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Abstract—In the current era, green energy systems like solar 

PV, wind energy, and battery storage critically rely on DC-DC 

converters to manage power flow and voltage conversion 

efficiently, ensuring optimal performance and reliability. 

Nevertheless, converters face multiple challenges, including 

efficiency losses, thermal management concerns, and 

electromagnetic interference, which can impact these green 

energy systems' overall performance and reliability. To 

overcome these challenges, it is necessary to utilize advanced 

control mechanisms, enhance heat management approaches, 

and optimize component design. Implementing these 

improvements will improve the effectiveness and durability of 

DC-DC converters in renewable energy applications. This 

research aims to analyze the performance characteristics of a 

three-phase interleaved half-bridge bidirectional (TPHB-Bi) 

converter. The research objective involves investigating the 

effectiveness of the proposed controller by rigorously assessing 

voltage tracking. This is done through comprehensive 

assessments of start-up procedures and reference voltage 

variations using MATLAB/Simulink. The study utilizes a neural 

network controller with an online learning algorithm based on 

backpropagation to enhance the converter's operational 

capabilities, ensuring a stable output voltage and improved 

transient response. The simulation results highlight the 

significant advantages of the proposed controller over a 

conventional PID controller. It exhibits a remarkable reduction 

in overshoot by 5.29%, considerably shorter rise times ranging 

from 0.01ms to 0.1ms, and faster settling times of 0.025s. The 

findings have great importance in promoting sustainable energy 

development and environmental protection. They demonstrate 

that implementing advanced control strategies for DC-DC 

converters can result in more efficient and reliable green energy 

systems. 

 

Keywords—Buck-Boost Converter; Interleaved Converter; 

Artificial Neural Network; Electric Vehicle. 

I. INTRODUCTION 

The global shift towards renewable energy is gaining 

significance due to the adverse effects of fossil fuel 

utilization. Renewable energy sources such as wind, solar, 

and hydroelectric power provide a sustainable substitute for 

conventional fossil fuels [1]–[4]. The motivation behind this 

transition is the pressing necessity to decrease greenhouse gas 

emissions, address climate change, and minimize air 

pollution. Green energy significantly affects the 

transportation industry, specifically through the increasing 

popularity of electric vehicles (EVs) [5]–[9]. 

Electric vehicles are becoming increasingly popular as a 

vital environmentally friendly transportation solution. Unlike 

conventional automobiles powered by internal combustion 

engines (ICEVs), electric vehicles (EVs) do not emit any 

pollutants from their exhaust pipes, significantly reducing the 

overall carbon footprint [10]–[14]. Electric vehicles (EVs) 

have the potential to further improve their environmental 

benefits by utilizing the power that is generated from 

renewable sources, contributing to a future that is cleaner and 

more sustainable [15]–[20]. Many governments support the 

broad adoption of electric vehicles by implementing 

regulations and incentives designed to encourage 

environmentally responsible mobility. EVs are gaining 

attention for their eco-friendly nature, lower greenhouse gas 

(GHG) emissions, fuel costs, and reduced noise pollution. 

They generate ten times less CO2 than conventional internal 

combustion engine vehicles (ICEVs) [21]–[25]. Sustainable 

electric mobility is crucial to minimizing environmental harm 

and accelerating development. By 2040, most urban planning 

commissions worldwide aim to have transitioned their 

transportation networks to more environmentally friendly 

alternatives [26]–[28]. 

In EVs, DC-DC converters are essentially additional 

devices. They consist of power semiconductor devices that 

function as electrical switches, capable of handling large 

currents [29]–[33]. Consequently, the inductors used in these 

converters tend to be bulky, which reduces the overall power 

density of the devices. The filter inductor, input capacitor, 

and output capacitor also influence the size of the converter. 

Additionally, due to the switching process, DC-DC 

converters experience significant fluctuations in input current 

[34]–[38]. Interleaved or multi-phase techniques solve this 

problem [39][40]. An interleaved converter integrates 

multiple power stages operating in parallel. This 

configuration distributes the input current across different 

phases, providing several advantages. First, it increases the 
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converter's power capacity while reducing stress during 

switching operations. It also helps to reduce the fluctuation in 

inductor currents, leading to improved overall heat 

distribution within the converter [41]–[44] and could 

significantly reduce the current ripple and inductor peak 

current in the system [45][46]. Half-bridge bidirectional 

buck-boost DC-DC converters are popular due to their high 

demand in wind, solar, and energy storage systems. The 

converter design depends on the input supply voltage and the 

required output voltage in the system. Bidirectional DC-DC 

converters are designed to adjust voltage levels, allowing for 

both voltage increase (step-up) and decrease (step-down) 

[47]–[50]. These converters can transfer power in both 

directions and exhibit good dynamic response within the 

system [51]–[54]. The dynamic response needs to be 

improved in the converter because it helps maintain stable 

output voltage and current; also, a faster dynamic response 

can enhance the stability of the converter [55]. 

