 

Cruiser bike (𝑱𝟒) (8,13) (13,18) (20,25) (32,35) (35,43) (47,56) 0 

Electric bike (𝑱𝟓) (6,15) (16,19) (30,35) (40,44) (50,53) (54,55) 13 

Folding bike (𝑱𝟔) (13,16) (16,19) (19,28) (28,38) (43,47) (47,48) 0 

Computational time 0.01 (sec) 

GRASP consists of two phases: the construction phase, 

which provides an initial feasible solution that is built using 

a heuristic algorithm, and the local search phase, which is 

applied on initial solution from construction phase. 

1) Construction phase: For our approach, 𝐺𝑟𝐴  has 

been applied to hypothetical ft06 bike manufacturing 

scenario to generate the initial feasible solution. 𝐺𝑟𝐴 

constructs this solution by starting with an empty solution and 

keep adding operations to the partial solution until a complete 

feasible sequence of operations is achieved. The initial 

solution obtained from the construction phase is given in 

Table VI showing the sequence in which each machine 

performed operations. 

2) Local search phase: A novel local search phase is 

employed on the initial solution from construction phase, 

using intensification and diversification concepts. Through 

these concepts, the algorithm explores promising regions 

with a more directed approach to guide the search procedure 

in promising regions of the solution space, rather than just 

random swaps as in typical GRASP. This approach focuses 

on the operations contributing significantly to the total 

tardiness values in the initial feasible solution. By directing 

the local search on operations with a significant tardiness 

contribution value, the algorithm effectively leverages for 

improvement within the area of the current solution. 

Furthermore, a random restart and random swapping 

procedure have been introduced to prevent the solution from 

getting stuck in local optima. A pseudocode is presented for 

the local search in Fig. 7, with the symbols used in 

pseudocode in Table VII. 

 

TABLE VII.  SYMBOLS USED IN PSEUDOCODE FOR GRASP 

Notion Meaning Notion Meaning 

𝑠 Initial solution 𝑝𝑟𝑒𝑗𝑘 Predecessor 

𝑇𝑗 Job Tardiness 𝑠𝑢𝑐𝑗𝑘 Successor 

𝑎 Max. iterations 𝐼 Iterations 

𝑐 Restart interval R Random start 

𝑘 Operations 𝑆𝑏𝑒𝑠𝑡 Current best  

𝑏 Max. stuck iterations 𝑟1, 𝑟2 
Random 

Operations 

𝑇𝑗𝑘 
Operation tardiness 

contribution 
  

  

The algorithm takes an initial solution from construction 

phase as input (line 1). Then, it computes the tardiness of each 

job (line 2) and the tardiness contribution of each operation 

(line 3). A job's tardiness is the difference between its 

completion time past due date and the tardiness contribution 

of an operation is the amount of how much an operation 

contributes to total tardiness. The operations are listed then in 

the descending order of their tardiness contribution values 

(line 4). The parameters of algorithms include the maximum 

number of iterations (line 5), the maximum number of stuck 

iterations (line 6), and the number of iterations after which a 

random restart would occur (line 7). 

The random restart is a technique to avoid local optima by 

introducing randomization into the search process. The initial 

solution is set to the initial best solution (line 8). The 

algorithm’s main loop runs for the 𝑎  number of iterations 

(line 9). For each operation with a tardiness contribution 

greater than a predefined value (line 10), the algorithm 

searches neighborhood movements: swapping the operation 

with its predecessor (lines 13-19), its successor (lines 20–26) 
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and at different positions within the same machine (lines 27–

34).  

1 Input: 𝑠 //initial solution 

2 Calculate: 𝑇𝑗(𝑠) //calculate tardiness of each job 

3 Calculate: 𝑇𝑗𝑘(𝑠) //calculate tardiness contribution 

4 𝑇𝑗𝑘 = 𝑠𝑜𝑟𝑡 [𝑇𝑗𝑘2
, . . , 𝑇𝑗𝑘

𝑙′
] //list down operations 

5 max_iterations = 𝑎 

6 max_stuck = 𝑏 

7 Restart_interval = 𝑐 

8 𝑆𝑏𝑒𝑠𝑡 = 𝑠  //initial best solution 

9 while iteration < 𝑎 

10  for 𝑘 in 𝑇𝑗𝑘: //Iterate over operations sorted 

11   if 𝑇𝑗𝑘𝑞
> 𝑣𝑎𝑙𝑢𝑒  

12    𝒇𝒊𝒏𝒅: 𝑝𝑟𝑒𝑗𝑘,𝑠𝑢𝑐𝑗𝑘(𝑇𝑗𝑘𝑞
) //find predecessor 

13    𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝒔𝒘𝒂𝒑(𝑠, 𝑇𝑗𝑘𝑞
, 𝑝𝑟𝑒𝑗𝑘) //swap 

14    if (𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑): 

15     𝑠 = 𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 //accept current solution 

16     I={} 

17    else: 

18     I+=1 

19    iteration += 1 // Increment the iteration 

20    𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝒔𝒘𝒂𝒑(𝑠, 𝑇𝑗𝑘𝑞
, 𝑠𝑢𝑐𝑗𝑘) //swap 

21    if (𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑): 

22     𝑠 = 𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 //accept current solution 

23     I={} 

24    else: 

25     I+=1 

26    iteration += 1 // Increment the iteration 

27    𝒇𝒐𝒓 𝑜𝑡ℎ𝑗𝑘 in 𝑇𝑗𝑘𝑞
: //Insert at all positions 

28     𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝒔𝒘𝒂𝒑(𝑠, 𝑇𝑗𝑘𝑞
, 𝑜𝑡ℎ𝑗𝑘)  //swap opt. 

with all 29     if (𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑): 

30      𝑠 = 𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 //accept solution 

31      I={} 

32     else: 

33      I+=1 

34     iteration += 1  

35   if iteration= 𝑐 

36    Select 𝑟1(𝑠), 𝑟2(𝑠) //randomly select operation 

37    𝑠 = 𝑠𝑤𝑎𝑝(𝑠, 𝑟1, 𝑟2) //swap random operation 

38    I={} 

39   else: 

40    𝐼 +=1 

41   iteration += 1 

42   if 𝐼 ≥ 𝑏 //stuck reached the threshold 

43    𝑠 = 𝑅(𝑠) //perform random swapping 

44    I={} 

45  if 𝑆𝑖𝑚𝑝𝑜𝑣𝑒𝑑: 

46   𝑆𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝑠  //accept best solution 

47  iteration +=1 

48 return 𝑆𝑏𝑒𝑠𝑡 

Fig. 7. Pseudocode for GRASP algorithm 

If any of these neighborhood movements result in a better 

solution (in terms of total tardiness), the current solution is 

updated/modified (lines 15, 21, and 30). After a certain 

number of iterations, the algorithm determines if a random 

restart (𝑐) would occur (lines 35-41). If the solution keeps 

stuck (𝑏) for a specific number of iterations with the same 

objective function value, random swapping will be done 

(lines 42-44). After exploring all operations, the algorithm 

updates the best solution if it is better than the previously 

found best solution (line 48). 

3) Intensification: The algorithm first calculates each 

operation's contribution to total tardiness in the initial 

solution. It then creates a sorted list of operations in 

decreasing order of tardiness contribution. Iterating through 

this list, the algorithm prioritizes operations with high 

tardiness impact. It performs a series of swaps, moving these 

operations to positions of predecessors, successors, and other 

operations on the same machine. This process continues until 

a predefined criterion is met. After each swap, the algorithm 

evaluates its impact on total tardiness. If the swap minimizes 

total tardiness, the new solution is accepted. 

