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Abstract—In response to the escalating demand for robust 

security solutions in increasingly complex Internet of Things 

(IoT) networks, this study introduces an advanced Intrusion 

Detection System (IDS) leveraging both deep learning and active 

learning techniques. This research addresses the unique 

challenges posed by IoT environments, such as limited resources 

and diverse network components, which traditional security 

measures fail to adequately protect. Employing a BiLSTM 

model integrated with an active learning strategy, our approach 

achieved impressive results, including precision, recall, and F1-

scores close to 1, and a total accuracy of 0.99. The inclusion of 

active learning enables the IDS to focus on the most informative 

data subsets, enhancing processing efficiency and reducing 

computational demands essential for IoT contexts. This method 

demonstrates significant promise for detecting sophisticated 

cyber threats and providing an effective tool for real-world 

applications. The performance of the proposed model has been 

rigorously validated on well-established cybersecurity datasets 

and through simulations in an IoT network environment, 

confirming its scalability and efficiency. Future work will 

address potential limitations such as computational demands 

and adaptability to diverse IoT device architectures, ensuring 

broader applicability and robustness of the IDS in varied IoT 

scenarios. 

Keywords—Internet of Things (IoT); Intrusion Detection 

System; Active Learning; Deep Learning; Bidirectional Long 

Short-Term Memory. 

I. INTRODUCTION 

The rapid proliferation of Internet of Things (IoT) 

technology across both domestic and industrial sectors 

underscores the critical importance of robust network 

security [1]. IoT devices, characterized by their limited 

memory, low energy capacity, and bandwidth constraints, 

present unique challenges [3][4]. Furthermore, the expansive 

and dynamic nature of IoT networks renders traditional 

security measures ineffective, necessitating innovative 

solutions [2][3]. 

Recognizing these challenges, recent academic 

advancements propose a novel approach to fortifying IoT 

security through the integration of active learning and deep 

learning techniques [5][6]. These methods are poised to 

transform next-generation intrusion protection technologies 

by addressing the specific vulnerabilities inherent in IoT 

environments. 

IoT networks enable a broad range of functionalities, 

from simple home automation to intricate industrial systems, 

significantly increasing the number of connected devices and, 

consequently, the potential surface for cyber threats [2][3]. 

Traditional security solutions, designed for more static 

network environments, fall short in the face of the diverse and 

evolving nature of IoT ecosystems [2][4]. Moreover, the 

sophistication of attack vectors employed against IoT 

networks continues to grow, allowing attackers to exploit 

vulnerabilities more effectively [3][4]. 

In response to these challenges, there has been significant 

progress in machine learning and deep learning. Models such 

as convolutional neural networks (CNNs) and multi-layer 

perceptrons (MLPs) have demonstrated their capability to 

detect patterns and anomalies effectively, which are crucial 

for identifying security threats [6][8]. However, the practical 

application of these models in IoT security must take into 

account their computational complexity and the operational 

constraints of IoT devices [5][6]. 

To address these considerations, our methodology 

employs an active learning mechanism that selectively 

processes the most informative data points from a given 

dataset [7][9]. This strategy is particularly effective in IoT 

settings, where data reduction and minimal system stress are 

paramount. The integration of active learning with deep 

learning enables our Intrusion Detection System (IDS) to 

adapt to evolving threats and anomalous behaviors 

dynamically, without the need for retraining the entire dataset 

[9]. 

At the heart of our approach is a novel hybrid IDS, which 

combines CNNs and MLPs within an active learning 

framework [10][11]. This model continuously learns from 

network traffic and user activities specific to IoT 

environments, focusing on anomalies so rare they are likely 

indicative of security threats [11][12]. The active learning 

component enhances the model's accuracy over time without 

necessitating frequent retraining on large datasets, thus 

avoiding system overload [10][12]. 

Our IDS has been rigorously trained and validated using 

established cybersecurity datasets like NSL-KDD [13] and 

BoT-IoT [14], which encompass a variety of attack scenarios. 

These datasets provide a solid foundation for testing our IDS 

in controlled, real-world conditions [15][16]. Additionally, 

we have simulated an IoT network environment to evaluate 

how the IDS performs in real-time intrusion detection and 

assess its compatibility with the constraints of IoT devices 

[10][11][16][17]. 

We anticipate that our deep learning and active learning-

based IDS will significantly improve the detection of 

advanced cyber threats within IoT networks. By prioritizing 
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the learning and response to rare but critical incidents, our 

system offers a scalable, efficient, and effective solution 

tailored for the unique requirements of modern IoT 

infrastructures [18][20]. This research not only enhances IoT 

security but also serves as a benchmark for future 

advancements in cybersecurity for interconnected devices 

[19][20]. 

The research contribution in our article is as follows: 

- Introduces a novel Intrusion Detection System (IDS) that 

integrates Bidirectional Long Short-Term Memory 

(BiLSTM) networks with active learning techniques. This 

innovative approach addresses the dynamic and resource-

constrained nature of IoT environments by enhancing 

intrusion detection accuracy while minimizing 

computational demands. 

- Presents a thorough evaluation of the proposed IDS using 

the diverse ToN_IoT dataset, which encompasses a wide 

range of real-world cyber-attack scenarios. This 

validation highlights the robustness and scalability of the 

model in practical IoT settings. 

