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Abstract—The precise monitoring and prediction of river 

water levels are crucial for effective environmental 

management, flood prevention, and ensuring water security. 

This paper introduces an advanced deep learning framework 

that utilizes an ensemble of state-of-the-art neural networks, 

namely InceptionV3, VGG16, Xception, MobileNet, and 

ResNet152, to enhance the accuracy of water level detection 

from river imagery. The proposed system integrates these 

models through a robust ensemble methodology that leverages 

hard voting to improve predictive performance and reliability. 

Through rigorous preprocessing, including normalization, 

resizing, and augmentation, alongside strategic transfer 

learning, the framework achieves an impressive accuracy of 

99.5833%, precision of 99.5929%, recall of 99.5762%, and an F1 

score of 99.5838%. The ensemble approach not only addresses 

the variability in image data but also ensures robustness against 

overfitting and data imbalances. Furthermore, the application 

of Gradient-weighted Class Activation Mapping (Grad-CAM) 

enhances the interpretability of the model's decisions, 

facilitating trust and transparency in its predictions. This study 

not only demonstrates the potential of ensemble deep learning 

in hydrological applications but also sets the stage for future 

enhancements such as real-time processing and integration into 

comprehensive flood management systems. Future research will 

explore scalability, the incorporation of additional predictive 

variables, and the expansion of the model to include real-time 

monitoring capabilities, aiming to provide a more dynamic tool 

for disaster readiness and environmental conservation. 

Keywords—Water Level Monitoring; Ensemble Learning; 

Image Classification; Deep Learning; Environmental 

Management. 

I. INTRODUCTION 

Water is a truly elemental part of Earth’s life. Water is the 

basis of all forms of life, and the existence of countless 

biological species is virtually impossible without it. At the 

same time, the increased growth of human populations has 

driven the increasing demand for water consumption. This 

fact has led to concerns about the potential shortage of water 

[1]. This problem is not confined to drinking water since 

water for various processes, including agricultural, is affected 

as well [2][3]. As a result, water levels are a vital part of an 

efficient management system for hydrological resources and 

water supplies. It means that water levels are used to derive 

valuable information like runoff, water supply, and floods’ 

discharges [4]. In addition, unless it is hydrologically 

calibrated, validated, and sea level data are incorporated in 

the development of hydrological and hydrodynamic models, 

the accuracy of such models will remain in doubt. It is crucial 

to improve hydrological forecasts and their accuracy, 

particularly for extreme events like flood forecasting [5]. In 

addition, given the increased frequency of extreme weather 

and climate conditions on Earth, the most common extreme-

related events, such as floods, show an increased intensity 

and occurrence [6]–[8]. Accurate hydrological data is 

essential for meaningful flood warning systems [9]. 

Generally, methods for measuring water levels can be 

divided into two main types. The first one is manual readings, 

including human observers recording water level using a 

gauge. This type is less reliable in real-time and more 

dependent on human observers; also, it is more challenging 

to apply them in real-time and the case of significant 

flooding. The second type is represented in automated 

measurements. They relate to water level gauges that have 

direct contact with water and submerged. Automated 

measurements based on their operational principles can be 

described as float type and pressure type [10]. In the 

traditional approach, float type requires a lot of infrastructure, 

which defines their high cost, and pressure type may lose its 

accuracy due to sediment and water temperature variation. 

Due to the contact-based nature of the measurements, they 

can be submerged, and, in sediments and debris, they can be 

more affected, which defines their high maintenance cost. 

Currently, the trend in technology development is leaning 

toward low-cost, non-contact measurement methods. The 

non-contact method has more benefits in terms of safety, time 

response, and lower maintenance compared to traditional 

methods [11]. 

Techniques for measuring water levels without making 

direct contact include methods that rely on satellites, 

ultrasonics, imagery, and radar. The ultrasonic method uses 

ultrasonic range finding but has seen limited routine use in 

hydrological monitoring due to the impact of air temperature 

gradients on the accuracy of open-air systems. This method 

is being increasingly supplanted by radar sensors, which offer 

improved performance [12]. Satellite-based techniques for 

deducing water levels utilize data from either optical sensors 

or satellite radar altimeters, integrated with a digital elevation 

model (DEM) [13]. However, the accuracy of measurements 

derived from optical remote sensing images is constrained by 

the resolution of the images, typically only achieving 

accuracy at the decimeter level [14]. Satellite radar altimeters 

operate by emitting a pulse towards the Earth’s surface and 
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timing the interval between emission and reception of the 

pulse. This data, combined with the satellite’s position and its 

distance to the reflection point on the surface, is used to 

calculate water levels [15]. Nonetheless, satellite-based 

approaches face limitations in fixed-point monitoring and 

continuous observation, constrained by the satellites’ orbital 

paths [16]. Their broad monitoring scope and infrequent data 

collection render them less suitable for detailed, real-time 

hydrological monitoring tasks. 

Recently, network video surveillance systems have 

gained popularity for their use in hydrological monitoring 

and flood management at various water sites, offering 

significant benefits for measuring water levels through video 

imagery [17]. Systems that measure water levels using 

images not only provide the necessary data for monitoring but 

also supply contextual information about the site, which can 

be directly observed and interpreted by those managing the 

site. A common practice within these image-based systems is 

the manual inspection of water gauge readings captured in the 

images [18][19]. While this method allows for continuous 

monitoring of water levels as long as the images are properly 

collected and transmitted, manually analyzing these images 

remains a demanding task in terms of time and effort. This 

approach is not only inefficient but also susceptible to 

subjective errors in accuracy, particularly when the image 

quality is compromised by issues like distortion and 

blurriness. 

Conventional measurement techniques, which 

predominantly depend on mechanical river gauges, are facing 

reliability challenges due to environmental degradation [20] 

[21][22]. In response, new methods employing CCTV 

cameras for the surveillance of water gauges in major rivers 

and areas at risk of flooding have been investigated. Kim [23] 

has been pioneering a cloud-based system known as the River 

Eye Image Water Level Gauge, which leverages video 

monitoring to assess river flow and water levels, with trials 

ongoing at four different sites. Hiroi [24] unveiled a sensor 

system that employs infrared imaging to monitor river levels 

in real-time, aiming at precise flood forecasting in urban 

settings. Sabbatini 

In Ref. [25] suggested a computer vision technique 

specifically for the automated monitoring of river water 

levels, noted for its effectiveness in evaluating the quality of 

video frames, even in low-light conditions. Narayanan [26] 

has explored a unique strategy combining community-based 

sensing with computer vision to approximate flood heights . 

The escalating challenges posed by climate change and 

human activity demand innovative approaches for 

monitoring and managing water resources. Traditional water 

level monitoring methods, while foundational, often fall short 

in terms of accuracy, timeliness, and adaptability to diverse 

environmental conditions. This research aims to address 

these limitations by introducing an advanced ensemble deep 

learning framework that integrates multiple state-of-the-art 

neural networks, including InceptionV3, VGG16, Xception, 

MobileNet, and ResNet152. These models have been selected 

for their proven efficacy in image recognition tasks, which is 

critical for accurately interpreting complex river imagery. By 

employing a hard voting ensemble method, this study not 

only enhances the predictive accuracy but also improves the 

robustness of water level detection, thereby providing a 

reliable tool for real-time environmental monitoring and 

flood risk management. The novelty of our approach lies in 

the synergistic integration of multiple pre-trained networks, 

optimized through transfer learning techniques to handle the 

specific challenges of hydrological imagery. This integration 

represents a significant leap over existing single-model 

applications, offering a more comprehensive solution to 

water level monitoring that can adapt to the unpredictable 

dynamics of natural water bodies. This research contributes 

to the field by filling the critical gap in rapid, accurate, and 

scalable water level monitoring solutions, potentially 

transforming how water resources are managed globally. 

II. RELATED WORK 

Researchers proposed in [27] RivQNet, a state-of-the-art, 

accurate, and quick method for measuring river velocity that 

eliminates the need for manual input. By employing artificial 

intelligence, RivQNet processes non-contact, close-range im- 

ages of the water’s surface. At its heart is a deep-learning 

algorithm for estimating optical flow, utilizing the 

established FlowNet convolutional neural network 

architecture. Results from the research show that RivQNet 

achieves precise and comprehensive mappings of surface 

water speeds. 

Researchers in [28] created a computer vision-based 

automatic water level monitoring system. It captures and 

analyzes images of canal gauges, identifying them by color, 

measuring their pixel length, and converting this to actual 

water levels. In tests, sunlight intensity affected color 

perception, causing inaccuracies in one of five images over a 

day. To improve accuracy, pre-calibration for specific 

lighting conditions and the use of less color-sensitive 

imaging, like night vision, are recommended to overcome 

luminescence challenges. 