Several intelligent controllers have been explored to 

improve the dynamic response of bidirectional DC-DC 

converters, including fuzzy logic controllers, adaptive neuro-

network controllers with hybrid PI-sliding methods, adaptive 

neuro-fuzzy inference systems, and model predictive 

controllers [56]–[60]. Implementing a fuzzy logic controller 

for a bidirectional DC-DC converter has been verified, 

demonstrating its ability to achieve smooth control in the 

system [61]. Ongoing research and development 

continuously improve these controllers, making them more 

suitable and significant for Evs [62][63]. As reported in 

[64]In recent years, new methods have emerged to enhance 

the effectiveness of bidirectional DC-DC converters. Neural 

network control (NNC) is another promising option due to its 

ability to update internal controller parameters, making it 

suitable for nonlinear systems. A buck converter has 

successfully demonstrated experimental verification of NNC 

for varying battery voltage [65][66]. NNC has also been 

applied in various other power electronics and drive 

applications [65][67][68]. To further improve NNC 

performance, research has focused on developing online 

learning schemes [69]–[72]. 

In order to design this system, several factors need to be 

considered. These include the number of switches that will be 

utilized, control stabilities of the output voltage, which are 

used to maintain the converter output voltage at the set point 

value, and set point determination, which is used to determine 

the set point voltage according to the type of load connection 

present in the system [73]–[75]. This research aims to 

describe an online learning neural network control (OL-

NNC) for a three-phase interleaved half-bridge bidirectional 

DC-DC converter (TPHB-Bi). The development of the OL-

NNC seeks to achieve the least steady-state error, overshoot, 

and output voltage rise time. It can learn instantly and adjust 

its controller parameters in response to external disturbances 

and internal variations of the converter. 

The novelty of this research lies in developing and 

applying an OL-NNC for the TPHB-Bi converter, which aims 

to address the challenges of dynamic response and voltage 

regulation in bidirectional DC-DC converters. The OL-NNC 

is expected to improve performance metrics such as steady-

state error, overshoot, and output voltage rise time. This study 

advances state-of-the-art power electronics for EV 

applications by providing a novel control strategy that 

leverages online learning capabilities to adapt to changing 

conditions and disturbances in real time. 

This research involves designing, simulating, and 

analyzing the OL-NNC for the TPHB-Bi converter. The 

methodology includes the following steps: developing the 

neural network architecture, setting up simulations to test the 

performance of the OL-NNC under various operating 

conditions, and comparing it with traditional control 

methods. The key variables and parameters investigated 

include steady-state error, overshoot, rise time, and settling 

time. 

This research makes the following significant 

contributions. The first aspect to consider is introducing and 

installing the OL-NNC, built explicitly for the TPHB-Bi 

converter. The OL-NNC can adapt and learn in real time, 

resulting in improved dynamic performance metrics of the 

converter, such as steady-state error, overshoot, and rise time. 

The TPHB-Bi converter exhibited enhanced dynamic 

response, characterized by decreased overshoot, accelerated 

rising time, and steady-state negligible mistake. The 

converter has been modified to provide stability and 

reliability, even when operating conditions change. It also has 

excellent voltage regulation capabilities, ensuring a stable 

output voltage throughout reference voltage changes and 

start-up procedures. Additionally, it performs better in 

managing voltage regulation in real-time applications. The 

proposed OL-NNC can be applied in green energy to enhance 

the efficiency and reliability of power management solutions 

for electric vehicles (EVs) and other renewable energy 

systems. It can be compared to traditional PID controllers, 

and its superior performance in various metrics can be 

highlighted. The effectiveness of the OL-NNC can be 

demonstrated through comprehensive simulation and 

validation, showing its ability to improve the performance of 

the TPHB-Bi converter in different scenarios. 

The structure of the research paper is as follows: the 

second section discusses the operation modes of the TPHB-

BI converter and also discusses the controller of the ANN 

using online learning methods, and the third section discusses 

the findings that have been simulated using 

MATLAB/Simulink for transient response during starting-

up, dynamic response when voltage step-up and voltage step-

down, impact of input voltage variations on the performance 

of the the-bi converter and comparison of the TPHB-Bi 

converter with OL-NNC and the PID. Finally, the structure 

of this paper is the conclusion, which summarizes the most 

critical issues and is presented in section 4. 