- Demonstrates the effective use of active learning to 

efficiently manage and label data amidst evolving cyber 

threats, offering a more adaptable and resource-efficient 

solution for IoT security. 

The structure of the article is designed to provide a 

comprehensive examination of the proposed IDS and its 

effectiveness in IoT environments. It begins with a review of 

relevant literature in the RELATED WORKS section, setting 

the context and identifying gaps addressed by this study. The 

METHODOLOGY section details the dataset overview, data 

preprocessing techniques, and the core components of the 

BiLSTM model and active learning approach, culminating in 

the integration of these methods. The EVALUATION 

METRICS section outlines the criteria used to assess the 

model's performance. EXPERIMENTAL RESULTS 

presents the findings from both the standalone BiLSTM 

model and the combined BiLSTM with active learning. The 

COMPARATIVE ANALYSIS evaluates the proposed model 

against existing approaches. The DISCUSSION interprets the 

results and their implications, while the CONCLUSION 

summarizes the key contributions and suggests future 

directions for research. 

II. RELATED WORKS  

This paper [21] explores the integration of active learning 

strategies in online intrusion detection systems (IDSs) to 

optimize labeling costs without compromising classification 

performance. The authors leverage machine learning 

techniques, particularly focusing on a lightweight Naive 

Bayes classifier, to distinguish between benign and malicious 

network flows. They challenge the conventional belief that 

more data always results in better performance, showing 

instead that a well-curated subset of data can significantly 

enhance performance. Employing an active learning 

approach, they compare the Least Confidence strategy 

against their proposed method. Both methods begin with 5% 

of the training set, adapting the inclusion of data based on 

network flow characteristics. The results indicate their 

method achieves a maximum AUC score of 90%, 

outperforming the Least Confidence strategy by 5%. The 

study demonstrates that optimal performance is achieved 

when approximately 10% of the training data is used, 

suggesting a smaller, more precise subset of training data is 

more effective than a larger, less targeted set. 

This paper [22] explores the increasing problem of 

technology security in the era of the Internet of Things and 

suggests machine learning as an opportunity for improving 

the security of the IoT network. The study uses machine 

learning and deep learning approaches for addressing security 

gaps in detecting various types of attacks on the IoT network. 

In particular, the paper investigates the detection of Denial-

of-Service attacks using deep learning. The study applies 

Python with the following packages scikit-learn, 

TensorFlow, and seaborn to compare algorithm performance 

in detecting different types of attacks.  

The findings indicate that the deep learning model, and 

especially Convolutional Neural Network, has a high 

performance across different metrics, including AUC for 

different types of attacks. For example, the AUC scores for 

CNN model reach 0.98 and higher for DoS attack type, 

reconnaissance type, and normal traffic, which means that 

CNN model detects potential threats with 98% accuracy. The 

research implication for practice implies that the security of 

IoT networks can significantly benefit from deep learning’s 

algorithms, which increase performance by detecting 

potential threats much more precisely, making possible to 

organize effective attack mitigation strategies. 

This paper [23] presents a novel approach to intrusion 

detection systems in IoT networks. Existing systems have 

shown to lack Multiview feature fusion and have an 

inadequate semantic relationship capture. This results in 

reduced performance or robustness and in addressing real-

time attack detection. The method aims to maximize IDS 

using deep learning and knowledge graph technology. In this 

process, through knowledge graph and statistical analysis, 

semantic relationships and key features are extracted to 

convert IoT network requests into word vectors through 

Multiview feature fusion and fusion. To identify malicious 

request attacks, an attention-based CNN-BiLSTM model that 

can capture long-distance dependencies and context 

semantics is used. The proposed model’s performance is 

superior to existing ones in terms of robustness, feature 

selection, accuracy, and the ability to reduce false alarm rates. 

Thus, the IDS can achieve an accuracy of 90.01%, accurately 

identify various types of stealthy attacks such as DoS and 

Probe R2L, U2L, and extract semantic relationships between 

features. The precision, recall, and F1-score metrics show 

that proposed approach can accurately identify relationships, 

normal, and DoS attack patterns. Hence, the proposed work 

can improve the security of IoT networks. 

This paper [24] presents a novel approach to the intrusion 

detection system that is specialized for IoT networks and 

utilizes advanced deep learning methodologies to strengthen 

existing means of cybersecurity protection. More 

specifically, this approach utilizes Feed Forward Neural 

Networks, Long Short-Term Memory and Random Neural 

Networks to detect and reduce the flood of different types of 

cyberattacks aimed at the IoT. In particular, each of these 
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deep learning models has the following strengths: FFNN is 

very good at complex patterns of traffic, LSTM has access to 

long-term dependencies of data in a network, and Random 

Neural Networks can easily learn new things about every 

threat that appears due to its dynamic learning. The IDS was 

tested against the CIC-IoT22 dataset, which resulted in IDS 

being able to detect the intrusions with 99.93%, 99.85% and 

96.42% accuracy for FFNN, LSTM and RandNN, 

respectively. The importance of these findings is related to 

the capability of the proposed deep learning-based approach 

to provide rapid responses to emerging security issues, 

thereby strengthening the security resilience of IoT networks. 