Researchers in [20] developed a novel water level 

measurement technique that leverages image ortho-

rectification without needing on-site calibration. By aligning 

the staff gauge’s Region of Interest (ROI) with an 

orthographic template, the method ensures a 1 mm 

measurement resolution. It incorporates algorithms for 

enhanced accuracy: Order-Statistic Filtering for adaptive 

thresholding, Morphological Opening for noise reduction, a 

Multi-points Continuity Criterion for locating the water line, 

and Median Filtering for eliminating random noise. This 

technique surpasses the traditional Otsu method’s 

performance in uneven lighting, demonstrating reliability 

under various conditions with up to 1 cm accuracy and 95% 

Effective Data Ratios. 

Researchers in [29] developed a budget-friendly 

unmanned monitoring system comprising remote stations and 

a central control, leveraging a web service, video cameras, 

water level sensors, and wireless communication for 

displaying live water levels of rivers and reservoirs online. 

The system transmits water level data via cellular network to 

a server, facilitating flood forecasting and prevention by 

aggregating data from different river basins. Evaluation 

through difference method, dictionary learning, and deep 
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learning revealed CNN’s superior performance in accuracy 

and stability, with an average error of 0.009. 

Researchers in [21] introduced an image-processing-

based method designed for efficiency and practicality. This 

approach includes three key components: a multi-template 

matching algorithm for identifying characters on the Water 

Level Recorder (WLR), a sequence verification algorithm to 

refine the recognition results, and a projection height 

comparison for accurate measurements, even with partially 

visible characters. Tested on real-world datasets, the method 

demonstrated a 63% recognition rate for WLR characters and 

an average measurement error of 0.9cm, surpassing China’s 

national water-level monitoring accuracy standard of 1.0cm. 

Researchers in [30] developed an automated system to 

detect dammed lake disasters in mountainous regions, 

utilizing a hybrid segmentation algorithm. This algorithm 

combines k- means clustering and region growing without 

needing manual seed point selection, efficiently identifying 

river changes to trigger alarms. Deployed in Tibet’s Yarlung 

Tsangpo River basin, the system operated from April to 

November 2021, showcasing an 89.29% accuracy and an 

11.76% miss rate. These results significantly surpass the 

performance of traditional algorithms, highlighting the 

method’s effectiveness in monitoring water level variations 

and potentially preventing disasters. 

Researchers in [31] introduced a deep learning-based 

method for automatic water level monitoring, recognition, 

and calculation in this paper. Initially, experiments in a 

physical pool were conducted to collect real-scene images. 

These images were used to train and optimize the original 

Single Shot MultiBox Detector (SSD) model. A validated 

model for detecting staff gauges in images was developed, 

enabling the extraction of staff gauge data from the images. 

The method’s efficacy was demonstrated by simulating a 24-

hour water level change timeline, with the analysis yielding 

high Nash-Sutcliffe efficiency (NSE) and coefficient of 

determination (R2) values of 0.98 and 0.99, respectively. 

In [32], researchers introduce a method using the ResNet-

50 Convolutional Neural Network (CNN) to analyze water 

levels from CCTV footage around Chengmei Bridge over the 

Keelung River in Neihu District, Taiwan, capturing diverse 

weather conditions. This approach forms a virtual gauge 

system, negating the reliance on physical water gauges, and 

was tested with images from March 1, 2022, to February 28, 

2023. Key for regions prone to rapid water level changes, this 

method employs grid-based analysis alongside CCTV and 

Raspberry Pi for real-time, cost-effective monitoring. Initial 

findings show accuracies between 83.6% and 96%, with the 

highest accuracy on clear days and the lowest during heavy 

rain. 

Researchers in [33] developed a mask R-CNN model to 

automate the detection and segmentation of water bodies in 

remote sensing images (RSIs), eliminating the need for 

manual feature extraction from complex, low-resolution 

aerial or satellite photos. Utilizing RSIs from diverse datasets 

and Google Earth, and employing data augmentation to 

expand the training set, the model was trained in two 

configurations: ResNet- 50 and ResNet-101. Results showed 

the model’s proficiency, achieving 90% accuracy for regular 

and 76% for irregular- shaped water bodies based on 

intersection over union. 

This study [34] analyzes a dataset from over 5,000 water 

utility inspections in Denmark, using decision trees and 

CNNs for water level estimation, treating it as both a 

classification and regression problem. The research evaluates 

the impact of different labeling standards on accuracy. Using 

the 2015 Danish sewer inspection standard for classification, 

based on visual categorization of water levels, resulted in an 

average F1 score of 79.29% with a fine-tuned ResNet-50 

CNN, demonstrating the effectiveness of CNNs in estimating 

water levels. 

This study in [35] developed a CNN-LSTM deep learning 

model to simulate water quality and levels in the Nakdong 

river basin, utilizing data from various sources, including the 

Water Resources Management Information System and 

Korea Meteorological Administration. Covering January 1, 

2016, to November 16, 2017, with separate calibration and 

validation periods, the framework used CNN for water level 

predictions and LSTM for water quality analysis. The models 

achieved Nash-Sutcliffe efficiency values above 0.75, 

showcasing their strong capability in accurately reflecting the 

river basin’s pollution trends. 

In [36], researchers introduced a technique employing 

YOLOv5s to delineate the water gauge and character areas in 

video images, utilizing image processing to ascertain the 

water surface line and compute the actual water level. This 

method was tested at a river video monitoring station in 

Beijing, yielding a systematic error margin of only 7.7 mm. 

Accuracy was assessed under various conditions: 95% of 

images within a 1 cm error margin and 5% within 1-3 cm 

under daylight, 98%/2% with infrared night lighting, 

97%/2% under strong light, a significant variance with 

45%/44% for transparent water, and notably high accuracy 

during rainfall (91%/9%) and when the water gauge was 

slightly dirty (90%/10%). 

This research in [37] utilizes the Mann-Kendall trend test 

to analyze annual average flow and water levels at the 

Yichang and Hankou stations, subsequently modeling 

Hankou’s water dynamics with Random Forest, CNN, 

LSTM, and CNN-LSTM techniques. Evaluations were made 

using NSE, KGE, RMSE, and SMAPE metrics. Results 

revealed a downward trend at Yichang and an upward trend 

at Hankou. The CNN-LSTM model emerged as the most 

accurate, with NSE and KGE exceeding 0.995, and RMSE 

and SMAPE under 0.200, proving its effectiveness in 

predicting water levels and flows. 

This research [38] presents a water level recognition 

approach that merges digital image processing with CNNs. 

The process includes segmenting images to locate the water 

ruler and numerical characters using grayscale, edge 

detection, Hough transform for tilt correction, and 

morphological techniques. CNNs are then employed to 

identify the numbers, and water levels are calculated by 

matching the scale line count to these numbers in binarized 

images. Tested on images from Hulu watershed in the Qilian 

Mountains, China, the method attained 94.6% accuracy, 

significantly outperforming conventional template matching 

by nearly 24%. 
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While substantial progress has been made in the field of 

hydrological monitoring through advanced computational 

models, several gaps remain that our research aims to 

address. Existing methods, such as the RivQNet [27], focus 

predominantly on river velocity measurements using optical 

flow algorithms but do not provide comprehensive solutions 

for varying water body types and environmental conditions. 

Furthermore, while studies like those by researchers in [28] 

and [29] introduce automated systems for water level 

monitoring, they often suffer from environmental 

interferences such as sunlight intensity and color perception 

issues, which our ensemble approach mitigates by 

incorporating robust preprocessing and ensemble learning 

techniques. Similarly, the work by [20] and [21] advances the 

field by reducing the need for on-site calibration and 

enhancing recognition rates, yet these approaches do not fully 

capitalize on the potential of multimodal data integration, 

which is central to our methodology. Moreover, recent 

approaches like the system described in [32] and the model 

developments in [31] and [34] show promising results in 

specific settings, but they lack the generalizability and 

adaptability offered by our ensemble of deep learning 

models, which are designed to perform effectively across a 

diverse range of hydrological scenarios. Our research fills 

these critical gaps by leveraging a combination of state-of-

the-art models such as InceptionV3, VGG16, Xception, 

MobileNet, and ResNet152, optimized through advanced 

ensemble techniques to enhance both accuracy and reliability 

in real-time water level monitoring [30], [35], [36]. By 

integrating these diverse architectures, our approach not only 

addresses the limitations noted in prior studies but also sets a 

new standard for accuracy and adaptability in hydrological 

monitoring technologies. 

III. PROPOSED  METHODOLOGY  

The proposed model outlined in the Fig. 1 represents a 

systematic approach to image classification using a dataset of 

river images [39]. Initially, the dataset undergoes pre-

processing [40], which includes normalization to scale the 

pixel values [41], resizing of images to a uniform dimension, 

and data augmentation to artificially expand the dataset by 

generating transformed versions of existing images [42]. 