4) Diversification: The algorithm employs 

diversification to search multiple regions of the solution 

space and avoiding local optima. Our algorithm has two 

diversification techniques: random swap, if the solution gets 

stuck for a certain number of iterations and random start, after 

a specified time. The random swap enhances diversity by 

incorporating randomization into operations swapping, 

preventing the algorithm from being stuck in local optima. 

Random restart allows the algorithm to explore a wider 

solution space, resulting in better solution. 

The GRASP algorithm has been applied to a hypothetical 

ft06 bike manufacturing scenario. During the construction 

phase, an initial solution, representing the sequence of 

operations on each machine, is generate, refer to Table VI. 

GRASP then calculates the tardiness of each job in this initial 

solution, identifies operations with significant tardiness 

values, and computes their contributions to the total tardiness, 

as seen in Table VIII. 

TABLE VIII.  COMPUTING JOB TARDINESS AND TARDINESS 

CONTRIBUTION OF OPERATIONS 

Jobs 𝑻𝒋 𝑻𝒋𝒌 

𝐽1 0 𝑂1: 0, 𝑂2: 0, 𝑂3: 0 , 𝑂4: 0 , 𝑂5: 0 , 𝑂6: 0 

𝐽2 21 𝑂1: 0, 𝑂2: 0, 𝑂3: 0, 𝑂4: 7, 𝑂5: 10, 𝑂6: 4 

𝐽3 0 𝑂1: 0, 𝑂2: 0, 𝑂3: 0 , 𝑂4: 0 , 𝑂5: 0 , 𝑂6: 0 

𝐽4 0 𝑂1: 0, 𝑂2: 0, 𝑂3: 0 , 𝑂4: 0 , 𝑂5: 0 , 𝑂6: 0 

𝐽5 11 𝑂1: 0, 𝑂2: 0, 𝑂3: 0 , 𝑂4: 3 , 𝑂5: 7 , 𝑂6: 1 

𝐽6 0 𝑂1: 0, 𝑂2: 0, 𝑂3: 0 , 𝑂4: 0 , 𝑂5: 0 , 𝑂6: 0 

 

From Table VIII, the road bike's (𝐽2) operation (𝑂5) on the 

frame cutting and shaping machine ( 𝑀1 ) has the highest 

tardiness contribution, taking 10 times unit. GRASP 

identifies its predecessor (folding bike’s (𝐽6) operation 𝑂4) 

and successor (electric bike’s (𝐽5)  operation 𝑂5 ). It then 

swaps 𝐽2’s operation 𝑂5 with its predecessor, successor, and 

other neighboring operations on the same machine. If an 

improvement is found, the solution is updated. This process 
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repeats operations with a specific tardiness contributions 

value until predefined criteria are met. The Table IX presents 

the results obtained for hypothetical ft06 bike manufacturing 

company scenario in terms of 𝑆𝑖𝑗 , 𝐹𝑖𝑗, 𝑇𝑗 and computational 

time. Additionally, the final solution is visualized as Gantt 

chart in Fig. 8. Each bar on Gantt chart represents an 

operation, with the values indicating its 𝑆𝑖𝑗  and 𝐶𝑖𝑗  on that 

machine. 

The results obtained for ft06 instance using the exact 

method, 𝐺𝑟𝐴, GRASP and the previous studies, such as [68] 

and [114], are compared (as shown in Table X). While these 

studies used makespan as the objective function (with an 

optimal value of 55, consistent with our findings upon 

evaluation), our study focused on the total tardiness. Thus, 

only the comparison between computational times has been 

made. The Table X shows that our exact method achieved a 

total tardiness value of 32 in 2.11 sec. The 𝐺𝑟𝐴 was faster 

with computational time of 0.001 sec but had a higher 

tardiness value of 40. In contrast, GRASP achieved the 

optimal total tardiness value of 32 in 0.003 sec, balancing 

computational efficiency and solution quality. Also, previous 

studies  on ft06 instance reported longer computational times, 

such as 0.37 sec in [68]  and less than 1 sec in [114], as 

compared to our approach. These results highlight the 

efficiency of our novel GRASP, in solving the ft06 instance. 

V. EXPERIMENTAL SETUP 

To expand the validation of the effectiveness of our exact, 

𝐺𝑟𝐴 and GRASP, experiments were conducted considering 

two scenarios: (1) hypothetical JSS instances, and (2) 

benchmark instances from [48], [107], [115], [116]. The 

instances are categorized as small ( ≤ 25 operations, e.g., 

5 × 5 ), medium (26-100 operations, e.g., 10 × 10 ), and 

large(>100 operations, e.g., 11 × 11 or greater) [68]. The 

evaluation has been made in terms of computational 

effectiveness and solution quality. 

I. In terms of computational effectivenss 

1) Hypothetical JSS Instances and exact method 

Small to large hypothetical JSS instances from 2 × 2 to 

20 × 20 were generated, where the number of operations for 

every job matches the total number of machines, based on the 

technique by [117]. Parameters ( 𝑝𝑖𝑗 , 𝑟𝑗 , and 𝑑𝑗 ) were 

randomly generated in MS Excel and routing for each job has 

been defined. The exact method was implemented in a 

programming software for instances up to 10 × 10, running 

each instance 10 times to account for variations. From these 

runs, the mean ( 𝑥̅ ), the standard deviation (𝑆𝐷 ) and the 

coefficient of variability ( 𝐶𝑉 ) have been calculated to 

evaluate the solution quality. Results were obtained only upto 

9 × 9 instance but for 10 × 10 instance, despite running the 

optimization process in programming software for 172800 

sec (48 hours), we had to stop the optimization process 

without reaching optimality, highlighting computational 

challenges for large instances in the exact method. A line 

chart in Fig. 9 presents visualization for computational time 

trends for the results obtained for small to medium instances, 

with each line representing a distinct test run and the bold 

black line showing the average. The line chart shows the 

exponential growth in computational time with problem size. 

 

 

Fig. 8. Gantt chart for ft06 manufacturing using GRASP algorithm 

TABLE IX.  RESULTS OBTAINED THROUGH GRASP ALGORITHM FOR FT06 HYPOTHETICAL MANUFACTURING 

 (𝑺𝒊𝒋, 𝑪𝒊𝒋) 
Frame cutting 

and shaping (𝑶𝟏) 

Frame 

welding (𝑶𝟐) 

Painting the 

frame (𝑶𝟑) 

Assembling 

(𝑶𝟒) 

Inspection 

(𝑶𝟓) 

Packaging 

(𝑶𝟔) 

Tardiness 

(units) 

Moutain bike (𝑱𝟏) (5,6) (6,9) (16,22) (30,37) (38,41) (42,48) 0 

Road bike (𝑱𝟐) (0,8) (8,13) (13,23) (28,38) (38,48) (48,52) 21 

Hybrid bike (𝑱𝟑) (0,5) (5,9) (9,17) (18,27) (27,28) (48,56) 0 

Cruiser bike (𝑱𝟒) (8,13) (13,18) (22,27) (27,30) (30,38) (45,54) 0 

Electric bike (𝑱𝟓) (13,22) (22,25) (25,30) (41,45) (48,52) (52,53) 11 

Folding bike (𝑱𝟔) (13,16) (16,19) (19,28) (28,38) (38,42) (42,43) 0 

Computational time 0.003 (sec) 
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TABLE X.  COMPARISON OF RESULTS FOR EXACT METHOD, 𝐺𝑟𝐴 AND 

GRASP WITH OTHER STUDIES FOR FT06 JSS INSTANCE 

Methods Computational time Objective function 

Exact method  2.11 32 

𝐺𝑟𝐴 algorithm 0.001 40 

GRASP algorithm 0.003 32 

GRASP (in [68]) 0.37 - 

GRASP (in [114]) <1 - 

 

2) Benchmark instances and exact method 

Benchmark instances such as ft10, abz5, abz6, orb01, 

orb02, orb03, orb04, orb05, ta01, ta02, and ta03 are medium 

to large instances. The exact methods prove impractical for 

these instances, just like 10 × 10 instance from hypothetical 

JSS instance, due to computational time constraints. This 

limitation necessitates exploring alternative techniques like 

𝐺𝑟𝐴 to obtain near optimal solutions within reasonable time 

for medium to large instances. 

