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Abstract—Diabetes mellitus (DM) is a chronic condition 

requiring lifelong management due to inadequate insulin 

secretion or inefficacy of insulin. Its global prevalence has led to 

extensive research focusing on diagnosis, prevention, and 

treatment. The developments in artificial intelligence (AI) have 

improved diabetes management and prediction. This paper 

provides a comprehensive review of the contributions of 

machine learning (ML) algorithms in predicting and classifying 

diabetes. The review examines research on artificial intelligence 

techniques used to predict diabetes over the past six years, 

intending to identify the latest innovations and trends in this 

field. This time frame reflects recent methodological advances 

and new applications that exemplify the current state of 

artificial intelligence in diabetes prediction. It covers dataset 

selection, preprocessing, AI algorithms application, and 

evaluation methodologies. The results of this review show that 

the most predominant methods used in diabetes prediction are 

Random Forest, Logistic Regression, Decision Trees, Support 

Vector Machine, Naïve Bayes, and K-Nearest Neighbors, each 

with distinct advantages and limitations. The review also shows 

through its examination that the highest accuracy provided by 

the hybrid approach was 99.4%, the ensemble approach (ada 

boost) was 98.8%, deep learning (DNN) was 98.04%, and 

traditional machine learning (decision tree_ ID3) was 99%. 

Most studies conducted for diabetes prediction trained the 

models on specific datasets, which makes their generalizability 

to diverse populations and healthcare settings limited. The 

future directions must address ensuring the robustness and 

generalizability of predictive models through comprehensive 

external validation across various populations, settings, and 

geographic areas. 

Keywords—Diabetes Prediction; AI Techniques; Machine 

Learning; Ensemble Learning; Deep Learning. 

I. INTRODUCTION  

One of the most common chronic diseases in people is 

diabetes mellitus, which arises from either an insufficient 

insulin production or insufficient sensitivity of cells to the 

action of insulin. Diabetes mellitus is expressed as a group of 

metabolic disorders characterized and defined by 

hyperglycemia. Energy is a fundamental requirement for 

human bodily functions, derived primarily from the 

conversion of food into glucose. The role of insulin, secreted 

by the pancreas, is pivotal in facilitating the transportation of 

glucose into cells for energy production [1]. Diabetes 

manifests as chronic hyperglycemia, stemming from 

inadequate insulin production by the pancreas or the 

ineffective utilization of produced insulin [2]. Elevated blood 

glucose levels, stemming from inefficient glucose utilization, 

are linked to various health complications, including 

diabetes-related conditions such as cardiovascular disease, 

kidney disease, ocular issues, nerve complications, and 

vascular impairment [3], [4]. High blood sugar presents 

noticeable symptoms including frequent urination, excessive 

thirst (polydipsia), weight loss, blurred vision, and growth 

impairment.  

Diabetes is generally classified into two primary types: 

Type 1 diabetes arises from pancreatic insufficiency in 

producing insulin and is often associated with autoimmune 

processes and genetic predispositions. Alternatively, Type 2 

diabetes results from a combination of insulin sensitivity 

issues and a failure in the body's response to compensatory 

insulin production. The glucose content in ingested food 

directly influences blood sugar levels, while biological 

factors like digestion, circulation, insulin levels, and cell 

responsiveness contribute to the dynamic process of 

movement of glucose from the bloodstream into cells. These 

physiological factors vary among individuals and in different 

physiological states. Emotional states or changes in activity 

affecting circulation rates further impact blood sugar 

dynamics, complicating the estimation of blood glucose 

values.  

The timely identification and diagnosis of the ailment rely 

significantly on the expertise and clinical acumen of the 

medical practitioner. The health sector generates a great deal 

of data on health services, but this data is not used effectively 

in undetected cases. Human decisions pose significant risks 

in the early detection of diseases due to their reliance on 

healthcare specialists' subjective observations and judgments, 

which may lack consistent accuracy [5]. Therefore, various 

advanced mechanisms and software-based programs are 

considered necessary for automatic diagnosis and early 

detection of diseases with better accuracy. 

 Advancements in computational methodologies, 

particularly Machine Learning (ML) and Artificial 

Intelligence (AI), have revolutionized early-stage diabetes 

identification and diagnosis, surpassing the abilities of 

humans [5]. ML, a branch of AI, learns from examples rather 
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than relying solely on programmed instructions, enabling the 

analysis and interpretation of extensive patient data stored in 

computer systems. The health sector has progressively 

utilized these ML techniques for disease diagnosis and 

prediction, including applications in diabetes research. 

Despite the growing research interest in diabetes prediction, 

there is still a need for a comprehensive evaluation of the 

various artificial intelligence techniques used in this field. To 

guide this evaluation, we ask the following research 

questions:  

1. What are the latest developments in artificial intelligence 

approaches for diabetes prediction? 

2. Is there a promising machine learning model suitable for 

all diabetes databases? 

Current AI techniques for diagnosing diabetes have some 

limitations in their application and are not tested on different 

datasets or different populations, making them limited for use 

in the prediction process. This paper aims to address and 

summarize the literature concerned with machine learning 

techniques applied to predict diabetes and its associated 

challenges. This work will therefore be useful for better 

prediction of the disease and improved understanding of the 

diabetes pattern, making it useful for treatment and reducing 

the risk of other complications of diabetes. The contribution 

of this study is to comprehensively assess the diverse 

applications of machine learning methods in diabetes 

prediction and classification through an extensive literature 

review. 

II. BACKGROUND 

Diabetes Mellitus (DM) encompasses a cluster of 

conditions affecting the body's energy metabolism processes 

following food consumption. Upon food ingestion, the body 

converts it into glucose, a vital energy source transported via 

the bloodstream. Insulin, a pancreatic hormone, aids in the 

movement of glucose from the bloodstream into cells, 

essential for generating energy [6]. Disruption in the body's 

glucose management mechanisms characterizes diabetes, 

leading to elevated blood sugar levels (hyperglycemia), 

precipitating severe health complications like diabetic 

retinopathy, nephropathy, and neuropathy [7]. The interplay 

between insulin and glucagon, hormones respectively 

secreted by Beta and Alpha cells in the islets of Langerhans, 

regulates plasma glucose levels. Normal bodily functions 

maintain glucose levels within a defined range. In individuals 

without diabetes, high blood glucose prompts insulin release, 

enabling glucose absorption by target cells. Conversely, in 

low-glucose scenarios, glucagon triggers the conversion of 

glycogen into glucose. However, in diabetic individuals, this 

coordinated system malfunctions, resulting in persistent high 

blood glucose levels (hyperglycemia), alongside concerns 

about hypoglycemia [8]. 

Diabetes exists in two primary forms based on 

pathophysiology: Type I and Type II. Type I diabetes 

involves the destruction of Beta cells, causing rapid and near-

total insulin deficiency [9], [10]. Contrastingly, Type II 

diabetes, a chronic metabolic disorder, progresses over time. 

Individuals with Type II diabetes maintain some capacity for 

insulin production, but their bodies exhibit reduced efficiency 

in utilizing insulin. Over time, beta cell function diminishes, 

contributing to a gradual decline in insulin production [11]. 

Unlike Type I diabetes, where severe insulin deficiency 

occurs, Type II diabetes patients can often be managed 

effectively for prolonged periods through lifestyle 

modifications or oral medications. 

A. Fundamentals of Intelligent Techniques 

Machine Learning (ML) and Artificial Intelligence (AI) 

represent the scientific inquiry into computational systems' 

ability to acquire knowledge from experiences. Scholars 

often perceive "ML" as a subset within the broader field of 

"AI," positing that the capacity to learn embodies a 

fundamental trait of human cognition. Machine learning 

endeavors to fashion computer systems capable of learning 

from prior observations and subsequently adapting their 

responses. The overarching aim of artificial intelligence 

involves crafting intelligent agents or aides that harness 

diverse machine-learning methodologies [12]. 

Machine learning, a subset entrenched within artificial 

intelligence, explores data patterns through varied techniques 

and methodologies. Initially, it assimilates knowledge by 

scrutinizing labeled data associated with these patterns, thus 

facilitating the construction of systems equipped to make 

inferences based on past experiences. This potential is 

enabled by a spectrum of algorithms employing diverse 

mathematical and statistical approaches. Through analysis of 

instances within the dataset, these algorithms acquire the 

capacity to generalize solutions by comprehending the 

underlying patterns [13]. 

Artificial intelligence encompasses the scientific and 

engineering disciplines directed at fabricating intelligent 

machines capable of achieving human-like objectives. 

Machine learning stands as a form of artificial learning that 

seeks to emulate human learning processes. Within the realm 

of neural networks—particularly within deep learning—areas 

characterized by networks boasting more than three layers, 

denoting multiple hidden layers, constitute the field of deep 

learning (DL). DL represents a contemporary subfield of 

machine learning reliant on computationally intensive 

methodologies and extensive datasets to discern intricate 

relationships within data. In recent years, the multifaceted 

applications of machine learning and artificial intelligence 

have garnered global attention. 

Numerous classifications exist for machine learning 

techniques. A prevalent categorization delineates them into 

three primary types: supervised, unsupervised, and 

reinforcement learning. 

• Supervised learning entails the creation of a function 

from labeled training data. In this paradigm, the training 

dataset comprises input-output pairs, where the input 

constitutes a feature vector, and the output represents the 

desired function outcome. The output is an estimation or 

classification label. Supervised learning branches into two 

categories based on objectives: Classification, where targets 

exhibit similarities or correlations, and Regression, designed 

for discerning relationships between quantitative variables 

[14], [15]. 
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• Unsupervised learning involves algorithms devoid 

of labeled data, tasked solely with discovering inherent 

structures within datasets. These algorithms operate on 

unlabeled, unclassified, or ungrouped data. Fundamental 

unsupervised techniques include dimensionality reduction 

methods like PCA and t-SNE, used for data preprocessing 

and visualization, respectively. A more advanced subset 

involves clustering algorithms that uncover latent patterns 

within data, such as K-means clustering, Gaussian mixture 

models, and latent Markov models [16]. 

• Reinforcement learning, inspired by behaviorism, 

focuses on actions necessary to maximize rewards within an 

environment. This versatile approach finds applications in 

diverse fields like game theory, control theory, and statistics. 

Unlike supervised learning, reinforcement learning lacks 

explicit input/output matches and relies on internal correction 

for non-optimal actions [17]. 

Within the medical domain, machine learning algorithms 

have gained prominence for disease prediction and diagnosis. 

Researchers extensively employ these approaches, 

particularly in predicting and categorizing diabetes, aiming 

for the most accurate and dependable prognostications. The 

subsequent section provides a literature review highlighting 

intelligent techniques utilized in the classification and 

prediction of DM. 

