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Abstract—In this investigation, a novel application of the 

RIME optimizer with neighborhood centroid opposite solution 

is introduced to robustly estimate parameter values for an 

accurate photovoltaic triple-diode model. The suggested 

optimizer's performance is rigorously evaluated in comparison 

to other well-documented methods. The evaluation of the 

proposed optimizer is conducted using real data from the RTC 

France solar cell, and the results are assessed through various 

evaluation metrics, including root mean square error and 

statistical analyses for multiple independent runs. Specifically, 

the proposed optimizer demonstrates superior performance by 

achieving the lowest objective function values compared to other 

algorithms. Through a comprehensive quantitative and 

qualitative assessment, it can be inferred that the estimated 

parameters of the triple-diode model obtained using the 

proposed optimizer surpass the accuracy of those acquired 

through other optimization algorithms under consideration. 

Keywords—RIME Optimization Algorithm; Triple-diode 

Model; Parameter Extraction; Neighborhood Centroid 

Opposition-based Learning. 

I. INTRODUCTION 

Solar energy plays a significant role in environmental 

conservation, social and economic development, job creation, 

and scientific research, offering numerous advantages as a 

clean and versatile energy source [1]–[3]. In contrast to 

dwindling fossil fuel resources, which pose environmental 

challenges, solar energy stands out as a promising and 

sustainable alternative [4]. 

The contemporary applications of solar energy, ranging 

from solar water heating to solar heating of buildings, solar 

distillation, solar pumping, solar drying, and solar furnaces, 

necessitate the development of precise mathematical models 

for solar systems [5]–[10]. Despite its multifaceted uses, the 

widespread adoption of solar energy is hindered by the 

substantial manufacturing and installation costs. Photovoltaic 

cells, exhibiting nonlinear current-voltage and power-voltage 

characteristics, further complicate matters by varying their 

operational efficiency under diverse irradiance and 

temperature conditions, which fluctuate throughout the day 

and across seasons [11]. Modeling photovoltaic systems 

becomes crucial for designing and manufacturing solar 

technologies, providing essential insights into photovoltaic 

characteristics under varying conditions and enhancing 

overall operational efficiency [12]–[18]. 

In contrast to the ideal solar cell model, which makes use 

of a pure current source, the practical model has to take into 

consideration electrical diodes, which stand in for light and 

current losses. Losses are more pronounced in models that 

use more diodes. The single diode model incorporates one 

diode to represent losses in the quasi-neutral zone [19]. The 

double diode model extends this by incorporating a second 

diode to represent losses in recombination, especially at 

lower irradiance [20]. The triple diode model introduces a 

third diode to account for leakage in grain boundaries within 

the PV system [21]–[26]. Although increasing the number of 

diodes improves model accuracy, it simultaneously 

intensifies model complexity. 

Prior research has thoroughly investigated the difficulty 

of estimating these models' parameters using optimization 

techniques [27]–[31]. As part of the continued effort, in this 

study, a commercial silicon R.T.C. France solar cell's triple-

diode model characteristics are estimated using a novel 

optimizer. In terms of the optimizer, an innovative 

metaheuristic algorithm is introduced, and its impact is 

assessed on photovoltaic parameter estimation, focusing on 

the triple-diode model. Specifically, the RIME optimizer 

[32][33] with neighborhood centroid opposite solution is 

developed to enhance population dynamics, balance 

exploration and exploitation, and improve convergence 

compared to the original RIME. 

Results are compared with existing algorithms, including 

the improved grey wolf optimizer, heap-based optimizer, 

manta ray foraging optimization, and Harris hawks 

optimization [5]. Accuracy is evaluated using the root mean 

square error between real and estimated output currents, 

while the speed and robustness of the algorithms are 

compared through convergence curves and statistical 

analyses, respectively. The current-voltage and power-

voltage characteristics of the optimized triple-diode model 

are discussed across different operating temperatures, 

revealing the proposed optimizer as a capable and 

competitive algorithm for triple-diode model parameter 

extraction in photovoltaic systems. 
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II. OVERVIEW OF RIME OPTIMIZER  

The RIME optimizer, expounded upon by Su et al. in their 

scholarly work [32], constitutes a fundamental optimization 

methodology within this study. Drawing inspiration from the 

evolution process of hoar-frost ice, there are four distinct 

stages to the RIME optimizer. Commencing with the 

initialization of a population (𝑋) of search agents in 

accordance with the hoar-frost ice characteristics, denoted as 

𝐷 representing the problem size [33]. 

