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Abstract—Lung cancer is a highly heterogeneous disease, 

with diverse genetic, molecular, and cellular drivers that can 

vary significantly between individual patients and even within a 

single tumor. Though combination therapy is becoming more 

common in the treatment of cancer, it can be challenging to 

predict how various treatment modalities will interact and what 

negative effects they may have on a patient's health, such as 

increased gastrointestinal toxicities, or neurological problems.   

This paper aims to regulate immunity to tumor therapy by 

utilizing optimal control theory (OCT). This research suggests a 

malignant tumor model that can be regulated with a 

combination of immunological, vaccine, and chemotherapeutic 

therapy. The optimal control variables are employed to support 

the best possible treatment plan with the fewest potential side 

effects by reducing the production of new tumor cells and 

keeping the number of normal cells above the average carrying 

capacity. Also, the study addresses patient heterogeneity, 

individual variations in tumor biology, and immune responses 

for both young and old cancer patients. Finding the right doses 

for a treatment that works is the main goal. To do this, we 

conducted a comparative analysis of two optimum control 

approaches: the Single Network Adaptive Critic (SNAC) 

approach, which directly applies the notion of reinforcement 

learning to the essential conditions for optimality and the Linear 

Quadratic Regulator (LQR) methodology. Although the study's 

results show the promise of precision treatment plans, a number 

of significant obstacles must be overcome before these tactics 

can be successfully applied in clinical settings. It will be 

necessary to make considerable adjustments to the healthcare 

system's infrastructure in order to successfully offer 

personalized treatment regimens. This includes enhanced 

interdisciplinary care coordination methods, safe data 

management systems. 

Keywords—Cancer Treatment; SNAC; NCO; LQR; OCP; 

OPT. 

I. INTRODUCTION  

Cancer is a group of diseases characterized by abnormal 

cell growth and division, often leading to death worldwide. 

Cancer develops when the body's natural control mechanisms 

malfunction, allowing cells to proliferate uncontrollably 

instead of undergoing programmed cell death [1]. This 

unregulated cell growth can result in the formation of a mass 

of abnormal cells, known as a tumor. 

Cancer is a diverse disease with many subtypes, including 

lung, prostate, breast, and colorectal cancer [2]. A hallmark 

of cancer cells is their ability to proliferate uncontrollably, 

disregard normal boundaries, and invade neighboring organs, 

leading to the spread of the disease. The primary goal of 

cancer treatment is to eliminate all cancer cells from the body 

while minimizing harm to healthy cells [3][4]. The primary 

and common treatments for cancer therapy include surgical 

procedures, hormone therapy, radiation therapy, organic 

therapy, and chemotherapy. These treatments are often 

combined in various ways to enhance the likelihood of tumor 

regression [5]-[7]. However, it is crucial to consider both the 

synergistic and antagonistic effects of these treatments when 

combined to ensure optimal outcomes. 

Chemotherapy is a fundamental part of cancer treatment, 

using potent chemical agents designed to target and eliminate 

rapidly dividing cells, a hallmark of cancer cells [6][8].   

However, it's essential to consider the potential side effects 

that chemotherapy may bring about, as their severity can vary 

from mild and manageable to significant complications.  

Immunotherapies are increasingly becoming a crucial 

element of comprehensive strategies to treat specific cancer 

types. Immunotherapy aims to enhance the body's natural 

ability to combat cancer by boosting the effectiveness of the 

immune system. Additionally, it's worth noting that 

individuals with compromised immune systems, such as 

those with AIDS, are more susceptible to certain rare types of 

cancer [9]-[11]. 

Here are some of the key specific gaps and challenges in 

current cancer traditional treatment approaches [12]-[20]: 

− Cancer is an extremely heterogeneous disease, tumors can 

evolve and adapt over time, developing resistance to 

various treatments through genetic and epigenetic 

changes. Current treatment strategies often fail to 

effectively manage this tumor heterogeneity and 

adaptability, leading to disease relapse and progression. 

− Most cancer treatments are still based on broad, one-size-

fits-all approaches, rather than being tailored to individual 

patient and tumor characteristics. Challenges remain in 

accurately interpreting complex multi-omic data and 

translating it into optimal, personalized treatment 

decisions. 

− Current treatment schedules and sequences are often 

based on empirical or historical data, rather than being 

dynamically optimized based on real-time tumor response 

and patient-specific factors. 

− While the number of targeted therapies and 

immunotherapies has increased, they are often limited in 
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availability and accessibility, particularly for patients in 

resource-constrained settings. 

− The ability to effectively integrate and leverage the vast 

and diverse datasets (e.g., clinical, genomic, imaging, 

pharmacological) that can inform personalized cancer 

treatment decisions remains a significant challenge. 

The complexity of cancer dynamics and the unique 

immune-tumor interactions in individual patients make this a 

significant problem. Current treatments often lack the 

precision necessary for optimal effectiveness, necessitating a 

more refined approach [21]-[24]. Several mathematical 

models for predicting tumor growth and halting disease 

progression during therapy are being developed and 

improved as we speak. This may be achieved by reducing the 

number of cancer cells, cutting down on medication dosages, 

and reducing side effects by using optimization techniques, 

where determining the best way to administer treatment is 

thought of as an OCP of a dynamic system [25]-[28]. The 

paper addresses the critical challenge of optimizing cancer 

treatment protocols using chemotherapy and immunotherapy 

based on OCT. 

OCT provides a mathematical framework to formulate 

personalized treatment strategies that can adapt to the unique 

characteristics and dynamic responses of each patient's 

tumor. By modeling the complex tumor growth dynamics and 

the effects of various treatment modalities, optimal control 

can help identify the most effective and individualized 

treatment plans. This adaptive and personalized approach is 

particularly crucial in addressing the challenge of tumor 

heterogeneity and the need for precision medicine in cancer 

care [29]-[31]. OCT enables the dynamic optimization of 

treatment schedules, dosing, and sequencing based on real-

time tumor response and patient-specific factors. This is a 

significant advancement over the current empirical or 

standardized treatment approaches, which often fail to 

account for the temporal and adaptive nature of tumor growth 

and treatment response. By optimizing the timing, intensity, 

and combinations of various therapies, optimal control can 

help maximize the therapeutic efficacy while minimizing 

adverse side effects and toxicities. OPT and AI provides a 

flexible and comprehensive framework to integrate diverse 

data sources, including clinical, genomic, imaging, and 

pharmacological information, to guide personalized 

treatment decisions [32]. OCT is grounded in rigorous 

mathematical and computational principles, allowing for 

systematic optimization of treatment strategies. This 

systematic approach can help identify the most effective 

treatment plans by exploring a wide range of possible 

interventions and their consequences, ultimately leading to 

more robust and reliable treatment recommendations [33]-

[35]. 

OCT has the potential for scalable implementation and 

integration into clinical workflows. This scalability and ease 

of integration can help address the challenges of transitioning 

novel computational approaches from research to routine 

clinical practice [36]-[38]. 

The paper is organized as follows: section two provides 

highlights of previous research in combating cancer.  Section 

three introduces the studied model, elaborating on its key 

parameters and terms. Section four focuses on the 

mathematical foundations of OCT and presents the necessary 

conditions for optimality. It further discusses each of the 

proposed techniques, providing their mathematical 

formulations for solving the OCP of the quadratic regulator 

type. Section five delves into the manipulation of the cancer 

model and the formulation of the OCP. It presents the 

proposed solutions for each case study, including both 

continuous and dosed approaches, utilizing all the proposed 

techniques. The section concludes with a comparison of the 

results obtained from these solutions. 

II. LITERATURE REVIEW 

The application of control engineering principles within 

the realm of cancer treatment has garnered significant 

attention in academic literature [39]-[43]. This attention has 

spurred the exploration of various control methodologies 

tailored to cancer models [44] [45]. Several studies, such as 

those referenced as [30][31], have adopted the model initially 

introduced in [45] as their foundation. These studies have 

predominantly focused on optimal control treatment through 

chemotherapy [46]. They have harnessed the capabilities of a 

well-established nonlinear robust state feedback technique 

known as SDRE (State-Dependent Riccati Equation) and 

extended the optimal control synthesis to encompass non-

measurable states by employing the extended Kalman filter 

(EKF) [47][48]. These investigations have yielded promising 

mathematical outcomes [49]. 

However, it is noteworthy that the treatment protocols 

proposed in [30][39] were continuous in nature, lacking the 

discrete dosing format that would enhance their practical 

applicability [50]. This limitation suggests that further 

refinement is necessary for real-world implementation. In 

[51], another approach to optimal control therapy for the 

model originally outlined in [45] was presented. This 

approach introduced a delay parameter in the differential 

equation to account for the time required for immune cells to 

be stimulated by tumor cells. In addition to chemotherapy 

[52], this study also integrated immunotherapy treatment, 

specifically involving the injection of tumor-activated CD8+ 

T cells [53]. However, in the process of addressing the OCP, 

the author resorted to an open-loop method akin to the 

variational of extremes (shooting method) [54]. Regrettably, 

this choice resulted in outcomes that were unsatisfactory and 

challenging to implement practically [55][56]. 

Moving on to [57], the author adopted a fractional-order 

rendition of the model originally delineated in [45]. In 

contrast to the previous studies, the focus here was solely on 

immunotherapy treatment, employing adaptive sliding mode 

control [58][59]. These various studies collectively 

underscore the diverse array of approaches undertaken in the 

realm of optimal control therapy for cancer models. They 

integrate different treatment modalities and control methods, 

showcasing the multifaceted nature of this field [60]. 

However, it is important to acknowledge that there remain 

limitations and challenges related to the practical 

applicability and effectiveness of the proposed treatment 

protocols [61]. Addressing these limitations will be crucial 

for advancing the field and ultimately translating these 

methods into meaningful clinical practices [62]. 
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Moving forward, researchers in [63] introduced a novel 

framework called control theory for therapy design (CT4TD) 

[64]. This framework leverages OCT and applies it to patient-

specific models of pharmacokinetics (PK) and 

pharmacodynamics (PD) to create optimized therapeutic 

strategies for individual patients [65]. CT4TD takes into 

account the physiological variations among individuals and 

tailors therapy accordingly [66]. It utilizes the efficient 

dCRAB/RedCRAB optimization algorithm and has 

undergone extensive testing on synthetic data [67]. Its 

application to Imatinib administration in Chronic Myeloid 

Leukemia demonstrated diverse and improved therapeutic 

strategies among patients compared to standard regimens 

[68].  

Furthermore, in [69], the authors explored optimal control 

in Metastatic Castrate Resistant Prostate Cancer [70]. This 

study employed evolutionary game theory to model the 

dynamics of patients with metastatic castrate-resistant 

prostate cancer (mCRPC) undergoing abiraterone therapy 

[71]. Utilizing an optimal control theory approach, the study 

identified enhanced treatment schedules capable of 

minimizing or eradicating resistant cancer cell 

subpopulations, thereby preserving the effectiveness of 

abiraterone and enhancing the quality of life for patients 

[72][73]. In 2018, researchers in reference [74][75] 

developed a Computer-Aided Diagnosis system inspired by 

AI to detect various lung diseases from chest X-ray images 

[76]-[79]. In 2021, a study (reference [80][81]) introduced the 

use of Bayesian Machine Learning algorithms for accurate 

breast cancer prediction. Similarly, another study [82] 

developed a diagnostic system for breast cancer that 

incorporates computer assistance and achieved promising 

results with an AUC (Area Under the Curve) value of 0.836.  

Additionally, in the same year, employed deep learning 

techniques to detect malignant cervical cells and 

demonstrated the model's effectiveness in categorizing 

various cell morphologies [83]. Their adaptable model, called 

DGCA region-oriented CNN, improved the classification 

accuracy, achieving an AUC of 0.670. Notable advantages of 

this model included scalability, the ability to identify cells 

with different morphologies, and integration of spatial 

context details. It achieved peak precision with an AUC of 

0.789 when distinguishing between high-grade and low-

grade central nervous system tumors [84]. These findings 

open up possibilities for utilizing AI in lesion identification 

and classification, guiding treatment strategies, and 

monitoring responses through image-guidance in oncology 

[85]. In 2022, a research paper [22] showcased the role of AI 

in diagnosing prostate cancer by employing an ensemble 

model with remarkable predictive accuracy [86]. The study 

emphasized the significance of radiomics in non-invasive 

diagnostics. In the same year, the same reference [22] 

highlighted AI's potential in colorectal cancer screening, 

diagnosis, and prognosis [87-89]. They emphasized 

advancements in risk stratification, therapy response 

prediction, and survival outcome assessment. The study 

underscored AI-driven precision in screening, classification 

of colorectal cancer subtypes, and prediction of distant 

hepatic metastases [90]. Various AI tools, including support 

vector machines (SVM), random forest, artificial neural 

networks (ANN), convolutional neural networks (CNN), and 

k-nearest neighbors (k-NN), were explored for predicting 

complete pathological responses to therapy, emphasizing the 

significance of prognostic models in enhancing staging 

accuracy and guiding colorectal cancer treatment [91]. In 

2022, [23] introduced the structure of multimodal integration 

(MMI) for molecular intelligent diagnostics, surpassing 

conventional methods [92]. They outlined emerging 

applications of AI in predicting mutational and molecular 

profiles in prevalent cancers, covering radiology and 

histology imaging [93-96].  