II. METHOD 

The method section explains the studied system and 

introduces the control structure for the converter. The first 

part of the method section provides a detailed explanation of 

the studied system, including the circuit diagram of the 

bidirectional converter and the symbols used in the analysis. 

The second part of this section describes the control structure 

of the neural network controller and online learning 

algorithm of backpropagation-based efficiency optimization 

control (BPEOC). A flowchart of the research methodology 
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is presented. The controller and BPEOC equations will be 

given step by step. 

A. Model of a Bidirectional DC-DC Converter 

The circuit diagram of the TPHB-Bi converter is shown 

in Fig. 1. The inductor, switch, and capacitor are the three 

main components of this converter. This converter's minimal 

number of elements achieves the simplicity of design and 

construction. The inductor is placed on the low-voltage side 

of the converter, and a capacitor can be connected in parallel 

with the load on both the high-voltage and low-voltage sites. 

It comprises three identical topological structures, each with 

two inputs labeled Vhigh and Vlow. MOSFETs are 

represented by S1 to S6, and their parasitic anti-parallel diodes 

are labeled DI1 to DI6. Energy storage inductors are denoted 

as L1 to L3, and the load resistors and input/output filter 

capacitors are represented by R1 to R2 and C1 to C2, 

respectively. S1, S2, S3, S4, S5, and S6 are connected 

sequentially on a three-phase inverter bridge. The upper and 

lower power switches utilize a pulse-width modulation 

(PWM) phase-shift interleaved complementary control 

method, where the drive signal's phase angle differs by 120 

degrees consecutively. The switching period T and the 

switching frequency of the system 𝑓𝑠 = 1/𝑇 are defined. 

 

Fig. 1. Proposed TPHB-Bi Buck-Boost Converter 

The mode of the TPHB-Bi converter is assumed to 

operate in continuous conduction mode (CCM), meaning six 

switches are conducting. Therefore, two operating modes are 

defined. In the first mode, switches S1, S3, and S5 will, and S2, 

S4, and S6 will open. In the second mode, switch S2, S4, and 

S6 will open, and switch S1, S3, and S5 will open. Due to the 

similarities in operation, the explanation will focus on the 

boost mode [76][77]. The circuit's operation can be broken 

down into seven distinct stages. The operation stages of the 

TPBH-Bi converter are described as follows: 

• Stage 1 - S2, S4, and S6 are switched off simultaneously 

while DI1, DI3, and DI5 continue to conduct naturally. On 

the low voltage side, L1, L2, and L3 transmit electrical 

energy to the high voltage side. 

• Stages 2 – S2 turn on, S4, and S6 are switched off 

simultaneously while DI3, and DI5 continue to conduct 

naturally and DI1 is off. On the low voltage side, the low 

voltage side, L1, L2, and L3 transmit electrical energy to 

the high voltage side. 

• Stages 3 – S4 turn on, S2, and S6 are switched off 

simultaneously while DI1, and DI5 continue to conduct 

naturally and DI3 is off. On the low voltage side, L2, L1, 

and L3 transmit electrical energy to the high voltage side. 

• Stages 4 – S6 turn on, S2, and S4 are switched off 

simultaneously while DI1, and DI3 continue to conduct 

naturally and DI5 is off. On the low voltage side, L3, L1, 

and L2 transmit electrical energy to the high voltage side. 

• Stages 5 – S2 and S4 turn on, S6 are switched off 

simultaneously while DI5 continue to conduct naturally 

and DI1 and DI3 is off. On the low voltage side, L1, L2, and 

L3 transmit electrical energy to the high voltage side. 

• Stages 6 – S2 and S6 turn on, S4 are switched off 

simultaneously while DI3 continue to conduct naturally 

and DI1 and DI5 is off. On the low voltage side, L1, L3, and 

L2 transmit electrical energy to the high voltage side. 

• Stages 7 – S4 and S6 turn on, S2 are switched off 

simultaneously while DI1 continue to conduct naturally 

and DI3 and DI5 is off. On the low voltage side, L2, L3, and 

L1 transmit electrical energy to the high voltage side.   

The sequencing of the equivalent circuit depends on the 

duty cycle value. When the duty cycle of the switches is 

between 0 and 1/3, it follows a repeating sequence of stages 

1-2-3-4. However, when the duty cycle exceeds 0.33, a new 

equivalent circuit emerges within the 1/3 < d ≤ 2/3 range. As 

a result, the sequences change to stages 6-2-5-3-7-4. As 

shown in Table I and Table II, the sequence of the operation 

of the MOSFET switch in seven stages has been discussed in 

buck and boost mode.  