𝑋 = [

𝑥11 𝑥12 … 𝑥1𝐷

𝑥21 𝑥22 … 𝑥2𝐷

⋮ ⋮ ⋱ ⋮
𝑥𝑁1 𝑥𝑁2 … 𝑥𝑁𝐷

] (1) 

These initialized agents serve as the foundation for 

subsequent operations. Under the condition 𝑟2 < 𝐸, the 

method applies the definition in (2) using a soft-rime search 

strategy that is marked by purposeful randomization to 

overcome local stagnation: 

𝑅𝑖𝑗
𝑛𝑒𝑤 = 𝑅𝑏𝑒𝑠𝑡,𝑗 + 𝑅𝑓

× (ℎ × (𝐵𝑚𝑎𝑥(𝑖,𝑗) − 𝐵𝑚𝑖𝑛(𝑖,𝑗))

+ 𝐵𝑚𝑖𝑛(𝑖,𝑗)) 

(2) 

where 𝑅𝑓 = 𝑟1 × 𝑐𝑜𝑠𝜃 × 𝛽, 𝜃 = 𝜋 ∙ (𝑡 (10 ∙ 𝑇)⁄ ), 𝛽 = 1 −

((𝑤 ∙ 𝑡 𝑇⁄ ) 𝑤⁄ ) and 𝐸 = √(𝑡/𝑇). Here, 𝑅𝑏𝑒𝑠𝑡,𝑗  identifies the 

most effective RIME agent, and 𝑅𝑖𝑗
𝑛𝑒𝑤  denotes the position of 

the free particle after motion, with 𝑟1 as a random number 

between −1 and 1. 𝛽 symbolizes the ambient conditions of 

the environment. The variable ℎ denotes a random number, 

emulating the distance between free particles within a range 

of 0 to 1. 𝑇 stands for the maximum iteration count, while 𝑡 

represents the current iteration. 𝐸 is the chance of collecting 

free particles, and 𝑤 is the number of segments in the step 

function. The goal of the dynamic approach is to avoid 

settling on less-than-ideal answers too soon by finding a 

happy medium between exploring and exploiting. 

The hard-rime puncture mechanism, inspired by the 

natural shattering of hoarfrost, causes disturbances among 

search agents, as mathematically specified in (3): 

𝑅𝑖𝑗
𝑛𝑒𝑤 = 𝑅𝑏𝑒𝑠𝑡,𝑗 , 𝑟3 < 𝐹𝑛𝑜𝑟𝑚𝑟(𝑆𝑖) (3) 

Here, 𝐹𝑛𝑜𝑟𝑚𝑟(𝑆𝑖) is the normalized fitness value of the 

current agent and denotes the probability of the agent 

experiencing a hard puncture. 𝑟3 is a random number between 

−1 and 1. The optimization procedure involves positive and 

selective selection, systematically assessing the fitness values 

of adapted search agents to update them in the event of 

improvements. This iterative enhancement contributes to the 

continual improvement of the overall quality of search agents 

over time. 

III. RIME OPTIMIZER WITH NEIGHBORHOOD CENTROID 

OPPOSITE SOLUTION  

The opposition-based learning (OBL) concept, 

introduced by Tizhoosh [34], represents a novel paradigm in 

computational intelligence. OBL involves the computation of 

inverse points at equidistant positions, selected within the 

range defined by maximum and minimum boundaries [35]–

[45]. This approach has been integrated into various 

optimization methods [37], [46]–[50]. However, OBL affects 

only specific individuals within the population and does not 

leverage the collective search information of the entire 

population. Addressing this limitation, Rahnamayan 

proposed the neighborhood centroid opposition-based 

learning (NCOBL) [51] to utilize comprehensive population 

search information and extend the group search range, 

thereby preventing late-stage local optima entrapment. 

The NCOBL mechanism employs multiple gravity 

centers to compute reverse solutions while preserving 

population diversity. Below is the mathematical model that 

describes the neighborhood's center of gravity [52]–[55]. 