This paper [25] demonstrates a new method for Network 

Intrusion Detection based on multi-head attention and 

BiLSTM models. This model is designed to work with 

intrusion detection data sets with high-dimensional vectors 

and imbalanced categories. By using different attention 

weights to each of the vectors inside of the feature vector, 

based as the encoding of the detection attack type, the 

relationship is strengthened to achieve a better detection. Use 

of BiLSTM enables the capture long-range dependency 

features from BiLSTM and the better detection. When both 

models were combined, with a drop-out layer to prevent 

overfitting, the overall detection was significantly improved, 

while reducing overtraining when learning. As the 

experiment shows, this method is appropriate as the network 

intrusion detection model had accuracies of 98.29%, 95.19%, 

and 99.08% for KDDCUP99, NSLKDD, and CICIDS2017 

data set, respectively. In addition to outperforming the 

existing method, the result can be used to combat security 

threats and guarantee network security. 

This paper [26] proposes a novel IDS for IOT networks 

based on machine learning, and specifically on deep learning 

techniques Bi-LSTM and CNN. The BiILSTM-CNN hybrid 

IDS model Combines the benefits of temporal and spatial 

character extraction of the Bi-LSTM and CNN methods. An 

UNSW-NB 15 dataset is used to test the BiLSTM and CNN 

models individually to compare their performance with the 

hybrid model in terms of detection performance. Various 

performance measurement metrics like Sensitivity, Precision, 

Matthews Correlation Coefficient, and F1-Score indicate that 

the hybrid model is better than stand-by-alone BiLSTM and 

CNN models in every aspect.  

The hybrid model outperforms the existing state-of-the-

art approaches, proving that it can significantly enhance 

network security and improve IDS against modern intrusion 

attacks. The paper also shows the statistics of the training in 

order to determine the improvement in the accuracy and loss 

function, which further strengthens the validity of the 

proposed model. 

This paper [27] introduces a novel technique for 

measuring the vulnerability of ML-based Intrusion Detection 

Systems to adversarial attacks. An adversarial attack is an 

attack in which the attacker makes minor changes to input 

characteristics to the point that the model no longer identifies 

the attacks, essentially bypassing the ML model’s binary 

classification. created a way to assess the susceptibility of 

ML-based IDS to adversarial attacks using active learning 

and generative adversarial networks that do not need prior 

knowledge of the IDS model but its binary classification 

level. The study found that experimental outcomes of the 

proposed technique were successful, with a 98.86% success 

rate in bypassing the IDS model. It is crucial to mention that 

the paper includes not only a DNN-based IDS but also 

included a gradient boosted decision tree, which shows that 

the theory is largely valid. Moreover, reveals training of the 

Variational 

This paper [28] proposes a novel framework to optimize 

the intrusion detection system in terms of both feature 

extraction and selection using deep learning and 

metaheuristic optimization in IoT environments. The 

framework is designed to enhance the system’s ability to 

distinguish between normal and malicious behavior using a 

Convolutional Neural Network as the primary feature 

extractor. CNN is a class of feed forward artificial neural 

networks that find the meaningful representations of input 

data in a lower-dimensional space. Feature selection is 

conducted by the proposed Reptile Search Algorithm (RSA), 

a metaheuristic algorithm inspired by how a crocodile selects 

its prey.  

The proposed approach is experimentally carried out on 

four datasets: KDDCup-99, NSL-KDD, CICIDS-2017, and 

BoT-IoT, as presents in Table I. Comparative results with 

various optimization techniques as demonstrated in the study 

confirm that the feature merit of CNN for extraction is very 

competitive with known methods, as is the feature selection 

using the RSA algorithm. 

TABLE I.  SUMMARY OF PREVIOUS WORK 

Paper Models used Results 

[21] 

Naive Bayes, active 

learning (Least 

Confidence strategy, 

proposed method) 

Maximum AUC score of 

90%, outperforming Least 
Confidence by 5% 

[22] 

Deep learning (CNN), 

Python, scikit-learn, 

TensorFlow, Seaborn 

CNN model achieves AUC 

scores of 0.98 or higher for 

detecting various attacks 

[23] 
CNN-BiLSTM with 
knowledge graphs, 

multiview feature fusion 

Detection accuracy of 
90.01%, high precision, 

recall, and F1-score 

[24] FFNN, LSTM, RandNN 
High accuracy rates: FFNN 
(99.93%), LSTM (99.85%), 

RandNN (96.42%) 

[25] 
BiLSTM, multi-head 

attention, dropout layer 
High accuracies on multiple 

datasets (up to 99.08%) 

[26] 
BiLSTM-CNN hybrid, 
using UNSW-NB 15 

dataset 

Outperforms standalone 

models and existing 

approaches in multiple 
metrics 

[27] 
Active learning, GANs, 

VAE 

98.86% success rate in 

bypassing IDS with minimal 
labeled data 

[28] 
CNN, Reptile Search 

Algorithm (RSA) 

Effective feature selection 

and classification across 

multiple datasets 

 

III. METHODOLOGY 

The process of developing a binary classification model 

using BiLSTM, coupled with an active learning approach, 

entails several systematic steps [30][31], as shown in Fig. 1. 