TABLE I.  OPERATION STAGES IN BUCK MODE 

Stages Mosfet (ON) Mosfet (OFF) 

1  S1, S2, S3, S4, S5, S6 

2 S1 S2, S3, S4, S5, S6 

3 S3 S1, S2, S4, S5, S6 

4 S5 S1, S2, S3, S4, S6 

5 S1, S3 S2, S4, S5, S6 

6 S1, S5 S2, S3, S4, S6 

7 S3, S5 S1, S2, S4, S5 

TABLE II.  OPERATION STAGES IN BUCK MODE 

Stages Mosfet (ON) Mosfet (OFF) 

1  S1, S2, S3, S4, S5, S6 

2 S2 S1, S3, S4, S5, S6 

3 S4 S1, S2, S3, S5, S6 

4 S6 S1, S2, S3, S4, S5 

5 S2, S4 S1, S3, S5, S6 

6 S2, S6 S1, S3, S4, S5 

7 S4, S6 S1, S2, S3, S5 

 

Fig. 2 and Fig. 3 show the fundamental waveforms of the 

PWM in the boost mode of the TPHB-Bi converter are 

presented when the duty cycle is between 0 to 1/3 and when 

the duty cycle from 1/3 to 2/3 for switches S2, S4, and S6. 

B. Neural Structures and Learning Scheme 

1) Design of Neural Network Controller 

Information about the plant (system) is required to design 

the neural network control. The number of input and output 

neurons in each layer corresponds to the system's input and 

output signals, respectively. Fig. 4 illustrates the proposed 

neural network control of the TPHB-Bi Converter. Based on 

the number of neurons in each layer of the proposed neural 

network controller architecture, the network has a 2-3-1 
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neuron structure, meaning there are two neurons in the input 

layer, three neurons in the hidden layer, and one neuron in the 

output layer. The first input neuron receives the error signal, 

the difference between the desired and actual output signals. 

The second input neuron receives a signal that distinguishes 

between the error signals of the previous and current 

sampling times. Using this structure, the neural network 

controller is equipped to handle the essential inputs that 

influence the converter's performance while maintaining a 

manageable level of complexity [78]–[80]. This structure 

ensures the controller can reduce overshoot, minimize rise 

and settling times, and enhance overall system stability. 

 

Fig. 2. PWM waveform of the proposed converter when the duty cycle is 0 

< d ≤ 1/3 

 
Fig. 3. PWM waveform of the proposed converter when the duty cycle is 1/3 
< d ≤ 2/3 

 

Fig. 4. The design of the neural network controller 

𝑊𝑖𝑗  represents the connection weight parameter between the 

𝑗𝑡ℎ and 𝑖𝑡ℎ  neurons in the 𝑚𝑡ℎ layer, and 𝑏𝑚𝑖  is the bias 

parameter of this layer in the 𝑖𝑡ℎ neuron. The network transfer 

function for the 𝑡𝑡ℎ neuron in the 𝑚𝑡ℎ layer is defined as (1). 

𝑛𝑖
𝑚  =  ∑ 𝑤𝑖𝑗

𝑚𝑆𝑚−1

𝑗=1 𝑎𝑗
𝑚−1 + 𝑏𝑖 

𝑚       (1) 

The neuron's 𝑚𝑡ℎ layer output function is provided by: 

𝑎𝑖
𝑚𝑎𝑖

𝑚 =  𝑓𝑚(𝑛𝑖
𝑚) (2) 

Where 𝑓 is the neuron's activation function. The output layer 

and hidden layer in this design have activation functions of 

unity and a tangent hyperbolic function, respectively. The 

hidden layer's activation function is provided as. 

𝑓𝑚(𝑛𝑖
𝑚) =  

2

1+ 𝑒
−2𝑛𝑖

𝑚 − 1  (3) 

The connection weight and bias parameters are updated and 

provided by 

𝑤𝑖𝑗 
𝑚(𝑘 + 1)  =  𝑤𝑖𝑗 

𝑚(𝑘) −  𝛼
𝜕𝐹(𝑘)

𝜕𝑤𝑖𝑗
𝑚   (4) 

𝑏𝑖 
𝑚(𝑘 + 1) =  𝑏𝑖 

𝑚(𝑘) −  𝛼
𝜕𝐹(𝑘)

𝜕𝑏𝑖
𝑚        (5) 

Where 𝑘 is the sampling time, 𝛼 is the learning rate, and 𝐹 is 

the performance index function of the network. 