Following pre-processing, the dataset is split into training and 

testing sets [43]. For the training phase, the model employs 

transfer learning [44], utilizing pre-trained neural network 

architectures: InceptionV3 [45], VGG16 [46], Xception [47], 

MobileNet [48], and ResNet152 [49]. Each of these 

architectures has been previously trained on large datasets 

and can extract complex features from new images. 

Following the training of the models, an ensemble voting 

process is applied. In this case, the hard voting technique is 

implemented. This solution consolidates several predictions 

of the trained models and chooses the majority prediction for 

a particular image to increase the accuracy by using the 

advantages of each model [50]. The model then proceeds to 

the evaluation stage, where it is scrutinized based on a suite 

of metrics, including accuracy, recall, precision, and F1-

score, to ensure robust performance. Furthermore, the model 

incorporates GRAD-CAM for explainability [51], providing 

visual explanations for the decisions made by the 

convolutional neural network [52], enhancing the 

interpretability of the model. Finally, for practical 

applications the model includes a bounding box feature to 

detect water levels, demonstrating its potential to precisely 

delineate and quantify regions of interest within river 

landscapes. This feature is pivotal for applications in natural 

resource management, where accurate assessment of water 

bodies is essential. 

 

Fig. 1. Proposed approach for detecting and predicting river water level 

A. Dataset Overview  

The dataset “Tsai, Cheng-Hsiung. “Real-time images of 

river in Taiwan”. Harvard Dataverse, V1, 2020” was 

uploaded by Tsai, Cheng-Hsiung in 2020 on Harvard 

Dataverse [39]. The dataset includes a series of real-time 

images taken by a camera installed on the Chongren Bridge 

crossing the Errenxi River in Tianliao District of Taiwan. The 

images were taken during August 23-31, 2018, and total 

about 6,000 JPEG rivering images 6 from which a set of river 

images were meticulously collected and categorized and used 

to create a structured Taiwanese river image database. This 

dataset is useful for hydrological application, machine 

learning, etc., due to its high resolution, and more 

importantly, careful classification, the images can be 

classified into three types based on the water level 

identification: Category A boat high water. Filled image, 

Category B Recently increasing, and Category C No river 

transformation. Thus, the dataset can be used to predict water 

change and learn from Taiwanese flooding planted water 

source management. 

Fig. 2 depicts the train dataset with a similar balance in 

class distribution; class A contains 1616 images, class B has 

1592, and class C includes another 1592 images. In Fig. 3, 

the test dataset shows a relatively balanced distribution 

among the three classes, with class A having 384 images, 

class B with 408, and class C also containing 408 images. The 

close numbers across classes suggest a well-distributed 
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dataset that is conducive to training robust models without 

bias toward a particular class. This balanced distribution is 

essential for ensuring that the model trained on this dataset 

does not overfit to the most frequent class and can generalize 

well when predicting unseen data. 

 

Fig. 2. Class distribution within the train 

 

Fig. 3. Class distribution within the test 

The selection of the "Real-time images of river in 

Taiwan" dataset for this study was guided by several critical 

factors that align with our research objectives. Primarily, this 

dataset was chosen because it provides a comprehensive 

range of real-time images captured under varied 

environmental conditions, offering a rich basis for testing and 

refining our ensemble deep learning model. The diversity of 

the images, which include different times of day, weather 

conditions, and water levels, presents a unique opportunity to 

challenge and enhance the robustness of our predictive 

algorithms. This dataset is particularly valuable because it 

represents a dynamic and complex river system—the Errenxi 

River in Tianliao District, Taiwan—known for its rapid 

changes in water level, which are critical for testing the 

effectiveness of flood monitoring systems. 

Moreover, the dataset is classified into three distinct 

categories based on water level changes: high water levels, 

rising water levels, and stable water levels. This classification 

aids in creating a more structured approach to model training, 

allowing the ensemble learning system to fine-tune its 

predictions based on clearly defined water states. Such a 

detailed categorization ensures that the model can be trained 

to recognize and react to specific hydrological events, 

enhancing its application in real-world scenarios where quick 

and accurate water level assessments are crucial. The 

diversity of the dataset, with its inclusion of various 

hydrological and environmental conditions, ensures that the 

model trained on this dataset can generalize well across 

different geographical and climatic contexts, making it a 

robust tool for global water resource management initiatives. 

This adaptability is vital for deploying the system in diverse 

locations, which may face unique challenges such as different 

types of flooding, river flow patterns, and ecological impacts. 

B. Data Preprocessing  

In the preliminary phase of preparing the river images 

dataset, data preprocessing plays a pivotal role in 

standardizing the collection of images and enriching the 

dataset’s diversity for thorough analysis. The process begins 

with normalization, where the pixel intensities of each image 

are adjusted to a standardized range from 0 to 1. This 

normalization is crucial for streamlining the learning process 

for subsequent models by providing a consistent input feature 

scale [53]. 

To enhance the dataset, data augmentation techniques are 

employed, generating new image variations that help models 

become more robust and less sensitive to changes in image 

presentation [54]. This includes: 

• Randomly rotating the images between -40 and +40 

degrees to negate the effects of orientation. 

• Shifting the images horizontally and vertically at random 

to introduce a variety of spatial variations. 

• Applying shear transformations to mimic different 

angular perspectives. 

• Executing random zooming on the images to present both 

closer and more distant views of the subject matter. 

Flipping the images horizontally to add to the dataset’s 

variability. 

When these augmentations result in the creation of new 

pixel areas, the ’nearest’ fill mode is adopted, which uses the 

value of the nearest pixel to fill in these spaces, ensuring the 

new images remain visually consistent. 

Data preprocessing is a critical step in ensuring the 

accuracy and efficiency of our ensemble deep learning 

model. The initial step involves normalization, where pixel 

values of images are scaled to a range between 0 and 1. This 

standardization is crucial as it mitigates the variance in 

illumination and contrast found across different images, 

leading to a more stable input for neural networks. Resizing 

follows, where images are uniformly adjusted to 224x224 

pixels. This uniformity is necessary to match the input size 

expected by the pre-trained models used in transfer learning, 

ensuring that all images contribute equally to the learning 

process without bias from size variations. 

Furthermore, data augmentation plays a pivotal role in 

enhancing the model’s ability to generalize from the training 

data to new, unseen datasets. This is achieved by artificially 

expanding the training dataset with modified versions of 

existing images, which include rotations (ranging between -

40 and +40 degrees), shifts (both horizontal and vertical), 

shear transformations, and random zooms. These variations 
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introduce a level of robustness by simulating different 

viewing angles, scales, and positional biases that the model 

may encounter in real-world operational settings. 

Additionally, horizontal flipping is used to simulate the 

reflectional asymmetry of water bodies, further diversifying 

the training dataset. 

Each preprocessing step significantly contributes to the 

model's overall performance. Normalization ensures that the 

model is not unduly influenced by differences in lighting and 

color intensity, which can vary widely in outdoor 

environments. By standardizing the scale of input data, the 

model learns to focus on relevant features rather than being 

misled by extraneous variations in image brightness or 

contrast. 

Data augmentation significantly bolsters the model's 

robustness, a crucial factor for practical applications. By 

training on images that have been altered in various ways, the 

model learns to recognize water levels under a broader range 

of conditions than those strictly present in the original dataset. 

This ability is critical for deployment in real-world scenarios 

where the model must perform reliably under diverse and 

unpredictable conditions. For instance, an augmented dataset 

helps the model to maintain high accuracy and reliability 

even when faced with images taken during different times of 

the day or under adverse weather conditions, which might 

otherwise skew its predictions. 

These preprocessing techniques collectively enhance the 

ensemble model's ability to generalize from the training data 

to real-world applications, ensuring reliable, accurate, and 

efficient performance across a variety of settings and 

scenarios. 

C. Transfer Learning Methods 

In the exploration of classifier methods for image analysis, 

several prominent architectures stand out for their robustness 

and efficacy: ResNet152, VGG16, Xception, MobileNet, and 

InceptionV3. 

• The architecture of ResNet152 illustrates the potential of 

deep neural networks to train a classifier that can work with 

images. It is constructed from the Chollet’s ResNet152 

architecture and ImageNet weights by excluding the top 

layer that needs to be trained for customization by the user 

and adjusted to process 224×224 pixel images. However, 

the layers of the model are trainable to adjust to a 

sufficiently specific dataset. On top of that, a Global 

Average Pooling 2D layer collapses the image features to 

reduce the model complexity. Then, there come a dense 

layer with 32 ‘’ReLu’’ activated units, capable of 

recognizing the patterns, and a dropout layer with a rate of 

0.5 to prevent overfitting. Finally, there comes a dense 

layer activated with softmax for a class probability 

distribution. This architecture illustrates that the model is 

capable of learning things and generalizing accordingly. 