Initially, the methodology begins with data acquisition. This 

step involves collecting and preparing IoT network traffic 

data [32][33]. Such preparation helps in understanding both 
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typical and atypical behaviors within the network [32] [34] 

[35]. 

 

Fig. 1. The proposed methodology 

Following data collection, the next step involves scaling 

the features [36][37]. Feature scaling is crucial as it 

normalizes the dataset, ensuring that the input data is 

uniform. This uniformity allows deep learning models to 

process the data more effectively. 

The core of our methodology is the application of the 

BiLSTM model for binary classification [38][30]. The 

BiLSTM model is particularly well-suited for time-series 

data, such as network traffic [38]. Its ability to maintain 

information over an extended period makes it effective in 

detecting complex intrusion patterns. 

In addition to the BiLSTM model, we integrate an active 

learning approach [39][40]. This approach involves sorting 

the instances in a data pool and querying the most informative 

ones for inclusion in the training set. We implement this 

strategy through a series of iterations. During these iterations, 

the model selects the least confident predictions to acquire 

new labels [39][40]. This selective labeling allows the model 

to utilize the limited labeled data efficiently and refine its 

accuracy progressively [40]. 

The training process includes dividing the data into initial 

training and test sets. We then make further subdivisions to 

manage the reserved pool of unlabeled training data 

effectively [41][42]. The retraining process is iterative. With 

each iteration, the model incorporates newly labeled data, 

which enhances its performance [41][42]. 

The final step in our methodology is the evaluation phase 

[43]. In this phase, we test the model using the reserved test 

dataset. We focus on assessing its classification performance 

and accuracy, particularly through metrics such as precision 

and recall. We visualize these results using confusion 

matrices and other reporting tools. These tools help to 

illustrate the model's effectiveness in detecting and 

identifying network intrusion attempts [44]. 

This structured approach merges deep learning and active 

learning techniques. It provides a robust framework for 

enhancing IoT security [45]. 

A. Datset Overview 

The ‘ToN_IoT’ dataset comprises a wide range of data 

sources [46]. Its datasets such as telemetry data from IoT and 

IIoT sensors, operating systems’ data from Windows 7 and 

10 and Ubuntu 14 and 18 TLS, and network traffic were 

gathered from a highly sophisticated and extensive network 

purposefully designed at the Cyber Range and IoT Labs at the 

School of Engineering and Information Technology at 

UNSW Canberra @ the Australian Defence Force Academy 

(ADFA) SEIT/UNSW Canberra Specifically, a unique and 

unprecedented testbed network built based on the industry 4.0 

standards consisting of the IoT and IIoT networks were 

established [29]. 

The testbed, which utilized a variety of virtual machines 

and hosts running Windows, Linux, and Kali operating 

systems, facilitated the interconnected functioning of IoT, 

Cloud, and Edge/Fog layers. It was employed to simulate a 

range of cyber-attack scenarios including DoS, DDoS, and 

ransomware attacks targeting web applications, IoT 

gateways, and computer systems within the IoT/IIoT 

network. Data collection occurred in real-time through 

parallel processing, capturing a wide array of both normal 

activities and cyber-attack events from network traffic, 

Windows and Linux audit trails, and IoT service telemetry. 

Raw datasets encompassed various formats and sources: 

● IoT/IIoT Data: Telemetry data from over 10 types of IoT 

and IIoT sensors, including weather and Modbus sensors, 

were recorded in log and CSV files. 

● Network Data: This was primarily collected in packet 

capture (pcap) formats, alongside log files and CSV files 

generated by the ZEEK (formerly Bro) network 

monitoring tool. 

● Linux Data**: On Ubuntu 14 and 18 systems, a tracing 

tool known as atop was utilized to log detailed 

information about disk, process, processor, memory, and 

network activities. The collected data was stored in TXT 

and CSV file formats. 

● Windows Data: Data collection on Windows 7 and 10 

systems was performed using the Performance Monitor 

Tool. The initial data was captured in a .blg format, which 

is specific to the Performance Monitor Tool, and 

subsequently processed into CSV files to document disk, 

process, processor, memory, and network activities 

comprehensively. 

B. Data Preprocessing Methodology 

The preprocessing steps within the provided code given 

above include essential procedures to prepare IoT device data 

for a model to detect intrusions [47]. First, one gets rid of 

irrelevant columns in the dataset, such as “label” and “type” 

[48], as presents in Fig. 2. Then, the target variable is split 

into a separate y that contains binary labels to define each 

traffic instance as a normal connection or an attack.  
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Fig. 2. Label class desctribution 

Since there are still columns with object data type in the 

X columns, one employs the LabelEncoder from sklearn. 

preprocessing to transform such information into a numerical 

form that the ML model could better read and analyze 

adequately. Subsequently, it is easier to start training the 

model when all the data variables are numbers. 

The normalization of feature values is done using 

MinMaxScaler, which adjusts the values of the features to 

have a common scale value of between 0 and 1 [49]. Such 

scaling is important for neural networks and other gradient-

based learning algorithms because low-level values in the 

algorithm may not perform well when the input numerical 

values vary in a wide range.  