2) Online Learning Algorithm of Backpropagation-Based 

Efficiency Optimization Control (BPEOC) 

After the neural network architecture is modeled, the next 

stage defines the learning model to update network 

parameters. In general, sufficient training data for the input-

output mapping of a plant is required in the learning mode of 

a neural network controller. The design of the learning 

algorithm for the learning process is then needed to update 

these parameters. In most cases, having ample training input-

output mapping data of the plant is recommended to define 

network parameters. This mapping data enables the ANN 

controller to become familiar with the features of the plant 

and, hence, achieve accuracy in determining the control 

signal. The algorithm of the proposed online learning neural 

network as the efficiency optimization controller is as 

follows: 

• Step 1- Initialization of network parameters, i.e., bias and 

weight. 

• Step 2- Generate the input/output data table for distinct 

operating modes. 

• Step 3- Randomly choose an input data pattern from the 

data table developed in Step 1, then compute its network 

output. The error pattern is derived based on the 

comparison of this calculated output and the desired 

output data. 

• Step 4- From the derived error pattern, the network weight 

needs to be adjusted for updating by the backpropagation 

algorithm to achieve the slightest error. 

• Step 5- The steps are repeated for each input-output data 

pattern set in the table until the error obtained for each set 

is satisfied for an acceptable error range. 
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• Step 6- Randomly test the network performance offline 

with various sets of the input pattern to ensure the network 

has successfully learnt the desired output pattern 

• Step 7- After satisfactory learning, the weight and biases 

are downloaded for online testing. 

The performance index used is the sum of squared errors, 

which is given by: 

𝐹(𝑘) =   
1

2
∑ 𝑒𝑖

2(𝑘)𝑖   (6) 

𝑒𝑖(𝑘) =  𝑡𝑖(𝑘) − 𝑎𝑖(𝑘)  (7) 

where 𝑡𝑖 is targeting signal and 𝑎𝑖 output signal on last layer. 

𝜕𝐹(𝑘)

𝜕𝑤𝑖𝑗
𝑚 =   

𝜕𝐹

𝜕𝑛𝑖
𝑚  

𝜕𝑛𝑖
𝑚

𝜕𝑤𝑖𝑗
𝑚  (8) 

Defining the network's sensitivity parameter as below: 

𝑠𝑖
𝑚 =  

𝜕𝐹

𝜕𝑛𝑖
𝑚  (9) 

𝑠𝑖
𝑚 =   

𝜕𝐹

𝜕𝑎𝑖
𝑚

𝜕𝑎𝑖
𝑚

𝜕𝑛𝑖
𝑚  (10) 

The gradient between the connection weight parameter and 

the transfer function is provided by: 

𝜕𝑎𝑖
𝑚

𝜕𝑛𝑖
𝑚  = 𝑎𝑖

𝑚−1  (11) 

From substitution equation (9) and (11) into (4) the updating 

connection parameter is given by: 

𝑤𝑖𝑗 
𝑚−1(𝑘 + 1) =  𝑤𝑖

𝑚−𝑖(𝑘) −  𝛼𝑠𝑖
𝑚(𝑘)𝑎𝑖

𝑚−1(𝑘) (12) 

Using the identical method, the updating bias parameter 

is provided by: 

𝑏𝑖 
𝑚(𝑘 + 1) =  𝑏𝑖

𝑚−1(𝑘) −  𝛼𝑠𝑖
𝑚(𝑘) (13) 

As a summary, Fig. 5 shows the flowchart of the research 

methodology. The steps performed are listed in order. The 

studied system consists of a converter and its control section.  

III. SIMULATION AND DISCUSSION  

The system consists of a TPHB-Bi converter and a 

controller. It is assumed that the reference value and system 

parameters are defined. The controller generates the duty 

cycle. This duty cycle needs to be transformed into a 

switching command signal, achievable through pulse width 

modulation. A comprehensive simulation was conducted to 

assess the stabilities of the controller performances in 

regulating the TPHB-Bi converter to utilize the performance. 

Simulink/MATLAB has been performed. 

Fig. 6 shows a block diagram of the proposed OL-NNC 

control for a bidirectional DC-DC converter that operates in 

a closed-loop configuration. The model of the TPHB-Bi 

converter with the controller is shown in Fig. 7. The 

simulation parameters are shown in Table III. 