However, the study acknowledged obstacles in practical 

AI implementation in the medical field, including challenges 

related to data organization, feature integration, model 

interpretation, and compliance with practice regulations [97]-

[100]. In a recent study by the authors [101], a novel approach 

to cancer treatment is introduced, focusing on adaptive drug 

therapies, which have demonstrated superior efficiency when 

compared to traditional continuous maximum tolerated dose 

(MTD) methods [96]. This adaptive strategy tailors drug 

dosages according to the evolving state of the tumor, rather 

than adhering to a fixed treatment schedule. The innovation 

of this method lies in its systematic optimization of adaptive 

policies, achieved through the utilization of an evolutionary 

game theory model of cancer dynamics combined with 

dynamic programming [98]. Specifically, the study optimizes 

for two primary objectives: the reduction of total drug usage 

and the acceleration of the time to recovery [83]. This 

optimization process is accomplished by solving the 

Hamilton–Jacobi–Bellman equation [94]. The research 

findings reveal that in comparison to MTD-based strategies, 

these optimized adaptive treatments significantly reduce the 

quantity of drugs administered while simultaneously 

increasing the likelihood of recovery across a spectrum of 

initial tumor conditions [101].  For further details and a 

comprehensive summary of various cancer treatment 

research studies, please refer to Table I. 

The limitations of treating cancer using the algorithms 

which presented in the literature review include the 

following: 

Continuous Dosing Format: Many proposed treatment 

protocols are continuous in nature, which can be challenging 

to implement practically in real-world settings where discrete 

dosing is often preferred for better patient adherence and 

management of side effects [60]. 

Open-Loop Methods: Some studies have used open-

loop methods, such as the shooting method, which can result 

in unsatisfactory and difficult-to-implement outcomes  

[55][56]. 

Practical Applicability: The proposed treatment 

protocols may not be directly applicable to real-world 

scenarios due to the complexity of cancer progression and 

treatment responses [61]. 

Clinical Translation: The translation of AI-driven 

diagnostic systems and optimal control methods into clinical 

practice can be challenging due to the need for extensive 

testing and validation [62]. 
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Physiological Variations: Patient-specific models of 

pharmacokinetics and pharmacodynamics can be complex 

and require consideration of physiological variations among 

individuals [66]. 

Optimization Objectives: Optimizing for multiple 

objectives, such as reducing total drug usage and accelerating 

time to recovery, can be challenging and may require trade-

offs between these objectives [83]. 

Model Interpretation: AI models can be difficult to 

interpret, making it challenging to understand the underlying 

mechanisms and decision-making processes [97]. 

Model Complexity: Complex models, such as those 

incorporating evolutionary game theory and dynamic 

programming, can be difficult to implement and require 

significant computational [98]. 

Data Organization and Integration: AI-driven 

diagnostic systems face challenges related to data 

organization, feature integration, model interpretation, and 

compliance with practice regulations [97]-[100]. 

To address the challenges and limitations in the 

application of control engineering principles to cancer 

treatment, more robust optimization techniques are needed by 

leveraging advanced optimization techniques. Also, rigorous 

validation studies, preferably conducted using clinical data, 

are essential to assess the robustness and generalizability of 

these methods across different patient populations and cancer 

types. 

TABLE I. SUMMARY OF CANCER TREATMENT RESEARCH STUDIES 

Reference Technique Used Description 

[30, 31, 39] SDRE, EKF for non-measurable states 

Used the model from [45] with chemotherapy only; extended optimal 

control synthesis with EKF, results mathematically promising but not 
practical due to continuous treatment protocol. 

[51] Open loop method, variational of extremes 
Added delay parameter to model of [45], used chemotherapy and 

immunotherapy; results were not satisfying nor practical. 

[57] Fractional order model, adaptive sliding mode 
Used a fractional order version of the model in [45] focusing on 

immunotherapy treatment. 

[63] 
CT4TD framework, dCRAB/RedCRAB 

optimization 

Developed CT4TD framework for therapy design using patient-

specific PK and PD models; focused on Imatinib in Chronic Myeloid 
leukemia, resulted in diversified and improved strategies. 

[69] OCT 

Used evolutionary game theory for mCRPC with abiraterone therapy, 

identified better treatment schedules for minimizing resistant cancer 

cells. 

[75] Control theory, machine learning methods 

Applied control theory and machine learning, like reinforcement 

learning, for designing cancer treatment schedules using various 

computational models. 

[81] Berberine: A novel therapeutic strategy for cancer 
Investigated how BBR's anticancer properties are regulated by several 

molecular mechanisms. 

[82] OCT 

Discussed optimal control theory in radiation and systemic therapy; 

emphasized integrating patient-specific mathematical models for 
improving outcomes. 

[87] Evolutionary game theory, optimal control theory 

Studied treating mCRPC with abiraterone; proposed a controlled 

strategy for abiraterone use to maintain effectiveness and improve 

patient quality of life. 

[88] Pontryagin’s principle 

Developed a model for breast cancer treatment combining 

chemotherapy and a ketogenic diet; focused on the effectiveness of 

treatment combinations. 

[93] Bock’s direct multiple shooting method 
Analyzed four chemotherapy models; emphasized the potential of 

optimally controlled therapy in altering tumor outcomes and potential 

benefits of optimizing chemotherapy schedules. 

[94] OCT 
Outlined the use of optimal control theory in radiation and systemic 

cancer therapies; focused on personalizing therapy plans and 

integrating patient-specific models. 

[100] Evolutionary game theory, dynamic programming 
Described an adaptive drug therapy approach using evolutionary 

game theory and dynamic programming; focused on optimizing drug 

dosages and reducing total drug usage. 

[101] 
Adaptive therapy Based on Darwinian evolution 

theory 

Reviewed adaptive therapy in cancer treatment, focusing on 

overcoming drug resistance by integrating evolutionary dynamics into 
treatment regimens. 

III. SYSTEM MODEL  

Mathematical modeling is a crucial tool for understanding 

biological processes, especially in the context of disease 

progression [102]. These models use mathematical equations 

and analysis to unravel the complex dynamics during 

different stages of diseases. Specifically, they are 

instrumental in exploring the interactions and temporal 

changes between cancer tumor growth, the immune system, 

and treatment methods like chemotherapy and 

immunotherapy. These models shed light on both immediate 

and long-term impacts of treatments on disease progression. 

While our grasp of how the immune system combats 

cancer is not yet complete, mathematical models using 

empirical data can significantly enhance our understanding. 

These models depict the interaction between tumors and the 

immune system, offering valuable insights [103]. Notably, 

the model developed by de Pillis has gained prominence for 

its comprehensive approach and is a focal point in this study 

[104]. This model includes: 
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− Immune Response: It incorporates the role of immune 

cells, particularly CD8^+ and NK T cells, which 

proliferate in response to tumor cells and can destroy 

them. 

− Competition Terms: The model addresses the competition 

for resources between NK cells and tumor cells, and a 

predator-prey dynamic between CD8^+ immune cells and 

tumor cells. 

− Chemotherapy & Immunotherapy: It considers the impact 

of a well-known chemotherapy drug, doxorubicin, on all 

cells in the model, as well as the effects of injected tumor-

activated CD8^+ T cells on immune cells. 

Subsequent studies have expanded on de Pillis's model, 

adding components like IL-2 cytokines and other lymphocyte 

cells, thus broadening the scope beyond NK and CD8^+ T 

cells [105]. However, due to the increased complexity of 

these expanded models, this study opts to use the original 

model described by de Pillis [106]-[108]. This chosen model 

is a fourth-order ordinary differential equation (ODE), 

encompassing four states and two controls, which are critical 

in understanding the interactions and effects in the context of 

cancer treatment and immune response [106]-[109]. 

States: 

𝐸(𝑡) represent the 𝐶𝐷8+𝑇 cells. 

𝑇(𝑡) represent the tumor cells. 

𝑁(𝑡) represent the Natural Killer (NK) cells. 

𝑀(𝑡) Depict the level or amount of the chemotherapy drug 

present. 

Controls: 

𝑤(𝑡): represent the injected tumor-activated 𝐶𝐷8+𝑇 cells .  

𝑣(𝑡): represent the injected doxorubicin drug. 

The mathematical model under discussion is detailed in 

source [45]. This model is crucial for understanding the 

dynamics and interactions in the specified context, and its 

formulation is comprehensively laid out in this reference. For 

a more concise overview, the key parameters of the model are 

summarized in Table II. This table serves as a quick reference 

guide, offering a clear description of each parameter included 

in the model. Such a summary is useful for readers who need 

to grasp the essentials of the model without delving into the 

more complex details found in the full text of the references 

[110][111]. 

  

�̇�(𝑡) = 𝑠 +
𝜌 ∙ 𝐸(𝑡) ∙ 𝑇(𝑡)

𝛼 + 𝑇(𝑡)
− 𝑐1 ∙ 𝐸(𝑡) ∙ 𝑇(𝑡)

−𝑑1 ∙ 𝐸(𝑡) −  𝑎1 ∙ (1 − 𝑒
−𝑀(𝑡)) ∙ 𝐸(𝑡) + 𝑤(𝑡)

�̇�(𝑡) = 𝑟1 ∙ 𝑇(𝑡) ∙ (1 − 𝑏1 ∙ 𝑇(𝑡)) − 𝑐2 ∙ 𝐸(𝑡) ∙ 𝑇(𝑡)

−𝑐3 ∙ 𝑇(𝑡) ∙ 𝑁(𝑡) − 𝑎2 ∙ (1 − 𝑒
−𝑀(𝑡)) ∙ 𝑇(𝑡) 

�̇�(𝑡) = 𝑟2 ∙ 𝑁(𝑡) ∙ (1 − 𝑏2 ∙ 𝑁(𝑡)) − 𝑐4 ∙ 𝑇(𝑡) ∙ 𝑁(𝑡)

− 𝑎3 ∙ (1 − 𝑒
−𝑀(𝑡)) ∙ 𝑁(𝑡)

�̇�(𝑡) = 𝑣(𝑡) − 𝑑2 ∙ 𝑀(𝑡) }
 
 
 
 

 
 
 
 

  (1) 

IV. OPTIMAL CONTROL THEORY (OCT) 

OCT is an advanced field within control theory that 

focuses on finding the best possible trajectories for control 

and state variables in a system. The primary goal of OCT is 

to either minimize or maximize a certain criterion, often 

referred to as a cost function or objective function, while 

staying within the bounds of the system's physical constraints 

[30]. 

OCT has shown great potential in the field of cancer 

treatment optimization. Here's a more detailed overview of 

how this theoretical framework can be applied in practical 

cancer treatment protocols: 

− By modeling the evolution of drug resistance in cancer 

cells, optimal control theory can be used to design 

treatment strategies that delay the onset of resistance or 

even reverse it. This can involve switching between 

different therapies or using adaptive treatment 

approaches. 

− OCT can be integrated with tumor imaging techniques, 

such as magnetic resonance imaging (MRI) or positron 

emission tomography (PET), to monitor the response to 

treatment and adjust the treatment plan accordingly. 

TABLE II. MODEL PARAMETERS DESCRIPTIONS 

Parameter Description 

𝜌 
Rate of 𝐶𝐷8+𝑇 -lysed tumor cell debris activation of 

𝐶𝐷8+𝑇 cells 

𝛼 
Tumor size for half-maximal 𝐶𝐷8+𝑇 -lysed debris 

𝐶𝐷8+𝑇 activation 

𝑐1 Rate of 𝐶𝐷8+𝑇-cell death due to tumor interaction 

𝑑1 Rate of activated 𝐶𝐷8+𝑇-cell turnover 

𝑎1 Rate of 𝐶𝐷8+𝑇 depletion from medicine toxicity 

𝑟1 Growth rate of tumor 

𝑏1 Inverse of carrying capacity of tumor 

𝑐2 Immune system strength coefficient 

𝑐3 Rate of NK-induced tumor death 

𝑎2 Rate of chemotherapy-induced tumor death 

𝑟2 Growth rate of NK cells 

𝑏2 Rate of NK cell turnover 

𝑐4 Rate of NK cell death due to tumor interaction 

𝑎3 Rate of NK depletion from medicine toxicity 

𝑑2 Rate of excretion and elimination of doxorubicin 

s CD8+T-cell normal growth rate 

 

This can help ensure that the treatment remains optimal 

throughout the course of therapy [82]. 

− OCT can be used to design more efficient and informative 

clinical trials by optimizing the selection of patient 

cohorts, treatment dosages, and trial endpoints. This can 

lead to faster and more cost-effective drug development 

processes. 

− In some cases, optimal control theory can be applied in 

real-time to adjust treatment parameters based on the 

patient's response, allowing for dynamic and adaptive 

treatment strategies that adapt to changes in the tumor and 

patient's condition. 