The NAN values checking across the dataset ensures the 

quality and readiness of the data for training, as it implies that 

the problem has issues with data completeness or problems 

with the collection and entry of the data [50]. The cleaned and 

scaled dataset is split into training and test sets [51] where 

80% of the data is used to train the model and 20% is withheld 

for testing purposes. Such a split helps in validating the model 

by testing it against a set of data it was not trained on to 

determine its generalization tendencies beyond a set of data. 

The code also includes a comprehensive suite for 

evaluating the performance of the classifier once it has been 

trained [60]. Several metrics are reported: high-level 

accuracy and error rates as well as confusion matrix to 

visualize the types and frequencies of classification errors 

[65]. Moreover, the more detailed analysis is presented in the 

classification report, which contains precision, recall, and F1-

scores broken down for each class. They are especially useful 

for verifying the model’s strengths and weaknesses for 

specific types of intrusion. Other calculated metrics are 

sensitivity and specificity for each class.  

Sensitivity or recall is the proportion of actual positives 

which are correctly identified by the model and is of critical 

importance for intrusion detection systems since missing an 

actual intrusion can be very costly. Specificity is the 

complement of sensitivity and measures the proportion of 

actual negatives correctly identified, and is important for 

ensuring that the system does not over-tag normal behavior 

as intrusive. 

In combination, these preprocessing and evaluation 

procedures create a strong framework for building and testing 

a machine learning model designed to successfully detect and 

categorize likely security threats within an IoT network. 

From the described steps, it is evident that not only the 

training data, but the trained model should meet a high-

quality bar required for applications in cybersecurity. 

C. Bi-directional Long Short-Term Memory BILSTM 

BiLSTM is a more advanced iteration of LSTM 

[67][68][69], a recurrent neural network that excels in 

capturing long-term dependencies in sequence data [54]. The 

BiLSTM advantage lies in no way in which it is trained as 

mentioned above, for instead of processing information 

sequentially, they take in the data both forwards and 

backwards, meaning they consider the context of the past and 

future observations on the sequence dataset. Because of this 

specific feature, BiLSTMs are particularly well-suited to 

tasks where understanding the entire sequence is essential, 

such as natural language processing [53], speech recognition, 

and time-series prediction. By processing each sequence 

from both directions, they gain a better understanding of the 

pattern and can predict it more accurately than their standard 

LSTM counterparts [54]. BiLSTMs are especially beneficial 

when the previous and upcoming state of an observation is 

crucial to understand and predict it accurately. 

Setup and training of a Bidirectional Long Short-Term 

Memory network. This model constructed utilizing Keras – 

an advanced neural networks API. BiLSTM is an 

improvement of conventional Long Short-Term Memory 

networks. BiLSTM learns to handle data in both forward and 

reverse directions, allowing it to carry information about both 

the future and past to a node. This kind of model, which is 

beneficial for applications that require considering the whole 

context where the predictions are reliant is an example of a 

sequence prediction task.  

The BiLSTM network is built in a sequential manner and 

structured at the end of the configuration with three layers 

consisting of decreasing units. Paired with each of the hidden 

layers is a dropout layer set at 0.2 [70]. They function 

throughout training by randomly deactivating certain nodes, 

effectively aiding in the prevention of overfitting. The 

sigmoid activation function [71] is employed in the output 

layer of the model, making it well-suited for binary 

classification in this application. suitable for this application 

domain since an intrusion is either classified as normal or an 

anomaly. 

For optimization, the model uses the Adam optimizer as 

it consumes very little memory and is very efficient and 

binary crossentropy for calculating loss [55]. Binary 

crossentropy is a widely used loss function in binary 

classification tasks. Furthermore, it uses an early stopping 

callback to avoid potential overfitting, which stops training 

the model if validation loss does not decrease in three 

consecutive epochs. 

As a result, the model was trained for 10 epochs with 

batches of 32 samples. Finally, the model’s performance is 

evaluated on a test dataset with accuracy and confusion 

matrix and full classification report. The model exhibits high 
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metrics with regard to precision, recall, F1-scores, indicating 

the high potential of BiLSTM to process sequences enabling 

its application for the prediction of future data points such as 

time series, detecting network intrusion as temporal sequence 

is crucial for precise predictions. 

D. Active Learning  

Active learning is a type of machine learning in which 

instead of training the model on all the data, the algorithm 

queries the user to label the new data points that can 

maximize learning from the least number of new additional 

labels [52]. While conventional strategies rely on training a 

model on a machine-labeled dataset, active learning is a 

dynamic method through which the model learns from the 

user’s labeling. Whether data with high uncertainty or data 

that is very unique, the most valuable data is labeled. 

 They are more beneficial in cases where labeling the 

entire data is capital intensive on its resources and time that 

can be expensive to the model. It can be effectively in image 

classification, natural language processing and any other field 

where getting additional labeled data can be expensive or 

unfeasible. They help to achieve the best training throughput 

by training data that fully influences their learning. 

E. BILSTM+Active  

The integration of active learning with a Bidirectional 

Long Short-Term Memory (BiLSTM) model is strategically 

employed to enhance the training process for binary 

classification. Initially, the dataset is partitioned into initial 

training and pool sets. The BiLSTM model's architecture is 

designed sequentially, incorporating multiple layers and 

dropout layers to improve regularization and facilitate the 

differentiation between the two classes using a sigmoid 

activation function [63]. 