III. MATERIALS AND METHODS 

A literature search of various academic databases was 

performed to find pertinent research articles related to 

enhancing and supporting diabetes prediction using machine 

learning and deep learning techniques. 

A. Search Strategy 

The search queries considered the title, abstract, and 

keywords sections. The search criteria included four 

keywords: 'Diabetes', 'Prediction', 'Machine Learning', and 

'Deep Learning', combined using the AND, OR operators. 

Various databases such as PubMed/MEDLINE, IEEE 

Xplore, SpringerLink, Elsevier ScienceDirect, IOP Science, 

and BMC (BioMed Central) were queried for articles 

published from 2018 onwards. PubMed was chosen because 

it contains a large biomedical literature, and this allows us to 

include clinical and experimental studies. As for the rest of 

the other databases, such as Scopus, IEEE, and Springer, they 

were chosen to index and provide extensive scientific 

literature in various disciplines. This time frame reflects 

recent methodological advances and new applications that 

exemplify the current state of artificial intelligence in 

diabetes prediction. However, the effectiveness of using 

'DiabetesType' as a search keyword was limited, as many 

research articles did not specify the type of diabetes in their 

titles or abstracts. The considered studies vary as 85 Journal 

Articles, 13 Conference Papers, 4 Books, and 1 Dissertation. 

Table I illustrates exemplars of search strings intended for 

querying electronic repositories of scientific publications. 

B. Eligibility Criteria 

The criteria used to determine which articles were eligible 

for selection are outlined below: 

1. Only papers composed in the English language. 

2. Due to rapid technological advancements in diabetes 

prediction, only articles published within the past six 

years were considered. 

3. Only papers that focus on diabetes prediction and 

classification. 

4. Any paper addressing the prediction of diabetes, 

including type 1, type 2, or gestational diabetes. 

5. Only articles focused on the topic utilizing machine 

learning and deep learning methodologies will be 

considered. 

TABLE I.  SEARCH STRATEGIES FOR THE SELECTED DATABASES 

Database Search Query 

PubMed/MEDLINE 

(("Diabetes" [Title/Abstract/Keywords]) AND 
("Prediction" [Title/Abstract/Keywords]) 

AND ("Machine Learning" 

[Title/Abstract/Keywords]) AND 
("Deep Learning" 

[Title/Abstract/Keywords])) 

IEEE Xplore 
(abstract:"Diabetes" AND 

abstract:"Prediction" AND abstract:"Machine 
Learning" AND abstract:"Deep Learning") 

SpringerLink 

((title:"Diabetes" OR abstract:"Diabetes" OR 

keyword:"Diabetes") AND (title:"Prediction" 
OR abstract:"Prediction" OR 

keyword:"Prediction") AND (title:"Machine 

Learning" OR abstract:"Machine Learning" 
OR keyword:"Machine Learning") AND 

(title:"Deep Learning" OR abstract:"Deep 

Learning" OR keyword:"Deep Learning")) 

Elsevier 

ScienceDirect 

(TITLE-ABS-KEY("Diabetes") AND TITLE-

ABS-KEY("Prediction") AND TITLE-ABS-

KEY("Machine Learning") AND TITLE-
ABS-KEY("Deep Learning")) 

IOP Science 
(diabetes AND prediction AND "machine 

learning" AND "deep learning") 

BMC (BioMed 

Central) 

(("Diabetes" [Title/Abstract/Keywords]) AND 
("Prediction" [Title/Abstract/Keywords]) 

AND ("Machine Learning" 

[Title/Abstract/Keywords]) AND  
("Deep Learning" 

[Title/Abstract/Keywords])) 

C. Study Selection 

We employed the Rayyan web-based tool for review 

management to remove duplicate records and establish a 

unique database of references. In selecting articles from the 

main database, we followed a three-step process 

recommended [62] in the "Inclusion and Exclusion Criteria" 

section: 

1. Assessing the title; 

2. Reviewing the abstract and keywords; 

3. Analyzing the full text. 

The objective was to filter out irrelevant searches in 

phases (1) and (2), followed by the assessment of the 

remaining documents based on the specified eligibility 

criteria in phase (3). Ultimately, during the eligibility stage, 

we assembled the selected studies into our final database. 
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Fig. 1. Shows the study selection process 

D. Quality Assessment 

To evaluate the quality and reliability of the selected 

studies, we used the following criteria as a basis for quality 

assessment according to the principles adopted in the review 

of artificial intelligence research in healthcare. 

1. The study must use and describe AI methods to classify 

or predict diabetes, apply appropriate validation methods, 

give a report on a range of performance metrics, and 

compare the performance of AI models. 

2. The aim and hypothesis of the study must be clearly 

defined. 

3. The study must contain appropriate answers and solutions 

to address the research question. 

4. The study must contain a clear description of the source 

of the data and that data must be relevant and reliable. 

IV. MACHINE LEARNING BASED DIABETES PREDICTION 

METHODS 

Several studies have delved into the realm of machine 

learning for diabetes prediction, each employing various 

techniques and datasets. In a study conducted in 2020 by [18], 

Naive Bayes, Sequential Minimal Optimization (SMO), 

RepTree, and Simple Logistic Regression were applied to the 

Pima Indians diabetes dataset. Using the SMOTE method for 

dataset balancing, the evaluation metrics focused on 

accuracy, precision, and recall, with Logistic Regression 

achieving an accuracy of 75.70%. In contrast, a 2019 study 

[19] explored Fuzzy SVM techniques on the same dataset, 

achieving an accuracy of 89.02%, while [20] in 2021 

employed Backward Elimination and Support Vector 

Machine (SVM) techniques, attaining an accuracy of 

85.71%. 

Another notable study in 2021 [21] investigated Decision 

trees (DT), KNN, Logistic Regression (LR), Naive Bayes, 

and Random Forest on a dataset comprising 70,000 records 

from USA hospitals, highlighting Random Forest as the best 

performer for classification. Similarly, [22] in 2019 

employed ANN, Random forest, and K-means clustering on 

the PID dataset, achieving accuracies of 75.7%, 74.7%, and 

73.6%, respectively, after preprocessing techniques such as 

data cleaning, reduction, and normalization. 

Further enhancing predictive capabilities, [23] in 2020 

utilized Sequential Minimal Optimization (SMO) and the 

Farthest first clustering algorithm, attaining an impressive 

accuracy of 99.4% after outlier detection and removal using 

Inter Quartile Range (IQR). In a more recent study in 2021 

[27], Artificial Neural Networks (ANN) were applied to the 

PID dataset, yielding an accuracy of 85%. 

However, not all studies provided performance metrics. 

For instance, [29] in 2021 explored KNN, SVM, DT, 

Gradient Boosting (GB), and RF algorithms without 

specifying accuracy results. Similarly, [45] in 2020 employed 

Glmnet, LightGBM, LM, and RF on electronic health records 

from Slovenia without discussing specific metrics. 

In a 2021 study by [24], various ML models including 

Auto regression, kalman filter, Recurrent Neural Networks, 

and LSTM were applied to a private dataset consisting of 

Continuous Glucose Monitoring (CGM) records. Evaluation 

metrics such as Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE) were utilized, with LSTM 

demonstrating the lowest MAE and RMSE values. 

Meanwhile, a 2018 study [25] employed data mining and 

statistical approaches on a private dataset, highlighting 

hypoglycemia and Insulin as key factors for type 1 diabetes 

prediction. 

Similarly, a 2020 study [26] explored SVM, KNN, Naïve 

Bayes, ANN, and ensemble methods on a private dataset, 

achieving notable accuracies across different models. In 

contrast, a 2019 study [28] utilized SVM, RF, DT, Extra Tree 

Classifier, and Ada Boost on a combined private and Pima 

Indian Diabetes (PID) dataset, reporting high accuracy for 

Ada Boost. 

Another 2021 study [30] introduced a Mediative Fuzzy 

Logic based inference system on the PID dataset, 

emphasizing its suitability for medical applications due to its 

handling of contradictory elements. These studies exemplify 

diverse approaches to diabetes prediction, spanning from 

traditional statistical methods to sophisticated ML 

algorithms. 

Furthermore, research has been conducted on various 

datasets, including the PIDD, private datasets, and datasets 

from medical institutes. Techniques such as imputation of 

missing values, normalization, and feature selection have 

been commonly applied for data preprocessing. Evaluation 

metrics encompass a wide range, from traditional accuracy 

and precision to more specialized metrics like AUC-ROC and 

sensitivity. 
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In 2018, a study by [31] utilized Decision Trees (DT), 

Support Vector Machines (SVM), and Naive Bayes on the 

Pima Indians Diabetes Database (PIDD), concluding that 

Naive Bayes achieved the highest accuracy of 76.30%. 

Similarly, in 2020, [32] experimented with SVM, Decision 

Tree, Deep Learning (DL), Naive Bayes, Logistic Regression 

(LR), and K-Nearest Neighbors (KNN) on the same dataset, 

highlighting Random Forest as the best performer with an 

accuracy rate of 74.4%. In contrast, a 2021 study by [33] 

employed Logistic Regression (LG), Random Forest (RF), 

SVM, XGBoost, and ensemble techniques on a dataset from 

Hanaro Medical/Korea, revealing SVM and RF as the top 

performers with 73% accuracy. 

Other studies explored different datasets and techniques. 

For instance, [34] focused on Multivariable Logistic 

Regression (LG) using combined datasets from Exeter 

cohorts, achieving an impressive ROC AUC of 0.94 by 

employing the SMOTE method for imbalanced data. 

Moreover, [35] employed an improved K-means algorithm 

and logistic regression on various datasets, reporting high 

precision (0.954), recall (0.954), Mathews correlation 

coefficient (0.899), and ROC (0.979). In addition, studies like 

[36] and [37] experimented with deep learning models such 

as Convolutional Neural Networks (CNN), Long Short-Term 

Memory (LSTM), and Artificial Neural Networks (ANN) on 

private datasets, achieving accuracies ranging from 82.61% 

to 95.1%. 

Furthermore, recent studies have explored more advanced 

techniques like Joint Bagging Boosting with Stacking 

Algorithm [44], LSTM with Bayesian Optimization [53], and 

twice-growth deep neural network (2GDNN) [55], achieving 

notable accuracies ranging from 80.11% to 99.57%. 

Moreover, ensemble techniques like Voting Classifier [48] 

and combination methods such as Empirical Mode 

Decomposition (EDM) and LSTM [40] have been 

investigated, revealing promising results in terms of accuracy 

and predictive performance. These studies collectively 

demonstrate the diverse range of machine learning techniques 

applied to diabetes prediction, showcasing advancements in 

accuracy, feature selection, and model interpretability. 