𝑀𝑗 =
∑ 𝑋𝑖𝑗

𝐷
𝑗=1

𝑛
 (4) 

Here, 𝑀 denotes the point of 𝑛 individual positions in the 𝐷-

dimensional search space. �̅�𝑖 = 2 × 𝑀 − 𝑋𝑖 stands for the 

inversion of a point across the whole space where 𝑖 =
1,2, … , 𝑛. The motion range of the reverse point within the 

dynamic boundary is denoted as 𝑥𝑖𝑗𝜖[𝑎𝑖 , 𝑏𝑗], with 𝑎𝑗 =

𝑚𝑖𝑛(𝑥𝑖𝑗) and 𝑏𝑗 = 𝑚𝑎𝑥 (𝑥𝑖𝑗). If the reverse point exceeds 

the boundary, it is recalculated according to (5). 

�̅�𝑖𝑗 = {
𝑎𝑗 + 𝑟𝑎𝑛𝑑(0,1) × (𝑀𝑗 − 𝑎𝑗), 𝑖𝑓 �̅�𝑖𝑗 < 𝑎𝑗

𝑀𝑗 + 𝑟𝑎𝑛𝑑(0,1) × (𝑏𝑗 − 𝑀𝑗), 𝑖𝑓 �̅�𝑖𝑗 > 𝑏𝑗
 (5) 

A convergence factor 𝑘 is introduced, defining the 

neighborhood barycenter reverse solution as 𝑋𝑖
∗ = 2 × 𝑘 ×

𝑀𝑖 − 𝑋𝑖 where 𝑖 = 1,2, … , 𝑛. The operation of the RIME 

optimizer with neighborhood centroid opposite solution 

(NCO-RIME) commences with the execution of the RIME 

optimizer. The current solution is then updated by evaluating 

the neighborhood centroid opposite solution. This process 

iterates until the termination condition is met, and the best 

solution is obtained. The algorithmic flow is depicted in the 

presented Fig. 1 flowchart. 

IV. MATHEMATICAL REPRESENTATION OF TDM AND 

ITS FORMULATION AS AN OPTIMIZATION PROBLEM 

The triple-diode model (TDM) encapsulates an ideal 

current source representing the solar cell, three diodes 

delineating distinct current losses, and series and shunt 

resistance [5]. The equivalent circuit of the TDM is depicted 

in Fig. 2. 

In this configuration, 𝐼𝑝ℎ denotes the photo-generated 

current, 𝐼𝑑1 accounts for diffusion current effects, 𝐼𝑑2 

represents recombination current effects, 𝐼𝑑3 characterizes 

the impact of grain boundaries and large leakage current, 𝐼𝑠ℎ 

corresponds to the current leakage resistance (shunt 

resistance, 𝑅𝑠ℎ) across the P-N junction of the PV system, and 

𝑅𝑠 signifies the series resistance associated with current 

leakage through semiconductor material resistance at neutral 

regions. The overall output current (𝐼) of the TDM is 

expressed by (6) and (7). 
𝐼 = 𝐼𝑝ℎ − 𝐼𝑠𝑑1 − 𝐼𝑠𝑑2 − 𝐼𝑠𝑑3 − 𝐼𝑠ℎ (6) 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠𝑑1 (𝑒
𝑉+𝐼𝑅𝑠

𝜂1𝑉𝑡 − 1) − 𝐼𝑠𝑑2 (𝑒
𝑉+𝐼𝑅𝑠

𝜂2𝑉𝑡 − 1)

− 𝐼𝑠𝑑3 (𝑒
𝑉+𝐼𝑅𝑠

𝜂3𝑉𝑡 − 1) −
𝑉 + 𝐼𝑅𝑠

𝑅𝑠ℎ

 
(7) 
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Here, 𝜂1, 𝜂2, and 𝜂3, denote the ideality factors of the diodes 

𝐷1, 𝐷2 and 𝐷3, respectively, while 𝑉𝑡 represents the thermal 

voltage (approximately equal to 𝑘𝑇/𝑞, where 𝑘 is 

Boltzmann's constant, 𝑇 is the temperature in Kelvin, and 𝑞 

is the elementary charge). 

Start

Initialize swarm and parameters

Utilize a stepped soft-rime search 

strategy to update populations

Adopt hard-rime puncture 

mechanism for efficient information 

exchange among individuals

Utilize the positive greedy selection 

mechanism to retain the outstanding 

solutions and discard the unfavorable ones

Update the current population and 

evaluate neighborhood centroid 

opposite population

Select the best N solutions 

Is termination 

condition met?