In terms of optimization and loss calculation, the Adam 

optimizer and binary cross-entropy loss function are utilized 

to compile the model, setting an efficient training dynamic. 

Following this initial training phase, active learning is 

initiated. Here, the trained model predicts on the unlabeled 

pool of data to identify the least certain predictions or the 

model’s most uncertain sample regions. These identified 

samples are then added to the training set, allowing the model 

to focus on learning from the most informative or challenging 

samples at that time [64]. 

This active learning cycle is repeated several times, each 

cycle aiming to bolster the model’s performance. During each 

iteration, the model may update its weights based on new 

data. If these updated weights yield higher validation 

accuracies, they are retained. Ultimately, the model’s final 

performance is assessed on the test set. The high accuracy and 

detailed classification metrics achieved demonstrate the 

model's capability to effectively handle complex 

classification tasks by integrating insights from both past and 

prospective data. 

However, it is crucial to acknowledge the limitations 

inherent in the BiLSTM and active learning approach, 

particularly in their application to cybersecurity. The model 

may not handle specific types of network intrusions or 

scenarios outside its training data distribution effectively. 

This could lead to less reliable performance in detecting 

novel or sophisticated cyber-attacks that deviate from the 

patterns observed during training. Without a comprehensive 

discussion on the robustness and generalizability of the 

model, potential users and researchers might not fully 

understand the impacts these limitations could have on the 

deployment and operational effectiveness in diverse 

cybersecurity environments. Recognizing these limitations is 

essential for setting realistic expectations about the model's 

capabilities in real-world applications. 

IV. EVALUATION METRICS 

To effectively evaluate the model’s usefulness in image 

classification, we will employ several evaluation metrics that 

are essential for a full understanding of the model’s 

performance. However, the following is a brief of the 

contribution of every metric to evaluating the model 

A. Accuracy 

It is one of the central evaluation metrics used to assess 

the general quality of a model’s prediction [56]. It is defined 

as the ratio of the number of correct classifications of samples 

including both true positives and true negatives to the total 

amount of the dataset’s observations. 

𝐴𝐶𝐶 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

B. Precision 

This measure is crucial in terms of the model’s ability to 

predict a class accurately [57]. It is measured as the number 

of accurate positive predictions that are true positives divided 

by the sum of accurate positive predictions and inaccurate 

positive predictions. 

𝑃𝑅𝐸 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 (2) 

C. Recall 

This metric evaluates the ability of the model to 

accurately capture all cases of a class [58]. The calculation is 

done by taking the number of True Positives and dividing 

them by the total of True Positive and the False Negative. 

D. F1-Score 

The F1-score is a balanced metric which integrates 

precision and recall by means of their harmonic mean [59]. 

Thus, the measure integrates both, providing a 

comprehensive assessment of how the model fares in 

recognizing relevant instances. 

𝐹1 − 𝑆 = 2 ⨯
𝑃𝑅𝐸 ⨯ 𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶
 (3) 

In the context of cybersecurity, the implications of these 

metrics are profound. A high precision rate minimizes the risk 

of false positives, which are costly and can lead to 

unnecessary responses. Conversely, a high recall rate ensures 

that the system is effective at detecting true threats, 

minimizing the risk of missed detections that could result in 

undetected intrusions. The F1-Score serves as a critical 
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measure for balancing these aspects, particularly when 

dealing with imbalanced datasets that could bias the model 

towards the majority class. Understanding the trade-offs 

between these metrics and the potential biases introduced by 

dataset characteristics is essential for validating the model's 

reliability in detecting diverse and evolving intrusion 

patterns. 

V. EXPERIMENTAL RESULTS 

A. BILSTM 

The performance of the BiLSTM model used to identify 

Fake and Real Signatures is highly acceptable as 

demonstrated in the confusion matrix and classification 

report presented in Fig. 3 and Fig. 4. The model has 

accurately predicted a considerably high number of instances. 

It has predicted 59,379 true positives for class 0 and 31,874 

and true negatives for class 1. 

 

Fig. 3. Confusion matrix of BILSTM 

 

Fig. 4. Classification Report of BILSTM 

These values are very high, which means that the model 

was very sensitive and specific in accurately identifying both 

classes of the target variable. The misclassified instances are 

low that is, only 541 false positives and 415 false negatives. 

This shows that the model was very knowledgeable of the 

two classes. The other metric values, which include precision, 

recall, and F1 score show that the model was extremely 

successful. All the metric values, which are precision values 

of 0.99 for class 0 and 0.98 for class 1, recall values, which 

are 0.99 for both classes, and F1 scores that are 0.99 for both 

classes, are extremely high.  

The accuracy of the model is 0.99, which is very high as 

well. This means that the model performs as a classifying 

model, and the BiLSTM model has proved effective in 

accurately classifying sequential data through exploiting the 

temporal dynamics present in the dataset. 

B. BILSTM with Active Learning  

These outstanding classification results are achieved by 

BiLSTM network combined with active learning, es presents 

in Fig. 5. The confusion matrix of the predictions of the 

trained neural network reveals high numbers of true positives 

and true negatives: there are 38,376 and 71,616, respectively. 