In 2019, [38] employed a Deep Belief Neural Network on 

the Pima Indians Dataset, achieving high recall, precision, 

and F1 measure values, indicating its effectiveness. 

Similarly, in 2019, [41] utilized a Deep Neural Network on 

the same dataset, obtaining remarkable accuracies of 98.04% 

for five-fold and 97.27% for ten-fold cross-validation. 

In 2018, [42] utilized LSTM and GRU on a dataset 

comprising records of over 14,000 patients, achieving an 

accuracy of over 97%. [43] in the same year employed a 

Neural Network on datasets from Luzhou hospital physical 

examinations and the PIMA Indian Diabetes dataset, 

achieving accuracies of 74.14% and 74.75% respectively. 

A comprehensive comparison of various machine 

learning algorithms was conducted by [46] in 2019 on a 

diabetes dataset, with logistic regression exhibiting the 

highest accuracy of 96%. [47], in 2020, explored KNN, 

MDR, and SVM on the PIDD dataset, with SVM achieving 

the highest accuracy of 89%. 

More recent studies include [57], who in 2021, utilized 

DT, KNN, RF, NB, AB, LR, SVM, and NN on PIDD after 

preprocessing steps, with NN providing the highest accuracy 

of 88.6%. Additionally, [54], in 2023, employed CNN on the 

PIDD dataset, achieving an accuracy of 96.13%. 

Further research has explored ensemble techniques like 

Gradient Boosting Machine (GBM) along with Logistic 

Regression, as seen in [58] (2019), achieving AUC\ROC of 

84.7% for GBM and 84.0% for LR. Moreover, [60], through 

statistical techniques and feature selection, achieved 

remarkable accuracies using Decision Trees (ID3), attaining 

a test accuracy of 99% and an average accuracy of 99.8% 

across k-folds, with a validation accuracy of 99.9%. 

In 2019, [39] employed Long Short-Term Memory 

(LSTM) neural networks, specifically Recurrent Neural 

Networks (RNNs), on the Direct Net Inpatient Accuracy 

Study dataset, comprising around 110 instances. They 

reported Root Mean Square Error (RMSE) values ranging 

from 4.67 to 29.12, with 4.67 being the minimum and 29.12 

the maximum obtained. 

Similarly, in the same year, [50] experimented with 

Support Vector Machines (SVM) and Convolutional Neural 

Networks (CNN) on the PIDD dataset. They achieved an 

accuracy of 65.38% with SVM and 76.81% with CNN. 

Moving to 2021, [51] employed CNN and Multilayer 

Perceptron (MLP) on the PIDD dataset, reaching accuracy 

rates of 92.31% with CNN and 79.22% with MLP. 

In 2020, [52] focused on Deep Neural Networks (DNN) 

using the NHANES dataset, evaluating the Area Under the 

Curve (AUC) which amounted to 80.11%. The landscape 

expanded further in 2023, as [56] explored Naïve Bayes, 

Logistic Regression, KStar, and Random Forest algorithms 

on a dataset sourced from Kaggle. They found Random 

Forest to outperform others, achieving an accuracy of 

96.53%. 

Lastly, [59] in 2022, experimented with Logistic 

Regression (LR), K-Nearest Neighbors (KNN), SVM, and 

Random Forest on the PIDD dataset, employing techniques 

such as filling missing values, outlier removal, and 

standardizing data. Their LR model demonstrated the highest 

performance, achieving an accuracy of 86%, evaluated 

alongside other metrics like Receiver Operating 

Characteristic (ROC). 

The ensuing table, Table II, encapsulates the research 

endeavors detailed herein, specifically about the prediction of 

diabetes. 

It is noted from Table II that diabetes prediction models 

are trained on specific datasets, which makes their 

generalizability to other populations limited. The future 

directions must address ensuring the generalizability of 

predictive models through comprehensive external validation 

across various populations, settings, and geographic areas. 
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TABLE II.  MACHINE LEARNING TECHNIQUES FOR DIABETES PREDICTION 

Authors Year ML Techniques Dataset Preprocessing Techniques 
Evaluation 

Metric 
Findings 

[18] 2020 

Sequential Minimal 

Optimization (SMO), 

Simple Logistic 
Regression, Naive 

Bayes, RepTree 

Pima Indians 

diabetes data set 

SMOTE technique for 

achieving dataset balance 

Accuracy, 

Precision and 
recall 

The accuracy for 

Logistic Regression, 
REPTree, SMO, and 

Naive Bayes 

classifiers are 
75.70%, 75.10%, 

74.00%, and 

73.60%, 
respectively 

[19] 2019 
Fuzzy SVM 

techniques 

Pima Indian 

Diabetes (PID) 
dataset 

-  Identify the features that 

exhibit a significant amount 

of missing data 
- Using F score for feature 

selection 

Accuracy, 

Precision and 
recall 

The accuracy is 

89.02% 

[20] 2021 

The Backward 
Elimination and 

Support Vector 

Machine SVM 

Pima Indian 

Diabetes (PID) 
dataset 

feature selection using 

Backward Elimination 
Accuracy 

The accuracy is 

85.71% 

[21] 2021 

KNN, Decision Trees, 

Random Forest, Naive 

Bayes, Logistic 
Regression 

Diabetes 130-US 
hospitals for years 

1999-2008 

Features selection, outliers 

removing 

Precision 

Specificity 

Sensitivity 
AUC 

Naïve Bays (0.758, 
0.708, 0.676, 

0.791), KNN 
(0.798, 0.772, 

0.761, 0.839), 

logistic regression 
(0.793, 0.772, 

0.764, 0.850), 

decision tree (0.840, 
0.786, 0.767, 

0.832), random 

forest (0.890, 0.814, 
0.793, 0.912) 

[22] 2019 
ANN, Random forest, 

K-means clustering 

The Pima Indian 

Diabetes (PID) 

Data cleaning 

(medianvalue), Data 

reduction (PCA), smoothing 
data (binning method). 

Association Rules (Apriori), 

Min-Max normalization 
technique 

A ccuracy and 

AUROC curve 

ANN(75.7%, 0.81), 

Random forest (RF) 
(74.7, 0.806), K 

means clustering 

(73.6) 

[23] 2020 

Farthest first 

clustering algorithm, 

Sequential minimal 
optimization (SMO) 

Pima Indians 

diabetes data set 

They employed the 

Interquartile Range (IQR) 
method to identify and 

eliminate outliers within the 

dataset 

Accuracy,               

F measure, 

ROC area,         
Kappa statistics 

The findings 

demonstrated an 
accuracy rate of 

99.4%, affirming 

the efficacy of the 
hybrid model in 

aiding physicians to 

enhance decision-
making in 

diagnosing diabetic 

patients 

[24] 2021 

Auto regression, 

kalman filter, 
Recurrent Neural 

Networks, 

LSTM (Long Short 
Term Memory 

The CGM series 

and Bolus Data file 

contain glucose 
level recordings of 

an individual in 5-

minute intervals 
spanning a period 

of 6 months. The 

file comprises 
approximately 

55,000 records in 

total, some of 
which may contain 

empty values 

The null values were 

excluded 

Mean Absolute 

Error (MAE) 

and Root Mean 
Squared Error 

(RMSE) 

SARIMA (3.87, 

6.90), KALMAN 

(3.21, 4.36), 
RNN (0.32, 0.56), 

LSTM (11.0, 20.15) 

[25] 2018 

Data mining approach 

(Probability of sub 
factors, χ2Test , Info 

gain), Statistical 

approach( P-value and 
Confidence Interval) 

Private data set 

with the total 

number of records 
306, 152 affected 

and 154 unaffected 

They used WEKA tools to 

clean data 
X2test, info gain 

They found that 

factors 
hypoglycemia 

(103.342, 0.464) 

and Insulin (154, 1) 
are the key factors 

of type 1 diabetes. It 

is straightforward to 
determine whether 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 351 

 

Emad Majeed Hameed, Advancements in Artificial Intelligence Techniques for Diabetes Prediction: A Comprehensive 

Literature Review 

the individual has 

diabetes or not 

based on the 

resultant decision 

tree 

[26] 2020 

SVM, KNN, Na¨ıve 

Bayes, ANN, the 

ensemble approach 

Private dataset of 

400 instances, 10 
factors associated 

with it 

N\A 

Accuracy using 

ten fold cross 
validation 

technique 

SVM (94%), KNN 

(91.23%), Na¨ıve 

Bayes (95%), 
ANN(96%), the 

ensemble approach 

(98.60%) 

[27] 2021 ANN 
Pima Indian 

Diabetes (PID) 

dataset 

 Accuracy accuracy 85% 

[28] 2019 

SVM, RF, DT, Extra 

Tree Classifier, Ada 
Boost algorithm 

Private 
dataset+Pima 

Indian Diabetes 

(PID) 

Imputing  missing values 

and  scale the dataset to 
normalize all values 

Accuracy, 
confusion 

matrix and f1-

score 

The accuracy of  
Logistic Regression 

96%. While the  

Ada Boost 98.8% 

[29] 2021 

SVM, Decision Trees, 
Random Forest, 

Gradient Boosting 
(GB) 

Private 
dataset+Pima 

Indian Diabetes 
(PID) 

Filtering out the noisy data 

and replacing missing values 
 

The authors 

didn’t  provide 
any details 

regarding the 
performace 

metric 

The authors didn’t 
provide any details 

regarding the 

accuracy of the 
algorithms 

employed in their 
study 

[30] 2021 

Mediative Fuzzy 

Logic based inference 
system 

Pima Indian 

Diabetes (PID) 
dataset 

Setting  the triangular 

intuitionistic fuzzy number 

The authors 

didn’t  provide 
any details 

regarding the 

performace 
metric 

MFL is essential in 

medical area since it 

has contradicting 
element, essential 

feature to take into 

account when 
employing this 

method 

[31] 2018 
Naive Bayes, SVM, 

and DT 

Pima Indians 

Diabetes Database 
(PIDD) 

 

Precision, 
Accuracy, F-

Measure, and 

Recall 

In comparison to 
other methods, The 

research revealed 

that Naive Bayes 
achieved the highest 

level of accuracy at 

76.30% 

[32] 2020 

SVM, decision Tree 
DT, Naive Bayes, 

Logistic Regression 

LR and KNN 

Pima Indians 

Dataset Database 
(PIDD) 

 Accuracy 

random forest has 
come with highest 

accuracy rate of 

74.4% 

[33] 2021 

XG Boost, SVM, LG, 

RF 

 

The data was 

gathered over a 

span of six years 
from the private 

medical institution 

Hanaro Medical in 
Korea, sourced 

from electronic 

records 

hey chose the primary 

features through the 
utilization of techniques such 

as chi-squared tests, 

ANOVA tests, and recursive 
feature elimination 

 

Accuracy, 

recall, 
precision, and 

F1 score 

The findings 
indicated that SVM 

and RF achieved the 

highest level of 
accuracy, standing 

at 73%, while the 

lowest accuracy was 
71% given by LR 

[34] 2019 
Multivariable Logistic 

Regression (LG) 

The dataset consists 

of participants 

identified from 4 
Exeter 

cohorts(DARE, 

PRIBA, MRC 
Pro/RetroMaster, 

MRCcrossover) and 

combined in one 
dataset 

The SMOTE method was 
used to work with 

imbalanced data 

ROC AUC ROC AUC=0.94 

[35] 2018 

Improved K-means 

algorithm, logistic 

regression algorithm 

Pima Indians 

Dataset, Dataset 
presented by Dr. 