Return the best solution

End

no

yes

 

Fig. 1. Flowchart of NCO-RIME algorithm 

𝐼𝑝ℎ  

𝐷1 𝑅𝑠ℎ  

𝑅𝑠  

+ 

− 

𝐼𝑑1  𝐼𝑠ℎ  

𝐼 

𝑉 𝐷2 

𝐼𝑑2  

𝐷3 

𝐼𝑑3  

 
Fig. 2. TDM of PV cell 

The TDM involves nine estimated parameters 

[𝑅𝑠, 𝑅𝑠ℎ, 𝐼𝑝ℎ, 𝐼𝑠𝑑1, 𝐼𝑠𝑑2, 𝐼𝑠𝑑3, 𝜂1, 𝜂2, 𝜂3], collectively 

represented as a vector 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9]. 
The objective of this research's optimization challenge is to 

identify the most favorable values for TDM parameters that 

minimize the disparity between experimental and predicted 

output currents. The formulation of the optimization 

problem's objective function is articulated as follows. 

𝑓𝑇𝐷𝑀(𝑉, 𝐼, 𝑋) = 𝐼 − 𝑥3 − 𝑥4 (𝑒
𝑉+𝐼𝑅𝑠
𝑥7𝑉𝑡 − 1)

− 𝑥5 (𝑒
𝑉+𝐼𝑅𝑠
𝑥8𝑉𝑡 − 1)

− 𝑥6 (𝑒
𝑉+𝐼𝑅𝑠
𝑥9𝑉𝑡 − 1) −

𝑉 + 𝑥1I

𝑥2

 

(8) 

The best estimated parameters are those that minimize the 

root mean square error (RMSE) for the objective function, 

expressed as follows [56], [57]. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑉𝑚, 𝐼𝑚 , X)2

𝑁

𝑖=1

 
(9) 

In here, 𝐼𝑚 and 𝑉𝑚 stand for the current and voltage that were 

measured, X for the parameters that were estimated, and 𝑁 for 

the maximum amount of data that could be measured. 

V. RESULTS AND DISCUSSION  

A. Parameter Extraction of TDM via NCO-RIME   

The RTC France solar cell [58]–[60] serves as the focal 

point in this investigation. To ensure consistency, a fixed 

population size of 50 and a maximum iteration limit of 500 

were set for all experiments. Additionally, 30 independent 

runs were conducted to accommodate potential variations in 

the optimization process. Employing the NCO-RIME, the 

TDM parameters are meticulously adjusted to optimize its 

performance. Table I provides the boundaries for the TDM 

parameters and the corresponding estimated values achieved 

by NCO-RIME. The results demonstrate the method's 

capability to accurately estimate the parameters. 

TABLE I.  BOUNDARIES AND ESTIMATED PARAMETERS OF TDM 

Parameter 
Lower 

Bound 

Upper 

Bound 

Estimated by NCO-

RIME 

𝐼𝑝ℎ (A) 0 1 0.76078 

𝐼𝑠𝑑1 (µA) 0 1 0.37909 

𝐼𝑠𝑑2 (µA) 0 1 0.22898 

𝐼𝑠𝑑3 (µA) 0 1 0.34284 

𝑅𝑠 (Ω) 0 0.5 0.036728 

𝑅𝑠ℎ (Ω) 0 100 55.36 

𝜂1 1 2 2 

𝜂2 1 2 1.4521 

𝜂3 1 2 2 

The convergence performance of NCO-RIME is depicted 

in Fig. 3. The TDM displays a notable ability to rapidly 

converge towards the lowest RMSE values, emphasizing the 

efficiency of NCO-RIME in fine-tuning the TDM 

parameters. Furthermore, Fig. 4 and Fig. 5 portray the 

current-voltage (I-V) and power-voltage (P-V) curves of the 

TDM optimized using NCO-RIME. These figures 
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compellingly exhibit that the optimized model adeptly 

captures the solar cell's behavior, as evidenced by the close 

alignment of the curves with the experimental data. 
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Fig. 3. Convergence behavior of NCO-RIME algorithm 
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Fig. 4. I-V curves for actual current and TDM current 

B. Comparison with State-of-the-art Metaheuristic 

Algorithms  

In the comparative evaluation of the NCO-RIME, this 

study benchmarks its performance against several state-of-

the-art metaheuristic algorithms applied to the same PV 

system. The selected competitive approaches include the 

improved grey wolf optimizer (I-GWO), heap-based 

optimizer (HBO), manta ray foraging optimization (MRFO) 

and Harris hawks optimization (HHO) which are reported in 

[5]. 