A. Mathematical Preliminaries 

In many real-world scenarios the problems can be framed 

as nonlinear programming (NLP) problems, it deals with 

optimizing a nonlinear objective function subject to a set of 

nonlinear constraints [112]. However, when the decision 

variables are dynamic, changing continuously over time, the 
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problem becomes one of continuous optimization, also 

known as an optimal control problem (OCP) [113]. The 

mathematical formulation of an OCP typically involves 

defining an objective function, which is a function of both the 

control and state variables [114]. The solution to an OCP 

provides the optimal path or trajectory of the control variables 

over time, which in turn determines the trajectory of the state 

variables, ensuring that the objective function is optimized 

while respecting all constraints. The calculus of variations 

offers techniques to handle such problems, involving 

concepts like the Hamiltonian function and the Pontryagin's 

Maximum Principle [115]. These provide a systematic way 

to derive the necessary conditions that the optimal control and 

state trajectories must satisfy [31][116]. 

Minimize
𝒖

   𝐽(𝒖) = 𝜑(𝒙(𝑡𝑓), 𝑡𝑓) + ∫ 𝐿(𝒙(𝑡), 𝒖(𝑡), 𝑡)𝑑𝑡

𝑡𝑓

𝑡0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: �̇�(𝑡) = 𝒂(𝒙(𝑡), 𝒖(𝑡), 𝑡), 𝑤ℎ𝑒𝑟𝑒: 𝒙(𝑡0) = 𝒙𝟎
𝒈𝟏(𝒙(𝑡)) ≤ 𝟎

𝒈𝟐(𝒖(𝑡)) ≤ 𝟎 }
  
 

  
 

 (1) 

𝑡 𝜖[0,∞] 

x is the dependent state variable vector in 

ℛ𝑁 × [𝑡0, 𝑡𝑓] 

u is the independent control variable vector in                  

 ℛ𝑀 × [𝑡0, 𝑡𝑓] 

𝐽: ℛ𝐿 × [𝑡0, 𝑡𝑓] →  𝑅 is the optimization criterion       

𝐿: ℛ𝐿 × [𝑡0, 𝑡𝑓] → [𝑡0, 𝑡𝑓] is the bath cost function 

𝜑: ℛ × ℛ → ℛ is the final state cost function 

𝒈𝟏: ℛ
𝑁 → ℛ𝑀1 , are the state inquality constraints  

𝒈𝟐: ℛ
𝑀 → ℛ𝑁1 , are the control inquality constraints 

𝒂: ℛ𝑁 → ℛ𝑁 , are the dynamical constraints of the system 

B. Necessary Conditions for Optimality (NCO) 

The NCO in optimal control theory is fundamental for 

solving a general OCP as outlined in a referenced equation 

((2) [117]). These conditions are derived under specific 

assumptions and constraints. For the OCPs under 

consideration, it's common to start without including state or 

control inequality constraints. State inequality constraints, if 

present, can either be converted into a new set of dynamic 

constraints or integrated into the optimization criterion itself. 

This approach allows for the elimination of certain 

constraints, such 𝑔1(𝑥)in (2), simplifying the problem. 

There are complexities associated with handling control 

inequality constraints in Optimal Control Problems (OCPs) 

and this is a critical challenge that requires a comprehensive 

exploration of potential solutions and alternative 

methodologies [118]. 

− Direct transcription methods, such as direct collocation 

are widely used to handle control inequality constraints in 

OCPs. The advantage of direct transcription is that it can 

handle a wide range of control constraints, including 

inequalities, by incorporating them as explicit constraints 

in the discretized problem. Recent advancements in direct 

transcription include the use of adaptive mesh refinement, 

improved constraint handling techniques, and the 

integration of advanced nonlinear programming 

algorithms. 

− Indirect methods, such as those based on Pontryagin's 

Maximum Principle, can also be used to handle control 

inequality constraints, though they may face additional 

challenges. One approach is to relax the control inequality 

constraints by introducing a penalty or barrier function in 

the Hamiltonian, effectively transforming the constrained 

problem into an unconstrained one. This can be done 

using techniques like the Augmented Lagrangian or 

Interior-Point methods, which can help ensure feasibility 

and convergence. 

− Combining direct and indirect methods can lead to hybrid 

approaches that leverage the strengths of both. 

For example, a nested approach where an indirect method 

is used to solve the inner problem (e.g., optimal control) and 

a direct method is used to handle the outer problem (e.g., 

parameter optimization) can be effective in handling control 

inequality constraints. 

− Adaptive and dynamic approaches to constraint handling 

can be useful in OCPs with control inequality constraints. 

This can involve techniques like active-set methods, 

where the active constraints are identified and updated 

during the optimization process. Alternatively, dynamic 

constraint relaxation or adaptive constraint scaling can be 

employed to improve the convergence and robustness of 

the solution process. 

 Control inequality constraints, however, present a 

different challenge. Unlike state constraints, they cannot be 

transformed or eliminated because the control vector 𝑢 is 

independent of equality constraints, as noted in references 

[118] and [119]. This independence makes the handling of 

control constraints more complex in the context of OCPs. To 

derive the NCO, one common approach is to initially assume 

the absence of any control inequality constraints. This 

simplification allows for the application of Pontryagin's 

Minimum Principle, a cornerstone of modern control theory, 

as referenced in [120]. Pontryagin's principle provides a 

framework to find the necessary conditions that the control 

and state trajectories must satisfy for optimality. 

Under this principle, a new function called the 

Hamiltonian is defined. The Hamiltonian is central to 

deriving the NCO as it encapsulates both the system 

dynamics and the optimization objective. It is typically a 

function of the state variables, control variables, and 

additional variables known as co-state variables. The 

Hamiltonian integrates the objective function with the system 

dynamics, providing a comprehensive expression that must 

be optimized. To incorporate control inequality constraints, 

after deriving the NCO using the Hamiltonian, additional 

techniques or modifications may be needed. These could 

involve augmenting the Hamiltonian with penalty terms or 

employing other mathematical strategies to account for the 

constraints on the control variables. By doing so, the solution 

can be guided to satisfy both the optimality conditions and 
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the control constraints. This approach is vital for ensuring that 

the resulting control strategy is not only optimal but also 

feasible within the given physical and operational limits of 

the system. 

ℋ(𝒙(𝑡), 𝒖(𝑡), 𝝀(𝑡), 𝑡)
= 𝐿(𝒙(𝑡), 𝒖(𝑡), 𝑡) + 𝝀𝑇(𝑡)
∙ 𝒂(𝒙(𝑡), 𝒖(𝑡), 𝑡) 

(3) 

       In the given context, 𝜆(𝑡) is a vector variable with the 

same dimensions as 𝑥(𝑡) (i.e., 𝑅𝑁 × [𝑡0, 𝑡𝑓]). It is referred to 

as the costate variable or Lagrange multiplier. The purpose of 

introducing this variable is to convert the dynamic 

constrained Optimal Control Problem (OCP) into an 

unconstrained OCP. This conversion comes at the cost of 

doubling the number of state variables. For a more detailed 

understanding of the derivation of the Hamiltonian equation 

in (3) and the NCO, please refer to [121] and [122]. 

From (3), the NCO can be expressed as follows: 

�̇�∗(𝑡) =
𝜕ℋ(𝑥∗(𝑡), 𝑢∗(𝑡), 𝜆∗(𝑡), 𝑡)

𝜕𝜆(𝑡)

�̇�∗(𝑡) = −
𝜕ℋ(𝑥∗(𝑡), 𝑢∗(𝑡), 𝜆∗(𝑡), 𝑡)

𝜕𝜆(𝑡)

0 =
𝜕ℋ(𝑥∗(𝑡), 𝑢∗(𝑡), 𝜆∗(𝑡), 𝑡)

𝜕𝑢(𝑡) }
  
 

  
 

 (4) 

With the associated boundary conditions: 

𝒙∗(𝑡0) = 𝒙0

[
𝑑𝜑

𝑑𝒙
(𝒙∗(𝑡𝑓), 𝑡𝑓) − 𝝀

∗(𝑡𝑓)]
𝑇

∙ 𝛿

+ [ℋ∗|𝑡𝑓 +
𝑑𝜑

𝑑𝒙
(𝒙∗(𝑡𝑓), 𝑡𝑓)] ∙ 𝛿𝑡𝑓 = 0

}
 
 

 
 

 (5) 

In this context, φ represents the final state function as 

defined in (2). 𝛿𝑥𝑓, 𝛿𝑡𝑓  denote the differentials of the 

terminating state 𝑥(𝑡𝑓) and final time 𝑡𝑓, respectively. 

Equation (5) depends on the choice of 𝑥(𝑡𝑓)  and 𝑡𝑓, which 

can be either free or specified. If either one is free, the 

corresponding coefficient in (5) is set to zero. For instance, if 

the final state 𝑥(𝑡𝑓)  is unspecified but tf is specified (which 

is often the case in many OCP), the second boundary 

condition in (10) can be expressed as follows: 

𝝀∗(𝑡𝑓) =
𝑑𝜑

𝑑𝒙
(𝒙∗(𝑡𝑓), 𝑡𝑓) (6) 

It is evident from the first equation in (5) and (6) that the 

NCO cannot be directly solved using conventional numerical 

techniques. This is because the boundary conditions for the 

state and costate variables do not occur at the same time. In 

other words, we have knowledge of 𝑥∗(𝑡) at 𝑡0 but 𝜆∗(𝑡) at 

𝑡𝑓). This disparity in the initial boundary values creates a 

complex problem to solve, known formally as a split 

boundary value problem (SBVP). Due to the nonlinear nature 

of the necessary conditions in the OCP described in equation 

(4), along with the challenges posed by the SBVP, the 

combined conditions are often referred to as the curse of 

complexity. It should be noted that the control inequality 

constraints, which were previously disregarded, have been 

addressed in [117] and [120]. It has been demonstrated that 

the inclusion of these constraints only affects the third 

necessary condition in (4). 

This section highlights a fundamental issue in solving 

OCPs, namely the disparity in initial boundary values 

between state and costate variables. This discrepancy leads to 

a split boundary value problem (SBVP), which significantly 

complicates the solution process. The following are some 

concrete approaches and practical recommendations to tackle 

this challenge [119][122]: 

− Shooting methods are a common approach to resolving 

SBVPs in optimal control problems. The idea is to "shoot" 

from the known initial state and iteratively adjust the 

initial costate values until the final boundary conditions 

are satisfied. This can be done using techniques like 

Pontryagin's Maximum Principle, the Indirect Multiple 

Shooting Method, or the Receding Horizon Control 

approach. Recent studies have explored advanced 

shooting methods, such as the Augmented Lagrangian 

Shooting Method, which can improve convergence and 

robustness. 

− Collocation methods, such as the Gauss-Lobatto 

collocation or the Legendre-Gauss-Lobatto collocation, 

can be effective in addressing SBVP challenges. 

Collocation methods can handle complex dynamics and 

boundary conditions more flexibly than shooting 

methods, and they can leverage powerful nonlinear 

programming solvers. 

Studies have demonstrated the effectiveness of 

collocation methods in solving a wide range of optimal 

control problems, including those in cancer treatment. 

− Developing adaptive and automatic SBVP resolution 

methods can be beneficial, especially for complex 

optimal control problems in cancer treatment. These 

methods can automatically adjust the discretization, the 

initialization, or the solution strategy based on the 

problem characteristics and the intermediate results. 

Adaptive methods can help mitigate the need for manual 

tuning and provide more robust and reliable solutions. 

− Introducing regularization or penalty terms in the optimal 

control problem formulation can help address the SBVP 

challenge. By adding penalty terms or regularization 

functions to the objective or constraint functions, the 

problem can be transformed into a more well-posed form, 

which can improve the convergence and stability of the 

solution process. 

− Leveraging the specific structure or properties of the 

optimal control problem can sometimes facilitate the 

SBVP resolution. 

For example, if the problem exhibits certain symmetries 

or has a specific form of dynamics or constraints, specialized 

methods or simplifications may be applicable.  

Pontryagin proposed a more general condition to replace 

this specific optimal control necessary condition, and it is as 

follows: 

ℋ(𝒙∗(𝑡), 𝒖∗(𝑡), 𝝀∗(𝑡), 𝑡) ≤  ℋ(𝒙∗(𝑡), 𝒖(𝑡), 𝝀∗(𝑡), 𝑡) (7) 
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The equation denoted as (7) represents the Pontryagin 

Minimum Principle (PMP). This principle states that the 

Hamiltonian of the optimal control, 𝑢∗(𝑡), must be less than 

or equal to the Hamiltonian of any other feasible control, u(t), 

at all points in time. 