 

Fig. 5. Flowchart of the research methodology 

 

Fig. 6. Block diagram of the TPHB-Bi converter with controller 

 
Fig. 7. Proposed model of the TPHB-Bi converter with proposed controller 

TABLE III.  SPECIFICATION OF THE TPHB-BI CONVERTER 

Parameters Value Unit 

Input voltage 24 V 

Voltage references 48,60 V 

Inductor 250 µH 

Capacitor 200 µF 

Load resistor 100 Ω 

Switching frequency 10 kHz 

 

The performance of the system during start-up is 

presented in this section. Then, a comparison between the 

proposed control method and PID in the dynamic response 

Model
•Design the TPHB-Bi converter. 

Proposed
•Operating system and switching

Controller

•ANN Controller

•Desribe the equation of the ANN structure

Online 
learning 

•Desribe the equation of the BPEOC structure

Design
•Design control parameter
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performance during step-up and step-down is investigated. 

The result shows the variation in the reference voltage of the 

output voltage. In this case, the step response for incremental 

changes is studied. The performance system under input 

voltage variation is investigated, and a discussion is 

presented. 

A. Transient Response During Starting-up 

Fig. 8 illustrates the result of the simulation of the output 

voltage of the TPHB-Bi converter when Vin is set to 24V 

during the simulation. With a reference voltage of 48V, the 

controller efficiently maintains and manages the output 

voltage to attain 48V. In this scenario, the duty cycle is 

approximated using the boost mode formula D = (Vref-

Vin)/Vref, which is approximately equal to fifty percent. The 

output current can be determined by using the formula 

Io=Vo/R, which equals 0.48A. Since this is the case, the input 

current may be determined by applying the formula Iin = Io 

/(1 – D), which yields a value of 0.96 A. Within the context 

of this simulation, the conventional PID controller was 

contrasted with the OL-NNC that was presented. 

 

Fig. 8. Output voltage versus time waveform with Vin = 24V for OL-NNC 

controller 

It has been discovered that the output voltage start-up 

transient responses utilizing OL-NNC in the TPHB-Bi 

converter with a reference voltage of 48V produce superior 

performances than the PID Controller. This is due to the fact 

that it eliminates overshoot and oscillation to reach the 

required output. Fig. 9 demonstrates that the settling time of 

an OL-NNC controller is approximately 0.045 seconds, 

significantly faster than the settling time of a PID controller, 

which is approximately 0.07 seconds. The percentage of 

overshoot for OL-NNC is also better than PID, as shown in 

Table IV. Table IV and Fig. 9 show that the OL-NNC 

controller has a better response than the PID controller. 

TABLE IV.  PERFORMANCE OF THE SYSTEM DURING START-UP 

Parameter PID OL-NNC 

Rise time, ms 0.368 0.335 

Overshoot, V 55.92 53.38 

Overshoot, % 16.5 11.21 

Settling time, s 0.07 0.048 

 

Fig. 9. Output voltage versus time waveform during start-up 

B. Dynamic Response when Voltage Step-Up and Voltage 

Step-Down 

Changes in the output reference voltage are examined in 

this section to evaluate the controller's performance. A step 

input can change the load resistance value at a desired time. 

Fig. 10 and Fig. 11 show the output voltage transient response 

of the TPHB-Bi converter to a reference voltage change. In 

Fig. 10, the reference voltage steps up from 48V to 60V. In 

this scenario, the OL-NNC performs significantly better than 

the PID controller. The OL-NNC achieves a lower overshoot 

voltage of 63.22V compared to the PID controller's 67.48V. 

Additionally, the OL-NNC controller reduces oscillation and 

has a faster settling time of around 0.02 seconds to reach 

stability in the system, compared to the PID controller. Table 

V summarizes the simulation performance during the voltage 

step-up. 

TABLE V.  PERFORMANCE OF THE SIMULATED CONTROLLER DURING 

VOLTAGE STEP UP 

Parameter PID OL-NNC 

Rise time, s 0.102 0.111 

Overshoot, V 67.48 63.22 

Overshoot, % 12.47 5.37 

Settling time, s 0.18 0.15 

 

 
Fig. 10. Output voltage versus time waveform with references voltage step 

up from 48V to 60V 
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For reference, the voltage stepping down from 60V to 

40V is shown in Fig. 11, and the undershoot of the PID 

controller is higher than that of the OL-NNC. Using the PID 

controller produces more oscillation and achieves stable 

performance. To achieve stability when the voltage 

references change in the system, the PID controller takes 

around 0.18s longer than the OL-NNC, which takes about 

0.15s. Using the OL-NNC, the undershoot and oscillation 

have been reduced by around 7V compared to the PID 

controller, as shown in Table VI. 