Schorling, Dataset 

Transforming the 

pregnancies attribute from 

numerical to nominal, 
replacing the missing value 

by the mean of attribute, 

normalization 

Precision, 
recall, Mathews 

correlation 

coefficien,  
ROC 

Precision (0.954), 

recall (0.954), 
MCC(0.899), 

ROC(0.979) 

[36] 2018 CNN and LSTM 

Private dataset 

called 

Electrocardiograms 

 Accuracy 
CNN=90.9 

LSTM=95.1 

[37] 2020 

ANN, SVM, Decision 
tree, Linear 

Regression, Logistic 
Regression 

Private dataset 
involved a number 

of laboratory 
records 

Filling the missing values  
with the medians, Removing  

features  that have too many 
missing 

Precision, 
recall, F1 score, 

accuracy AUC 

Using the neural 
network classifier, it 

is  able to get up 
accuracy of  82.61 
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values 

[38] 2019 
Deep belief 

neural network 

Pima Indians 

Dataset 
 

F1 measure, 

Recall, 
Precision 

This network 

achieved impressive 

recall, precision, 

and F1 measure 
scores, indicating its 

effectiveness as a 

robust model 

[39] 2019 

Long shortterm 

memory 

(LSTM) neural 
networks – 

RNNs 

The author 
employed the 

Direct Net Inpatient 

Accuracy Study 
dataset, comprising 

around 110 

examples 

Remove unnecessary 

repetition and outliers in 
successive measurements 

RMSE 

The RMSE values 

range from a 

minimum of 4.67 to 
a maximum of 

29.12 

[40] 2019 

Empirical mode 

decomposition 

(EDM) and 
LSTM 

The data was 

gathered from a 

hospital in 

Shanghai, 

comprising a total 

of 174 cases 
 

The researchers employed 

interpolation techniques to 

address the missing data and 

eliminated any outliers from 

the dataset 

The Mean 
Absolute Error 

(MAE), the 

Root Mean 
Square Error 

(RMSE) 

The MAE assesses 

the error in 

predictions, while 
the RMSE indicates 

the disparity 

between the 

observed and true 

values. These 

evaluations are 
conducted across 

time intervals of 30, 

60, 90, and 120 
minutes 

[41] 2019 DNN 
Pima Indians 

Dataset(PIDD) 
 accuracy 

The accuracy 

achieved by this 
model with a five-

fold approach was 

98.04%, while with 
a tenfold approach, 

it reached 97.27% 

[42] 2018 LSTM and GRU 

The dataset utilized 

comprised data 
from 2010 to 2015, 

encompassing 

records of more 
than 14,609 patients 

Filling the missing values accuracy 

They gained an 

accuracy of over 
97% 

[43] 2018 Neural network 

The author acquired 

data from Luzhou 
through hospital 

physical 

examinations. A 
separate test group 

was extracted, 

comprising 164,431 
samples, each 

featuring 14 

attribures. 
Additionally, 

another dataset 

utilized was the 
PIMA Indian 

diabetes dataset 

Deleting  the abnormal 
and missing values 

accuracy 

The neural network 

achieved an 
accuracy of 74.14% 

using the Luzhou 

dataset and 74.75% 
using the PIMA 

Indian dataset 

[44] 2021 

Joint bagging boosting 

with stacking 
algorithm 

The authors used 
dataset of  

Demographic, 

medical and 
family history. The 

size of this dataset 

is 37,730 

Data cleaning, Resampling AUC AUC—0.885 

[45] 2020 
Glmnet, LightGBM, 

LM, RF 
EHR, Slovenia  N/A N/A 

[46] 2019 

J48 decision tree, 

AdaBoostM1, 

Sequential Minimal 
Optimization, Bayes 

Net, Naïve Bayes 

the electronic health 

records database in 
Shengjing Hospital 

of China Medical 

University (4205 
records, 9 features) 

İmputing the missing values, 

normalization 
accuracy 

J48 decision tree  
provided highest 

accuracy with 

0.9503 

[47] 2020 KNN, MDR, SVM PIDD  accuracy 
88%(KNN), 83% 

(MDR), 89(SVM) 

[48] 2021 
LDA, RF, Voting 
Classifier, SVM 

PIDD  accuracy 
79%(LDA), 
82%(RF), 
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80%(VotingClassifi

er), 79%(SVM) 

[49] 2021 LR, RF, MLP Self-Prepared 

handle the missing values, 

Encoding of Categorical 

Data, Normalization, Feature 
Selection 

accuracy 
97.115(LR), 
98.076(RF), 

77.9221(MLP) 

[50] 2019 SVM, CNN PIDD  accuracy 
65.38%(SVM), 

76.81%(CNN) 

[51] 2021 CNN, MLP PIDD  accuracy 
92.31%(CNN), 
79.22%(MLP) 

[52] 2020 DNN 
KNHANES \ 2013–

2016 

Analysis of basic 

characteristics, select non-

invasive variables, and 
correlation analysis 

AUC 80.11% 

[53] 2023 
RNN-LSTM with 

Bayesian optimization 

Self-Prepared from 

489 patients 
between the years 

2019 and 2021 

missing data imputation 

Sensitivity, 

specificity, and 

AUC 

95% (sensitivity), 

99% (specificity), 

98% (AUC) 

[54] 2023 CNN PIDD  accuracy 96.13% 

[55] 2022 

twice-growth deep 

neural network 

(2GDNN) 

PIDD and the 

diabetes dataset 

from the Laboratory 

of the Medical City 

Hospital (LMCH) 

The framework incorporates 
the utilization of Spearman 

correlation for feature 

selection and polynomial 
regression for handling 

missing values 

precision, 
sensitivity, F1-

score, train-

accuracy, and 
test-accuracy 

scores 

PIDD [97.34%, 
97.24%, 97.26%, 

99.01%, 97.25] and 

LMCH [97.28%, 
97.33%, 97.27%, 

99.57%, 97.33] 

[56] 2023 

Naïve Bayes, Logistic 

Regression, KStar, and 
Random Forest 

The dataset is 

collected from 
Kaggle 

 

accuracy, f1-
measure, 

precision, and 

recall 

Random Forest 

performs better with  
accuracy of 96.53% 

[57] 2021 
NN, DT, RF, AB, LR, 

NB, SVM, KNN 
PIDD 

Filling missing values, 
Outlier removal 

Data normalization, 

Feature selection 

accuracy, f1-
measure, 

precision, and 

recall 

The NN provides 

highest accuracy of 
88.6% 

[58] 2019 

Logistic Regression 

and Gradient Boosting 

Machine (GBM) 
techniques 

records of 13,309 

Canadian patients 

with ages 18 - 90 
years 

Removing the missing 

values 
AUC\ROC 

84.7%9(GBM), 

84.0%(LR) 

[59] 2022 LR, KNN, SVM, RF PIDD 
Filling the missing values, 

removal of outliers and 

standardizing the data 

Accuracy, ROC 

The proposed LR 

has highest 

performance with 

accuracy 86% 

[60] 2020 DT(ID3) 
Hospital Frankfurt 
Germany Diabetes 

Data Set 

different statistical 
techniques and feature 

selection 

accuracy, 

specificity, 

sensitivity, 
precision, 

recall, F1-score, 

MCCandROC-
AUC 

DT (ID3) attained a 

test accuracy of 
99%, an average 

accuracy of 99.8% 

across k-folds, and 
achieved a 99.9% 

accuracy through 

LOSO validation 

[61] 2024 

Logistic Regression, 
Decision Tree, SVM, 

Ada Boost, Random 

Forest, Gradient 
Boosting, and KNN 

PIMA dataset and 
the Iraqi Society in 

Medical City 

Hospital and the 
Diabetes-Al Kindy 

filling the missing values, 

nomalization, and 

eliminating noisy data 

Accuracy 

Logistic regression 

achieves the highest 

accuracy 
performance of 79% 

when applied to the 

Pima dataset. On the 
other hand, when 

the Iraqi society 

dataset is utilized, 
gradient boosting 

demonstrates 

superior 
performance with an 

accuracy rate of 

97.7% 

 
  

V. DISCUSSION 

A. Dataset 

Diabetes research benefits greatly from diverse datasets 

that encompass a wide array of demographics, clinical 

parameters, and monitoring techniques. Among the notable 

datasets available, the Pima Indians Diabetes Dataset (PIDD) 

stands out with its 768 samples and 8 features, including 

crucial indicators like age, body mass index (BMI), and 

plasma glucose concentration, providing invaluable insights 

into diabetes prevalence among Pima Indians. Additionally, 

the CGM dataset comprising 55,000 samples provides 

continuous glucose monitoring data, offering a detailed 

perspective on glucose fluctuations over 6 months in 5-

minute intervals. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 354 

 

Emad Majeed Hameed, Advancements in Artificial Intelligence Techniques for Diabetes Prediction: A Comprehensive 

Literature Review 

Incorporating diverse perspectives, a dataset sourced 

from Dhaka presents 306 samples with 22 features, 

encompassing factors such as HbA1c, pancreatic disease 

history, and symptoms like frequent urination and increased 

thirst. Similarly, datasets collected based on various criteria, 

such as age above 35 years or specific health parameters, 

offer nuanced insights into diabetes risk factors and 

symptoms. 

Furthermore, regional datasets like the King Abdullah 

International Research Centre Diabetes (KAIMRCD) dataset 

and datasets from Luzhou, China, and Iraq, offer context-

specific insights into diabetes prevalence, risk factors, and 

associated health indicators. 

Notably, datasets like the CPCSSN dataset and the 

Frankfurt hospital dataset provide clinical parameters such as 

BMI, blood sugar levels, and lipid profiles, essential for 

assessing diabetes management and associated 

cardiovascular risks. 