C. Quadratic Regulation Problem Formulation (QRP) 

In advancing the discussion on Optimal Control Problems 

(OCPs), the focus shifts to a specific format known as a 

Quadratic Regulator Problem (QRP). The QRP is a well-

studied form of OCP, particularly noted for its structured and 

tractable nature. The primary goal in a QRP is to steer the 

state variables, denoted as 𝑥(𝑡), from a given initial condition 

𝑥(0) = 𝑥0 to a desired equilibrium state. In the context of this 

discussion, the equilibrium state is set to 𝑥(𝑡𝑓) = 0 as 𝑡𝑓 →

∞, where 𝑡𝑓 represents the final time. However, in real-world 

scenarios, the desired equilibrium point might not always be 

zero (i.e., ( 𝑥 = 0)). If the target equilibrium is a different state 

𝑥 = 𝑥𝑓  a change of variables can be applied to transform this 

target equilibrium point to the origin. This transformation 

simplifies the problem formulation and analysis, as noted in 

reference [121]. 

Min.
𝑢
   𝐽(𝑢) =

1

2
∙ ∫[𝑥(𝑡)𝑇 ∙ 𝑄(𝑡) ∙ 𝑥(𝑡) + 𝑢(𝑡)𝑇 ∙ 𝑅(𝑡) ∙ 𝑢(𝑡)] 𝑑𝑡

∞

0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: �̇�(𝑡) = 𝑎(𝑥(𝑡), 𝑢(𝑡))

𝑢𝑙 ≤ 𝑢(𝑡) ≤ 𝑢𝑢 }
 
 

 
 

 (8) 

The NCO for the OCP of (8), can be written using the 

conditions in (4) and the PMM equating of (7) as: 

�̇�∗(𝑡) = 𝑎(𝑥∗(𝑡), 𝑢∗(𝑡))𝑛

�̇�∗(𝑡) = −𝑄(𝑡) ∙ 𝑥∗(𝑡) − [
𝜕𝑎(𝑥∗(𝑡), 𝑢∗(𝑡))

𝜕𝑥(𝑡)
]

𝑇

∙ 𝜆∗(𝑡)

𝑢∗(𝑡) = −𝑅(𝑡)−1 ∙ [
𝜕𝑎(𝑥(𝑡), 𝑢(𝑡))

𝜕𝑢(𝑡)
]

𝑇

∙ 𝜆∗(𝑡)
}
  
 

  
 

 (9) 

�̇�∗(𝒕) is the state equation. �̇�∗(𝒕) is the costate equation. 𝒖∗(𝒕) 
is the optimal control equation. Where the boundary 

conditions can be written from (5) as: 

𝒙∗(0) = 𝒙0  𝑎𝑛𝑑  𝝀
∗(∞) = 0 (10) 

If the third equation of (9) violated any control inequality 

constraints, the PMM equation of (7) is used to find the 

correct optimal control. 

When reformulating the OCP described in (2) into a QRP, 

specific modifications are made to accommodate this change 

in objectives and constraints. In a QRP, the objective function 

typically involves minimizing a quadratic cost function, 

which represents a balance between the state deviation from 

the desired equilibrium and the effort (or control energy) 

required to achieve this state. This quadratic cost function can 

be expressed as an integral over the control horizon, with 

terms penalizing both the state deviation and the magnitude 

of the control input. 

The constraints in the QRP are also adapted accordingly. 

While the original OCP might have had diverse constraints, 

in a QRP, these are often simplified or reformulated to align 

with the quadratic nature of the problem. This can involve 

redefining the system dynamics, state constraints, and control 

constraints in a manner that is compatible with the quadratic 

cost structure. 

The transformation to a QRP can offer several 

advantages, especially in terms of solvability and 

computational efficiency. QRPs are a well-understood class 

of control problems with established solution methods, 

particularly in linear systems where the state dynamics and 

control functions are linear. These solutions often involve 

using the Linear Quadratic Regulator (LQR) approach, which 

provides an optimal control strategy based on solving a set of 

algebraic Riccati equations. This approach is highly effective 

for systems where a quadratic cost function accurately 

captures the trade-offs and objectives of the control problem. 

Note that to solve the OCP of (9) (i.e., to find the 

continuous time functions 𝑥∗(𝑡), 𝑢∗(𝑡), and 𝜆∗(𝑡)), one 

requires a symbolic solver of differential equations, however 

in practice we do not often solve for the continuous time 

function, but rather we always seek to use numerical 

algorithms to solve these OCPs, since computers can run 

these algorithms significantly fast, and with very high 

precision. 

The choice of the most suitable discretization scheme for 

optimal control problems in cancer treatment will depend on 

the specific characteristics of the problem, such as the 

complexity of the system dynamics, the geometry of the 

treatment domain, the required accuracy and stability, and the 

available computational resources.  In many cases, a 

combination of these methods, such as using finite element 

methods for spatial discretization and finite difference or 

spectral methods for temporal discretization, can provide a 

good balance of accuracy, stability, and computational 

efficiency. we will dive deeper into the different 

discretization schemes and their comparative analysis in the 

context of optimal control problems for cancer treatment. 

Finite difference methods are relatively simple to 

implement and understand, can handle a wide range of 

problem geometries and boundary conditions, and are 

computationally efficient. But prone to numerical 

instabilities, especially for high-order derivatives or stiff 

problems. 

Finite element methods can achieve high-order accuracy 

through the use of higher-order basis functions, and Robust 

handling of heterogeneous material properties and 

anisotropic systems. But relatively more complex to 

implement and require more computational resources. 

Spectral methods have excellent accuracy, and high 

convergence rates, and are computationally efficient, but 

restricted to problems with simple geometries and periodic or 

nearly periodic solutions. 

Hence in order to solve OCPs numerically they must first 

be formulated in discrete form. The OCP of (8) can be 

discretized by using a proper sampling time ℎ as: 

Min.
𝑢
  𝐽(𝑢) =

1

2
∙∑𝑥(𝑘)𝑇 ∙ 𝑄(𝑘)𝑥(𝑘) + 𝑢(𝑘)𝑇𝑅(𝑘)𝑢(𝑘)

∞

𝑘=0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘))

𝑢𝑙 ≤ 𝑢(𝑘) ≤ 𝑢𝑢 }
 
 

 
 

 (11) 
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Where, 𝒙(𝑡) is replaced with 𝒙(𝑘) for the 𝑡 𝜖 [𝑘 ∙ ℎ, (𝑘 + 1) ∙
ℎ], the same is true for 𝑄(𝑘), 𝑅(𝑘), 𝑢(𝑘), however the 

dynamic constraints are discretized using any of the famous 

methods of forward Euler, trapezoidal, 4𝑡ℎ Order Runge-

Kutta …etc.  

To write the necessary conditions for optimality, we first 

need to write the Hamiltonian: 

ℋ(𝑥(𝑘), 𝑢(𝑘), 𝜆(𝑘)) =
1

2
∙ [𝑥(𝑘)𝑇 ∙ 𝑄(𝑘) ∙ 𝑥(𝑘) + 𝑢(𝑘)𝑇 ∙ 𝑅(𝑘) ∙ 𝑢(𝑘)]

+ 𝜆𝑇(𝑘 + 1) ∙ 𝑓(𝑥(𝑘), 𝑢(𝑘)) 

 (12) 

Then applying the necessary conditions of (4) on (12) 

results in 

𝑥∗(𝑘 + 1) = 𝑓(𝑥∗(𝑘), 𝑢∗(𝑘))

𝜆∗(𝑘) = 𝑄(𝑘)𝑥∗(𝑘) + [
𝜕𝑓(𝑥(𝑘), 𝑢(𝑘))

𝜕𝑥(𝑘)
]

𝑇

∙ 𝜆∗(𝑘 + 1)

𝑢∗(𝑘) = −𝑅(𝑘)−1 ∙ [
𝜕𝑓(𝑥(𝑘), 𝑢(𝑘))

𝜕𝑢(𝑘)
]

𝑇

∙ 𝜆∗(𝑘 + 1)
}
  
 

  
 

  (13) 

II. TECHNIQUES FOR SOLVING OCP 

A. State Dependent Coefficient Method 

The State-Dependent Coefficient (SDC) parameterization 

is a technique used to handle nonlinear systems by 

transforming them into a form that is more akin to linear 

systems. This approach is particularly useful in control 

theory, especially when dealing with systems that exhibit 

nonlinear dynamics but can be approximated or represented 

in a linear-like structure. The fundamental idea behind SDC 

parameterization is to decompose the nonlinear dynamics of 

the system into components that include state vectors, control 

vectors, and matrices that vary depending on the state 

variables. This decomposition allows for a more manageable 

representation and analysis of the system, especially when 

applying linear control techniques. Given the system 

dynamics represented in (14) [121]: 

�̇�(𝑡) = 𝑎(𝑥(𝑡), 𝑢(𝑡)) (14) 

Applying the SDC parameterization yields the following 

expression for the resultant system: 

�̇� = 𝐴(𝑥) ∙ 𝑥 + 𝐵(𝑥) ∙ 𝑢 (15) 

The dynamic system representation of (15), is often called 

nonlinear state dependent affine control system, the term 

affine means linear in controls i.e., terms such as  

𝑢1. 𝑢2, 𝑐𝑜𝑠(𝑢1) , e
−𝑢3 …𝑒𝑡𝑐. may not appear in the system 

dynamics, however terms such as 
(5. 𝑒−𝑥1 − 𝑒−𝑥2) ∙ cos (𝑥1) ∙ 𝑢1 may appear since it is linear 

in the control input 𝑢1. The SDC representation of (15), is 

similar to the following linear system representation in state 

space: 

 �̇� = 𝐴 ∙ 𝑥 + 𝐵 ∙ 𝑢 (16) 

Before delving into the algorithm, it is important to 

introduce the Linear Quadratic Regulator (LQR) method and 

its solution for Linear Time-Invariant (LTI) systems. The 

LQR is an optimization technique used for linear systems 

represented by (16). The primary objective of the LQR is to 

drive the states, denoted as 𝑥, and the control input, 𝑢, to the 

origin starting from any initial conditions 𝑥(0) = 𝑥0. This is 

achieved by minimizing the quadratic cost associated with 

the states and control inputs. The problem formulation for the 

LQR can be expressed as follows: 

Min.
𝑢
  𝐽(𝑢) =

1

2
∙ ∫ [𝑥(𝑡)𝑇 ∙ 𝑄 ∙ 𝑥(𝑡) + 𝑢𝑇(𝑡) ∙ 𝑅 ∙ 𝑢(𝑡)] 𝑑𝑡

∞

0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: �̇�(𝑡) = 𝐴 ∙ 𝑥(𝑡) + 𝐵 ∙ 𝑢(𝑡)
}  (17) 

The necessary conditions for optimality follow from (9) 

as: 

�̇�∗(𝑡) = 𝐴 ∙ 𝑥∗(𝑡) + 𝐵 ∙ 𝑢∗ (𝑡)

�̇�∗(𝑡) = −𝑄 ∙ 𝑥∗(𝑡) − 𝐴𝑇 ∙ 𝜆∗(𝑡)

𝑢∗(𝑡) = −𝑅−1 ∙ 𝐵𝑇 ∙ 𝜆∗(𝑡)

}    𝑡 𝜖[0,∞]  (18) 

With the same boundary conditions of (10), i.e.:  

𝒙∗(0) = 𝒙0 and  𝝀∗(∞) = 0 

The LQR solution relays on the fact, that the optimal 

value of the constate variable vector 𝝀 is represented as: 

𝜆∗(𝑡) = 𝑃 ∙ 𝑥∗(𝑡)  (19) 

Using (19), and the set of (18), it is possible to write: 

𝑃 ∙ 𝐴 + 𝐴𝑇 ∙ 𝑃 − 𝑃 ∙ 𝐵 ∙ 𝑅−1 ∙ 𝐵𝑇 ∙ 𝑃 + 𝑄 = 0  (20) 

Equation (20) is widely recognized as the Algebraic 

Riccati Equation (ARE), which plays a crucial role in the 

LQR. In this equation, the only unknown is the 𝑷 matrix. By 

solving the ARE, we can determine the optimal control, 

denoted as 𝒖∗(𝑡), as a state-dependent control using the third 

equation from (18) as follows: 

𝑢∗(𝑡) = −𝑅−1 ∙ 𝐵𝑇 ∙ 𝜆∗(𝑡) = −𝑅−1 ∙ 𝐵𝑇 ∙ 𝑃 ∙ 𝑥∗(𝑡)  

𝑢∗(𝑡)   = −𝐾 ∙ 𝑥∗(𝑡) 
(21) 

The K matrix represents the optimal weights obtained 

from the LQR problem. It is important to note that the LQR 

method effectively solves the OCP stated in (17) by 

transforming a differential equation (i.e., (16)) into an 

algebraic equation (i.e., equation (20)). This transformation 

simplifies the problem, making it easier to solve. 