 

Fig. 11. Output voltage versus time waveform with references voltage step 

down from 60V to 40V 

TABLE VI.  PERFORMANCE OF THE SIMULATED CONTROLLER DURING 

VOLTAGE STEP DOWN 

Parameter PID OL-NNC 

Rise time, s 0.108 0.112 

Overshoot, V 25.74 32.71 

Overshoot, % 35.65 18.53 

Settling time, s 0.18 0.15 

 

C. Impact of Input Voltage Variations on the Performance of 

the TPHB-Bi Converter 

The system's performance can be analyzed by examining 

its behavior in different operating settings. This section 

discusses the system's behavior when the input voltage 

changes from 24V to 36V. Fig. 12 presents the duty cycle 

produced by the OL-NNC controller when the input voltage 

changes from 24V to 30V at 0.2s using a step block. The duty 

cycle decreases when the input voltage increases in boost 

mode. To calculate the duty cycle, it needs to be multiplied 

by three due to the interleaved converter behavior. 

Table VII presents the transient response data when the 

input voltage changes. Table VII presents data on the 

overshoot, rise time, and settling time for overshooting. 

When the value of the input voltage increases, the overshoot 

also increases, which is proportional to each other. For rise 

time, the lowest rise time is when the input voltage is at 36V, 

which is only 0.248ms, showing that this controller can 

respond quickly to fast input signals in the system. Lastly, for 

settling time, it is faster to achieve stability when the input 

voltage is increased, although the difference in values is 

minimal. 

 

Fig. 12. Duty cycle produced by OL-NNC controller 

TABLE VII.  INPUT VOLTAGE VARIATIONS ON THE CONVERTER 

PERFORMANCE  

Input 

voltage 

(V) 

Transient Response 

Overshoot 

(V) 

Rise Time 

(ms) 

Settling Time 

(s) 

24 53.38 0.335 0.048 

28 62.47 0.293 0.042 

30 66.93 0.282 0.038 

34 75.85 0.255 0.036 

36 80.31 0.248 0.032 

 

The summary in this section can be seen in Fig. 13, which 

shows the graph of these three components for transient 

response. The time axis can be referred to as rise time and 

settling time, while the voltage axis can be referred to as 

overshoot. It can be observed that the input voltage 

effectively tracks the performance of both the converter and 

controller. 

 
Fig. 13. Trend of the transient response of the TPHB-Bi converter with OL-

NNC 

D.  Comparison of the TPHB-Bi Converter with OL-NNC 

and the PID Approach 

In this section, a comparison is made between the OL-

NNC controller method and the PID controller. Both 

controllers are designed to achieve the same stability for the 

system. The PID controller is configured with a designated 

operating point at a voltage reference of 48V and a load 

resistance of 100Ω. Notably, both systems are demonstrated 

with different output reference and input voltages. 
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Table VIII presents the values of overshoot voltage for 

various output voltage references. It is essential to highlight 

that the input voltage and the controlled bandwidth of the 

controller influence the overshoot voltage. Table VIII shows 

the overshoot for different reference voltages at different 

input voltages. The overshoot of the OL-NNC for every 

reference voltage at other input voltages is lower than that of 

the PID, which is suitable for the system as it is more stable. 

As shown in Fig. 14, a high overshoot can lead to system 

instability. 

TABLE VIII.  REFERENCE VOLTAGE VS OVERSHOOT IN DIFFERENCE INPUT 

VOLTAGE 

Ref Voltage 

(V) 
24V (V) 30V (V) 36V (V) 

PID OL-NNC PID OL-NNC PID OL-NNC 

40 53.49 51.02 66.56 61.31 79.87 73.09 

55 54.17 53.27 66.77 61.88 80.23 73.27 

50 56.92 53.54 66.75 64.35 80.04 74.33 

55 61.89 53.52 68.44 66.93 80.34 75.88 

60 63.63 53.81 72.79 67.34 80.63 78.72 

 

The overshoot of the OL-NNC for every reference voltage 

at different input voltages is lower than that of the PID, which 

is suitable for the system as it is more stable. As shown in 

Fig. 14, a high overshoot can lead to system instability. 

 

Fig. 14. Trend of overshoot vs. reference voltage in difference input voltage 

Next, in Table IX, the rise time values are presented when 

the input voltage and output reference voltage change. Table 

IX shows the rise time in this system. For the OL-NNC, the 

rise time is slightly faster than the PID, ranging from around 

0.001s to 0.01s, depending on the reference voltage and input 

voltage used in the system. The slowest rise time is for a 30V 

input voltage with the PID, around 0.389ms, and the fastest 

rise time is for the OL-NNC with a 36V input voltage, which 

is only 0.218ms. 