3) Hypothetical JSS instances and 𝐺𝑟𝐴 

 Using the data generated for small to large hypothetical 

instances, GrA was tested using programming software, with 

each instance run 10 times. Based on the results obtained 

from 𝐺𝑟𝐴, a line chart has been drawn, as shown in Fig. 10, 

to compare the computational effectiveness between the 

exact method and 𝐺𝑟𝐴 for small to medium instances. The 

line chart shows an exponential growth in computational time 

for small to medium instances when using the exact method. 

However, this significantly reduced when using 𝐺𝑟𝐴.  It 

confirms the computational effectiveness of 𝐺𝑟𝐴 in finding 

faster solutions than the exact method for small to medium 

instance. For the medium to large instances, 𝐺𝑟𝐴  yielded 

consistent total tardiness value with varying but significantly 

smaller computational time each run (refer to Table XIII).  

4) Benchmark instances and 𝐺𝑟𝐴 

The same experimental procedure was applied to 

benchmark instances using 𝐺𝑟𝐴. The results are presented in 

Table XIV, showing consistent total tardiness and varying but 

significantly smaller computational times than exact method. 

5) Hypothetical JSS instances and GRASP 

The GRASP algorithm was tested, with each instance run 

10 times. Across each run, the obtained results for GRASP 

for the total tardiness and computational time showed 

variability but significantly smaller than the exact method and 

𝐺𝑟𝐴.  It was expected due to GRASP’s randomized 

construction and local search phase. A comparison between 

computational times for small to medium instances obtained 

from the exact method, 𝐺𝑟𝐴 and GRASP has been presented 

in Fig. 11. It can be seen from Fig. 11 that GRASP shows 

significant reduced computational times compared to the 

exact method, though slightly higher but still acceptable 

compared to 𝐺𝑟𝐴. For example, for 9 × 9, the computational 

time for the exact method is 23758.62 sec, 𝐺𝑟𝐴 is 1.34𝑒−3 sec 

and GRASP is 2.18𝑒−1 sec. Similarly, for medium to large 

instances, results are presented in Table XIII, showing that 

GRASP consistently outperforms 𝐺𝑟𝐴 in solution quality and 

the exact method in terms of computational effectiveness. 

6) Benchmark instances and GRASP 

We also conducted experiments for GRASP using 

benchmark instances. The results obtained from these 

experiments are presented in Table XIV, showing a similar 

trend of significantly minimizing the computational time than 

the exact method, as with GRASP in hypothetical instances.  

 

Fig. 9. Computational times obtained using exact method for a range of hypothetical test instances for JSS 
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Fig. 10. Computational time comparison between exact method and 𝐺𝑟𝐴  for hypothetical test instances 

 

Fig. 11. Computational time comparison between exact method, GA and GRASP algorithm for hypothetical test instances 

J. In Terms of Solution Quality 

In addition to evaluating computational efficiency, it is 

crucial to evaluate the solution quality in JSS. High-quality 

solutions ensure that production goals are achieved. To 

achieve this, we calculated the percentage gap between the 

exact method and the 𝐺𝑟𝐴 , as well as between the exact 

method and the GRASP. This comparison is critical to 

determine how closely each solution approximates the 

optimal solutions provided by the exact method. 

1) Exact method and 𝐺𝑟𝐴 

Fig. 12 presents a bar chart showing the percentage gap 

between the exact method and 𝐺𝑟𝐴  (blue), and the exact 

method and GRASP (red) for small to medium instances. The 

bar chart reveals that while the 𝐺𝑟𝐴  is computationally 

efficient, it has an average percentage gap of 13.82%. This 

means that, on average, the solutions generated by the 𝐺𝑟𝐴 

are 13.82% less optimal compared to the exact method.  

2) 𝐺𝑟𝐴 and GRASP 

In contrast to percentage gap between the exact method 

and 𝐺𝑟𝐴, the GRASP shows a remarkable improvement with 

an average percentage gap of only 3.43%, highlighting its 

superior accuracy in producing solutions closer to the optimal 

(refer to Fig. 12). 

Table XIII presents percentage gap across various test 

instances, consistently showing that the GRASP algorithm 

outperforms the 𝐺𝑟𝐴  in terms of solution quality. For 

instance, in the 4 × 4  the 𝐺𝑟𝐴  has a percentage gap of 

20.12%, whereas the GRASP reduced this to 0.00%. 

Similarly, in the 8 × 8 instance, the percentage gap dropped 

from 19.85% for 𝐺𝑟𝐴 to 5.83% for GRASP. These results 
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highlight the reliability of the GRASP in maintaining high 

solution quality across different problem sizes. 

 

Fig. 12. Percentage error for 𝐺𝑟𝐴 and GRASP with exact method 

VI. RESCHEDULING PROCEDURE 

Since production environments are often dynamic and 

unpredictable, where they experience dynamic events [32], 

[33], [34], that deviate the original schedule, reducing the 

efficiency and quality of scheduled execution [28]. To tackle 

them, rescheduling has emerged as a primary focus of 

contemporary scheduling research and a topic of global 

interest [36]. 

 In order to bring together the various aspects of 

rescheduling, which have often been studied separately in 

previous research, a comprehensive rescheduling framework 

has been presented, as seen in Fig. 13. Our framework 

combines multiple rescheduling elements, including 

rescheduling factors, strategies, policies, methods, 

environments, and performance evaluation. This holistic 

approach provides a more complete understanding of the 

rescheduling process, which is crucial for both theoretical 

development and practical applications. 

In our study, we examined a dynamic scenario at 

hypothetical ft06 bike manufacturing company. The 

production environment of the case example is subjected to 

𝑆𝐷𝐸  (i.e., 𝑁𝐽𝐴, 𝑅𝑂, 𝑀𝐹  and 𝑆𝑀𝑀)  necessitating 

rescheduling strategy. To address this, we have implemented 

a 𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡  strategy that incorporates 𝑅𝐹  and 𝑅𝑒𝑔 

methods using a 𝐻𝑦𝑏  (𝑝𝑒  and 𝐸𝐷)  policy. The adopted 

rescheduling methodology is presented as a flowchart in Fig. 

15. The rescheduling methodology starts with obtaining the 

initial schedule, which is then executed in production 

environment. The algorithm continuously monitors for any 

𝑆𝐷𝐸. When such an event occurs, it is categorized as either 

machine-related, job-related, or other. 

For machine-related events, the algorithm further 

categorizes if the event is a 𝑀𝐹 . If yes, an 𝐸𝐷  policy is 

immediately implemented using a 𝑅𝐹 method. This involves 

forwarding the schedule to account for the disruption, 

computing the new machine availability status and time, and 

determining the remaining processing time for jobs. If the 

machine-related event is 𝑆𝑀𝑀 , a 𝑝𝑒  policy is applied at 

predefined rescheduling points. For job-related events, the 

algorithm checks if the event is a 𝑅𝑂 or 𝑁𝐽𝐴. If it is a 𝑅𝑂, an 

𝐸𝐷 policy is applied, which schedules 𝑅𝑂 immediately. If it 

is 𝑁𝐽𝐴, a 𝑝𝑒 policy is implemented at the rescheduling point. 