B. Adaptive Dynamic Programming   

In the context of Optimal Control Problems (OCPs), 

especially when considering approaches like Quadratic 

Regulator Problems (QRPs), certain preliminary concepts 

and equations are essential for understanding and 

implementing the technique. Two main equations are pivotal 

in this scenario: one for evaluating the optimal cost function 

and the other for calculating the optimal control. These can 

be generally reformulated as follows [122][123]: 

𝐽𝑘,𝑁
∗ (𝑥𝑘) =  

Min.
𝑢𝑘

   (𝑈(𝑥 = 𝐴𝑥 + 𝐵𝑢 , 𝑢𝑘) +

𝐽𝑘+1,𝑁
∗ (𝑥𝑘+1))  

(22) 

𝑢𝑘
∗ = arg

Min.
𝑢𝑘

   (𝑈(𝑥𝑘  , 𝑢𝑘) +  𝐽𝑘+1,𝑁
∗ (𝑥𝑘+1)) (23) 

Where, 𝐽𝑘,𝑁
∗/ (𝒙𝑘) is defined as the cost-to-go function (i.e., it 

evaluates to the total cost to go from the current state 𝑥𝑘 to 
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the final state 𝑥𝑁). 𝑈(𝑥𝑘  , 𝑢𝑘) is often called the utility 

function, it evaluates the cost of applying the current control 

𝑢𝑘 to the current state 𝑥𝑘. In QRPs the utility function 𝑈 is 

defined as: 

𝑈(𝑥𝑘  , 𝑢𝑘)  =  
1

2
[𝑥𝑘
𝑇 . 𝑄𝑘  . 𝑥𝑘 + 𝑢𝑘

𝑇 . 𝑅𝑘 . 𝑥 𝑢𝑘  ]  (24) 

arg
Min.
𝑢𝑘

   (. ) means the value of the argument 𝑢𝑘 that caused 

the minimum value of the expressing in the brackets. 

C. Heuristic Action-Critic 

Dynamic programming DP is another powerful approach 

to solve OCPs, it employs the principle of optimality, which 

asserts that an optimal solution to a problem can be achieved 

by merging the optimal solutions to its constituent 

subproblems but the main drawback in DP approach was the 

curse of dimensionality that arises when we try to account for 

all states and controls at each time step 𝑘, however in 

Adaptive Dynamic Programming  (ADP) an approach 

involves training two Neural Networks (heuristically in an 

iterative manner until eventually they converge to the optimal 

solution) is used [124]. These two NNs are often called 

Action network and Critic network and their combined 

structure is called Action-Critic (AC) [125]. The learning 

strategy used to train NN in classification and function 

approximation is commonly known as supervised learning. 

This type learning strategy is often referred to in the machine 

learning field as Reinforcement learning (RL). RL is 

fundamentally based on rewarding, i.e., when the NN is doing 

well it receives a reward meaning that it is in the correct 

direction and vice versa. The most famous structure of RL 

compromises of two blocks namely Agent and Environment 

as in Fig. 1. The agent represents the NN to be trained, while 

the environment represents the place where the actions of the 

NN will be performed and judged. 

In a RL system, there are typically four main components: 

{X, U, R, F}. X represents the set of states, U represents the 

set of actions, R represents the set of scalar reinforcement 

signals or rewards, and F represents the function that 

describes the transition from one state to another under a 

specific action, denoted as F: X × U → X. A policy 𝝅 is defined 

as a mapping from states 𝑿 to actions 𝑼, such that at any 

given time 𝑘, the system can be in a state 𝒙𝑘 from the set 𝑿. 

 

Fig. 1. Reinforcement Learning (RL) Agent-Environment Structure 

It takes an action 𝑢𝑘 from the set U, which is determined 

by the policy 𝝅, i.e., 𝑢𝑘 = 𝝅(𝑥𝑘). The system then transitions 

to the next state 𝑥𝑘+1, denoted as 𝑥𝑘+1 = F(𝑥𝑘, 𝑢𝑘). 

Simultaneously, it receives a reward signal 𝑟𝑘+1 from the set 

R, which is determined by the current state 𝑥𝑘, action 𝑢𝑘, and 

the next state 𝒙𝑘+1, i.e., 𝑟𝑘+1 = 𝑟(𝑥𝑘, 𝑢𝑘, 𝑥𝑘+1). The objective 

of RL is to determine a policy that minimizes the accumulated 

reward starting from the initial state 𝑥0 at 𝑡 = 0. In RL tasks, 

the estimation of value functions is always involved. A value 

function provides an estimate of how advantageous it is to be 

in a particular state 𝑥𝑘. It is defined as follows [125]: 

𝐽𝜋(𝑥𝑘) =  ∑ 𝑟𝑘+𝑛

∞

𝑛=0

= ∑𝑟(𝑥𝑘+𝑛 , 𝑢𝑘+𝑛, 𝑥𝑘+1+𝑛)

∞

𝑛=0

 (25) 

The optimal value function 𝑱∗(𝒙𝑘) can be written in a 

recursive form as: 

𝐽∗(𝑥𝑘) =  
min.
𝑢𝑘

   𝑟(𝑥𝑘+𝑛  , 𝑢𝑘+𝑛, 𝑥𝑘+1+𝑛) + 𝐽
∗(𝑥𝑘+1) (26) 

Where, 𝑟(𝒙𝒌+𝒏 , 𝒖𝒌+𝒏, 𝒙𝒌+𝟏+𝒏) = 𝑥𝑘  =  
1

2
[𝑥𝑘
𝑇 . 𝑄𝑘  . 𝑥𝑘 +

𝑢𝑘
𝑇 . 𝑅𝑘 . 𝑥𝑢𝑘 ]𝑈(𝑥𝑘  , 𝑢𝑘) is often called the utility function, it 

evaluates the cost of applying the current control 𝑢𝑘 to the 

current state 𝑥𝑘. In order for the control 𝑢𝑘 to be optimal, the 

following condition must be satisfied for all 𝑘: 

𝜕𝐽(𝒙𝑘)

𝜕𝒖𝑘
= 0 (27) 

Then 

𝜕𝐽(𝒙𝑘)

𝜕𝒖𝑘
=  

𝜕𝑼𝑘
𝜕𝒖𝑘

+
𝜕𝐽(𝒙𝑘+1)

𝜕𝒖𝑘
=
𝜕𝑼𝑘
𝜕𝒖𝑘

+
𝜕𝒙𝑘+1
𝜕𝒖𝑘

.
𝜕𝐽(𝒙𝑘+1)

𝜕𝒙𝑘+1
= 0 (28) 

The new definition of the costate variable  𝜆𝑘 follows as 

𝝀𝑘
∗ = 

𝜕𝐽(𝒙𝑘)

𝜕𝒙𝑘
 (29) 

The costate variables 𝜆𝑘 has the interpretation of the 

sensitivity vector of the state variables 𝑥𝑘 with respect to the 

optimization criterion 𝐽(𝑥𝑘). Substituting the definitions of 

𝑘 and 𝑈𝑘 into (28) we get 

𝒖𝑘
∗ = −𝑹𝑘

−1.
𝜕𝒙𝑘+1
𝜕𝒖𝑘

 .  𝝀𝑘+1
∗  = −𝑹𝑘

−1.  [
𝜕𝑭(𝒙𝑘 , 𝒖𝑘)

𝜕𝒖𝑘
]

𝑇

.  𝝀𝑘+1
∗  (30) 

Similarly 

 𝝀𝑘
∗ =  

𝜕𝐽(𝒙𝑘)

𝜕𝒙𝑘
=   

𝜕𝒖𝑘
𝜕𝒙𝑘

+  
𝜕𝐽(𝒙𝑘+1)

𝜕𝒙𝑘

=  𝑸𝑘 . 𝒙𝑘
∗ +

𝜕𝒙𝑘+1
𝜕𝒙𝑘

∗ 𝝀𝑘+1
∗   

(31) 

𝝀𝑘
∗ =    𝑸𝑘 . 𝒙𝑘

∗ + [ 
𝜕𝑭(𝒙𝑘  , 𝒖𝑘)

𝜕𝒙𝑘
]

𝑇

.  𝝀𝑘+1
∗  

The action network is trained to find the optimal state 

feedback control 𝑢𝐾
∗  which is often written as 𝑢𝑘

∗ = 𝑢𝑘
∗  (𝑥𝑘) 

while the critic network is trained to find the optimal relation 

of the costate variable  𝜆𝑘
∗  which is also written as 𝜆𝑘

∗   = 𝜆𝑘
∗  

(𝑥𝑘). The most famous training technique for the AC system 

is heuristic training, this technique is also called Heuristic 

Action Critic (HAC). The HAC technique uses the optimal 

control equation of (30) along with the costate equation of 

(31) to train the action and critic networks [124]. Fig. 2 shows 

the block diagram of the HAC technique. The HAC technique 
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starts by initializing the action and critic networks [126], then 

the training process of the action network is as follows: 

1. Generate 𝑃 random states vectors 𝒙𝑘,1 , 𝒙𝑘,2 , … , 𝒙𝑘,𝑃. 

2. Feed these states into the action network, to get the 

estimated control vectors �̂�𝑘,1 , �̂�𝑘,2 , …, �̂�𝑘,𝑃 . 

3. These controls along with the states are fed to the system 

model (or the NN version of the system model) the 

resultant next states are 𝒙𝑘+1,1 , 𝒙𝑘+1,2 , … , 𝒙𝑘+1,𝑃. 

4. These next states are fed to the critic network to get the 

estimated costates variables �̂�𝑘+1,1 , �̂�𝑘+1,2 , … , �̂�𝑘+1,𝑃. 

5. This is the heuristic step in the training of action network: 

use the optimal control equation of (30) with the current 

states 𝒙𝑘,𝑖  and next costates �̂�𝑘+1,𝑖 (for 𝑖 = 1 … 𝑃) as 

inputs to obtain the better controls 𝒖𝑘,1 , 𝒖𝑘,2 , … , 𝒖𝑘,𝑃, 

note that (30) is only defined for the optimal control 𝒖𝑘
∗  

only, however as was proven in [21] this equation can be 

used to generate better control sequence 𝒖𝑘,𝑖 than the 

estimated one �̂�𝑘,𝑖  (for 𝑖 = 1 … 𝑃). 

6. Finally, this new better control sequence is used to train 

the action network by minimizing the error difference                

𝑒𝑎,𝑖 =‖𝒖𝑘,𝑖 – �̂�𝑘,𝑖 ‖ (for 𝑖 = 1 … 𝑃).  

Hence the updating iterative rule for the training of the 

action network is: 

𝒖𝑘
[𝑗] = −𝑹𝑘

−1. [
𝜕𝑭 (𝒙𝑘

[𝑗−1] , 𝒖𝑘
[𝑗−1]   )

𝜕𝒖𝑘
[𝑗−1] 

]

𝑇

.  𝝀𝑘+1
[𝑗−1]

 (32) 

Where 𝑗 is the iteration index. At the same time the critic 

network is trained as follows: 

7. The same states 𝒙𝑘,1 , 𝒙𝑘,2 , … , 𝒙𝑘,𝑃  are fed to the critic 

network to generate the estimated costate variables 

�̂�𝑘,1 ,�̂�𝑘,2 , …,�̂�𝑘,𝑃 (for 𝑖=1…𝑃). 

8. This is the heuristic step in the training of critic network: 

use the costate of (31) with the current states 𝒙𝑘,1 and next 

costates 𝝀𝑘+1,1 (for 𝑖 = 1 … 𝑃) as inputs to obtain the 

better costates 𝝀𝑘,1 , 𝝀𝑘,2 , … , 𝝀𝑘,𝑃, which follows the 

same heuristic argument used in (30). 

9. Finally, this new better costate sequence is used to train 

the critic network by minimizing the error difference                   

𝑒𝑐,𝑖=‖𝝀𝑘,𝑖 –�̂�1,𝑖‖, (for 𝑖=1…𝑃). 

10. This completes one iteration of training; the training 

keeps oscillating between the two networks until the 

stopping criterion is met. 

Similarly, the updating iterative rule for the training of the 

critic network can be written as: 

𝝀𝑘
[𝑗]
= 𝑸𝑘. 𝒙𝑘

[𝑗−1]+ [
𝜕𝑭 (𝒙𝑘

[𝑗−1] , 𝒖𝑘
[𝑗−1]   )

𝜕𝒙𝑘
[𝑗−1] 

]

𝑇

.  𝝀𝑘+1
[𝑗−1]

 (33) 

In case the of lack of system model, we can train a NN to 

approximate the model of the system using the Radial Basis 

Function (RBF). The first layer in RBF network consists of 

𝑁 neurons that represents the input vector 𝒙, these 𝑁 neurons 

are connected to the 𝑁ℎ hidden neurons of the second layer, 

which in turn connected to the single neuron in the output 

layer [21]. The output equation of this RBF model can be 

written as (34). 

 

Fig. 2. Heuristic Action-Critic technique block diagram 

𝒙𝑘+1 =  𝑾𝑜 + 𝑡𝑎𝑛ℎ(𝑾𝑖 . (𝒛𝑘))   (34) 

Where, 𝒛𝑘 = [
𝒙𝑘
𝒖𝑘
𝟏
] is a vector of size 𝑁 +𝑀 + 1, and 

𝑾𝑜,𝑾𝑖  represent the wights of input and output respectively.  