Additionally, comprehensive datasets like the Diabetes 

130 US hospital dataset from the UCI Machine Learning 

Repository offer extensive clinical and demographic 

information spanning over a decade, facilitating longitudinal 

studies and predictive modeling. 

Overall, the wealth of diabetes datasets available, ranging 

from population-based surveys to clinical records and 

monitoring data, empowers researchers to explore 

multifaceted aspects of diabetes epidemiology, management, 

and outcomes, contributing significantly to advancements in 

diabetes research and patient care. These data collections 

consist of different quantities of cases (patients), yet they 

possess common fundamental features, Table II provides an 

overview of the datasets considered in this study. Based on 

the Table III, the common features across different datasets 

in the field of diabetes and related health indicators are: 

1. Age,  

2. Gender 

3. Body mass index (BMI) 

4. Blood glucose level (Glucose) 

5. Family history 

6. Hypertension 

7. Medical history (including cardiovascular disease, stroke, 

diabetes) 

8. Smoking status 

9. Blood pressure (Systolic and Diastolic) 

10. Insulin 

11. Cholesterol levels (including HDL, LDL, total 

cholesterol) 

12. Triglycerides 

13. Weight 

14. Height 

15. Physical activity 

These features appear across multiple datasets and are 

relevant for studying diabetes, its risk factors, and associated 

health indicators. 

TABLE III.  DATASETS USED IN DIABETES PREDICTION AND CLASSIFICATION 

Dataset Reference 
Number of 

Samples 

Number of 

Features 
Features Link 

Pima Indians Diabetes 

Dataset (PIDD) 

[18], [19], [20], 

[22], [23], [38], 
[41], [47], [48], 

[50], [51], [54], 

[56], [57], [59] 

768 8 

Plasma glucose concentration a 2 hours in an 

oral glucose tolerance test, Body mass index 

(weight in kg/(height in m)^2), Number of times 
pregnant, Triceps skin fold thickness (mm), Age 

(years), Diabetes pedigree function, 2-Hour 

serum insulin (mu U/ml), Diastolic blood 
pressure (mmHg), Class variable (0 or 1)  

Pima Indians 
Diabetes Database | 

Kaggle 

CGM dataset [24] 55000 1 
Monitoring blood sugar levels every five 

minutes for a duration of six months. 
Private 

A dataset acquired 

from Dhaka, 
originating from a 

specific questionnaire. 

 
 

 

 

  

[25] 306 22 

Frequent Urination, Family History affected in 
Type 1 Diabetes (Father and Mother), Increased 

thirst, Impaired glucose metabolism, Education 
of Mother, Standardized birth weight, 

Standardized growth-rate in infancy, Extreme 

Hunger, Adequate Nutrition, Age, 
Autoantibodies, Sex, HbA1c, Hypoglycemia, 

Unintended weight loss, Pancreatic disease 

affected in child, Fatigue and Weakness, Area of 

Residence, Family History affected in Type 2 

Diabetes (Father and Mother)  

Private 

A dataset selected 

based on a random 
and varied assortment 

of individuals aged 

over 35 years. 

[26] 400 10 
Urination, Fatigue, Gender, Drinking, Weight, 

Height, Age, Family history, Smoking, Thirst  
Private 

Dataset Collection [28] 800 10 

Glucose Level, Age, Blood Pressure, Job Type, 

Skin Thickness(mm), Insulin, Number of 

Pregnancies, BMI, Work/Machine-work, 

Private 

Dataset gathered at 
Hanaro Medical 

foundation in Seoul, 

Korea as electronic 
records for 6 years 

[33] 535,169 12 

HbA1c, BMI, physical activity, age, family 

history, sex, uric acid, gamma-GTP, 

Triglycerides, smoking, drinking, FPG  

Private 

https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database
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Electrocardiograms 

(ECG) 
[36] 142 000 1 

HRV, derived from ECG signals, refers to the 

fluctuations in instantaneous heart rate. 
Private 

A dataset collected 

from Almazov 

specialized medical 
center's medical 

information system 

data set ,  Russia. 

[37] 238,590 31 

Low density lipoproteins (LDL), 

Cholesterol, Troponin, Glucose, 

Alanine transaminase (ALT), 
Mean corpuscular volume (MCV),Hemoglobin 

(HGB), 

Procalcitonin (PCT),Red blood cell distribution 
width (RDW), 

Neutrophils (NEUT),Platelet distribution width 

(PDW), Hematocrit (HCT),Aspartate 
aminotransferase (AST),Mean cell hemoglobin 

(MCH),Platelets (PLT),Bilirubin,Gender,Red 

blood cell count (RBC),Blood in urine 
(BLD),White blood count 

(WBC),Monocytes,pH,Leukocytes 

(LEU),Age,Nephropathy,High-density 
lipoprotein (HDL),Creatinine,Mean platelet 

volume (MPW),Retinopathy, 

Triglycerides 

Private 

Dataset from the King 

Abdullah International 

Medical Research 
Center Diabetes 

(KAIMRCD). 

[40] 174 1 

The Continuous Glucose Monitoring (CGM) 

system has the capability to capture the patient's 
blood glucose levels at intervals of 5 minutes for 

3 days. 

Private 

KAIMRCD [42] 
14,609 

cases 
30 

Gender, Age and 28 Vital 

Signs and Lab Readings 

 

The KAIMRCD 
dataset is accessible 

upon formal request 

to KAIMRC 

The dataset 

concerning hospital 
physical examinations 

conducted in Luzhou, 

China. 

[43] 164431 14 

Height, Low Density Lipoprotein (LDL), Left 

Diastolic Pressure (LDP), Right Systolic 

Pressure (RSP), Pulse Rate, Waistline, Right 
Diastolic Pressure (RDP), Weight, Breathe, 

Age, Left, Systolic Pressure (LSP), High, 

Density Lipoprotein (HDL), Physique Index, 
Fasting Glucose  

Private 

The dataset from the 

Henan Rural Cohort 

Study 

[44] 37,730 20 

Demographic(Gender, Education Level, Per 

Capita Monthly Income, Age, Marital Status), 

Medical And Family History(Family History Of 
Dyslipidemia, Family History Of CHD, Family 

History Of T2DM, Family History Of 

Hypertension), Anthropometric Indicators 
(Diastolic Blood Pressure, Heart Rate, Waist To 

Hip Ratio, Systolic Blood Pressure), Lifestyle 

And Dietary Indicators (Drinking Tea 
Frequently, High Salt Diet, Adequate Vegetable 

And Fruit Intake, Smoking, Physical Activity, 
High Fat Diet, Drinking) 

The dataset is 

accessible upon the 

formal request 

Electronic health 

record (EHR) 

information gathered 
during routine 

preventive healthcare 

check-ups among a 
healthy demographic 

at ten primary 

healthcare facilities in 
Slovenia. 

[45] 3,723 59 N\A 

The datasets can be 

obtained from the 
corresponding 

author upon a 

reasonable request 
and subject to 

approval from the 

data providers. 

The database 
containing electronic 

health records at 

Shengjing Hospital 
affiliated with China 

Medical University. 

[46] 4205 9 

Family History of Diabetes, Work Stress, Age, 

Hypertension, Gender, Body Mass Index (BMI), 

History of Cardiovascular Disease or Stroke, 
Physical Activity, Salty Food Preference  

The datasets can be 

obtained from the 
corresponding 

author upon a 

reasonable request 
and subject to 

approval from the 

data providers. 

Self-Prepared [49] N\A 15 

Delayed Healing, Visual Blurring, Muscle 
Stiffness, Polyphagia, Sudden Weight Loss, 

Genital Thrush, Weakness, Age, Alopecia, 

Irritability, Itching, Polyuria, Partial Paresis, 
Polydipsia, Obesity  

Self-Prepared 

The Korean National 

Health and Nutrition 

Examination Survey 

[52] 15900 7 

Gender, Family history of diabetes, Smoking 

status, Hypertension, Body mass index 

Waist circumference, Age 

If researchers wish 

to make use of non-
public KNHANES 

data or data 
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(KNHANES)2013–

2016 

associated with 

other governmental 

bodies, they must 

carry out their 

analysis within the 
confines of a 

research data center. 

The data was acquired 
from Karadeniz 

Technical University 

Medical Faculty 
Farabi Hospital 

(located in Trabzon 

city) during the period 
spanning January 

2019 to March 2021. 

[53] 489 73 N\A Private 

Diabetes dataset 

gathered from Iraqi 
society in the 

Laboratory of Medical 

City Hospital 

(LMCH) 

[55], [61], [63], 
[64], [65], [66], 

[67], [68], [69], 

[70] 

1000 10 

Body Mass Index (BMI), Urea, Triglycerides, 

Low-Density Lipoprotein (LDL), Cholesterol, 

Creatinine Ratio, Hemoglobin A1c (HBA1C), 
Age, High-Density Lipoprotein (HDL), Very-

Low-Density Lipoprotein (VLDL)  

https://data.mendele
y.com/datasets/wj9r

wkp9c2/1 

 

CPCSSN dataset 
[58], [71], [72], 

[73] 
13,309 8 

FBS (Fasting Blood Sugar), 

LDL (Low Density Lipoprotein), 
Age, BMI, HDL (High Density Lipoprotein), 

sBP (Systolic Blood Pressure), TG 

(Triglycerides), Sex  

www.cpcssn.ca 

 

Data on diabetes 

patients collected 

from Frankfurt 
Hospital in Germany. 

[60], [74], [75], 
[76], [77], [78], 

[79], [80] 

2000 9 
Pregnancies, Glucose, Blood Pressure, Skin 
Thickness, Insulin, BMI, Diabetes Pedigree 

Function, Age, Outcome 

https://www.kaggle.

com/datasets/johnda

silva/diabetes 
 

Diabetes 130 US 
hospital 1999-2008 

[21], [81], [82], 

[83], [84], [85], 

[86], [87], [88] 

100000 55 

diag_3,admission_source_id,glipizide,discharge

_disposition_id,gender,encounter_id,glimepiride

-pioglitazone,metformin-
rosiglitazone,num_lab_procedures,diag_2,piogli

tazone,examide,admission_type_id,A1Cresult,gl

imepiride,number_diagnoses,rosiglitazone,nateg
linide,metformin,acetohexamide,tolbutamide,rep

aglinide,metformin-pioglitazone, 

change,race,troglitazone,weight,medical_special
ty,age,insulin,glyburide-metformin,glipizide-

metformin,time_in_hospital,diabetesMed,patient

_nbr,number_emergency,payer_code,number_pr
ocedures,number_inpatient,glyburide,number_o

utpatient,citoglipton,number_inpatient,diag_1,ac

arbose,max_glu_serum,metformin,glipizide-
metformin, 

discharge_disposition_id,number_emergency,nu
m_medications,number_outpatient 

Diabetes 130-US 

hospitals for years 

1999-2008 - UCI 
Machine Learning 

Repository 

 

The historical data set 

DirecNet Inpatient 

Accuracy Study 
provided by Diabetes 

Research in Children 

Network (DirecNet) 

[39], [89], [90], 

[91], [92], [93], 

[94] 

110 T1DM 

patients 
from CGM 

device 

5 
Patient ID, Number of measurements, Min 

BGL, Max BGL, Mean BGL 

https://public.jaeb.or

g/direcnet/stdy/ 

 

B. Data Preprocessing 

The effectiveness of Machine Learning (ML) in 

addressing a specific problem is impacted by various factors. 