• The VGG16 architecture is one of the flagship models in 

deep learning for image classification, mainly due to its 

depth and simplicity. This example also begins with the 

foundational VGG16 model, which I loaded with 

ImageNet weights and modified by setting the input to 

224×224 pixels and eliminating the original top layers for 

better versatility. These pre-trained layers are compiled as 

non-trainable to preserve their ability to detect features 

powerfully. A Global Average Pooling 2D layer then 

shrinks the characteristic graphs, which are then passed to 

a 512-unit ‘’ReLu’’ activation dense layer for feature 

understanding. Finally, the structure is completed by a 

‘softmax’ activated dense layer producing three-class 

probabilities. In summary, then, VGG16 is a remarkably 

effective method for reducing incredibly complicated 

visual data to a handful of unique classifications. 

• The Xception model commences with its base established 

using ImageNet weights that have been adjusted for 

224×224-pixel inputs; the layers’ training nonlinear 

functions have been deactivated to preserve their feature- 

detection functionality. Custom layers have also been 

incorporated for the classification assigned to this project, 

comprising a Global Average Pooling 2D for downsizing 

feature maps and an additional ‘’ReLu’’-activated dense 

layer of 512 units for the processing of predictions. The 

final layer is a ‘softmax’-activated dense layer account- 

able for leading this model to categorize concerning three 

classes, certifying its capacity to distribute correct image 

classifications. 

• The MobileNet architecture that has been optimized for 

efficiency has ImageNet weights and is suited for 224- by-

224-pixel images apart from freezing the base layers to 

maintain their pre-trained capacity. A Global Aver- age 

Pooling 2D layer further reduces the feature map, resulting 

in the final prediction through a ‘’ReLu’’-activated 512-

unit dense layer. The ‘softmax’ dense layer is added for 

three-class classification. Consequently, feature map 

reduction and proven accuracy in image classification 

performance criticality-oriented environments make 

MobileNet ideal. 

• The InceptionV3 architecture utilizes the InceptionV3 base 

model with ImageNet weights for 224×224 pixel input, 

excluding the top to customize for specific tasks. With its 

base layers frozen to preserve learned features, it adds a 

Global Average Pooling 2D layer to minimize feature 

maps, followed by a 512-unit ’ReLu’ activated dense layer 

for feature analysis. The architecture culminates in a 

’softmax’-activated dense layer for classifying into three 

categories, showcasing InceptionV3’s capability to handle 

complex image classification efficiently through its layered 

design and pooling strategies. 

In selecting the architectures for our transfer learning 

approach, we meticulously chose ResNet152, VGG16, 

Xception, MobileNet, and InceptionV3 due to their distinct 

strengths in handling diverse image classification tasks, 

which align closely with the challenges presented by river 

imagery. ResNet152 is renowned for its deep residual 

learning framework which enables it to learn from a 

significant amount of residual data, making it highly effective 

for complex scenes as observed in river environments. 

VGG16, known for its simplicity and depth, is particularly 

adept at feature extraction from images, which is vital for the 

accurate classification of different water levels. Xception 

offers an advanced depthwise separable convolution 

technology that provides a fine balance between 
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computational efficiency and model depth, ideal for mobile 

deployment. MobileNet is optimized for speed and low 

computational power, making it suitable for real-time 

applications where quick processing is required. InceptionV3 

introduces an asymmetric structure that offers high efficiency 

in recognizing patterns at multiple scales, which is crucial for 

capturing the varied dynamics of water surfaces. Each 

model's configuration was carefully tuned to optimize 

performance, with specific adjustments to layer 

configurations and activation functions to best suit our 

dataset's unique characteristics. Hyperparameters such as 

learning rates and batch sizes were methodically tested to find 

the optimal settings that maximize both accuracy and 

processing speed, ensuring the model's practical applicability 

in diverse operational environments. 

D. Ensemble Learning  

Ensemble learning methods especially hard voting are an 

intelligent machine-learning method intended to increase the 

accuracy of predictions by integrating the strengths of more 

than one model. For image classification, using models such as 

Inception, Inception-Xception, and Xception may provide a 

better prediction than relying on one. The recommended 

training procedure starts with the data preparation; the 

validation set in this context remains unchanged for all models 

to provide equal grounds of evaluation. It’s crucial to disable 

shuffling and reset the validation generator before making 

predictions to maintain the order of the dataset, ensuring that 

each model evaluates the same sequence of images. 

Each model—Inception, MobileNet, and Xception—then 

independently predicts the validation set, producing arrays of 

probabilities for each class in the dataset. These probabilities 

are an indication of the confidence level of each model for the 

class it predicts for every image. To derive a concrete 

prediction from these probabilities, the argmax function is 

employed, which selects the index of the highest probability 

onV3’s capability to handle complex image classification 

efficiently through its layered design and pooling strategies 

effectively determining the class with the highest likelihood 

according to each model. 

Hard voting comes into play after obtaining the predicted 

class indices from all models. This ensemble technique in- 

volves aggregating the predictions from each model and 

selecting the class that gets the most votes as the final 

prediction for each image. Unlike soft voting, which considers 

the probability scores of each class before making a decision, 

hard voting solely relies on the most frequent class prediction 

among the models. This method capitalizes on the diversity of 

the models involved; for instance, where one model may be 

weaker, others might compensate, leading to a collectively 

stronger prediction capability. 

Hard voting as the fundamental idea is based on the 

democracy of decisions, suggesting that the decision of a 

collective most often exceeds the decision of individual 

models. This is especially effective when models have a 

different perspective or strength, and use all possible data to 

solve the problem, but do it independently. In other words, the 

purpose of achievements from Inception, MobileNet and 

Xception is to predict with greater accuracy and stability as a 

result of their aggregation, which is the meaning of using them 

as a model to solve the problem with the help of ensemble 

training. 

In the realm of complex image classification tasks such as 

river water level detection, the ensemble learning approach, 

particularly through hard voting, offers significant advantages 

in enhancing the model's accuracy and reliability. This method 

effectively harnesses the strengths of multiple sophisticated 

architectures—Inception, MobileNet, and Xception—each 

bringing unique perspectives and strengths to the table. The 

rationale behind employing hard voting lies in its 

straightforward yet powerful mechanism of decision-making, 

where the final prediction is determined by the majority vote 

across all models. This approach is particularly suited to our 

task as it mitigates the risk of erroneous predictions from any 

single model, thereby enhancing the overall reliability of the 

predictions. Unlike soft voting or stacking methods, which 

might give undue weight to less confident predictions or 

require complex integration strategies, hard voting ensures a 

democratic and clear-cut decision process. This simplicity 

allows for robust performance even in scenarios where data 

variability and environmental inconsistencies might otherwise 

lead to skewed predictions. By integrating the consensus across 

diverse models, hard voting not only consolidates the 

generalization capabilities of each model but also ensures that 

the predictive performance is not compromised, making it an 

ideal choice for the high-stakes application of flood monitoring 

and water resource management. 

E. . Detection with Grad-CAM and bounding boxes 

Explainable AI (XAI) refers to the set of techniques and 

methodologies employed in artificial intelligence systems to 

enhance the transparency and comprehensibility of their 

decision-making processes [55]. In the context of river level 

detection using Grad-CAM (Gradient-weighted Class 

Activation Mapping), XAI serves as a pivotal tool for 

understanding how the AI model arrives at its predictions 

regarding river levels. Grad-CAM specifically highlights the 

regions of an image that are most influential in the model’s 

decision-making process, thereby providing valuable insights 

into the features or patterns it deems significant for identifying 

river levels. By visualizing these salient regions, stakeholders 

can gain a deeper understanding of the AI model’s reasoning, 

enabling them to assess its reliability, identify potential biases 

or errors, and make more informed decisions based on the 

detected river levels. 

On the other hand, detection of river levels with bounding 

boxes involves the localization and identification of water 

bodies within images or video frames using predefined 

rectangular regions, known as bounding boxes. This approach 

typically employs object detection algorithms trained on 

annotated datasets to automatically identify and delineate the 

boundaries of rivers or watercourses in visual data. By 

outlining the spatial extent of river bodies with bounding 

boxes, this method facilitates precise localization and 

measurement of river levels, enabling accurate monitoring and 

assessment of water levels over time. Additionally, bounding 

box-based detection provides a standardized framework for 

analyzing river dynamics and facilitating downstream 

applications such as flood forecasting, water resource 

management, and environmental monitoring. 
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The integration of Grad-CAM within our ensemble deep 

learning model significantly enhances its explainability, 

providing a transparent visual account of which image features 

influence the predictive decisions. This is especially crucial in 

applications such as river level monitoring, where 

understanding the basis of model predictions can directly 

impact operational safety and response strategies. For instance, 

by highlighting areas within river images that are most 

indicative of rising water levels, Grad-CAM allows emergency 

management teams to visually verify and understand the 

predictions made by the AI, fostering trust and facilitating 

more informed decision-making during flood events. This 

transparency is not just beneficial for immediate response but 

also aids in the iterative improvement of the models by 

pinpointing any recurrent inaccuracies or biases in the visual 

data interpretation. 