The partial derivative used in (30 and 31) can also be obtained 

from (34) as 

𝜕𝒙𝑘+1
𝜕𝒖𝑘

= 𝑾𝑜 .
𝜕 tanh(𝑾𝑖  .  𝒛𝑘)

𝜕(𝑾𝑖 .  𝒛𝑘)
 .𝑾𝑖  .

𝜕𝒛𝑘
𝜕𝒖𝑘

 (35) 

  
𝜕𝒙𝑘+1
𝜕𝒙𝑘

= 𝑾𝑜 .
𝜕 tanh(𝑾𝑖  .  𝒛𝑘)

𝜕(𝑾𝑖  .  𝑧𝑘)
 .𝑾𝑖  .

𝜕𝒛𝑘
𝜕𝒙𝑘

 (36) 

 Where: 

 
𝜕𝒛𝑘
𝜕𝒖𝑘

= [
𝟎𝑁𝑥𝑁
𝑰𝑀𝑥𝑀
𝟎

] ,      
𝜕𝒛𝑘
𝜕𝒙𝑘

= [
𝑰𝑁𝑥𝑁
𝟎𝑀𝑥𝑀
𝟎

] 

𝜕 tanh(𝑾𝑖  . 𝒛𝑘)

𝜕(𝑾𝑖 . 𝒛𝑘)
= 𝑑𝑖𝑎𝑔 (1 −𝑾𝑖  . 𝒛𝑘 . (𝑾𝑖  . 𝒛𝑘 )

𝑇) 

D. The Single Network Adaptive Critic 

The SDRE technique relies fundamentally on the concept 

of extended linearization. Extended linearization is the action 

of generalizing the linear systems-based technique to be 

applied to the class of nonlinear systems. The SDRE 

technique redefines the system of (8) as: 

Min.
𝑢
   𝐽(𝑢) =

1

2
∙ ∫[𝑥𝑇 ∙ 𝑄(𝑥) ∙ 𝑥 + 𝑢𝑇 ∙ 𝑅(𝑥) ∙ 𝑢] 𝑑𝑡

∞

0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: �̇� = 𝐴(𝑥) ∙ 𝑥 + 𝐵(𝑥) ∙ 𝑢
𝑢𝑙 ≤ 𝑢 ≤ 𝑢𝑢 }

 
 

 
 

 (37) 

The SNAC is a special case of the AC system, that 

eliminates the oscillatory training between the action and 

critic networks in HAC technique. The SNAC technique can 

be used only if the system model can be represented in a 
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nonlinear affine format as in the discrete OCP of (37). The 

action network can be eliminated in the SNAC, since from 

(30) and using the system model of (37) we can write (38). 

𝒖𝑘
∗ = −𝑹𝑘

−1.  [
𝜕𝑭(𝒙𝑘  , 𝒖𝑘)

𝜕𝒖𝑘
]

𝑇

 . 𝝀𝑘+1
∗  

=  −𝑹𝑘
−1. 𝑩𝑘

𝑇 (𝒙𝑘).  𝝀𝑘+1
∗  

(38) 

Note that the optimal control in (38) is only a function of 

the current state and next costate variables, hence we can train 

the critic network and use its results to compute the control 

action. Furthermore, the critic network used in SNAC relates 

the next constate variable to the current state variable i.e.,   

 𝝀𝑘+1
 =  𝝀𝑘+1

 ( 𝒙𝑘
 ). The SNAC technique (Fig. 3) can be 

summarized in the following steps: 

1. Generate 𝑃 random states vectors 𝒙𝑘,1, 𝒙𝑘,2, … , 𝒙𝑘,𝑃. 

2. Feed these states into the critic network, to get the 

estimated next costate vectors �̂�𝑘+1,1, �̂�𝑘+1,2, … , �̂�𝑘+!,𝑃. 

3. These next costates along with the states are fed to the 

modified optimal control equation of (35) to get the 

control vectors𝒖𝑘,1, 𝒖𝑘,2, … , 𝒖𝑘,𝑃. 

4. These control vectors along with the current states are fed 

to the system model of (15), to obtain the next states 

𝒙𝑘+1,1, 𝒙𝑘+1,2, … , 𝒙𝑘+1,𝑃. 

5. These next states are fed to the critic network to get the 

estimated next-next costates variables 

�̂�𝑘+2,1, �̂�𝑘+2,2, … , �̂�𝑘+2,𝑃. (note that the critic network 

gives the costate vector with is one step ahead in time with 

respect to the input state vector). 

6. If the next-next costates were used along with the next 

states in the costate equation of (31) we obtain the next 

costates �̂�𝑘+1,1, �̂�𝑘+1,2, … , �̂�𝑘+!,𝑃, which in turn used to 

train the critic network. 

7. The SNAC technique is also applied iteratively until the 

stopping criterion is met or the squared error  𝑒𝑐,𝑖 = 

‖𝝀𝑘+1,𝑖  – �̂�1+1,𝑖‖ (for 𝑖 = 1 … 𝑃) is less that a specified 

limit. 

The update iterative equations for the SNAC are the one 

in (33) and the following one: 

𝒖𝑘
[𝑗]
= −𝑹𝑘

−1.  𝑩𝑘
𝑇  ( 𝒙𝑘

[𝑗−1]
) .  𝝀𝑘+1

[𝑗−1]
 (39) 

 

Fig. 3. Heuristic SNAC technique block diagram 

Important observation: (33), (34) and (39) presents the 

updating rule for the training of action and critic networks, 

these equations differ from the ones used in supervised 

learning in the sense that they do not represent the optimal 

final values (i.e. targets) but rather a better target than the one 

previously computed until eventually they converge to the 

optimal targets, which is the fundamental idea of RL. 

E. Policy Iteration and Value Iteration 

There are two famous strategies used in RL, namely 

policy iteration and value iteration. In policy iteration (PI), 

the policy (control) is first initialized to an admissible policy, 

and this policy is improved at each iteration. The AC and 

SNAC structures used in Fig. 2 and 3 respectively both follow 

the PI strategy, since the action network was initialized to 

produce an admissible control for all 𝑥𝑘 before the training 

process starts. Note that it may not be easy to find an 

admissible control to initialize the system with, however 

fortunately the most famous admissible control used in policy 

iteration initialization is the optimal control for the linearized 

system. Another heuristic trick used in the training of the 

action and critic networks, is to randomly generate the 𝑃 state 

vectors 𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝑃   , near their final value (which is 0 

for the QRP), i.e. |𝑥𝑘,𝑖| ≤ 𝑐𝑖 and gradually increase the value 

of  𝑐𝑖 until it reaches the specified limits by the state 

constraints. 

While such heuristic approaches can sometimes expedite 

convergence or improve performance, they also introduce a 

level of arbitrariness that should be carefully considered. 

Let's discuss some of the potential issues with these heuristic 

techniques: 

− Heuristic tricks, such as randomly generating state 

vectors near their final values and gradually increasing 

them, may not have a strong theoretical foundation or be 

grounded in the underlying principles of the optimal 

control problem. 

− The effectiveness of these heuristics is often based on 

empirical observation or intuition rather than a rigorous 

mathematical analysis of their properties and 

convergence guarantees. Without a solid theoretical 

justification, the reliability and generalizability of these 

heuristics may be limited, and their application may lead 

to suboptimal or even incorrect solutions. 

− The performance and robustness of heuristic approaches 

can be highly dependent on the specific formulation of the 

optimal control problem, including the system dynamics, 

constraints, and cost function. What works well for one 

problem may not necessarily be effective within the same 

domain of cancer treatment. 

− By biasing the initial conditions or intermediate states 

towards specific target values, the heuristic tricks may 

limit the exploration of the entire solution space and 

potentially lead to suboptimal or even locally optimal 

solutions. 

− The use of heuristic tricks can make the optimization 

process less transparent and more difficult to interpret, as 

the reasoning behind the specific choices and their impact 

on the final solution may not be readily apparent. This 
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lack of transparency can make it challenging to 

understand the underlying mechanisms and validate the 

robustness of the optimal control strategy, which is 

crucial for building trust and acceptance in the medical 

community. 

− The use of heuristic tricks can introduce variability and 

non-determinism in the optimization process, making it 

difficult to establish a consistent benchmark for 

comparing different optimal control approaches. This 

lack of standardization can hinder the ability to rigorously 

evaluate and compare the performance of different 

methods, which is essential for advancing the field of 

optimal control in cancer treatment. 

On the other hand, the value iteration (VI) strategy uses 

the value (cost-to-go) function 𝐽𝑘,𝑁 of (22) to train the action 

and critic networks. The VI initializes the value function for 

all 𝑥𝑘, and as the VI algorithm proceeds, this value function 

decreases (in minimization OCP) for all the states 𝑥𝑘, until 

eventually converges to the optimal solution (i.e., 𝐽𝑘,𝑁 →𝐽𝑘,𝑁
∗ ), 

the following section discusses how the VI strategy can be 

used in the Heuristic AC technique. The VI algorithm is 

described in the following steps, and Fig. 4 shows it’s block 

diagram: 
 

1. Generate 𝑃 random states vectors 𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝑃. 

2. Feed these states into the action network, to get the 

estimated control vectors �̂�𝑘,1 , �̂�𝑘,2 , … , �̂�𝑘,𝑃 , and to the 

critic network to get the value functions 

𝜆𝑘,𝑁,1 , 𝜆𝑘,𝑁,2 , … , 𝜆𝑘,𝑁,𝑃. (Note that 𝜆𝑘,𝑁,𝑖(𝑥𝑘,𝑖) represents 

the estimated accumulated value function of being at 𝑥𝑘,𝑖 

until the system converges to the final state 𝑥𝑁 =  0. 

3. These controls along with the states are fed to the system 

model (or the NN version of the system model) the 

resultant next states are 𝑥𝑘+1,1, 𝑥𝑘+1,2, … , 𝑥𝑘+1,𝑃. 

4. These next states are fed to the critic network to get the 

estimated value functions 𝐽𝑘+1,𝑁,1 , 𝐽𝑘+1,𝑁,2 , … , 𝐽𝑘+1,𝑁,𝑃. 

5. Next, to train the critic network we use (22) heuristically, 

to produce the better value functions 𝐽𝑘,𝑁,1 , 𝐽𝑘,𝑁,2 , … 

, 𝐽𝑘,𝑁,𝑃, where the values of the utility functions 𝑈𝑘,1 , 

𝑈𝑘,2 , … , 𝑈𝑘,𝑃  of (22) can be found using the current 

states 𝑥𝑘,𝑖 along with the estimated controls 𝑢𝑘,𝑖  (for 𝑖 = 

1 … 𝑃). 

6. To train the action network, we can use (30) as it was done 

in the case of PI version of the AC technique, however the 

value of the costate variable 𝜆𝑘+1 is not radially available, 

but rather needs to be computed using the estimated value 

function 𝐽𝑘+1,𝑁 as follows: 

Since the RBF was used to describe the relation between 

the value function 𝐽𝑘,𝑁 and the state variable 𝑥𝑘 then we can 

write: 

𝐽𝑘,𝑁(𝒙𝑘) = 𝑾𝑜. 𝑡𝑎𝑛ℎ(𝑾𝑖 . (𝒙𝑘)) (40) 

Then following the same reasoning used in (35), (36) we 

can find: 

𝝀𝑘 =
𝜕𝐽𝑘,𝑁(𝒙𝑘)

𝜕𝒙𝑘
= 𝑾𝑜 .

𝜕 tanh(𝑾𝑖 .  𝒙𝑘)

𝜕(𝑾𝑖  .  𝒙𝑘)
 .𝑾𝑖 (41) 

Where: 

𝜕 tanh(𝑾𝑖 . 𝒙𝑘)

𝜕(𝑾𝑖 . 𝒙𝑘)
= 𝑑𝑖𝑎𝑔(1 −𝑾𝑖 . 𝒙𝑘) 

As in the case of PI strategy, the VI strategy must also 

initialize (pretrain) the action and critic networks first before 

applying the preceding algorithm, however the admissibility 

test of the value function is: 

Let 𝐽𝑘,𝑁
[0] (𝑥𝑘) be the value function used in pretraining, and 

𝐽𝑘,𝑁
[1] (𝑥𝑘)   is the refined version obtained from (27), then it 

can be showed that if  𝐽𝑘,𝑁
[1] (𝑥𝑘) ≤   𝐽𝑘,𝑁

[0] (𝑥𝑘) (i.e. better than 

𝐽 
[0](𝑥𝑘) then the value iteration algorithm will asymptotically 

converge [125]. 

          

Fig. 4. Value Iteration Heuristic AC technique block diagram 

The underlying assumption of this pretraining strategy is 

that the system dynamics can be adequately represented by a 

nonlinear affine model structure. However, in practical 

applications, the actual system dynamics may deviate from 

this assumption, potentially due to model uncertainties, 

nonlinearities, or other complexities. The robustness of the 

pretraining strategy to deviations in system dynamics such as 

model uncertainties, nonlinearities, or other complexities is 

an important factor to consider, as it can impact the 

convergence, solution quality, and stability of the optimal 

control problem. Exploring alternative cost function 

structures, such as state-dependent or control-dependent 

weighting matrices, may enhance the adaptability of the 

pretraining strategy to diverse system configurations. 