For rescheduling jobs upon dynamic events, the algorithm 

computes the machine and job availability statuses and times 

at the rescheduling point. Completed operations are removed 

from the new schedule, and a new rescheduling scheme is 

created for the remaining jobs while including newly arriving 

jobs. The algorithm then computes new start times for each 

operation based on the job and machine availability times and 

executes the new scheduling plan. This process continues 

iteratively, with the algorithm re-evaluating and rescheduling 

as needed until all operations are finished, at which point the 

process ends.
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Fig. 13. Rescheduling framework [36], [37], [38], [43], [46], [85], [87], [95], [97], [102], [105], [106], [119] 

K. Periodic rescheduling  (𝑝𝑒) 

 In this study, 𝑝𝑒  policy is implemented by dividing the 

entire time horizon into specific intervals, known as 

rescheduling points. A pseudocode for 𝑝𝑒 has been presented 

in Fig. 14, where the decision criteria involve determining the 

next rescheduling point 𝑅𝑞. Jobs arriving after 𝑅𝑞−1  are 

ignored until the next rescheduling point 𝑅𝑞  is reached. At 

𝑅𝑞, the algorithm reschedules the jobs. The schedule is then 

updated to reflect these changes. The algorithm terminates 

when all jobs finished process. 

1 

 

Initialize 𝑞 = 0 

2 Initialize 𝑅𝑞 = 0 

3 while NotAllJobsProcessed: 

4  𝑞 = 𝑞 + 1  

5  𝑅𝑞=determineReschedulingPoint (𝑅𝑞−1) 

6  IgnoreJobsArrivingAfter (𝑅𝑞−1) 

7  ReschedulingJobsAt 𝑅𝑞 

8  If newJobsArrivingAfter 𝑅𝑞−1 

9   RescheduleJobsAt(𝑅𝑞) 

10  UpdateSchedule() 

11 end 

Fig. 14. Pseudocode for periodic rescheduling 

1) New job arrival 

Three rescheduling points are considered: 𝑡 = 15 , 𝑡 =
30, and 𝑡 = 45 to schedule the 𝑁𝐽𝐴. 

a) Case I: New mountain bike arrival: At time 𝑡 = 12, 

a new job involving the production of mountain bikes arrives. 

According to the 𝑝𝑒 policy, this job is delayed until the next 

rescheduling point at 𝑡 = 15. At 𝑡 = 15, a 𝑅𝑒𝑔  method is 

employed. The algorithm first calculates the availability of 

machines and jobs on their status at 𝑡 = 15 (shown in Table 

XVI). Based on this information, it determines the earliest 

start times for each job. Operations that have already been 

completed by 𝑡 = 15  are excluded from the rescheduling 

process. The jobs that were still processing when 

rescheduling point arrived, are neglected. The newly arrived 

jobs, along with the unfinished operations of existing jobs, 

are included in the rescheduling procedure in Fig. 15. 

During the periodic rescheduling process at 𝑡 = 15 , a 

situation arose where the algorithm needed to select between 

two jobs (𝐽4 and 𝐽7), which are scheduled to start on the same 

machine (𝑀3) at the same time (𝑡 = 22). To address this, we 

examined five priority rules: Earliest Due Date (EDD), 

Remaining Operations, Remaining Processing Time, First in 

First Out (FIFO), and Critical Ratio (CR). Although these 

rules produced similar results with total tardiness value of 35 

for each scenario, our approach focused on EDD due to its 

proven effectiveness in minimizing job tardiness. 

b) Case II: Regular interval with no new jobs: At the 

second rescheduling point, 𝑡 = 30, no new jobs arrive. As a 

result, the scheduling process continues uninterrupted, and 

the system maintains its current schedule. 

c) Case III: Subsequent new job arrival: At time 𝑡 =
40 , another new job arrives, this time involving the 

production of electric bikes. Like the previous case, this job 

is delayed until the next rescheduling point at 𝑡 = 45. At this 

point, the algorithm again calculates machine and job 

availability to determine the earliest start times for all jobs, 

like the rescheduling procedure for new job arrival at 𝑡 = 15. 
Completed operations are removed, while new and remaining 

jobs are included in the 𝑅𝑒𝑔  rescheduling process. The 

algorithm also checks if two or more jobs start their 

operations on the same machine at the same time after the 

rescheduling process. 
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The final solution incorporating new jobs arrival at 𝑡 =
15 and 𝑡 = 45 can be visualized in Gantt chart that has been 

provided in Fig. 16. The results demonstrate that the 𝑝𝑒 

policy effectively accommodates new jobs by rearranging the 

schedule dynamically at rescheduling points. 

 

Fig. 15. Proposed rescheduling procedure 

2) Scheduled machine maintenance (𝑆𝑀𝑀) 

 For the 𝑆𝑀𝑀 , a 𝑝𝑒  policy is again employed. In this 

scenario, 𝑀4  is scheduled for maintenance at time 𝑡 = 30, 

requiring 10 times unit to complete the maintenance task. 

This means that no job can be scheduled on 𝑀4 during the 

maintenance period from 𝑡 = 30 to 𝑡 = 40. At 𝑡 = 30, the 

𝑀4 is goes under maintenance and jobs that were supposed to 

be processed on 𝑀4 during that time are delayed accordingly. 

For example, operation 𝑂4 of 𝐽1 was scheduled on 𝑀4 at 𝑡 =
30 but it will be delayed until 𝑡 = 40. The results of 𝑆𝑀𝑀 

are visualized using Gantt chart, as shown in Fig. 17. 

L. Event-driven (𝐸𝐷) Rescheduling 

Two 𝑆𝑆𝐸  are considered for event-driven rescheduling: 

𝑀𝐹,  and 𝑅𝑂.  These events necessitate immediate 

adjustments to the production schedule. 

1) Machine failure (𝑀𝐹) 

For 𝑀𝐹, the 𝑅𝐹 method is applied. This method involves 

shifting the operations scheduled on the failed machine 

forward in time to account for the downtime.  

a) Scenario 1: Machine 3 (𝑀3) fails: In this scenario, 

at time 𝑡 = 20, machine 𝑀3 fails while job 𝐽5 is processing 

on it. Job 𝐽5  started its operation on 𝑀3  at 𝑡 = 13  and 

required 9 times unit to complete, but the machine broke 

down at 𝑡 = 20. Machine 𝑀3 needs 10 time unit to recover 

and will be available again at 𝑡 = 30 . The 𝑅𝐹  method is 

employed on machine 𝑀5 which right shifts the operation of 

𝐽5  on 𝑀5  and the remaining processing time for job 𝐽5  is 

recalculated.  

Since 𝐽5  had processed for 7-time unit before the 

breakdown (from 𝑡 = 30 to 𝑡 = 20.), it needs 2 more-time 

units to complete its operation. Job 𝐽5 restarts its operation on 

𝑀3 at 𝑡 = 30, immediately after the machine is repaired, and 

completes at 𝑡 = 32. 

b) Scenario 2: Machine 6 (𝑀6) fails: At time 𝑡 = 46, 

machine 𝑀6  fails while job 𝐽1  is processing on it. Job 𝐽1 

started its operation on 𝑀6  at 𝑡 = 45  and required 3-time 

units to complete, but the machine broke down at 𝑡 = 46. The 

𝑅𝐹  method is again employed, which right-shifts the 

operations of 𝐽1 by the amount of time required to repair the 

machine. Machine 𝑀6  needs 10 time units to restore the 

machine and will be available again at 𝑡 = 56. The remaining 

processing time for job 𝐽1 is recalculated.  