These numbers demonstrate that the model is able to 

recognize both classes accurately with a low number of false 

positives and false negatives: 499 and 160, respectively.  

The classification report supports these findings shown in 

Fig. 6, as it demonstrates that the model has outstanding 

precision, recall, and F1-scores for both classes: 1.00 

precision for class 0 and 0.99 for class 1, and recall of 0.99 

and perfect 1.00 for classes 0 and 1, respectively. 

Furthermore, both classes have the F1-score of 0.99, 

indicating the model’s ability to perform balanced 

classification. The accuracy of the model is also high: it is 

0.99.  

In summary, the above results prove the efficiency of 

active learning combined with BiLSTM, allowing the model 

to learn iteratively from the most informative and ambiguous 

data points and, consequently, to improve predictions in 

sequential data tasks. 

 

Fig. 5. Confusion matrix of BILSTM+Active 

 

Fig. 6. Classification Report of BILSTM +Active 
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VI. COMPARATIVE ANALYSIS 

The comparative analysis outlined in Table II vividly 

demonstrates the efficacy of both the BiLSTM model and its 

enhanced version with active learning. The BiLSTM model 

alone shows excellent performance metrics, with a precision 

of 0.99, recall of 0.99, F1-score of 0.99, and an overall 

accuracy of 0.99. These results underscore its robust 

capability in sequence classification tasks. However, the 

incorporation of active learning significantly enhances these 

outcomes, particularly for class 0, where the precision is 

pushed to a perfect score of 1.00. Despite this increase in 

precision, the model maintains high recall and F1-score at 

0.99 and 1.00, respectively, with the overall accuracy 

remaining stable at 0.99. This indicates that the addition of 

active learning to BiLSTM does not compromise its ability to 

correctly identify true positives and negatives across classes, 

but rather refines its precision without affecting the overall 

performance adversely. Such enhancements highlight the 

strategic benefit of integrating active learning, particularly in 

scenarios where reducing false positives is critical without 

losing sensitivity to true positive detections. 

The BiLSTM model alone can boast its excellent level of 

classification of sequenced data, with high precision, recall, 

and F1-scores bordering on their theoretical maximum of 

1.00 for both classes.  

Hence, the model demonstrates its strength and capacity 

in identifying patients for whom the treatment is beneficial or 

non-beneficial. Introduction of active learning with BiLSTM 

improves all these levels to perfect or near-perfect conditions. 

In particular, it enhances the precision for class 0 to the 

ultimate 1.00.  

Thus, the standalone BiLSTM and active BiLSTM 

approaches are highly efficient for the classification of 

sequenced data. A more detailed comparison between them 

shows that they both are extremely effective in identifying the 

classification patterns.  

Second, the active learning [66] approach enhances the 

level of precision for class 0 to a perfect condition without 

compromising the high level of recall and F1-score for both 

classes. Therefore, it allows the model to focus on the most 

informative data points by sacrificing only the margin of the 

recall. 

This strategic iteration results in a model that not only 

retains its inherent temporal pattern recognition strength 

offered by BiLSTM but also gains an incremental 

improvement in classification acuity, a testament to the 

synergy between active learning and BiLSTM in complex 

sequence modeling tasks. 

TABLE II.  COMPARATIVE ANALYSIS RESULTS 

Model Precision Recall F1-Score Accuracy 

BILSTM 0.99 0.99 0.99 0.99 

BILSTM+ACTIVE 1.00 0.99 1.00 0.99 

 

Based on Table II, the overall accuracy of 0.99 for both 

models underscore the success of both approaches in 

handling the intricacies of sequence prediction with great 

effectiveness. 

VII. DISCUSSION 

Achieving near-perfect precision for class 0 with the 

BiLSTM + Active Learning model significantly enhances its 

practical applications, particularly in domains like signature 

identification where false positives can have severe 

consequences. Precision, recall, and F1-score are crucial 

metrics in such contexts because they provide a 

comprehensive view of the model's ability to correctly 

identify true positives (precision) while minimizing the 

overlook of actual positives (recall). The high F1-score 

indicates a balanced relationship between precision and 

recall, essential for applications where both false positives 

and false negatives carry significant implications. 

The comparative table below summarizing the 

performance of different models from the related work and   

comparing them with the BiLSTM and BiLSTM with active 

learning models based on the available results in Table III. 

TABLE III.  PERFORMANCE OF RELATED MODELS TO BILSTM 

Paper Accuracy Specific Achievements 

[21] 90% Outperformed Least Confidence by 5% 

[22] 
 

98% 
High AUC scores for detecting various 

attacks 

[23] 

 
90.01% High precision, recall, and F1-score 

[24] 
 

99% High accuracy rates across models 

[25] 

 
99% High accuracy on multiple datasets 

[26] 
 

-  Superior to standalone models 

[27] 

 
98% High success in bypassing IDS 

[28] - 
Effective feature selection and 

classification 

Our 

work 
99% High overall performance 

Our 
work 

99% 
Perfect precision and high overall 

performance 

 

The advancements in machine learning and particularly in 

deep learning models have played a pivotal role in the field 

of intrusion detection and cybersecurity, as reflected in the 

array of studies within the related work. The models 

employed across various papers range from Naive Bayes with 

active learning strategies to sophisticated hybrids of CNNs 

and LSTMs, each contributing uniquely to the domain. 