In terms of practical implementation, bounding boxes are 

used to refine our model's ability to accurately locate and 

quantify river levels. These bounding boxes are calibrated to 

encompass key features within the river images, such as the 

water's edge or landmarks that correlate with specific water 

levels. The process involves training the model on annotated 

datasets where the bounding boxes are pre-defined around the 

relevant features. This training enables the model to not only 

recognize these features in new images but also to accurately 

place bounding boxes in real-time monitoring scenarios, 

providing a clear and actionable output that can be readily used 

by authorities for assessing flood risks and managing water 

resources. For example, during a pilot study, the application of 

bounding boxes in conjunction with Grad-CAM provided clear 

visual evidence of predictive reliability across varying 

conditions, substantially aiding in the validation and 

refinement of flood forecasting models. These techniques 

collectively ensure that the model's outputs are both 

interpretable and directly applicable to the complex dynamics 

of water level management, underscoring their indispensable 

role in enhancing the safety and efficacy of hydrological 

monitoring systems. 

IV. EXPERIMENT RESULTS 

A. Evaluation Metrics 

When assessing models’ performance in the detection of                   

river levels, several critical metrics apply [56]. Accuracy, 

which indicates the percentage of total predictions made 

correctly, provides a broad measure of the model 

effectiveness. Precision is an important measure of how 

correct positive predictions are, representing the ability of the 

model to identify actual changes in river levels without 

labeling normal conditions as a change. Recall or sensitivity 

is an assessment of model’s ability to capture all actual 

positive river level changes, and it is particularly critical for 

early warning systems as missing a true change can have fatal 

outcomes. The F1 score eliminates the need to choose 

between precision and recall by offering a balanced measure 

of the model effectiveness, especially in the situation of high 

cost of false negatives and false positives. In combination, 

these measures develop an effective evaluation framework 

and let researchers further refine models for an adequate 

detection of river levels [57]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

B. Error Analysis 

In our evaluation of model performance in detecting river 

levels, we identified two primary types of errors: false 

positives and false negatives. False positives typically 

occurred when models predicted changes in river levels 

where none existed, often influenced by varying lighting 

conditions that affected the visual clarity of the images. For 

example, certain models misclassified shadows on the water 

as changes in depth due to the angle of sunlight, particularly 

in late afternoon images. On the other hand, false negatives, 

which represent a failure to detect actual changes in water 

levels, posed a more significant risk. These were frequently 

observed during conditions of low light or when the camera's 

view was obstructed by debris or floating vegetation. 

The implications of these errors are critical, especially 

considering the potential for severe consequences in flood 

monitoring applications. False negatives could lead to 

inadequate responses to rising water levels, while false 

positives might cause unnecessary alarms, leading to alert 

fatigue among the population. 

To address these issues, we propose several corrective 

measures. Enhancing the preprocessing of images to better 

handle variations in lighting and visual obstructions could 

reduce the number of false positives. This might include 

techniques such as dynamic range adjustment or adaptive 

histogram equalization. For reducing false negatives, 

expanding the training dataset to include more varied 

conditions, such as low-light scenarios and obstructed views, 

could help improve the models' accuracy. Additionally, 

integrating other types of sensory data, like water turbidity 

and flow rate measurements, could provide a more holistic 

view of the environment, thereby improving the reliability of 

the predictions and reducing the dependency on visual data 

alone. 

C. Enhanced Model Analysis 

In addressing the inherent uncertainties in predictive 

modeling, we have integrated uncertainty estimation 

techniques into our ensemble learning approach. Specifically, 

we employed Bayesian inference methods and dropout 

regularization to quantify the confidence levels of our 

predictions. This integration allows us to not only predict 

river water levels but also to understand the probability 

distribution of these predictions, offering a crucial advantage 

for decision-making in scenarios where the stakes of 

prediction errors are high. For instance, in flood forecasting, 

knowing the uncertainty range helps in planning and response 

strategies, providing a buffer for error that can be crucial for 

evacuation timings and resource allocation. 
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Moreover, the computational demands of our models, 

particularly those using advanced neural architectures like 

ResNet152 and InceptionV3, were thoroughly analyzed to 

assess their viability in various operational settings. These 

models, while providing high accuracy, require significant 

computational resources which may not be feasible in 

resource-constrained environments. To mitigate this, we 

explored model optimization strategies such as network 

pruning and quantization, which effectively reduced the 

computational load without a substantial decrease in 

performance. This optimization is vital for deploying these 

models in real-time applications where rapid processing is 

essential, such as in systems installed in remote areas with 

limited hardware capabilities. 

Lastly, the choice of evaluation metrics—accuracy, 

precision, recall, and F1-score—was deliberately aligned 

with the specific challenges of river water level monitoring. 

Each metric offers insights into different aspects of model 

performance that are critical in this context. Accuracy 

provides a general sense of overall performance, but alone it 

is insufficient for operational use where the consequences of 

false positives and false negatives can vary drastically. 

Precision is crucial in minimizing false alarms, which can 

lead to desensitization to warnings, while recall is essential to 

ensure all significant changes in water levels are detected, 

preventing possible oversights in flood detection. The F1-

score harmonizes these aspects, offering a single measure that 

balances both precision and recall, thus reflecting the model's 

practical effectiveness in a real-world monitoring scenario. 

This nuanced understanding of metrics underscores our 

commitment to not only developing robust AI models but 

also ensuring their practical applicability and reliability in 

critical environmental monitoring tasks. 

D. Evaluation of Transfer Learning River Water Level 

Approach 

The evaluation of the River Water Level Detection 

Approach using deep learning models showcases a notable 

performance distinction among the architectures tested, 

particularly high- lighting InceptionV3, MobileNet, and 

Xception as the front runners in achieving the highest results 

in terms of accuracy, recall, precision, and F1-score. Among 

these, InceptionV3 stands out with an exemplary accuracy of 

99.4167%, closely mirroring its recall at 99.4128% and 

precision at 99.4204%, culminating in an F1-score of 

99.4159%. This remarkable performance indicates a highly 

reliable model capable of accurately identifying river water 

levels with minimal error, evidenced by only 7 instances of 

inaccuracies. 

Following closely is MobileNet, demonstrating a 

commend- able accuracy of 99.3333% alongside a recall of 

99.3158% and a precision of 99.3520%, which translates to 

an F1-score of 99.3308%. With just 8 errors, MobileNet 

proves to be almost as effective as InceptionV3 in predicting 

water levels, showcasing the efficiency of lightweight models 

in handling complex environmental data. 

Xception, while slightly trailing behind, still presents 

strong results with an accuracy of 98.75%, a recall of 

98.7541%, and a precision of 98.7871%, leading to an F1-

score of 98.7645% with 15 errors. This performance 

reinforces the capability of Xception in accurately classifying 

river water levels, albeit with a slightly higher margin of error 

compared to InceptionV3 and MobileNet. 

In comparison, VGG16 and ResNet152 show a marked 

drop in performance. VGG16 achieves an accuracy of 

93.6667%, a recall of 93.7908%, and a precision of 

94.2322%, resulting in an F1-score of 93.5875% with 76 

errors. ResNet152, on the other end of the spectrum, records 

a significantly lower accuracy of 70.0833%, a recall of 

69.7253%, a precision of 74.3915%, and an F1-score of 

69.5961% with 359 errors, indicating considerable room for 

improvement in river level detection tasks. 

This comparison elucidates the advanced capabilities of 

InceptionV3, MobileNet, and Xception in river water level 

detection, with InceptionV3 slightly edging out as the top 

performer, offering near-perfect detection capabilities that 

are crucial for monitoring and managing water resources 

effectively. 

E. Evaluation of Ensemble Learning River Water Level 

Approach 

The confusion matrix presented in Fig. 4 indicates a 

sophisticated evaluation of the River Water Level Detection 

Approach when applying an ensemble learning method. The 

ensemble model, which aggregates the decision-making 

process of multiple individual models, demonstrates 

exceptional performance with remarkably high metrics (Fig. 

5). Achieving an accuracy of 99.58%, it successfully 

classified nearly all the test samples correctly, missing only a 

minuscule fraction as denoted by the number of errors which 

stands at just 5 (Fig. 6). 

 

Fig. 4. Confusion matrix of ensemble learning 

Precision, a measure of the model’s ability to label true 

positives out of all positive labels, is equally high at 99.59%, 

suggesting that almost every instance predicted by the model 

as a particular class was indeed of that class. The recall, or 

the model’s ability to find all the actual positives, mirrors the 

high precision with a score of 99.58%, indicating the model’s 

adeptness at capturing most of the true cases of varying water 

levels without leaving many unaccounted for. 
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Fig. 5. Comparison with accuracy 

 

Fig. 6. Comparison with number of errors 

The F1 Score, which balances the precision and recall, 

stands at 99.58%, underscoring the model’s well-rounded 

performance in classifying river water levels accurately (Fig. 