Since 𝐽1  had processed for 1 time unit before the 

breakdown (from 𝑡 = 45 to 𝑡 = 46), it needs 2 more-time 

units to complete its operation. Job 𝐽1 restarts its operation on 

𝑀6 at 𝑡 = 56, immediately after the machine is repaired, and 

completes at 𝑡 = 58 . The results of machine failure are 

visualized using Gantt chart, as shown in Fig. 18. 

2) Rush orders (𝑅𝑂) 

𝑅𝑂 are urgent jobs that need to be incorporated into the 

current schedule with high priority. The rescheduling process 

for 𝑅𝑂 involves evaluating the current machine availability 

and job availability and integrating the 𝑅𝑂  into the 

production flow in order to minimize total tardiness. 
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Fig. 16. Periodic rescheduling for new jobs arrival at 𝑡 = 15, 30 and 45 

 

Fig. 17. Periodic rescheduling at t=30 for machine scheduled maintenance 

 

Fig. 18. Event-driven rescheduling at t=20 and t=46 for M3 and M6 failure using right-shift rescheduling methods 
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a) Scenario 1: Hybrid bike rush order: A RO  for a 

hybrid bike arrives at 𝑡 = 35. ED policy is required based on 

the routing for the hybrid bike. At 𝑡 = 35, the algorithm first 

calculates the availability of machines and jobs. The earliest 

start times for each operation of the hybrid bike are 

computed, considering the machine's availability and the 

job's routing requirements, without waiting for the next 

rescheduling point to arrive. The schedule is updated 

accordingly to reflect the inclusion of the RO. 

b) Scenario 2: Electric bike rush order: the second RO 

of electric bike arrives at 𝑡 = 40 . The algorithm again 

calculates the machine and job availabilities and based on 

that, it calculates the earliest start time, at the point where the 

event arrived, without waiting for the periodic rescheduling 

point to arrive and the schedule is updated to integrate the 

new RO. The results of RO are visualized using Gantt chart, 

as shown in Fig. 19. 

 Finally, the Table XVII compares different rescheduling 

methods applied to a hypothetical ft06 bike manufacturing 

company under various dynamic events. The focus is on the 

total tardiness value before and after rescheduling, which 

serves as a key performance metric.  

 𝑅𝑎𝑐𝑡  strategies tend to slightly increase tardiness when 

responding to 𝑆𝑆𝐸 and increasing total tardiness from 32 to 

33 for 𝑅𝑂 and to 38 for 𝑀𝐹. Proactive strategies, however, 

result in higher tardiness when integrating 𝑁𝐽𝐴  or 

accommodating 𝑆𝑀𝑀 . This trend aligns with the findings 

presented in research [68], where the 𝐸𝐷  policy provided 

better results than the 𝑝𝑒 policy. 

VII. RESULTS AND DISCUSSIONS 

This section presents the main findings for the exact 

method, 𝐺𝑟𝐴, and GRASP in terms of: (1) solution quality, 

and (2) computational efficiency. The findings are divided 

into five parts:  

(1) Results based on small to medium hypothetical JSS 

instances,  

(2) Results based on medium to large hypothetical JSS 

instances,  

(3) Results based on small to large well-known benchmark 

JSS instances, 

(4) Results comparison with the similar studies in literature, 

(5) Strengths and limitations. 

M. Results Based on Small to Medium Hypothetical JSS 

Instances 

 For small to medium hypothetical JSS instances: Table XI 

compares total tardiness values and percentage gap obtained 

from the exact method, 𝐺𝑟𝐴  and GRASP. Experiments 

showed the exact method provided optimal solutions, serving 

as a benchmark for 𝐺𝑟𝐴  and GRASP (refer to Table XI). 

Both, 𝐺𝑟𝐴  and GRASP achieved optimal or near-optimal 

solutions for smaller instances (up to 4 × 4 ), GRASP 

outperformed 𝐺𝑟𝐴 for larger instances. The percentage gap 

between the exact method and 𝐺𝑟𝐴 increased with problem 

size, for example, 15.18% for the 7 × 7 instance. In contrast, 

GRASP maintained a relatively low percentage error, with a 

maximum of 4.94% for the 7 × 7  instance, demonstrating 

better solution quality. 

 Computationally, the exact method was efficient for small 

instances but grew exponentially, taking about 23758.62 sec 

(around 6.6 hours) for the 9 × 9 instance (refer to Table XII). 

The results for 10 × 10 could not reach optimality even after 

running the optimization process for 48 hours.  

 The 𝐺𝑟𝐴, on the other hand, showed significantly lower 

computational times, for small to medium instances being in 

the order of 𝑒−4  sec (as seen in Table XII). For small to 

medium instance, 𝐺𝑟𝐴 ’s computational time was only 

1.34𝑒−3 sec. Both 𝐺𝑟𝐴 and the exact method displayed low 

𝑆𝐷 and 𝐶𝑉, indicating consistent computational times across 

runs. 

GRASP balanced computational efficiency and solution 

quality between the exact method and 𝐺𝑟𝐴 (refer to Table 

XII). For smaller instances, GRASP's times were comparable 

to the exact method, around 𝑒−2 sec or less. As problem size 

increased, GRASP maintained low computational times, with 

a maximum of 0.218 seconds for the 9 × 9 instance, staying 

within a reasonable range. GRASP showed slightly higher 

standard deviation in computational times due to its 

randomized nature. Despite this variability, GRASP 

outperformed 𝐺𝑟𝐴 in terms of solution quality. With a lower 

average percentage error (3.43%) compared to 𝐺𝑟𝐴 

(13.82%), GRASP demonstrated superiority in maintaining 

high quality solutions while managing computational 

efficiency. 

 

Fig. 19. Event-driven rescheduling for hybrid bike and electric bike arrival at t=30 and t=40 
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TABLE XI.  COMPARISON OF TOTAL TARDINESS VALUES BETWEEN EXACT METHOD, GREEDY ALGORITHM, AND GRASP FOR SMALL TO MEDIUM 

HYPOTHETICAL JSS INSTANCES 

Test 

Instance 

EM GA GRASP EM GA GRASP EM GA GRASP percentage Gap 

𝒙̅ 𝑺𝑫 𝑪𝑽 EM&GA EM&GRASP 

2×2 14 14 14 0.00 0.00 0.00 0.00 0.00 0.00 0.00% 0.00% 

3×3 64 77 64 0.00 0.00 0.00 0.00 0.00 0.00 20.31% 0.00% 

4×4 169 203 176.1 0.00 0.00 9.70 0.00 0.00 0.06 20.12% 4.20% 

5×5 271 322 284.3 0.00 0.00 10.27 0.00 0.00 0.04 18.82% 4.90% 

6×6 361 386 370.5 0.00 0.00 4.65 0.00 0.00 0.01 6.93% 2.63% 

7×7 593 683 622.3 0.00 0.00 7.00 0.00 0.00 0.01 15.18% 4.94% 

8×8 821 984 868.9 0.00 0.00 21.92 0.00 0.00 0.02 19.85% 5.83% 

9×9 1066 1166 1119 0.00 0.00 27.99 0.00 0.00 0.02 9.38% 4.97% 

Avg. - - - - - - 0.00 0.00 0.02 13.82% 3.43% 

𝐸𝑀: exact method; 𝐺𝐴: greedy algorithm; 𝑥̅: mean; 𝑆𝐷: standard deviation; 𝐶𝑉: coefficient of variation 