Paper [21] reports on the application of a Naive Bayes 

classifier coupled with active learning, achieving an AUC 

score of 90%. This approach underlines the efficiency of 

machine learning complemented by active learning even with 

fairly simple algorithms. In contrast, the paper [22] uses a 

sophisticated CNN architecture that provides AUC scores 

above 0.98, which emphasizes the capability of deep learning 

for feature extraction and pattern recognition to detect 

attacks. 

The CNN and BiLSTM models presented in paper [23] is 

a powerful tool that harnesses spatial and temporal features, 

reaching a 90.01% detection accuracy. Different types of 

neural network architectures were addressed in paper [21], 

which show excellent accuracy based on the FFNN model: 
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99.93%. This implies that the detection architecture should 

be chosen, aligned with diverse data features. 

Finally, as presented in Paper [24] possibly by including 

attention mechanisms, all models exhibit very high accuracy, 

that is, up to 99.08%, due to attention mechanisms, which 

allow focusing on different parts of the data sequence, as 

required by the complex patterns posed by attacks that can 

only be discerned by the model by taking under consideration 

subtleties in data hate are not necessarily prevalent throught 

the whole session record.  

Our trained BiLSTM model only that is on par with these 

models in terms of accuracy combines its potential acuracy in 

terms of its accuracy score with active learning to achieve 

state-of-the-art precision at 1.00, which indicates that active 

learning algoeritms can be used to further finetune models 

accuracy where some prediction direction is crucial achieve 

precision of this kind, as any false positives in differentiation 

benign and malicious acts around the session data pools are 

costly. 

Furthermore, the recent trend in applying active-learning 

dynamics with GANs and VAEs discussed in paper [27], and 

the implementation of metaheuristic algorithms which is used 

for feature selection in paper [28] is just an additional 

testimony to the development of sudden intelligence and 

intelligence insertion into a model. Not only must these 

models be accurate, but they will have to be elegant, adaptive, 

and enduring due to the dynamics of the environment they 

scrutinized. Not only does our BiLSTM model, particularly 

with active learning, share the high-precision accuracy notes 

of the past work, but it also suggests an opportunity for 

precision-based performance change.  

The use of active learning, more particularly, suggests a 

calculated move towards models that are destined to develop 

on their own, more restructured and evolve only by 

permissible from the vaguest and most informative data 

points. Hence, the solution is solid. 

The strengths of our models lie in their ability to leverage 

temporal dynamics (BiLSTM) and enhance precision through 

iterative refinements (active learning). However, potential 

biases in the dataset or the experimental setup could limit the 

generalizability and performance across different types of 

network intrusions or novel cyber-attack scenarios. Future 

research could explore enhancing the active learning strategy, 

adapting the models to different datasets, or incorporating 

additional machine learning techniques to address these 

limitations. This could include exploring hybrid models or 

advanced neural network architectures that could further 

improve the robustness and adaptability of the system. 

Our approach uniquely contributes by achieving 

exceptional precision without compromising overall 

performance, which is particularly valuable in applications 

where distinguishing between benign and malicious actions 

with high accuracy is crucial. Future directions will aim to 

extend these capabilities, ensuring that the models not only 

maintain their high performance but also adapt to the 

evolving landscapes of cybersecurity threats. 

VIII. CONCLUSION 

This study integrates active learning with deep learning 

within the IoT security domain, successfully developing an 

Intrusion Detection System (IDS) tailored for IoT 

environments. The combination of a Bidirectional Long 

Short-Term Memory (BiLSTM) model with active learning 

has proven to be a robust framework, enhancing threat 

detection capabilities significantly. Our findings demonstrate 

that this combination not only achieves high performance 

metrics—precision of 1.00 and recall, F1-score, and accuracy 

of 0.99 for the BiLSTM with active learning model, but also 

underscores the potential of these methodologies in resource-

constrained scenarios. 

The precision achieved by the BiLSTM with active 

learning highlights its efficacy in precisely identifying threats 

without generating false positives, a crucial attribute in 

cybersecurity where erroneous alerts can be costly. 

Comparatively, the BiLSTM model alone also shows 

commendable results but lacks the enhanced precision of its 

active learning-enhanced counterpart. However, while these 

metrics are promising, they must be contextualized within 

real-world applications. High performance in controlled test 

conditions does not always directly translate to effectiveness 

in operational environments, particularly in cases of class 

imbalance or evolving attack strategies that were not 

represented in the training data. 

Although our models perform well across standard 

metrics, their robustness against novel or sophisticated cyber 

threats remains partially speculative without further testing 

on diverse datasets or real-world deployment scenarios. 

Furthermore, a detailed error analysis is essential to 

understand the conditions under which the models might fail 

or misclassify, providing insights for continuous 

improvement. 

Looking ahead, enhancing the active learning component 

to better adapt to rapidly changing threat landscapes could 

significantly improve the model’s applicability. Exploring 

hybrid approaches that incorporate other machine learning 

paradigms or advanced neural architectures might also yield 

improvements in scalability and adaptability. Additionally, 

case studies or deployment in real-world IoT environments 

would offer invaluable insights into the practical challenges 

and performance metrics in operational settings. 
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