Foremost among these is the development and quality of the 

dataset. Real-world data is frequently messy, insufficient, and 

untrustworthy. Analyzing data during the training phase 

becomes more demanding when it contains excessive 

redundant content, noise, or inaccuracies. Any manipulation 

of raw data to render it more manageable and beneficial for 

subsequent processing is termed data preprocessing. Data 

preprocessing encompasses several categories including [95]: 

1) Missing Value Imputation: One of the fundamental 

challenges in data preprocessing is handling missing values. 

Missing data can significantly impact the performance of 

machine learning models. Techniques such as mean 

imputation, median imputation, and predictive imputation are 

commonly used to address missing values. 

Mean imputation is the process of filling the missing 

values with the mean of a given feature. This method is easy 

to apply and suitable for data with normal distribution. 

Removing the relationships between features and changing 

the distribution of data when contains outliers are 

disadvantages of this approach. It may decrease the 

performance of the model when the value of the imputed 

mean does not represent the missing data. 

The process of filling the missing data with the median of 

a given feature is called median imputation. It is robust to 

outliers and gives better results for data of skewed 

distributions. As in mean imputation, it removes the 

relationships between features and may decrease the 

https://data.mendeley.com/datasets/wj9rwkp9c2/1
https://data.mendeley.com/datasets/wj9rwkp9c2/1
https://data.mendeley.com/datasets/wj9rwkp9c2/1
http://www.cpcssn.ca/
https://www.kaggle.com/datasets/johndasilva/diabetes
https://www.kaggle.com/datasets/johndasilva/diabetes
https://www.kaggle.com/datasets/johndasilva/diabetes
https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years+1999-2008
https://public.jaeb.org/direcnet/stdy/
https://public.jaeb.org/direcnet/stdy/
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performance of the model when the value of the imputed 

mean is not representative in multimodal data. 

The predictive imputation depends on other available 

features for handling the missing data. This technique 

considers the relationships between features leading to a 

better imputation. It requires an accurate model and more 

steps of preprocessing. This method can improve the 

performance of the model by giving a more accurate 

imputation. 

2) Data Normalization and Standardization: Data 

normalization and standardization involve methods 

employed to adjust numerical attributes to a common scale. 

Normalization rescales the data to fit within the range of 0 to 

1, whereas standardization alters the data to have an average 

of 0 and a standard deviation of 1. These techniques help in 

improving the convergence of optimization algorithms and 

make features comparable.Encoding Categorical Variables: 

Many machine learning algorithms require numerical input, 

making it necessary to encode categorical variables. 

Techniques such as one-hot encoding, label encoding, and 

target encoding are used to transform categorical data into a 

numerical format that can be easily understood by machine 

learning algorithms. 

3) Feature Selection and Dimensionality Reduction: In 

datasets with a large number of features, feature selection and 

dimensionality reduction techniques are employed to reduce 

the complexity of the data. Techniques like Principal 

Component Analysis (PCA), feature importance ranking, and 

recursive feature elimination (RFE) help in selecting the most 

relevant features and reducing redundant information. 

PCA proves particularly efficient when working with big 

databases with lots of features, especially when 

dimensionality reduction is desired for computational 

efficiency or graphical representations. When the 

interpretability of the transformed features is important, it is 

less appropriate. RFE is useful in situations where the 

selected features' interpretability is important to figure out 

each risk factor's role. Combining the RFE and PCA may be 

informative in some circumstances. The most important 

factors or features from the reduced dataset can then be 

chosen using RFE after PCA has first reduced the 

dimensionality. 

4) Outlier Detection and Removal: Outliers can 

significantly affect the performance and accuracy of machine 

learning models. Various statistical techniques such as z-

score, interquartile range (IQR), and isolation forests are used 

to detect and remove outliers from the dataset, ensuring the 

robustness of the model. 

Outliers are identified using the z-score method by 

counting the number of standard deviations of a data point 

from the mean. Data are considered outliers if the z-score is 

greater than a predefined threshold. This method is effective 

if data sets have a normal distribution and may not be suitable 

for skewed data or when relationships between variables are 

non-linear. 

In the IQR method, the data set is divided into quartiles. 

The data is sorted in ascending order and divided into 4 equal 

parts. Q1, Q2 and Q3 which are called the first, second and 

third quartiles are the values that separate the four equal parts. 

IQR is difference between the 75th percentile (Q3) and the 

25th percentile (Q1). Data points falling outside 1.5 times the 

IQR above Q3 or below Q1 are considered outliers. The IQR 

method is effective for data that have non-normal 

distributions and is efficient for detecting outliers in data sets 

with different distributions. 

5) Data Balancing: In classification problems, 

imbalanced datasets, characterized by a substantial 

disproportion between classes, can result in models that 

exhibit bias. Methods such as oversampling, undersampling, 

and synthetic data generation (SMOTE) are used to balance 

the distribution of classes, improving the model's ability to 

generalize across different classes. 

The oversampling approach seeks to achieve balance in 

class distribution by replicating minority class instances. 

With this method, the model may result in overfitting since 

the data will be repeated. This method enhances the 

performance of the model if the risk of overfitting is 

controlled.  

In contrast to oversampling, undersampling is performed 

by reducing the number of majority class instances until the 

balance of class distribution is achieved. undersampling can 

lose useful information from the majority class. 

undersampling can be effective with datasets involving high 

majority redundancy. 

SMOTS interpolates between existing instances to create 

synthetic examples for the minority class. Actual data may 

not be accurately represented by synthetic samples, 

particularly if the feature space is complicated. 

Table IV presents the preprocessing techniques used by 

the studies considered in this paper. Based on this table, 

certain studies didn't undertake any data preprocessing, 

whereas others engaged in preprocessing across all six 

mentioned categories. 

Addressing missing values constituted a crucial step, 

about 32 studies following methodologies involved various 

strategies such as imputation and deletion to mitigate the 

impact of missing data on subsequent analyses. 

Normalization and standardization procedures were also 

implemented, drawing upon methodologies used in 16 

studies. These techniques ensure that variables are brought to 

a comparable scale, mitigating issues related to the disparate 

magnitudes of different features within the dataset. 

Categorical variables were encoded utilizing methodologies 

detailed in reference [49], [72], [85], facilitating their 

integration into subsequent analyses. This process involved 

transforming categorical data into numerical representations, 

enabling the inclusion of such variables in mathematical 

models effectively. Feature selection and dimensionality 

reduction techniques were applied to streamline the dataset 

and enhance model performance. 23 studies guided the 

implementation of these methodologies, which involved 

identifying and retaining the most informative features while 

reducing redundancy and computational complexity. 

Outlier detection and removal were performed to mitigate 

the influence of erroneous data points on subsequent 

analyses. 16 studies provided methodologies for identifying 
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and appropriately handling outliers, ensuring the robustness 

and reliability of the analytical process. Additionally, data 

balancing techniques were employed to address potential 

biases stemming from class imbalance within the dataset. 

Strategies outlined in 8 works were utilized to ensure 

equitable representation of different classes, thereby 

enhancing the generalizability of the model. Finally, data 

smoothing techniques were applied to mitigate noise and 

fluctuations within the dataset, as guided by methodologies 

described in references [22], [35], [85]. 

TABLE IV.  THE PREPROCESSING TECHNIQUES 

Preprocessing 

Categories 
Frequency References 

Missing Value 

Handling 
32 

[19], [22], [24], [25], [28], 

[29], [35], [37], [40], [42], 

[43], [44], [46], [49], [53], 
[55], [57], [58], [59], [61], 

[65], [69], [72], [75], [76], 

[78], [79], [82], [84], [85], 
[86], [95] 

Data Normalization 
and Standardization 

16 

[22], [28], [35], [46], [49], 

[57], [59], [61], [65], [72], 
[75], [84], [85], [88], [91], 

[95] 

Encoding Categorical 

Variables 
3 [49], [72], [85] 

Feature Selection and 

Dimensionality 
Reduction 

23 

[19], [20], [22], [30], [33], 

[49], [52], [55], [57], [60], 

[65], [66], [67], [68], [69], 
[70], [72], [73], [76], [82], 

[87], [88], [95] 

Outlier Detection and 
Removal 

16 

[23], [29], [39], [40], [57], 

[59], [61], [64], [70], [72], 
[82], [85], [86], [89], [90], 

[95] 

Data Balancing 8 
[18], [34], [44], [74], [80], 

[82], [85], [88] 

Smoothing Data 3 [22], [35], [85] 

 

C. Machine Learning Techniques of Diabetes Prediction 

The frequency of employing various intelligent methods 

for predicting diabetes was established based on studies 

conducted over the past six years, as indicated in Table IV. 

Random Forest, Logistic Regression, Decision tree, Support 

Vector Machine (SVM), Naïve Bayes, and KNN emerged as 

the predominant methods for diabetes prediction, as depicted 

in Fig. 2. Table V presents a summary of the pros and cons 

associated with each of these algorithms. 