However, as the system complexity or the problem scale 

increases, the computational demand may also grow, 

potentially limiting the practical applicability of the 

pretraining strategy. Exploring ways to improve the 

computational efficiency and scalability of the pretraining 

strategy, such as through the use of model reduction 

techniques or parallel computing, can enhance its robustness 

and practical viability [126]. 

In the context of cancer treatment, there are numerous 

sources of uncertainty, such as patient-specific parameters, 

disease progression, and the response to treatment 

interventions. The robustness of the pretraining strategy to 

these uncertainties is crucial, as it can determine the 
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reliability and adaptability of the optimal control solutions in 

real-world scenarios. Incorporating techniques like robust 

optimization, adaptive control, or stochastic optimal control 

into the pretraining strategy may help improve its resilience 

to uncertainties and disturbances [127]. 

A common value function used in the pretraining of 

nonlinear affine systems is: 

𝐽𝑘,𝑁
[0] (𝒙𝑘) =  

𝟏

𝟐
 . ( 𝒙𝑘

𝑇 . 𝑷0 . 𝒙𝑘 ) (42) 

Then using (38), which is rewritten here for convenience: 

𝑢𝑘 = −𝑅𝑘
−1 .  𝐵𝑘

𝑇   .
𝜕𝐽𝑘,𝑁

[0] (𝑥𝑘+1)

𝜕𝑥𝑘+1
=  −𝑅𝑘

−1 .  𝐵𝑘
𝑇  .  𝑃0 .  𝑥𝑘+1

  

= −𝑅𝑘
−1 . 𝐵𝑘

𝑇 . 𝑃0 . [𝐴𝑘 . 𝑥𝑘 + 𝐵𝑘  . 𝑢𝑘] 

Which can be solve for 𝑢𝑘 as: 

𝒖𝑘 = −(𝑩𝑘
𝑇  . 𝑷0 . 𝑩𝑘 + 𝑹𝑘)

−1 . 𝑩𝑘
𝑇 . 𝑷0 . 𝑨𝑘 (43) 

The quadratic cost matrix 𝑷0 of equation (42), is often chosen 

to be in the form: 

𝑷0 =  𝛼 . 𝑰𝑁𝑥𝑁 (44) 

where 𝑰𝑁×𝑁 is the identity matrix of size 𝑁 × 𝑁.  The 

parameter 𝛼 is varied until the convergence condition of  

𝐽𝑘,𝑁
[0] (𝒙𝑘)is satisfied for all 𝒙𝑘. The PI strategy is often 

convergences faster compared to the VI strategy when 

applied to the same system.  

The main difference between VI and PI  strategies when 

applied to the Heuristic AC technique, is the definition of the 

critic network [128] . In PI the critic network is trained to find 

the relation between the current costate  𝜆𝑘  and the current 

state 𝑥𝑘  (i.e., 𝜆𝑘  = 𝜆𝑘  (𝑥𝑘)), whereas in the VI, the critic 

network is trained to find the relation between the current 

value function 𝐽𝑘,𝑁 and the current state 𝑥𝑘  (i.e., 𝐽𝑘,𝑁 = 𝐽𝑘,𝑁 

(𝑥𝑘)). 

Larger values of α: -  

− Tend to put more weight on the terminal cost, which can 

lead to faster convergence of the value function and 

control policy. 

− May lead to solutions that prioritize the terminal cost over 

the stage-wise cost, potentially resulting in suboptimal 

performance during the intermediate stages of the control 

problem. 

− Tend to make the system more sensitive to perturbations, 

as the terminal cost becomes the dominant factor in the 

overall cost function. 

Smaller values of α: -  

− may result in slower convergence, as the algorithm relies 

more on the stage-wise cost to update the value function 

and control policy. 

− tend to produce solutions that balance the stage-wise cost 

and the terminal cost, leading to a more optimal overall 

performance. 

− make the system more robust to disturbances, as the stage-

wise cost becomes more influential in the overall cost 

function. 

In the domain of cancer treatment optimization, the use of 

PI can be a powerful tool, but it is not without its challenges, 

especially when dealing with the complexity of biological 

systems and the multitude of treatment options [129]-[131]. 

− The number of possible states and actions in a 

comprehensive cancer treatment model can quickly 

become overwhelming, as the state and action spaces 

grow exponentially with the number of relevant factors. 

− This makes it computationally intractable to 

systematically evaluate all possible policies through 

brute-force search. 

− The human body and the dynamics of cancer are 

inherently complex, with many interacting processes and 

nonlinear relationships. Accurately modeling these 

systems and their response to various treatments is a 

significant challenge, which can limit the ability to 

reliably evaluate the performance of candidate policies. 

− Uncertainty and Personalization: Cancer treatment often 

involves a high degree of uncertainty, as the individual 

patient's response to therapy can vary significantly. 

Accounting for this uncertainty and developing 

personalized treatment strategies add additional 

complexity to the optimization problem. 

− Cancer treatment frequently involves a combination of 

interventions, such as chemotherapy, radiation therapy, 

and immunotherapy. Coordinating these various 

treatment modalities and finding the optimal integration 

of these approaches further increases the computational 

burden. 

To address these challenges, researchers in the field of 

optimal control theory for cancer treatment have explored 

various techniques, such as: 

− Employing value function approximation, policy 

parameterization, and other approximate dynamic 

programming techniques to make the problem more 

tractable. 

− Leveraging detailed cancer treatment simulation models 

and advanced optimization algorithms to efficiently 

explore the policy space and identify effective treatment 

strategies. 

− Leveraging the expertise of medical professionals and 

incorporating their insights into the optimization process 

to guide the search for suitable policies. 

These approaches aim to mitigate the computational 

complexities and overcome the limitations in finding 

admissible initial policies for cancer treatment optimization, 

thereby improving the practical applicability of policy 

iteration and other optimal control techniques in this domain. 

The convergence and stability of the solution can be 

affected by several factors, which can lead to the failure or 
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instability of the optimization process. Here are some key 

considerations [132]-[136]: 

− Convergence and stability of the optimal control solution 

are heavily dependent on the accuracy and completeness 

of the underlying cancer treatment model. Factors such as 

nonlinearities, time delays, and uncertainties in the model 

can introduce instabilities and prevent the optimization 

from reaching a stable, optimal solution. 

− The way the optimal control problem is formulated, 

including the objective function and the constraints, can 

significantly impact the convergence and stability of the 

solution. Poorly defined or overly restrictive constraints, 

such as strict limits on treatment dosages or schedules, 

can lead to infeasible or unstable solutions. 

− The inherent complexity and dynamic nature of cancer 

progression and treatment response can pose significant 

challenges for optimal control techniques. Factors such as 

tumor heterogeneity, the evolving nature of cancer cells, 

and the interplay between various treatment modalities 

can introduce instabilities and make it difficult to find a 

globally optimal solution. Many of the parameters in the 

cancer treatment model, such as tumor growth rates, 

treatment efficacy, and side effects, are subject to 

significant uncertainty due to inter-patient variability and 

limited data. 

 

To address these challenges in using optimal control 

theory for cancer treatment, value function approximation, 

policy parameterization, and other approximate dynamic 

programming techniques can be used to make the problem 

more solvable. 

III. RESULT AND DISCUSSION  

A. Equilibrium Points 

Equilibrium points are the states where the system 

remains stable if left undisturbed. In the context of cancer 

therapy, these points might represent states where the disease 

is under control or in remission. Identifying the equilibrium 

points is crucial as it helps in understanding the long-term 

behavior of the system under various treatment strategies. 

This analysis is essential for designing control strategies that 

can steer the system towards a desired equilibrium state, 

thereby optimizing the treatment outcome within the 

framework of the QRP [137]. 

Each of the differential equations of cancer model 

describes the rate of change of the corresponding state 

variable over time, considering the effects of both the disease 

dynamics and the treatment controls [138]. 

To find the equilibrium points of this system, all the 

dynamic equations in (1) are set to zero (note that at 

equilibrium points the controls signals are also set to zero), 

and the state values are solved accordingly [139]-[141]. 

�̇�(𝑡) = 0, �̇�(𝑡) = 0,  �̇�(𝑡) = 0 𝑎𝑛𝑑  �̇�(𝑡) = 0 

0 = 𝑠 +
𝜌 ∙ 𝐸(𝑡) ∙ 𝑇(𝑡)

𝛼 + 𝑇(𝑡)
− 𝑐1 ∙ 𝐸(𝑡) ∙ 𝑇(𝑡)

−𝑑1 ∙ 𝐸(𝑡) −  𝑎1 ∙ (1 − 𝑒
−𝑀(𝑡)) ∙ 𝐸(𝑡) + 𝑤(𝑡)

0 = 𝑟1 ∙ 𝑇(𝑡) ∙ (1 − 𝑏1 ∙ 𝑇(𝑡)) − 𝑐2 ∙ 𝐸(𝑡) ∙ 𝑇(𝑡)

−𝑐3 ∙ 𝑇(𝑡) ∙ 𝑁(𝑡) − 𝑎2 ∙ (1 − 𝑒
−𝑀(𝑡)) ∙ 𝑇(𝑡) 

0 = 𝑟2 ∙ 𝑁(𝑡) ∙ (1 − 𝑏2 ∙ 𝑁(𝑡)) − 𝑐4 ∙ 𝑇(𝑡) ∙ 𝑁(𝑡)

− 𝑎3 ∙ (1 − 𝑒
−𝑀(𝑡)) ∙ 𝑁(𝑡)

0 = 𝑣(𝑡) − 𝑑2 ∙ 𝑀(𝑡)

 

From the fourth the above equation), the value of 𝑀(𝑡)is 

zero, hence substituting this value in the remaining equations, 

and solving for each state variable we get: 

𝐸(𝑡) = 𝑓1(𝑇(𝑡)) =
𝑠 ∙ (𝛼 + 𝑇(𝑡))

(𝑐1 ∙ 𝑇(𝑡) + 𝑑1) ∙ (𝛼 + 𝑇(𝑡)) − 𝜌. 𝑇(𝑡)
 

𝑇(𝑡) = { 

0
1

𝑏1
− (

𝑐2
𝑟1 ∙ 𝑏1

) ∙ 𝐸(𝑡) − (
𝑐3

𝑟1 ∙ 𝑏1
) ∙ 𝑁(𝑡) 

𝑁(𝑡) = {

0

𝑓2(𝑇(𝑡)) =
1

𝑏2
− (

𝑐4
𝑟2 ∙ 𝑏2

) ∙ 𝑇(𝑡) 

The solutions can be classified into three categories 

namely: 

Tumor-free: In this group, normal cells persist when the 

tumor cell population T(t) is zero. The equilibrium point's 

solution looks like this: 

(
𝑠

𝑑1
, 0,

1

𝑏2
) 

 

Dead: When the normal cell population at an equilibrium 

point is zero, the point is categorized as dead. Two different 

kinds of dead equilibria may be inferred from the T(t) 

equation: 

Type 1: when both the normal 𝑁(𝑡) and tumor 𝑇(𝑡) cell 

populations are zero, i.e.: 

(
𝑠

𝑑1
, 0,0) 

Type 2: when the normal 𝑁(𝑡)  cell population is zero, 

while the tumor cells have survived with a population of 𝑇′, 
and the effector cells steady state population is given by 

𝑓1(𝑇
′). The resultant equilibrium point is: (𝑓1(𝑇

′), 𝑇′, 0)𝑇′ is 
the nonnegative solution of the following equation: 

𝑇′ −
1

𝑏1
+ (

𝑐2
𝑟1 ∙ 𝑏1

) ∙ 𝑓1(𝑇
′) = 0 

Coexisting: This equilibrium point has nonzero 

population of both the tumor and normal cells, and is 

represented as: 

(𝑓1(𝑇
′′), 𝑇′′, 𝑓2(𝑇

′′)) 

Where 𝑓1(𝑇
′′) is the survived population of the effector cells 

while 𝑓2(𝑇
′′) is the survived population of the normal cells, 

and 𝑇′′ is the survived tumor population and it is the 

nonnegative solution of the following equation: 

𝑇′′ −
1

𝑏1
+ (

𝑐2
𝑟1 ∙ 𝑏1

) ∙ 𝑓1(𝑇
′′) + (

𝑐3
𝑟1 ∙ 𝑏1

) ∙ 𝑓2(𝑇
′′) = 0 
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Among the multiple equilibrium point of the system, the 

Tumor-free equilibria, is the desired point, since the 

remaining two equilibrium points do not solve the tumor 

problem. 