TABLE XII.  COMPARISON OF COMPUTATIONAL VALUES BETWEEN EXACT METHOD, GREEDY ALGORITHM, AND GRASP FOR SMALL TO MEDIUM 

HYPOTHETICAL JSS INSTANCES 

Test 

Instance 

EM GA GRASP EM GA GRASP EM GA GRASP 

𝒙̅ 𝑺𝑫 𝑪𝑽 

2×2 8.0𝑒−2 1.00𝑒−4 6.88𝑒−3 1.33𝑒−2 3.173𝑒−4 2.241𝑒−3 1.67𝑒−1 3.16𝑒−4 3.26𝑒−1 

3×3 8.2𝑒−2 0.00 4.26𝑒−2 9.19𝑒−3 0.00 5.62𝑒−2 1.12𝑒−1 0.00 1.31 

4×4 1.53𝑒−1 1.67𝑒−4 3.02𝑒−2 4.92𝑒−2 2.70𝑒−4 2.92𝑒−3 3.21𝑒−1 1.62 9.70𝑒−2 

5×5 2.99𝑒−1 4.21𝑒−4 4.31𝑒−2 3.16𝑒−3 4.90𝑒−4 6.11𝑒−3 1.05𝑒−2 1.16 1.41𝑒−1 

6×6 7.11𝑒−1 4.51𝑒−4 5.61𝑒−2 3.93𝑒−3 4.98𝑒−4 2.82𝑒−3 5.52𝑒−2 1.10 5.02𝑒−2 

7×7 2.03 9.02𝑒−4 8.94𝑒−2 1.82𝑒−2 4.59𝑒−4 6.24𝑒−3 8.99𝑒−3 5.09𝑒−1 6.97𝑒−2 

8×8 553.092 9.57𝑒−4 1.64𝑒−1 115.39 1.56𝑒−4 2.16𝑒−2 2.08𝑒−1 1.63𝑒−1 1.31𝑒−1 

9×9 23758.62 1.34𝑒−3 2.18𝑒−1 322.46 4.82𝑒−4 1.81𝑒−2 1.35𝑒−2 3.58𝑒−1 8.30𝑒−2 

Avg. - - - - - - 0.11 1.00 0.27 

N. Results Based on Medium to Large Hypothetical JSS 

Instances 

For medium to large hypothetical JSS instances, 𝐺𝑟𝐴 and 

GRASP gained significance due to the computational 

limitations of the exact methods. A comparative analysis for 

instances ranging from 10×10 to 20×20 showed that 𝐺𝑟𝐴 's 

maintained low computational times (from 1.96𝑒−3 sec for 

the 10 × 10  instance to 1.94 𝑒−2  sec for the 20 × 20 

instance) (refer to Table XIII).  Additionally, 𝐺𝑟𝐴  's low 

𝑆𝐷and 𝐶𝑉  indicated consistent computational times across 

multiple runs. In contrast, GRASP exhibited computational 

times close to those of the 𝐺𝑟𝐴, ranging from 1.48𝑒−1 sec for 

the 10 × 10 instance to 48.76 sec for the 20 × 20 instance. 

Although GRASP showed higher variability in 

computational times, as indicated by slightly higher standard 

deviations and coefficients of variation, this is expected due 

to its randomized nature and sophisticated search procedures. 

Despite this, GRASP outperformed 𝐺𝑟𝐴 in solution quality. 

The mean total tardiness values for 𝐺𝑟𝐴 ranges from 1937 

for the 10×10 instance to 6697 for the 20×20 instance, with 

no variability across runs. While GRASP consistently 

achieved lower total tardiness values compared to 𝐺𝑟𝐴, with 

mean values ranging from 1296.2 for the 10 × 10 instance to 

6080.5 for the 20 × 20 instance. Although GRASP showed 

non-zero 𝑆𝐷, indicating variability in solution quality across 

multiple runs, it consistently delivered better results than 

𝐺𝑟𝐴. This highlights GRASP's superiority in handling larger-

scale JSS instances, balancing computational efficiency with 

higher solution quality. 

O. Results Based on Small to Large Well-Known 

Benchmark JSS Instances 

To further validate the efficacy and generalize the 

findings of the proposed scheduling approaches, we 

conducted an extensive evaluation using benchmark JSS 

instances. The instances considered include abz5, abz6, ft10, 

orb01, orb02, orb03, orb04, orb05, ta01, ta02, and ta03, 

which encompass varying sizes and complexities. 

Table XIV demonstrates 𝐺𝑟𝐴′𝑠 consistent computational 

times across all instances (1.00𝑒−3 sec for the ft10 instance 

to 9.74𝑒−4 sec for the orb05 instance), indicating stable and 

efficient performance in terms of computational 

effectiveness. GRASP, despite its sophisticated search 

mechanism, maintains similarly small times close to those of 

𝐺𝑟𝐴, ranging from 2.78 sec for the ta02 instance to 6.73𝑒−1 

sec for the orb05 instance. 

In terms of solution quality, the GRASP algorithm 

consistently outperformed the 𝐺𝑟𝐴  across all benchmark 

instances by achieving lower total tardiness values (refer to 

Table XIV). For example, for abz6, the mean total tardiness 

value was minimized from 7614 with 𝐺𝑟𝐴  to 5067.7 with 

GRASP. Similarly, for orb04, it minimized from 8444 with 

𝐺𝑟𝐴  to 5104.1 with GRASP. This trend held across other 

benchmark instances as well, showing GRASP’s superior 

performance and effectiveness in providing high quality 

solutions, especially for larger and more complex instances. 

In summary, for small and medium-sized instances, the 

exact method is preferable due to its ability to find optimal 

solutions, despite longer computational times compared to 

the 𝐺𝑟𝐴 (refer to Table XI and Table XII). However, as the 

problem size increases, the computational advantage of the 

𝐺𝑟𝐴 becomes more pronounced, albeit compromised solution 
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quality (refer to Table XIII and Table XIV). GRASP emerged 

as a practical alternative for larger instances, providing near-

optimal solutions within reasonable computational times, 

outperforming the 𝐺𝑟𝐴 . Thus, while 𝐺𝑟𝐴  is suitable for 

limited computational resources, GRASP is recommended 

for achieving high-quality solutions in larger and more 

complex scheduling environments within reasonable amount 

of time. 

P. Results Comparison with the Similar Studies in 

Literature 

We provided a comprehensive comparison between 

existing studies and our study demonstrating significant 

improvements in computational efficiency (refer to Table 

XV). For example, the computational time for the ft06 

instance was reduced from 0.37 sec in previous studies [114] 

to 0.003 sec. Similarly, for the ft10 instance, our approach 

reduced the time from 173.2 sec for [68] to 6.19𝑒−1 sec in 

our study. This trend of improved computational efficiency is 

consistently observed across all orb instances, with times 

notably lower than those previously reported. 

While our study used total tardiness as the objective 

function instead of makespan, solution quality was confirmed 

through comparative analysis using hypothetical JSS 

instances (refer to Fig. 12 and Table XI). The results 

demonstrate our approach's effectiveness in achieving high-

quality solutions with significantly reduced computational 

times, offering practical insights into GRASP method's 

scalability and efficiency. 

Q. Strengths and Limitations 

One of the strengths of this study is the thorough 

comparison across a wide range of instance sizes, which 

offers a clear understanding of each method's performance. 

The inclusion of benchmark instance results and comparisons 

with previous studies adds robustness to our findings. 