TABLE IX.  REFERENCE VOLTAGE VS RISE TIME IN DIFFERENCE INPUT 

VOLTAGE 

Ref Voltage 

(V) 
24V (ms) 30V (ms) 36V (ms) 

PID OL-NNC PID OL-NNC PID OL-NNC 

40 0.339 0.308 0.257 0.252 0.219 0.218 

55 0.359 0.339 0.296 0.282 0.240 0.251 

50 0.384 0.355 0.351 0.304 0.265 0.256 

55 0.389 0.386 0.368 0.324 0.274 0.288 

60 0.381 0.367 0.374 0.364 0.310 0.305 

 

Fig. 15 shows the rise time difference between the 

reference and input voltage graph. If the rise time takes longer 

to respond, a higher rise time can cause the output voltage to 

overshoot or undershoot its target value before settling. This 

can stress the components and reduce the overall stability of 

the system. However, using the OL-NNC controller has 

reduced the rise time. This reduction indicates a faster 

response to input voltage changes and changes in the 

reference voltage, enhancing the overall efficiency and 

stability of the converter. 

 

Fig. 15. Trend of rise time vs. reference voltage in difference input voltage 

Lastly, for the settling time referring to an input voltage 

of 60V, it was the fastest steady state compared to the others. 

The lower settling time is for an input voltage of 24V at 40V, 

which takes around 0.071s to achieve a stable state. Table X 

shows that the OL-NNC achieves a stable state faster than the 

PID controller. 

TABLE X.  REFERENCE VOLTAGE VS SETTLING TIME IN DIFFERENCE 

INPUT VOLTAGE 

Ref Voltage 

(V) 
24V (s) 30V (s) 36V (s) 

PID OL-NNC PID OL-NNC PID OL-NNC 

40 0.071 0.069 0.067 0.067 0.080 0.063 

55 0.067 0.057 0.065 0.059 0.060 0.059 

50 0.062 0.053 0.057 0.051 0.056 0.050 

55 0.060 0.051 0.053 0.048 0.053 0.046 

60 0.053 0.050 0.046 0.044 0.051 0.032 

 

As shown in Fig. 16, the trends of the settling time 

indicate the difference between reference voltage and input 

voltage in this system. Implementing the OL-NNC has 

significantly enhanced the performance of the TPHB-Bi 

converter by ensuring a faster stabilization of the output, 

thereby improving the overall efficiency and stability of the 

converter. Additionally, using advanced algorithms in the 

OL-NNC ensures better damping of oscillations, leading to 

quicker stabilization. 

 

Fig. 16. Trend of settling time vs. reference voltage in difference input 

voltage 
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E. Strengths and Limitations  

The performance analysis was performed using 

MATLAB/Simulink software, which demonstrated that the 

proposed neural network controller with an online learning 

algorithm significantly improves the dynamic response of the 

converter. This includes shorter rise times and faster settling 

times compared to PID controllers. 

However, the neural network controller's design and 

implementation are more complex than conventional 

controllers. This includes sufficient training data and 

computational resources for real-time learning and 

adaptation. If not properly managed, the online learning 

algorithm could be overfitted to specific conditions, reducing 

its generalizability to different operating scenarios. 

Although it can be said that this controller does not 

provide significant improvement, the OL-NNC controller can 

lead to stability and improve the control quality of the system. 

The output voltage, transient responsiveness, and dynamic 

properties cannot all be simultaneously improved using 

conventional PID control. It is evident that under step 

reference voltage variations, the proposed OL-NNC has 

better transient responses than those obtained from the PID 

controller. 

IV. CONCLUSION 

This paper discusses the application of an Artificial 

Neural Network (ANN) for the TPHB-Bi converter. An 

online learning technique based on the backpropagation 

scheme was used to improve the performance of the ANN 

controller. The designed ANN controller aims to regulate the 

output voltage of the TPHB-Bi converter. The simulation 

results demonstrate that implementing the OL-NNC 

technique is feasible for the TPHB-Bi converter. The 

outcomes indicate that the OL-NNC controller exhibits a 

faster response in tracking the desired output voltage, 

effectively reducing oscillations, overshoot, and settling time. 

Future research will focus on optimizing the neural 

network architecture and exploring advanced techniques like 

deep learning to enhance controller efficiency and accuracy. 

Real-time hardware testing and validation are essential to 

evaluate performance under real-world conditions. 

Integrating the controller with other renewable energy 

sources and studying its application in microgrid 

environments will broaden its utility. 
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