 

Fig. 2. Frequencies of machine learning techniques 

TABLE V.  ML TECHNIQUES FREQUENCY 

ML Technique Frequency References 

Naïve Bayes 17 

[18], [21], [26], [31], [32], 

[46], [56], [57], [64], [66], 

[70], [72], [74], [75], [77], 
[85], [86] 

Sequential minimal 

optimization (SMO) 
3 [18], [23], [46] 

Decision Tree 24 

[18], [21], [28], [29], [31], 
[32], [37], [46], [57], [60], [61], 

[64], [70], [72], [73], [74], [76], 

[77], [78], [79], [80], [85], [86], 
[87] 

Logistic Regression 25 

[18], [21], [32], [33], [34], [35], 

[37], [49], [56], [57], [58], [59], 

[61], [66], [70], [71], [72], [73], 
[74], [75], [77], [80], [83], [86], 

[87] 

SVM 24 

[19], [20], [26], [28], [29], [31], 
[32], [33], [37], [47], [48], [50], 

[57], [59], [61], [64], [68], [72], 

[74], [75], [77], [79], [80], [83] 

The Backward 
Elimination 

1 [20] 

KNN 17 

[21], [26], [29], [32], [47], [57], 

[59], [61], [64], [68], [69], [74], 
[75], [77], [78], [80], [83] 

Random Forest 26 

[21], [22], [28], [29], [33], [45], 

[49], [56], [57], [59], [61], [64], 
[66], [67], [68], [69], [70], [74], 

[75], [76], [77], [79], [80], [83], 

[85], [87] 

ANN 14 
[22], [26], [27], [37], [43], [49], 
[51], [57], [75], [77], [78], [86], 

[89], [91] 

k- means 2 [22], [35] 

Farthest first 
clustering algorithm 

1 [23] 

RNN 3 [24], [39], [53] 

LSTM 9 
[24], [36], [39], [40], [42], [53], 

[72], [90], [94] 

Ada Boost algorithm 7 
[28], [46], [57], [61], [64], [75], 

[77] 

Gradient Boosting 7 
[29], [33], [58], [61], [70], [75], 

[87] 

CNN 8 
[36], [50], [51], [54], [72], [84], 

[88], [94] 

DNN 8 
[38], [41], [52], [55], [64], [68], 

[82], [85] 

Bagging Boosting 2 [44], [77] 

Stochastic Gradient 

Descent 
1 [75] 

 

1) Random Forest 

Breiman (2001) introduced the popular ensemble 

classification technique known as the random forest method, 

which is widely utilized in various application domains 

within the realms of machine learning and data science [96]. 

The RF algorithm is a type of supervised machine learning 

technique applicable for both regression and classification 

tasks, depending on the nature of the problem at hand. This 

method integrates numerous decision trees through random 

aggregation, subsequently amalgamating their predictions to 

facilitate decision-making processes. This technique operates 

by assembling predictions generated by individual decision 

trees and subsequently determining the final decision through 

a majority voting mechanism. The amalgamation of decision 

trees via random aggregation presents a promising avenue for 

enhancing decision-making accuracy in various domains. It 

is of significance to acknowledge that the Random Forest 
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(RF) algorithm exhibits optimal performance under 

conditions characterized by a substantially larger number of 

variables relative to the number of observations within the 

environment. The primary concern regarding models 

employing decision trees is that when the dataset contains a 

limited number of samples, overfitting becomes a prominent 

issue. The random forest algorithm is a meta-learner that 

examines different subsets of the dataset with a range of 

decision tree classifiers, and then combines their outcomes to 

enhance predictive accuracy and reduce the risk of 

overfitting. The size of the subsample typically matches that 

of the source data [97]. 

2) Logistic Regression 

Logistic regression analysis constitutes one of the 

methodologies employed for categorizing observations 

within a dataset. In the realm of statistics, logistic regression 

serves as a methodology aimed at classifying binary variables 

into two distinct classes [98]. In logistic regression, a 

statistical technique widely employed in scientific studies, 

the association between a collection of predictor variables 

and a categorical outcome variable is depicted through a 

curve. This curve illustrates the probability of an event taking 

place, providing insights into the likelihood of occurrence 

based on the specified independent variables. In scientific 

literature, it is commonly acknowledged that while 

independent variables within a study may exhibit a spectrum 

of values ranging from continuous to categorical, the 

dependent variable is inherently categorical [99]. Logistic 

regression is well-suited for modeling scenarios 

characterized by binary outcomes, where the focus lies on 

distinctions between two discrete states, such as success 

versus failure, affirmative versus negative responses, or 

healthy versus unhealthy conditions. The sigmoid function is 

commonly applied in logistic regression methodologies to 

derive binary outcome probabilities from one or multiple 

predictors, thereby facilitating the selection of optimal 

parameter values. Equation (1) and Fig. 3 illustrates the 

sigmoid function denoted as 𝜎, along with its input variable 

𝑧 [100]. 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 , 𝑧𝜖𝑅 𝑎𝑛𝑑 𝜎(𝑧)𝜖 (0,1) (1) 

 

Fig. 3. Sigmoid function 

3) Decision Trees 

A supervised learning approach commonly employed for 

tackling classification tasks is the decision tree method. 

Decision trees iteratively partition the provided dataset into 

two or more subsets based on attributes, aiming to predict the 

class value of the target variable [101]. By segregating the 

dataset, decision trees construct a model to forecast unknown 

class labels. This technique accommodates both binary and 

continuous variables. Decision trees select the optimal root 

node by maximizing entropy, thereby favoring the most 

consistent hypothesis within the training data. Input to the 

decision tree consists of attributes and instance values, while 

the output yields the decision model. Challenges in decision 

model construction include attribute selection, determination 

of splits, defining stopping criteria, pruning, adequacy of 

training samples in terms of quality and quantity, and the 

sequence of splits, among others. 

The decision model is structured as a tree, consisting of 

nodes including decision nodes (split nodes with conditions) 

and leaf nodes. Fig. 4 illustrates the representation of this 

decision tree. Selecting the appropriate attribute as the root 

node to initiate the split poses a significant challenge among 

the various attributes within the dataset. The decision node 

may bifurcate into 2 or more branches. The process begins 

with the selection of the root node, wherein the model 

identifies the optimal attribute or predictor node from the 

available set. Various methodologies exist to determine the 

best attribute for the root node, typically relying on measures 

of impurity within child nodes such as Entropy, Gini index, 

and classification error. These performance measures are 

computed for all attributes, and subsequent comparison aids 

in selecting the most favorable split [102]. 

 

Fig. 4. Decision tree model 

4) Support Vectors Machine SVM 

SVM, a classification algorithm rooted in the principles 

of statistical learning theory, was originally devised by 

Vapnik in the 1990s. Recognized for its efficacy, SVM stands 

as one of the foremost methods within the realm of data 

mining algorithms [103]. Notably, SVM exhibits proficiency 

in segregating data into two or more classes through linear 

separation mechanisms across different dimensions: linear in 

two-dimensional space, plan in three-dimensional space, and 

hyperplane in multidimensional space. Linear separability 

arises when data clusters can be effectively partitioned by a 

line. An innovative concept proposed within SVM is that the 

demarcation between two classes is not merely a line but a 

margin, with its width optimized by certain data vectors to 

attain maximum separation. This scenario is illustrated in Fig. 

5. 
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Fig. 5. The case where two classes can be linearly separated 

Here, the lines D, D1, D2 are determined by the equations 

(2), (3), and (4) respectively, where 𝑤 is the weight vector 

and 𝑏 is the constant (bias) value. 

𝑤. 𝑥 +  𝑏 =  0 (2) 

𝑤. 𝑥 +  𝑏 =  1 (3) 

𝑤. 𝑥𝑖 +  𝑏 =  −1 (4) 

If the distance (margin) between the lines D1 and D2 is 

denoted by 𝑑, with analytical geometry information, it is easy 

to see that 𝑑 can be calculated as in equation (5). 

𝑑 =  
2

‖𝑤‖
 (5) 

The value of ||𝑤|| is calculated as in equation (6). 

‖𝑤‖ =  √𝑤1
2 + 𝑤2

2  (6) 

To get the maximum value of 𝑑, naturally the minimum value 

of ||𝑤|| or ||𝑤||2 must be found. 

𝑀𝑖𝑛.
1

2
 ‖𝑤‖2 (7) 

Constraints: 

𝑤. 𝑥 + 𝑏 ≥ 1 , 𝑖𝑓 𝑦𝑖 = 1 (𝐶𝑙𝑎𝑠𝑠 1 − 𝑅𝑒𝑑) (8) 

𝑤. 𝑥 + 𝑏 ≤ −1 , 𝑖𝑓 𝑦𝑖 = −1 (𝐶𝑙𝑎𝑠𝑠 2 − 𝑏𝑙𝑢𝑒) (9) 

5) Naïve Bayes 

The theoretical framework of the Naive Bayes algorithm 

draws upon principles pioneered by Thomas Bayes during the 

18th century. These principles enable the assessment of event 

probabilities and their revision in response to new data [85]-

[86]. The algorithm relies on the fundamental notion of 

conditional probability as elucidated by Bayes' Theorem. 

This concept is exemplified through a scenario, accompanied 

by the formula and a commonly cited medical testing 

illustration. Consider a hypothetical cancer screening test 

administered to a cohort of 1000 individuals: 

Let A represent the probability of an individual having 

cancer, and B denote the probability of receiving a positive 

outcome from a cancer screening examination. Within this 

context, P(A|B) signifies the probability that an individual 

who tests positive for cancer actually has the disease. This 

concept epitomizes the essence of Bayesian theory, 

highlighting the potential for false positives in cancer 

screening tests. Moreover, it underscores the existence of 

individuals with cancer who may not register as positive on 

the screening test. Consequently, Bayes' conditional 

probability formula elucidates the computation of 𝑃(𝐴|𝐵) 

utilizing the probabilities 𝑃(𝐵), 𝑃(𝐴), and 𝑃(𝐴 ∩ 𝐵). In 

essence, the Bayesian formula enables the assessment of the 

reliability of disease screening tests based on historical data 

[104], [105]. The Bayesian formula can be expressed as 

follows: 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴). 𝑃(𝐴)

𝑃(𝐵)
=

𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 (10) 

6) K Nearest Neighbors KNN 

The K-Nearest Neighbors (KNN) algorithm is a widely 

used non-parametric method in machine learning and pattern 

recognition for classification and regression tasks. It operates 

on the principle of instance-based learning, where the 

algorithm doesn't explicitly learn a model but instead 

memorizes the training instances to make predictions for 

unseen data points based on their proximity to the training 

examples in the feature space. In KNN, the 'K' denotes the 

number of nearest neighbors considered for classification or 

regression [106]. To predict the label or value for a new data 

point, the algorithm identifies the 'K' nearest neighbors in the 

training set based on a chosen distance metric, typically 

Euclidean distance. The most common approach is to assign 

the majority class label (for classification) or compute the 

average (for regression) among these neighbors and assign it 

to the new data point. 

One of the notable characteristics of the KNN algorithm 

is its simplicity and intuitive nature. It doesn't require explicit 

training or complex optimization procedures, making it easy 

to implement and understand. However, its performance can 

be sensitive to the choice of the distance metric and the value 

of 'K', which need to be carefully tuned based on the specific 

dataset and problem at hand. 

Despite its simplicity, KNN can be quite effective, 

especially in low-dimensional feature spaces or when the 

decision boundaries are complex and nonlinear. Moreover, it 

can handle multi-class classification and regression tasks 

without any modifications, making it versatile across various 

applications. 