However, the study's reliance on hypothetical data may not 

fully capture the complexities of real-world scheduling 

problems. Challenges include integrating real-time data with 

the rescheduling procedure, which can be improved using IoT 

devices and sensors. Decision-making under uncertainty is 

also critical in rescheduling for which more dynamic events 

could be incorporated into the model. Future research could: 

(1) Incorporate more dynamic events for decision-making 

under uncertainty, 

(2) Extend analysis to real-world data with diverse objective 

functions (e.g., makespan, flow time), and 

(3) Leverage predictive analytics (machine learning, digital 

twins) to forecast disruptions. 

 

TABLE XIII.  COMPARISON OF COMPUTATIONAL TIME AND OBJECTIVE FUNCTION BETWEEN GREEDY ALGORITHM, AND GRASP FOR HYPOTHETICAL 

LARGE INSTANCES 

 GA GRASP 

 Computational Times Objective Function Computational Time Objective Function 

Instances 𝒙̅ 𝑺𝑫 CV 𝒙̅ 𝑺𝑫 𝑪𝑽 𝒙̅ 𝑺𝑫 𝑪𝑽 𝒙̅ 𝑺𝑫 𝑪𝑽 

10 × 10 1.96𝑒−3 5.58𝑒−4 2.85𝑒−1 1937 0 0 3.54 1.48𝑒−1 4.19𝑒−2 1296.2 14.41 1.11𝑒−2 

11 × 11 2.58𝑒−3 4.83𝑒−4 1.87𝑒−1 1653 0 0 4.93 1.38𝑒−1 2.80𝑒−2 1545.2 14.14 9.15𝑒−3 

12 × 12 3.40𝑒−3 4.53𝑒−4 1.33𝑒−1 2048 0 0 6.87 2.25𝑒−1 3.28𝑒−2 1870.5 19.35 1.03𝑒−2 

13 × 13 4.34𝑒−3 4.78𝑒−4 1.01𝑒−1 4783 0 0 9.52 5.83𝑒−1 6.13𝑒−2 3020.4 88.92 2.94𝑒−2 

14 × 14 7.91𝑒−3 5.45𝑒−3 6.89𝑒−1 5228 0 0 12.98 4.03𝑒−1 3.11𝑒−2 3127.5 46.05 1.47𝑒−2 

15 × 15 6.78𝑒−3 6.13𝑒−4 9.03𝑒−2 6058 0 0 16.70 7.48𝑒−1 4.48𝑒−2 3702.3 82.14 2.22𝑒−2 

16 × 16 8.50𝑒−3 5.37𝑒−4 6.32𝑒−2 5675 0 0 21.96 1.03 4.67𝑒−2 4168 67.54 1.62𝑒−2 

17 × 17 1.00𝑒−2 7.83𝑒−4 7.81𝑒−2 6247 0 0 28.01 1.68 6.00𝑒−2 4722.8 48.39 1.03𝑒−2 

18 × 18 1.37𝑒−2 3.87𝑒−3 2.83𝑒−1 6436 0 0 35.26 3.89 1.10𝑒−1 5281.4 48.56 9.19𝑒−3 

19 × 19 1.73𝑒−2 8.84𝑒−3 5.12𝑒−1 5264 0 0 42.78 3.18 7.44𝑒−2 4929.2 26.38 5.35𝑒−3 

20 × 20 1.94𝑒−2 5.48𝑒−3 2.82𝑒−1 6697 0 0 48.76 2.92 5.98𝑒−2 6080.5 17.68 2.91𝑒−3 

Avg. - - 2.47𝑒−1 - - 0 - - 5.37𝑒−2 - - 1.28𝑒−2 

TABLE XIV.  COMPARISON OF COMPUTATIONAL TIME AND OBJECTIVE FUNCTION FOR BENCHMARK JSS INSTANCES 

Instance 
Greedy Algorithm GRASP 

Computational Times Objective Function Computational Time Objective Function 

 𝒙̅ 𝑺𝑫 CV 𝒙̅ 𝑺𝑫 𝑪𝑽 𝒙̅ 𝑺𝑫 𝑪𝑽 𝒙̅ 𝑺𝑫 𝑪𝑽 

abz5 2.58𝑒−3 3.39𝑒−3 1.31 7179 0 0 5.97𝑒−1 3.37𝑒−1 5.64𝑒−1 6123.3 136.57 2.23𝑒−2 

abz6 1.44𝑒−3 2.71𝑒−3 1.88 7614 0 0 5.66𝑒−1 1.24𝑒−1 2.18𝑒−1 5067.7 168.55 3.33𝑒−2 

ft10 1.00𝑒−3 3.88𝑒−4 3.85𝑒−1 6897 0 0 6.19𝑒−1 1.36𝑒−1 2.19𝑒−1 5538.3 177.82 3.21𝑒−2 

orb01 5.12𝑒−4 5.41𝑒−4 1.06 8726 0 0 6.19𝑒−1 5.13𝑒−2 8.29𝑒−2 6507.6 300.82 4.62𝑒−2 

orb02 8.06𝑒−4 4.26𝑒−4 5.28𝑒−1 5660 0 0 5.87𝑒−1 1.16𝑒−1 1.98𝑒−1 4288.3 240.90 5.62𝑒−2 

orb03 7.21𝑒−4 4.99𝑒−4 6.91𝑒−1 9540 0 0 5.20𝑒−1 1.14𝑒−1 2.20𝑒−1 5707 363.37 6.37𝑒−2 

orb04 1.13𝑒−3 3.49𝑒−4 3.09𝑒−1 8444 0 0 9.63𝑒−1 1.81𝑒−1 1.88𝑒−1 5104.1 301.49 5.91𝑒−2 

orb05 9.74𝑒−4 6.478𝑒−4 6.65𝑒−1 11232 0 0 6.73𝑒−1 2.20𝑒−1 3.27𝑒−1 4823.4 406.65 8.43𝑒−2 

ta01 2.22𝑒−3 4.10𝑒−4 1.85𝑒−1 74894 0 0 3.40 5.73𝑒−1 1.69𝑒−1 74182.8 253.81 3.42𝑒−3 

ta02 2.90𝑒−3 7.63𝑒−4 2.63𝑒−1 55035 0 0 2.78 3.57𝑒−1 1.28𝑒−1 55035 0 0 

ta03 2.88𝑒−3 6.81𝑒−4 2.37𝑒−1 73210 0 0 2.83 5.41𝑒−1 1.91𝑒−1 73210 0 0 

Avg. - - 6.82𝑒−1 - - 0 - - 2.28𝑒−1 - - 3.64𝑒−2 
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TABLE XV.  COMPARISON OF COMPUTATIONAL TIME BETWEEN BENCHMARK JSS INSTANCES AND OUR STUDY 

Benchmark instances Previous studies Avg. values from our study 

ft06 
0.37 [68], 

< 1 [114] 
0.003 

ft10 173.2 [68] 6.19𝑒−1 

abz5 2.53 [56] 5.97𝑒−1 

abz6 2.26 [56] 5.66𝑒−1 

orb01 46.75 [56] 6.19𝑒−1 

orb02 11.45 [56] 5.87𝑒−1 

orb03 33.32 [56] 5.20𝑒−1 

orb04 1.94 [56] 9.63𝑒−1 

orb05 14.61 [56] 6.73𝑒−1 

TABLE XVI.  MACHINES AVAILABILITY (ATM) AND JOBS AVAILABILITY (JAT) FOR FT06 HYPOTHETICAL BIKE MANUFACTURING COMPANY AT T=15 