7). Such a score is indicative of the model’s reliability, 

particularly in applications where the cost of a 

misclassification could be significant. The ensemble 

approach’s potency is further illustrated by the distribution of 

predictions across the confusion matrix, showcasing a strong 

diagonal of true positives across the three classes and very 

few misclassifications. 

Fig. 8 a radar chart comparing the performance of 

ensemble learning and ResNet152 across different evaluation 

metrics for river water level detection. The radar chart 

indicates that the ensemble method scores higher exceeding 

the ResNet152 radar chart which is represented by a fuller 

expansive coverage of the radar boundaries. The ensemble 

method indicators remarkably score past an F1-score, recall, 

precision and accuracy of 0.995, which confirms its 

consistency and reliability to make features since the errors 

are 5. On the other hand, Resnet152 metrics are way low 

across these indicators with all of them relatively close to 0.7 

with an error of 359. Such a visual representation of 

comparison proves that the ensemble method performs better 

in the sophisticated issue of water level classification (Table 

I and Table II). 

 

Fig. 7. Comparison results 

 

Fig. 8. Comparison results 

TABLE I.  EVALUATION OF RIVER WATER LEVEL PREDICTION APPROACHES 

Method Accuracy Precision Recall F1-Score Number of Errors 

Ensemble Learning 0.995833 0.995762 0.995929 0.995838 5 

Inception 0.994167 0.994128 0.994204 0.994159 7 

MobileNet 0.993333 0.993158 0.993520 0.993308 8 

Xception 0.987500 0.987541 0.987871 0.987645 15 

TABLE II.  EVALUATION OF ENSEMBLE LEARNING RIVER WATER LEVEL PREDICTION APPROACHES 

Method Accuracy Precision Recall F1-Score Number of Errors 

Inception 0.994167 0.994128 0.994204 0.994159 7 

MobileNet 0.993333 0.993158 0.993520 0.993308 8 

Xception 0.987500 0.987541 0.987871 0.987645 15 

VGG16 0.936667 0.937908 0.942322 0.935875 76 

ResNet152 0.700833 0.697253 0.743915 0.695961 359 
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F. Interpreting and Explaining the Detection of River 

Water Levels 

Bounding box and Gradient-weighted Class Activation 

Mapping (Grad-CAM) techniques are crucial tools for 

interpreting and explaining the detection of river water levels 

within the realm of image processing and computer vision. 

The bounding box method involves drawing rectangles over 

the regions of interest within an image, effectively marking 

the exact location of water levels in the context of river 

monitoring. This provides a clear visual cue for identifying 

and delineating the relevant water body segments in a given 

image, which is particularly helpful for validation and 

subsequent analysis. 

The three figures presented provide visual interpretations 

of river water levels, classified into categories A, B, and C, to 

demonstrate varying conditions assessed by the model. In 

Fig. 9, class A is predicted, typically indicative of a high-

water level scenario, where the bounding box encapsulates 

debris accumulation against the bridge structure—an 

alarming sign of potential flooding. The image timestamped 

with a high- contrast daytime setting allows for clear 

visualization of the risk factors associated with elevated water 

levels. 

 

Fig. 9. High water level detection - class A prediction 

The Fig. 10 shows class B being predicted, which 

corresponds to a water level that is rising gradually. The 

bounding box here focuses on a water gauge, with the water 

visibly reaching higher but not yet critical marks on the 

gauge. This scenario suggests a developing situation that may 

necessitate monitoring for possible escalation. 

 

Fig. 10. Rising water level detection - class B prediction 

In the Fig. 11, class C is predicted, denoting a normal or 

baseline river water level. The bounding box is drawn around 

the gauge in a low-visibility, possibly nocturnal setting, 

highlighting the ability of the model to discern water levels 

even in challenging lighting conditions. The gauge’s 

markings appear to be within safe parameters, suggesting a 

non-critical state. 

 

Fig. 11. Normal water level detection - class C prediction 

These figures collectively illustrate the model’s capability 

to accurately classify and visually represent different states of 

river water levels through image analysis, a crucial function 

for real-time environmental monitoring and disaster 

prevention efforts. The bounding boxes serve as a direct 

method of highlighting the areas of interest that inform the 

model’s predictions, providing a transparent and explainable 

AI approach. Grad-CAM, on the other hand, offers a heatmap 

visualization based on the gradients of the target concept 

flowing into the final convolutional layer, highlighting the 

important regions in the image for predicting the class. In the 

case of river water level detection, Grad-CAM can illuminate 

the specific areas of the image that the model is focusing on 

to determine the water level. This not only increases the 

transparency of the model’s decision-making process but also 

aids in fine-tuning the model by providing insight into its 

focus areas, potentially guiding further improvements in 

model accuracy. 

The figures presented effectively demonstrate the 

application of the Grad-CAM technique for visualizing the 

neural network’s focus areas while classifying different river 

water levels into classes A, B, and C. In each figure, the left 

side displays the original image captured from river 

surveillance, while the right side exhibits the corresponding 

Grad-CAM heatmap overlay. 

For Class A (Fig. 12), indicative of high-water levels, the 

Grad-CAM heatmap illuminates areas with significant debris 

accumulation near the bridge structure, pinpointing regions 

contributing to the high-level classification. The high degree 

of activation in these regions suggests that the model is 

correctly identifying the visual cues associated with potential 

flooding scenarios. 
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Fig. 12. Grad-CAM visualization for high water level detection - class A 

Class B (Fig. 13), which represents gradually rising water 

levels, shows the Grad-CAM heatmap highlighting the water 

gauge section of the bridge. The model’s attention is 

concentrated around the numerical indicators on the gauge, 

where the subtle rise in water level is beginning to approach 

a point of concern. 

 

Fig. 13. Grad-CAM visualization for normal water level detection - class B 

In the Class C prediction (Fig. 14), depicting a normal 

water level, the Grad-CAM heatmap indicates lower 

activation across the gauge, consistent with a standard, 

unalarming water level. 

Even in the lower visibility conditions, presumably at 

night, the model adeptly focuses on the crucial sections of the 

gauge, demonstrating its effectiveness in various lighting 

conditions. 

 

Fig. 14. Grad-CAM visualization for normal water level detection - class C 

These figures underscore the Grad-CAM’s utility in 

explaining model predictions by revealing which areas of the 

image are most influential in the classification process, 

providing valuable insights into the model’s decision-making 

and ensuring the trustworthiness of its predictions in real-

world river monitoring applications. 

G. Comparison Results with Existing works 

In the landscape of hydrological research, the need for 

precise water level monitoring is unequivocal, driving the 

development of innovative approaches that leverage 

advanced machine learning techniques. Our proposed model, 

utilizing an ensemble of neural networks, stands as a notable 

contribution to this field, achieving exceptional accuracy and 

reliability in classifying water levels from river imagery. 

The efficacy of our model, which applies hard voting 

ensemble learning, is underscored by a set of superior 

performance metrics. With an accuracy of 99.5833%, 

precision of 99.5929%, recall of 99.5762%, and an F1 score 

of 99.5838%, it marks a significant improvement in error 

reduction with only 5 discrepancies noted. This is in stark 

contrast to the findings in Xu et al. [37], where the CNN-

LSTM model, while impressive, showed a slight 

underperformance with Nash- Sutcliffe efficiency and Kling-

Gupta efficiency values just exceeding 0.995, and a root 

mean square error and symmetric mean absolute percentage 

error under 0.200. Although highly effective, the CNN-

LSTM model does not match the near- perfect scores of our 

ensemble approach. 

Furthermore, our model significantly outperforms the 

water level recognition method presented by Dou et al. [38], 

which achieved an accuracy of 94.6% using CNNs for digital 

image processing. While their method showcased a notable 

leap from conventional template matching algorithms, the 

near 25% increase in accuracy we obtained sets a new 

benchmark. 

Additionally, the automated system described by Cai et 

al. [30] for detecting dammed lake disasters, though 

innovative, achieved an 89.29% accuracy, which is 

commendable but still falls short when compared to the 

precision of our model. Their hybrid segmentation algorithm, 

while bypassing the need for manual seed point selection, did 

not reach the high standards of accuracy we attained. 

Lastly, the real-time analysis method utilized by Chen et 

al. [32] to monitor water levels using CCTV footage and grid- 

based analysis obtained accuracy rates ranging from 83.6% 

to 96%. These results, while practical for live monitoring, 

highlight the challenge of achieving high accuracy across all 

weather conditions—a challenge that our model addresses 

with its robust ensemble learning method. 