However, KNN's computational complexity grows 

linearly with the size of the training set, making it less 

efficient for large datasets. Additionally, it can struggle with 

high-dimensional feature spaces due to the curse of 

dimensionality, where the notion of distance becomes less 

meaningful as the number of dimensions’ increases. 

In conclusion, while the KNN algorithm offers simplicity 

and versatility, its performance can vary based on the dataset 

characteristics and parameter choices. It remains a valuable 

tool in the machine learning toolbox, particularly for small to 

moderate-sized datasets and tasks where interpretability and 

ease of implementation are prioritized [61], [102]. Table VI 

summarizes the pros and cons of the most used machine 

learning algorithms in diabetes prediction. 
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TABLE VI.  THE PROS AND CONS OF ML ALGORITHMS 

Algorithm Pros Cons Performance 

Random Forest 

- Handles large datasets 
effectively 

- Reduces overfitting 

- Can handle missing values 
- Provides feature importance 

- Complexity and computational 

overhead 

- Less interpretable compared to 
decision trees 

- Biased towards categorical 

variables with more levels 

RF's high usage reflects its robustness and efficiency in 

dealing with diverse datasets and reducing overfitting risks. 
The ensemble method’s ability to manage large feature sets 

makes it a preferred choice 

Logistic 

Regression 

- Simple and easy to implement 

- Interpretable results 

- Works well with small datasets 
- Outputs probabilities 

- Assumes linearity between 
dependent and independent 

variables 

- Not suitable for non-linear 
relationships 

- Sensitive to outliers 

Effective for binary/multiclass classification problems and for 

linearly separable data 

Decision Tree 

- Easy to interpret and visualize 
- Handles both numerical and 

categorical data 

- Requires little data 
preprocessing 

- Captures non-linear 

relationships 

- Prone to overfitting 

- Instability: small changes in 

data can lead to different trees 
- Biased with imbalanced 

datasets 

High accuracy but has scalability issues with large data sets 

Support Vector 

Machine 

- Effective in high-dimensional 
spaces 

- Versatile: Different kernel 
functions for customization 

- Robust against overfitting 

- Effective in cases where 
number of features > number of 

samples 

- Not suitable for large datasets 
- Complex to fine-tune 

parameters 

- Computationally intensive 

SVM’s strength in high-dimensional data and robustness 

against overfitting justify its frequent use. However, its 
complexity and resource demands can be limiting factors 

Naïve Bayes 

- Simple and easy to implement 
- Works well with high-

dimensional data 

- Efficient in training and 
prediction 

- Performs well in multi-class 

prediction 
- Robust to irrelevant features 

and noise 

- Assumes independence of 

features, which may not be true 
in real-world data 

- Sensitivity to irrelevant 

features 
- Requires a relatively large 

amount of training data for 

accurate estimates of 
probabilities 

- Prone to the zero probability 

problem 

- Promising accuracy for certain types of data 

- Excellent scalability 

KNN 

- No training phase, simple to 

implement 
- No assumptions about the 

underlying data distribution 

- Effective with non-linear data 
and boundary 

- Performs well with small 

training datasets 
- Handles multi-class cases 

naturally 

- Computationally expensive 

during prediction, especially 

with large datasets 
- Sensitive to the choice of 

distance metric and k value 

- High memory requirements, as 
it stores all training data points 

- Not suitable for high-

dimensional data 
- Classifying an unseen instance 

can be slow if the dataset is 

large 

KNN is valued for its simplicity and effectiveness in certain 

conditions, particularly where interpretability and ease of 
implementation are crucial. Its performance is highly 

dependent on parameter tuning and dataset characteristics 

Artificial 

Neural 

Networks 
(ANN) 

Captures complex patterns, 

effective for large datasets, 

adaptable through various 
architectures 

Requires substantial 

computational resources, prone 

to overfitting, challenging to 
interpret 

ANN’s ability to model complex patterns makes it suitable 
for diverse applications. Its resource intensity and 

interpretability issues need careful consideration 

Long Short-
Term Memory 

(LSTM) 

Excellent for sequential data, 

mitigates vanishing gradient 

problem, captures long-term 
dependencies 

Computationally demanding, 

complex architecture  

LSTM's usage highlights its suitability for time-series and 
sequence-based tasks, leveraging its ability to remember long-

term dependencies 

When developing a predictive model for diabetes, 

preprocessing and machine learning algorithms face some 

difficulties, which can affect the effectiveness of the models. 

When a model learns very efficiently on training data, 

noise and small changes may be present in the model, which 

negatively affects the model's performance when applied to 

new data. These obstacles are important in diabetes 

prediction models, as diabetes prediction for new data must 

be accurate and efficient.  

One approach to reduce the aforementioned overfitting is 

to evaluate the performance of model on different subsets of 

data using cross-validation techniques, such as k-fold cross-

validation, to ensure the generalizability of the model. The 

implementing k-fold cross-validation involves splitting the 

dataset into k subsets. After that, the model is trained on k-1 

subsets, and validation is performed on the remaining subset. 

During each iteration, the validation subset is rotated. 

Another way to address overfitting is to enhance the 

diversity of the training data using augmentation methods 
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like bootstrapping or generating synthetic data. When 

applying data augmentation, multiple samples from the 

original dataset are created using bootstrapping, and synthetic 

data points are generated to enrich the training set. 

Working with data containing class imbalance is another 

obstacle when developing a diabetes prediction model. This 

occurs when the data set has a skewed distribution of classes, 

biasing the models toward the majority class. In the field of 

diabetes prediction, this bias can lead to reduced performance 

in predicting the early stages of diabetes in patients with rare 

conditions. The strategies to handle Class Imbalance are 

Oversampling and Undersampling. The oversampling 

approach seeks to achieve balance in class distribution by 

replicating minority class instances. Undersampling is 

performed by reducing the number of majority class instances 

until the balance of class distribution is achieved. 

Interpreting complex models such as deep neural 

networks or ensemble methods are also challenges that must 

be addressed, and are also crucial in healthcare settings. 

Interpretation techniques such as SHAP (Shapley Additive 

explanations) or LIME (Local Interpretable Model-agnostic 

Explanations) can be used to clarify predictions made by 

complex models, providing an understanding of the effects of 

features and model performance. 

It is noted in current and previous studies that diabetes 

prediction models are trained on specific datasets, which 

makes their generalizability to diverse populations and 

healthcare settings limited. The future directions must 

address ensuring the robustness and generalizability of 

predictive models through comprehensive external validation 

across various populations, settings, and geographic areas. 

D. Implications and Recommendations 

Algorithm Selection: The choice of algorithm should 

align with the dataset characteristics and the problem domain. 

RF and SVM are robust choices for many applications, but 

their limitations must be managed. For instance, SVM might 

not be ideal for extremely large datasets due to computational 

constraints. 

Parameter Tuning: Effective parameter tuning is critical 

for optimizing algorithm performance. This is particularly 

true for algorithms like SVM and KNN, where parameter 

choices significantly impact results. 

Computational Resources: Consider the computational 

cost and resource availability, especially for ANN and 

LSTM, which can be resource-intensive. 

Interpretable Models: When interpretability is key, 

simpler models like Decision Trees or Logistic Regression 

might be preferable despite their limitations. 

VI. CONCLUSION 

In this literature review, we explored various machine 

learning techniques for diabetes prediction across diverse 

datasets. The methodologies reviewed ranged from 

traditional algorithms like Naive Bayes and Logistic 

Regression to complex models such as RNNs and LSTMs. 

Our findings highlight that Decision Trees, Logistic 

Regression, SVM, Random Forests, and ANN are the most 

utilized methods in the field. 

Decision Trees offer excellent interpretability, making 

them suitable for clinical applications where understanding 

the decision-making process is crucial. 

Logistic Regression, SVM, and Random Forests are noted 

for their high accuracy, making them reliable choices for 

diabetes prediction tasks. 

Advanced techniques like LSTM, CNN, and DNN show 

promise, particularly for sequential data and image-based 

diagnostics, due to their ability to capture complex patterns. 

Ensemble methods and clustering algorithms further 

enhance prediction performance, with studies indicating that 

models using Random Forest and Ada Boost can achieve 

accuracies up to 98.60%. Models incorporating CNNs and 

LSTMs also show high accuracy, often exceeding 95%. 

We examined various datasets, such as PIDD and CGM, 

highlighting the importance of feature selection in improving 

model performance. The use of diverse data sources, 

including clinical parameters and lifestyle habits from 

platforms like Kaggle and UCI, contributes to robust model 

training. However, challenges like data privacy and 

heterogeneity must be addressed. Collaborative efforts for 

data sharing and standardization are essential, with 

transparency and reproducibility being crucial for advancing 

research. 

Effective preprocessing techniques, such as feature 

selection, missing value imputation, data normalization, 

encoding, dimensionality reduction, outlier detection, and 

data balancing, significantly enhance model efficiency and 

robustness. Smoothing data to reduce noise also contributes 

to better accuracy. 

Evaluation metrics vary, with accuracy, precision, recall, 

F1 score, and AUC-ROC being commonly used to provide 

comprehensive insights into model performance in clinical 

settings. These metrics are crucial for assessing the 

effectiveness and reliability of predictive models. 

Through examining the literature in this review, it was 

found that there is no ideal model for diabetes prediction that 

is suitable for all types of databases, and this conclusion is the 

answer to the question of this study, “Is there a promising 

machine learning model suitable for all diabetes databases?”. 

Most studies conducted for diabetes prediction trained the 

models on specific datasets, which makes their 

generalizability to diverse populations and healthcare settings 

limited. The future directions must address ensuring the 

robustness and generalizability of predictive models through 

comprehensive external validation across various 

populations, settings, and geographic areas. 

VII.  SUGGESTIONS FOR FUTURE RESEARCH 

Refinement of Models: Future research should focus on 

refining existing models to improve their accuracy and 

robustness, particularly in diverse and real-world datasets. 
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Exploration of Novel Methodologies: There is a need to 

explore novel machine learning methodologies that can offer 

improved performance and interpretability. 

Validation Through Clinical Trials: Models should be 

validated through extensive clinical trials to ensure their 

applicability in real-world healthcare settings. This step is 

crucial for developing personalized healthcare interventions. 

Data Sharing and Standardization: Encouraging 

collaborative efforts for data sharing and establishing 

standards for data formats will help in building 

comprehensive datasets that enhance model training and 

evaluation. 

Addressing Data Privacy: Research should focus on 

developing methods to ensure data privacy and security, 

which is vital for gaining access to more diverse and 

comprehensive datasets. 

Improving Transparency and Reproducibility: Ensuring 

that studies are transparent and reproducible will build trust 

in machine learning models and facilitate their adoption in 

clinical practice. 
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