𝑴𝒊 Status 𝑨𝑻𝑴 𝑱𝒋 Status 𝑱𝑨𝑻 Next machine Earliest start time 

𝑀1 Busy 18 𝐽1 Available 16 𝑀2 16 

𝑀2 Busy 16 𝐽2 Busy 23 𝑀6 23 

𝑀3 Busy 22 𝐽3 Busy 18 𝑀1 18 

𝑀4 Busy 15 𝐽4 Busy 22 𝑀3 22 

𝑀5 Busy 23 𝐽5 Busy 22 𝑀2 22 

𝑀6 Busy 17 𝐽6 Busy 16 𝑀4 16 

TABLE XVII.  COMPARISON OF DIFFERENT RESCHEDULING METHODS FOR A HYPOTHETICAL FT06 BIKE MANUFACTURING COMPANY 

Rescheduling 

Strategy 

Rescheduling 

method 

Rescheduling 

policy 
Dynamic event 

Total tardiness before 

rescheduling 

Total tardiness after 

rescheduling 

Reactive Regenerative Event-driven 2-rush orders 32 33 

Reactive Right shift Event-driven 2- Machine fails 32 38 

Proactive Regenerative Periodic 2- new jobs arrival 32 38 

Proactive Regenerative Periodic 
Scheduled machine 

maintenance 
32 43 

VIII. CONCLUSION  

This study addressed the complex NP-hard JSS problem, 

focusing on the challenges posed by serious dynamic events 

(𝑆𝐷𝐸 ) such as new job arrivals (𝑁𝐽𝐴), rush orders (𝑅𝑂), 

machine failures (𝑀𝐹) and scheduled machine maintenance 

(𝑆𝑀𝑀). The research objective was to develop and compare 

the exact methods, a Greedy Algorithm (𝐺𝑟𝐴), and a novel 

Greedy Randomized Adaptive Search Procedure (GRASP) to 

efficiently solve JSS problems under various conditions. The 

study contributed by developing an exact method for 

benchmarking, 𝐺𝑟𝐴 for faster solutions and a novel GRASP 

algorithm featuring a directed operations swapping procedure 

to achieve high-quality solutions with computational 

efficiency. Additionally, a proactive-reactive (𝑃𝑎𝑐𝑡 − 𝑅𝑎𝑐𝑡 ) 

rescheduling strategy in handling 𝑆𝐷𝐸  such as 𝑁𝐽𝐴 , 𝑅𝑂 , 

𝑆𝑀𝑀 , and 𝑀𝐹  using a right shift ( 𝑅𝐹)  and regeneration 

( 𝑅𝑒𝑔 ) methods at hybrid ( 𝐻𝑦𝑏)  policy have been 

implemented. The main findings of the study are: 

a) The exact method: it provided optimal benchmarks 

for small to medium instances, ranging from 2 × 2 to 9 × 9, 
while demonstrating exponential computational growth, 

reaching 23758.62 sec (approximately 6.6 hours) for a 9 × 9 

instance. Exact method showed limited applicability to 

medium to large instances due to computational complexity, 

for example, the optimal solution for 10 × 10 instance could 

not be obtained even after 48 hours. 

b) 𝐺𝑟𝐴: GrA offered faster solutions compared to the 

exact method for small to medium instances. For 9 × 9 

instance, GrA’s computational time was only 1.34e−3  sec 

which was 23758.62 sec for the same instance using the exact 

method. Additionally, GrA  showed a higher average 

percentage gap of 13.82% for small to medium instances 

when compared with the exact methods. Because of this 

reason, it has a limited suitability for scenarios requiring high 

solution quality. However, the GrA demonstrated significant 

computational efficiency for medium to large and benchmark 

instances. For example, it achieved computational times of 

1.96e−3  for 10 × 10 and 1.94 e−2  for 20 × 20 . This 

efficiency was also evident in benchmark instances, where 

computational times were consistently in the order of e−3 . 

These results suggest that the GrA might be more suitable for 

applications where quick approximate solutions are preferred 

over optimal. 

c) GRASP: GRASP consistently outperformed both 

exact and GrA approaches with average percentage gap of 

only 3.43% for small to medium instances, compared to GrA's 

13.82%. It also demonstrated superior performance for 

medium to large instances. For example, for 10 × 10 , 

GRASP reduced the total tardiness value from 1937 in GrA 

to 1296.2, and for 20 × 20 instances, from 6697 to 6080.5, 

while maintaining reasonable computational time. Similarly, 

for benchmark instances, GRASP showed significant 

improvements. In the case of abz05, the objective function 

value was reduced from 7179 using GrA  to 6123.3 with 

GRASP, demonstrating 14.7% improvement for this 

instance. This improvement was consistent among all other 

benchmark instances. Moreover, GRASP achieved 

remarkable reductions in computational time for benchmark 

instances from literature: for the ft06 instance, the time 

decreased from 0.37 seconds in previous studies to 0.003 

seconds, and for the ft10 instance, from 173.2 seconds to 

0.619 seconds. These results highlight GRASP's ability to 
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consistently yield high-quality solutions efficiently across 

various instance sizes, from small to large, as well as for 

established benchmark problems. The research also 

demonstrated the effectiveness of the proactive-reactive 

(Pact − Ract) rescheduling strategy in handling SDE such as 

NJA, RO, SMM, and MF. 

While the study presented promising results, it is limited 

using historical data, a single objective function, and the 

consideration of only 𝑆𝐷𝐸 . Future research could address 

these limitations:  

(1) By incorporating a wider range of dynamic events, 

including medium and more serious events. These 

dynamic events lead to continuous system updates, 

causing nervousness, deviations from the original 

schedule, and reduced execution efficiency.  

(2) By empirical validation using real production data that 

could further enhance the practical relevance and 

implementation viability of the proposed methods.  

(3) By exploring the performance of the JSS under multi 

objective functions, such as makespan or flow time 

Furthermore, to provide monitoring, control, and 

prediction capabilities for JSS amidst dynamic events, JSS 

could be integrated with Digital Twin (DT) technology. DT 

has the potential to detect these dynamic events in real-time, 

offering immediate insights and enabling rapid responses. 

DT technology bridges the physical and virtual JSS 

environments by enabling real-time mapping and 

bidirectional interaction. This integration allows for the 

collection of detailed real-time information on machines, 

jobs, operations, equipment, inventory, and work-in-progress 

(WIP). By combining operational data, environmental 

changes, and dynamic events from the physical JSS with 

virtual data, DT technology facilitates real-time information 

flow. It enhances rescheduling by continuously comparing 

physical JSS data with its virtual counterpart to detect events 

in real time. When an event occurs, DT triggers a 

rescheduling policy, sending updated data to the virtual JSS. 

The virtual JSS then reschedules the unfinished operations 

using built-in algorithms and provides the optimal schedule 

back to the physical JSS's Manufacturing Execution System 

(MES), enabling dynamic scheduling and reducing 

deviations between planned and actual schedules. 

However, the practical implementation of integrating JSS 

with DT presents several challenges:  

1) The need for data acquisition and processing 

capabilities: real-time data from IoT sensors must be 

accurately collected, processed, and transmitted to the DT. 

The study by [118] could be used for this purpose, who 

developed a prototype for integrating sensors with IoT to 

track system components to obtain data. They used the 

collected data to update the production schedule within an 

ERP system. This prototype could be used to extend our 

research to enable real-time monitoring capabilities. 

2) The integration of cyber and physical world with 

JSS: utilizing Industry 4.0 concepts such as CPS can greatly 

enhance the capability of production systems to be managed, 

monitored, and controlled, ultimately improving production 

scheduling, and rapid response, in industrial processes. 

Our research has practicality and real-world relevance in 

automotive manufacturing, electronics manufacturing, and 

other companies. The findings highlight the potential of our 

approach to enhance efficiency, highlighting the need for 

continued research in this area. 
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