When compared to the related works as in Table III, our 

model not only sets a new high standard for accuracy but also 

demonstrates the potential of ensemble learning methods in 

significantly reducing the number of errors in water level 

detection. This indicates a promising future for employing 

such sophisticated machine learning strategies in critical 

environmental monitoring and resource management 

applications. 

TABLE III.  COMPARISON OF WATER LEVEL DETECTION METHODS 

Research Model Type Accuracy 

Xu et al. [37] CNN-LSTM > 99.5 

Dou et al. [38] CNN 94.6% 

Cai et al. [30] Hybrid Algorithm 89.29% 

Chen et al. [32] Real-Time CCTV 83.6-96% 

Our Proposed Model Ensemble Learning 99.5833% 

 

V. CONCLUSION 

Water level monitoring remains an indispensable aspect            

of environmental management, essential for sustaining bio- 

diversity, agriculture, and human habitation [58][59]. The 

proposed model represents a significant advancement in the 

automated classification of river images, providing an 

efficient and ac- curate means of assessing water levels. It 
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hinges on a pre- processing regimen that ensures image 

uniformity and enhances the dataset, followed by leveraging 

the sophisticated feature extraction capabilities of pre-trained 

networks such as InceptionV3, VGG16, Xception, 

MobileNet, and ResNet152 through transfer learning. The 

introduction of an ensemble voting system, particularly hard 

voting, further refines the model’s accuracy by amalgamating 

the predictive prowess of individual models into a cohesive 

decision-making process. The ensemble model achieves a 

stellar accuracy of 99.5833%, precision of 99.5929%, recall 

of 99.5762%, and an F1 score of 99.5838%, with only 5 

errors noted across the evaluations. These figures represent a 

benchmark in water level detection, demonstrating the 

model’s superior capability to identify and classify water 

levels with high reliability. Such a system can be instrumental 

in early flood warning mechanisms, contributing to disaster 

preparedness and mitigation efforts. 

Future work will aim to boost the model’s accuracy by 

including datasets with a wider variety of hydrological 

conditions and implementing the model for real-time data 

analysis. Upcoming research will also test cutting-edge 

neural network designs and learning methods to refine the 

model further. Additionally, the model’s applicability to 

water quality as- assessment and ecosystem monitoring will 

be explored [60 -63]. Efforts to enhance the model’s 

computational efficiency for use in resource-constrained 

environments are also planned, extending the benefits of this 

technology to more isolated regions. 

In addressing the limitations inherent in our approach, it 

is crucial to recognize that while the model showcases 

exemplary performance metrics, these results are derived 

under controlled conditions that may not fully replicate the 

dynamic complexities of natural environments. The 

generalizability of the model across different geographical 

regions and varied river conditions remains an area for further 

validation. Moreover, the interpretability of the model's 

decisions, crucial for ensuring trust and transparency, 

especially in critical applications, needs more thorough 

exploration. The Grad-CAM visualization, although useful, 

provides only a surface-level insight into model reasoning, 

and deeper analysis is necessary to fully understand the 

underlying decision processes. Such enhancements in model 

transparency and understanding will not only foster greater 

confidence in the predictions but also enable stakeholders to 

make more informed decisions in managing water resources 

and responding to environmental challenges. This discussion 

points towards a continuous cycle of evaluation and 

refinement, underscoring the need for ongoing research and 

development to maintain and improve the efficacy and 

reliability of water level detection systems. 

REFERENCES 

[1] F. Lin, Z. Yu, Q. Jin, and A. You, “Semantic segmentation and scale 

recognition–based water-level monitoring algorithm,” Journal of 
Coastal Research, vol. 105, pp. 185–189, 2020. 

[2] S.-W. Lo, J.-H. Wu, F.-P. Lin, and C.-H. Hsu, “Visual sensing for 
urban flood monitoring,” Sensors, vol. 15, no. 8, pp. 20 006–20 029, 
2015. 

[3] U. Iqbal, P. Perez, W. Li, and J. Barthelemy, “How computer vision 
can facilitate flood management: A systematic review,” International 
Journal of Disaster Risk Reduction, vol. 53, p. 102030, 2021. 

[4] C. X. Hui, G. Dan, S. Alamri, and D. Toghraie, “Greening smart 
cities: An investigation of the integration of urban natural resources 

and smart city technologies for promoting environmental 

sustainability,” Sustainable Cities and Society, vol. 99, p. 104985, 
2023. 

[5] M. I. H. Z. Farouk, Z. Jamil, and M. F. A. Latip, “Towards online 

surface water quality monitoring technology: A review,” 
Environmental Research, p. 117147, 2023. 

[6] S. S. Al-Hasnawi, “Water quality index of tanjero river basin near 
sulaymania city,” Al-Mustansiriyah J. Sci. Res, vol. 23, pp. 193–200, 
2012. 

[7] S. H. Halos and S. Mahdi, “Effect of climate change on spring massive 
sand/dust storms in iraq,” Al-Mustansiriyah Journal of Science, vol. 32, 
no. 4, pp. 13–20, 2021. 

[8] S. H. Ewaid, T. D. Hussein, and F. K. Emran, “Fuzzy logic inference 

index to assess the water quality of tigris river within baghdad city,” 
Al-Mustansiriyah Journal of Science, vol. 29, no. 3, pp. 16–20, 2018. 

[9] C. Sweetapple, J. Webber, A. Hastings, and P. Melville-Shreeve, 

“Realising smarter stormwater management: A review of the barriers 

and a roadmap for real world application,” Water Research, p. 120505, 

2023. 

[10] G. Zheng and H. Zong, “High accuracy surface perceiving water 
level gauge with self calibration,” in 2009 International Conference on 
Mechatronics and Automation, pp. 3680–3686, 2009. 

[11] D. A. Segovia-Cardozo, L. Rodr´ıguez-Sinobas, F. Canales-Ide, and 

S. Zubelzu, “Design and field implementation of a low-cost, open- 

hardware platform for hydrological monitoring,” Water, vol. 13, no. 
21, p. 3099, 2021. 

[12] T. S. R. Pereira, T. P. de Carvalho, T. A. Mendes, and K. T. M. Formiga, 

“Evaluation of water level in flowing channels using ultrasonic 
sensors,” Sustainability, vol. 14, no. 9, p. 5512, 2022. 

[13] D. E. Alsdorf, E. Rodr´ıguez, and D. P. Lettenmaier, “Measuring 
surface water from space,” Reviews of Geophysics, vol. 45, no. 2, 
2007. 

[14] G. R. Brakenridge, S. V. Nghiem, E. Anderson, and S. Chien, “Space- 
based measurement of river runoff,” Eos, Transactions American Geo- 
physical Union, vol. 86, no. 19, pp. 185–188, 2005. 

[15] Z. Zhang, Y. Zhou, H. Liu, L. Zhang, and H. Wang, “Visual measurement 

of water level under complex illumination conditions,” Sensors, vol. 
19, no. 19, p. 4141, 2019. 

[16] D. Scherer, C. Schwatke, D. Dettmering, and F. Seitz, “Icesat-2 based 

river surface slope and its impact on water level time series from 

satellite altimetry,” Water Resources Research, vol. 58, no. 11, p. 
e2022WR032842, 2022. 

[17] L.-C. Kuo and C.-C. Tai, “Automatic water-level measurement 
system for confined-space applications,” Review of Scientific 
Instruments, vol. 92, no. 8, 2021. 

[18] A. Royem, C. Mui, D. Fuka, and M. Walter, “Proposing a low-tech, 
affordable, accurate stream stage monitoring system,” Transactions of 
the ASABE, vol. 55, no. 6, pp. 2237–2242, 2012. 

[19] S. Etter, B. Strobl, I. van Meerveld, and J. Seibert, “Quality and timing 

of crowd-based water level class observations,” Hydrological 
processes, vol. 34, no. 22, pp. 4365–4378, 2020. 

[20] Z. Zhang, Y. Zhou, H. Liu, and H. Gao, “In-situ water level measurement 

using nir-imaging video camera,” Flow Measurement and 
Instrumenta- tion, vol. 67, pp. 95–106, 2019. 

[21] G. Chen, K. Bai, Z. Lin, X. Liao, S. Liu, Z. Lin, Q. Zhang, and 

X. Jia, “Method on water level ruler reading recognition based on 
image processing,” Signal, Image and Video Processing, vol. 15, pp. 
33–41, 2021. 

[22] J. Jamaludin, K. N. Z. Ariffin, and W. M. Wan Ahmad Kamil, 

“Advancements in monitoring water quality based on various sensing 

methods: a systematic review,” International Journal of 
Environmental Research and Public Health, vol. 19, no. 21, p. 14080, 
2022. 

[23] Y. Kim, H. Park, C. Lee, D. Kim, and M. Seo, “Development of a cloud- 
based image water level gauge,” IT Converg. Pract. (INPRA), vol. 
2 ,  no. 1, pp. 22–29, 2014. 