Table II provides a detailed comparison of the estimated 

parameters for the TDM across different algorithms. Notably, 

NCO-RIME demonstrates competitive accuracy in parameter 

estimation, with RMSE values comparable to or lower than 

the state-of-the-art approaches. 

The comparative statistical analysis in Table III further 

emphasizes the performance metrics across the algorithms. 

Metrics including the minimum, maximum, mean, and 

standard deviation of RMSE are reported. NCO-RIME 

consistently exhibits minimal RMSE, signifying its 

robustness and accuracy in parameter estimation. The narrow 

standard deviation indicates the algorithm's consistency, 

reinforcing its reliability compared to the competitive 

approaches. These results collectively highlight the efficacy 

of NCO-RIME in achieving precise parameter estimation for 

the TDM, showcasing its potential as a competitive 

optimization algorithm in the domain of solar PV systems. 
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Fig. 5. P-V curves for actual power and TDM power 

 

TABLE II.  PARAMETER ESTIMATION OF TDM VIA STATE-OF-THE-ART COMPETITIVE APPROACHES 

Parameter NCO-RIME I-GWO HBO MRFO HHO 

𝐼𝑝ℎ (A) 0.76078 0.7607 0.7608 0.76078 0.764769 

𝐼𝑠𝑑1 (µA) 0.37909 0.227 0.697 0.0267 3.82 

𝐼𝑠𝑑2 (µA) 0.22898 0.314 0.0001 0.0154 2.71 

𝐼𝑠𝑑3 (µA) 0.34284 0.234 1.59472 0.317 1.28 

𝑅𝑠 (Ω) 0.036728 0.0367 0.04 0.03634 0.018333 

𝑅𝑠ℎ (Ω) 55.36 54.888 59.997 53.9246 92.25011 

𝜂1 2 1.9256 1.009 1.9076 1.882327 

𝜂2 1.4521 1.96 1.0082 1.8674 1.891646 

𝜂3 2 1.45 1.3083 1.475 1.891677 

𝑅𝑀𝑆𝐸 9.8249E−04 9.8331E−04 1.120E−03 9.86002E−04 7.721E−03 

TABLE III.  COMPARATIVE STATISTICAL PERFORMANCE EVALUATION OF COMPETITIVE APPROACHES FOR TDM PARAMETER ESTIMATION 

Metric NCO-RIME I-GWO HBO MRFO HHO 

Minimum 9.8249E−04 9.83E−04 1.12E−03 9.86E−04 7.7205E−03 

Maximum 9.8426E−04 9.85E−04 2.4E−03 9.89E−04 1.917E−02 

Mean 9.8343E−04 9.84E−04 1.606667E−03 9.87E−04 1.17475E−02 

Standard Deviation 6.5370E−07 6.60404E−07 6.92917E−04 1.25983E−06 6.435824E−03 
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VI. CONCLUSION 

Recognizing the nonlinear characteristics of PV systems 

and the inherent challenges posed by manufacturers' 

datasheets, this study explored the application of the RIME 

optimizer with neighborhood centroid opposite solution for 

the precise estimation of parameters in a triple-diode PV 

model. The selection of an appropriate PV model and 

optimization algorithm is paramount, and the proposed NCO-

RIME emerges as a promising solution. Through a 

comprehensive comparative analysis with established 

algorithms documented in the literature, the NCO-RIME 

showcases good performance enhancements, particularly 

evident in achieving the lowest RMSE values. The 

evaluation, employing real data from the RTC France solar 

cell, underscores the efficacy of the proposed optimizer in 

providing accurate parameter estimates. This superior 

performance is consistent across various evaluation metrics, 

affirming its robustness in multiple independent runs. The 

outcomes of this study substantiate the claim that the NCO-

RIME significantly outperforms other algorithms in the realm 

of PV parameter estimation. 
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