[24] K. Hiroi and N. Kawaguchi, “Floodeye: Real-time flash flood 

prediction system for urban complex water flow,” in 2016 IEEE 
sensors, pp. 1–3, 2016. 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1435 

 

Nisreen Tawfeeq, Advanced Ensemble Deep Learning Framework for Enhanced River Water Level Detection: Integrating 

Transfer Learning 

[25] L. Sabbatini, L. Palma, A. Belli, F. Sini, and P. Pierleoni, “A computer 
vision system for staff gauge in river flood monitoring,” Inventions, 

vol. 6, no. 4, p. 79, 2021. 

[26] R. Narayanan, V. Lekshmy, S. Rao, and K. Sasidhar, “A novel 
approach to urban flood monitoring using computer vision,” in Fifth 

International Conference on Computing, Communications and 
Networking Technolo- gies (ICCCNT), pp. 1–7, 2014. 

[27] S. Ansari, C. Rennie, E. Jamieson, O. Seidou, and S. Clark, “Rivqnet: 

Deep learning based river discharge estimation using close-range 
water surface imagery,” Water Resources Research, vol. 59, no. 2, p. 
e2021WR031841, 2023. 

[28] L. Kuswidiyanto et al., “Automatic water level monitoring system 
based on computer vision technology for supporting the irrigation 

modernization,” in IOP Conference Series: Earth and Environmental 
Science, vol. 686, no. 1, p. 012055, 2021. 

[29] J. Pan, Y. Yin, J. Xiong, W. Luo, G. Gui, and H. Sari, “Deep learning- 

based unmanned surveillance systems for observing water levels,” 
IEEE Access, vol. 6, pp. 73 561–73 571, 2018. 

[30] Z. Cai et al., “Automatic monitoring alarm method of dammed lake 

based on hybrid segmentation algorithm,” Sensors, vol. 23, no. 10, p. 

4714, 2023. 

[31] G. Bai, J. Hou, Y. Zhang, B. Li, H. Han, T. Wang, R. Hinkelmann, 
D. Zhang, and L. Guo, “An intelligent water level monitoring method 
based on ssd algorithm,” Measurement, vol. 185, p. 110047, 2021. 

[32] J.-F. Chen, Y.-T. Liao, and P.-C. Wang, “Development and 

deployment of a virtual water gauge system utilizing the resnet-50 

convolutional neural network for real-time river water level 
monitoring: A case study of the keelung river in taiwan,” Water, vol. 
16, no. 1, p. 158, 2024. 

[33] F. Yang, T. Feng, G. Xu, and Y. Chen, “Applied method for water-
body segmentation based on mask r-cnn,” Journal of Applied Remote 
Sensing, vol. 14, no. 1, 2020. 

[34] J. B. Haurum, C. H. Bahnsen, M. Pedersen, and T. B. Moeslund, 

“Water level estimation in sewer pipes using deep convolutional neural 
networks,” Water, vol. 12, no. 12, p. 3412, 2020. 

[35] S.-S. Baek, J. Pyo, and J. A. Chun, “Prediction of water level 

and water quality using a cnn-lstm combined deep learning approach,” 
Water, vol. 12, no. 12, p. 3399, 2020. 

[36] G. Qiao, M. Yang, and H. Wang, “A water level measurement 
approach based on yolov5s,” Sensors, vol. 22, no. 10, p. 3714, 2022. 

[37] Y. Xu, C. He, Z. Guo, Y. Chen, Y. Sun, and Y. Dong, “Simulation of 

water level and flow of catastrophic flood based on the cnn-lstm 
coupling network,” Water, vol. 15, no. 13, p. 2329, 2023. 

[38] G. Dou, R. Chen, C. Han, Z. Liu, and J. Liu, “Research on water-level 

recognition method based on image processing and convolutional 
neural networks,” Water, vol. 14, no. 12, p. 1890, 2022. 

[39] C.-H. Tsai. Real-time images of river in Taiwan. Harvard Dataverse, 
V1, 2020, https://doi.org/10.7910/DVN/8FDC7P. 

[40] A. P. Joshi and B. V. Patel, “Data preprocessing: the techniques for 

preparing clean and quality data for data analytics process,” Orient. J. 
Comput. Sci. Technol, vol. 13, pp. 78-81, 2021. 

[41] D. Singh and B. Singh, “Investigating the impact of data normalization 
on classification performance,” Applied Soft Computing, vol. 97, p. 
105524, 2020. 

[42] S. Yang, W. Xiao, M. Zhang, S. Guo, J. Zhao, and F. Shen, “Image 
data augmentation for deep learning: A survey,” arXiv preprint 

arXiv:2204.08610, 2022. 

[43] B. Vrigazova, “The proportion for splitting data into training and test 

set for the bootstrap in classification problems,” Business Systems 

Research: International Journal of the Society for Advancing 
Innovation and Research in Economy, vol. 12, no. 1, pp. 228-242, 
2021. 

[44] F. Zhuang et al., “A comprehensive survey on transfer learning,” 
Proceedings of the IEEE, vol. 109, no. 1, pp. 43-76, 2020. 

[45] C. Szegedy et al., “Going Deeper with Convolutions,” arXiv preprint 
arXiv: 1409.4842, 2014.  

[46] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks 

for Large-Scale Image Recognition,” arXiv preprint arXiv: 1409.1556, 
2014. 

[47] F. Chollet, “Xception: Deep Learning with Depthwise Separable 
Convolutions,” arXiv preprint arXiv: 1610.02357, 2016. 

[48] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural 
Networks for Mobile Vision Applications,” arXiv preprint arXiv: 
1704.04861, 2017. 

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for 
Image Recognition,” arXiv preprint arXiv: 1512.03385, 2015. 

[50] M. Atif, F. Anwer, and F. Talib, “An ensemble learning approach for 
effective prediction of diabetes mellitus using hard voting classifier,” 

Indian Journal Of Science And Technology, vol. 15, no. 39, pp. 1978-
1986, 2022. 

[51] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. 

Batra, “Grad-CAM: Visual Explanations from Deep Networks via 

Gradient-based Localization,” arXiv preprint arXiv: 1610.02391, 
2016. 

[52] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of 
convolutional neural networks: analysis, applications, and 

prospects,” IEEE transactions on neural networks and learning 
systems, vo. 33, no. 12, pp. 6999-7019, 2021. 

[53] L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao, "Normalization 

Techniques in Training DNNs: Methodology, Analysis and 

Application," in IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 45, no. 8, pp. 10173-10196, Aug. 2023. 

[54] A. Mumuni and F. Mumuni, "Data augmentation: A comprehensive 
survey of modern approaches," Array, vol. 16, p. 100258, 2022. 

[55] F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and J. Zhu, “Explainable 
AI: A brief survey on history, research areas, approaches and 

challenges,” in Natural language processing and Chinese computing: 

8th cCF international conference, NLPCC 2019, dunhuang, China, 
October 9–14, 2019, proceedings, part II 8, pp. 563-574, 2019. 

[56] R. Padilla, S. L. Netto, and E. A. B. da Silva, "A Survey on 

Performance Metrics for Object-Detection Algorithms," 2020 
International Conference on Systems, Signals and Image Processing 
(IWSSIP), pp. 237-242, 2020. 

[57] Ž. Vujović, “Classification model evaluation metrics,” International 

Journal of Advanced Computer Science and Applications, vol. 12, no. 
6, pp. 599-606, 2021. 

[58] C. Z. Zulkifli et al., “IoT-based water monitoring systems: a systematic 
review,” Water, vol. 14, no. 22, p. 3621, 2022. 

[59] S. Kossieris, V. Tsiakos, G. Tsimiklis, and A. Amditis, “Inland Water 

Level Monitoring from Satellite Observations: A Scoping Review of 

Current Advances and Future Opportunities,” Remote Sensing, vol. 16, 
no. 7, p. 1181, 2024. 

[60] J. O. Ighalo and A. G. Adeniyi, “A comprehensive review of water 

quality monitoring and assessment in Nigeria,” Chemosphere, vol. 
260, p. 127569, 2020. 

[61] M. H. Al-Tai, B. M. Nema, and A. Al-Sherbaz, "Deep learning for fake 
news detection: Literature review," Al-Mustansiriyah Journal of 
Science, vol. 34, no. 2, pp. 70-81, 2023. 

[62] S. Ali, J. H. Al’Ameri, and T. Abbas, "Real Time E-learning Students 
Monitoring for Optimization Facial Landmark Recognition Based on 

Hybrid Deep Learning Techniques," Full Length Article, vol. 10, no. 2, 
2023. 

[63] N. M. Khassaf and S. H. Shaker, "Image Retrieval based Convolutional 

Neural Network," Al-Mustansiriyah Journal of Science, vol. 31, no. 4, 
pp. 43-54, 2020. 

 