Next, in order to formulate the cancer therapy system as 

a QRP, we first need to shift the equilibrium point to the 

origin, and this can be easily done by defining the following 

new set of variables [142]: 

𝜽(𝑡) =

[
 
 
 
𝜃1(𝑡)

𝜃2(𝑡)

𝜃3(𝑡)

𝜃4(𝑡)]
 
 
 

=

[
 
 
 
 
𝑥1(𝑡) − 𝑥𝑓,1
𝑥2(𝑡) − 𝑥𝑓,2
𝑥3(𝑡) − 𝑥𝑓,3
𝑥4(𝑡) − 𝑥𝑓,4]

 
 
 
 

 

Where 

𝑥(𝑡) = [𝑥1(𝑡)   𝑥2(𝑡) 𝑥3(𝑡)  𝑥4(𝑡)]
𝑇

= [𝐸(𝑡)  𝑇(𝑡)  𝑁(𝑡)  𝑀(𝑡)]𝑇 

and 𝑥𝑓,𝑖 is the 𝑖𝑡ℎ component of 𝑥𝑓, which is given by: 

𝒙𝑓 = [

𝑠/𝑑1
0

1/𝑏2
0

] 

The variable 𝜃𝑖 is merely a placeholder, and for 

convenience, it will be replaced by 𝑥𝑖 for 𝑖 = 1…4. As a 

result, the dynamic equations of the shifted system can be 

expressed as follows: 

𝑥1̇(𝑡) =
𝜌 ∙ (𝑥1(𝑡) +

𝑠
𝑑1
) ∙ 𝑥2(𝑡)

𝛼 + 𝑥2(𝑡)
− 𝑐1 ∙ (𝑥1(𝑡) +

𝑠

𝑑1
) ∙ 𝑥2(𝑡)

− 𝑑1 ∙ 𝑥1(𝑡) − 𝑎1 ∙ (1 − 𝑒
−𝑥4(𝑡))

∙ (𝑥1(𝑡) +
𝑠

𝑑1
) + 𝑢1(𝑡) 

𝑥2̇(𝑡) = 𝑟1 ∙ 𝑥2(𝑡) ∙ (1 − 𝑏1 ∙ 𝑥2(𝑡)) − 𝑐2 ∙ (𝑥1(𝑡) +
𝑠

𝑑1
) ∙ 𝑥2(𝑡)

− 𝑐3 ∙ 𝑥2(𝑡) ∙ (𝑥3(𝑡) +
1

𝑏2
) − 𝑎2

∙ (1 − 𝑒−𝑥4(𝑡)) ∙ 𝑥2(𝑡) 

𝑥3̇(𝑡) = −𝑟2 ∙ 𝑥3(𝑡) ∙ (1 + 𝑏2 ∙ 𝑥3(𝑡)) − 𝑐4 ∙ 𝑥2(𝑡)

∙ (𝑥3(𝑡) +
1

𝑏2
) −  𝑎3 ∙ (1 − 𝑒

−𝑥4(𝑡))

∙ (𝑥3(𝑡) +
1

𝑏2
) 

𝑥4̇(𝑡) = 𝑢2(𝑡) − 𝑑2 ∙ 𝑥4(𝑡) 

B. Problem Formulation 

We can proceed by defining the optimization criterion and 

the inequality constraints for the system [143]. As the cancer 

therapy system is being formulated as a QRP, the 

optimization criterion will take the following form: 

 𝐽(𝑢) =
1

2
∙ ∫ [𝑥(𝑡)𝑇 ∙ 𝑄(𝑡) ∙ 𝑥(𝑡) + 𝑢(𝑡)𝑇 ∙ 𝑅(𝑡) ∙ 𝑢(𝑡)] 𝑑𝑡

𝑡𝑓

0

 

It is important to note that for practical implementation 

purposes, the upper limit of integration is not set to infinity. 

Instead, it is set to a large finite number, denoted as 𝑡𝑓. 

The control inequality constraints define the upper and 

lower limits of the drug doses. In this case, the upper limit is 

represented by 1 and the lower limit by 0, as stated in 

reference [47]. These constraints can be expressed 

mathematically as follows: 

0 ≤ 𝑢(𝑡) ≤ 1, 𝑡 𝜖 [0,∞] 

The 𝑅(𝑡) matrix is simply chosen to be constant diagonal 

matrix of the form:  𝑅(𝑡) = [𝑅1 0 0 𝑅2 ]. 

The 𝑄(𝑡) matrix is also chosen to constant diagonal 

matrix, the resultant 𝑄(𝑡) matrix is:  

𝑄(𝑡) = [𝑄1 0 0 0;   0 𝑄2 0 0 ;   0 0 𝑄3 0; 0 0 0 𝑄4 ] 

Please bear in mind that since the selected function Q(t) 

cannot be expressed as a continuous mathematical function, 

the QRP must be solved in discrete time. There are several 

numerical techniques available for transcribing the 

continuous-time OCP), such as Runge-Kutta, Trapezoidal, 

Simpson's rule, among others. 

However, for simplicity, the commonly used forward 

Euler approximation was employed, with an appropriate 

sampling time denoted as h. 

The Euler methods, while simpler compared to higher-

order numerical integration techniques like Runge-Kutta, can 

offer some advantages when solving optimal control 

problems for cancer treatment: 

− The Euler methods require fewer function evaluations per 

time step compared to Runge-Kutta methods, making 

them computationally more efficient. This can be 

particularly beneficial for optimal control problems with 

complex cancer treatment models, where the 

computational cost of the numerical integration is a 

significant factor. 

− Implicit Euler methods are generally more stable and can 

handle stiff ODE systems more robustly than  Runge-

Kutta methods. Cancer treatment models often involve 

stiff ODE systems due to the complex interactions 

between tumor dynamics, drug pharmacokinetics, and 

various biological processes. The improved stability of 

implicit Euler methods can make them more suitable for 

these types of problems. 

− The Euler methods, particularly the implicit versions, can 

better capture discontinuities in the control inputs or the 

state variables, which are common in optimal control 

problems for cancer treatment (e.g., on-off drug 

administration, maximum drug dose constraints). 

Improved handling of discontinuities can lead to more 

accurate solutions and better convergence of the optimal 

control problem. 

− Runge-Kutta methods are not self-starting, meaning they 

require an initial condition or starting values to begin the 

integration process. In cancer treatment optimization, the 

initial state of the patient (e.g., tumor size, and drug 

concentrations) may have a significant impact on the 

optimal control strategy. The need for accurate initial 

conditions can make the optimal control problem more 
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sensitive to uncertainties in the patient's initial state, 

which can be a challenge in real-world applications. 

 

To make sure the calculated control is correct and 

dependable, one can validate the computed optimum control 

by comparing it to experimental data or using other 

computational techniques. Consequently, the discrete QRP 

formulation for the cancer chemo-immune therapy system is 

as follows:   

𝑚𝑖𝑛. 𝑢    𝐽(𝑢) =
1

2
∙ ∑ 𝑥(𝑘)𝑇 ∙ 𝑄(𝑘) ∙ 𝑥(𝑘) + 𝑢(𝑘)𝑇
𝑁−1

𝑘=0

∙ 𝑅

∙ 𝑢(𝑘) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑥(𝑘 + 1)
= 𝑥(𝑘) + ℎ

∙ (𝐴(𝑘) ∙ 𝑥(𝑘) + 𝐵(𝑘) ∙ 𝑢(𝑘))  0 ≤ 𝑢(𝑘)

≤ 1 } 𝑥(0) = 𝑥0  

In applying the QRP framework to the field of cancer 

therapy, we consider two distinct case studies, each with 

different therapeutic objectives based on patient profiles. 

These case studies help demonstrate how QRPs can be 

adapted to address various clinical scenarios by adjusting the 

parameters within the model, specifically the weighting 

matrices in the optimal control problem [144]. Here's a 

restatement and elaboration of these case studies: 

Case Study 1: Young Patient with Cancer 

− Patient Profile: A young individual diagnosed with 

cancer, with no other resistant diseases. 

− Therapeutic Focus: The primary goal in this scenario is to 

reduce the population of cancerous cells. The young age 

of the patient implies a better ability of their body to 

compensate for any decrease in normal and immune cells 

that might occur due to chemotherapy. 

− Optimal Control Objective: From an optimal control 

standpoint, the emphasis is on minimizing the number of 

tumor cells. This is achieved by adjusting the weighting 

matrices in the QRP formulation to prioritize the 

reduction of cancerous cells, while taking into account the 

resilience of the patient's body to withstand the 

treatment's adverse effects [145]. 

Case Study 2: Elderly Patient with Cancer and Co-

morbidities 

− Patient Profile: An elderly individual diagnosed with 

cancer, who also suffers from other refractory conditions, 

such as cardiac disease. 

− Therapeutic Focus: Due to the heightened risk associated 

with the destruction of normal and immune cells in 

elderly patients, particularly those with co-morbidities, 

the focus shifts towards immunotherapy rather than 

chemotherapy. In this case, preserving normal and 

immune cells is prioritized over aggressively reducing 

cancerous cells. 

− Optimal Control Objective: The optimal control problem 

is formulated to reflect this shift in priorities. The 

weighting matrices are adjusted to emphasize the 

preservation of normal and immune cells. This approach 

aims to balance the need to control the cancer with the 

need to maintain overall health and quality of life, given 

the patient's age and additional health concerns [146]. 

In both cases, the QRP framework provides a systematic 

way to tailor the control strategies (therapeutic interventions) 

according to patient-specific factors. By adjusting the 

weights in the cost function of the QRP, the model can 

prioritize different aspects of the treatment, such as reducing 

tumor size or preserving healthy cells, in alignment with the 

clinical objectives for each patient. This demonstrates the 

flexibility and applicability of the QRP approach in creating 

personalized treatment strategies in cancer therapy [147]. 

C. Problem Solution 

The application of OCP techniques to solve the Quadratic 

Regularization Problem (QRP) in the context of cancer 

therapy involves a systematic approach, utilizing predefined 

parameters and evaluating different treatment strategies. 

Here's an overview of how this process unfolds: 

1) Setting Up the Parameters 

a. Parameter Values: The problem is defined with specific 

numerical values for various parameters, which are 

dimensionless. These values are listed in Table III. 

b. Normalized Parameters: Table IV provides both absolute       

and normalized values of these parameters. The 

normalization helps in standardizing the parameters, 

making them more comparable and manageable [148]. 

c. Fixed Parameters Across Techniques: To facilitate a fair 

comparison of different techniques, these parameter 

values remain constant for all the methods applied [149]. 
 

2) Application of Techniques 

a. Technique Repetition: Each OCP technique is applied 

four times in total, with two applications per case study. 

b. Treatment Categories: 

Continuous Treatment: Represents scenarios where 

treatment is administered daily. 

Dosed Treatment: Encompasses cases where treatment is 

administered periodically, for instance, every 21 or 16 days. 

 

3) Visualization and Analysis 

a. System States in Plots: For each application of a 

technique, a plot or figure is generated. This figure 

includes the trajectories of the four states of the system, 

which might be CD8+ and NK T cells, tumor cells, and 

chemotherapy drug concentration [150]. 

b. Control Therapies Representation: The two control 

therapies (immunotherapy and chemotherapy) are also 

represented in these plots, showing how they vary over 

time under different strategies. 

c. Optimization Criterion Visualization: The plots also 

illustrate the optimization criterion of the OCP, providing 

insights into how the chosen control strategy aims to 

optimize the treatment outcome [151]. 
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4) Comparative Analysis 

a. The performance of each technique is compared based on 

these plots and the optimization outcomes [152][153]. 

This comparison is crucial for understanding the 

effectiveness of different control strategies in the two 

distinct case studies (younger patient with continuous 

chemotherapy vs. elderly patient with periodic dosed 

treatment) [154]. 

b. This structured approach allows for a comprehensive 

analysis of how different OCP techniques can be 

employed in cancer therapy. It provides valuable insights 

into the efficacy of various treatment strategies, taking 

into account the specific needs and conditions of different 

patient profiles. The visual representation of the system 

states and control therapies under different scenarios is 

instrumental in understanding the dynamics of cancer 

treatment and the role of optimal control in improving 

patient outcomes [155]. 

D. SNAC Technique 

To implementation of the SNAC technique as discussed 

is quite involved. The first step is to determine the pre training 

policy to initialize the weights and biases of the critic 

network, the pre training policy must be able to generate the 

next constate variable 𝜆𝑘+1 for the current state variable 𝑥𝑘, 

and it must be able to do this to any arbitrary value of the state 

𝑥𝑘 in other words it should be possible to write this policy as: 

                                𝜆𝑘+1 = 𝜆𝑘+1(𝑥𝑘)  

A common pre training policy that is easy to compute for 

any state 𝑥𝑘 is the one generated by applying the LQR 

technique as in (19). To apply this technique the dynamic 

equations of the shifted system must first be linearized around 

the desired equilibrium point using the famous Jacobian 

relations to find the A and B matrices as follows: 

𝐴(𝑥) = [

𝑎11
𝑎21
0
0

𝑎12
𝑎22
𝑎32
0

0
0
𝑎33
0

𝑎14
0
𝑎34
𝑎44

] , 𝐵(𝑥) = [

1
0
0
0

0
0
0
1

] 

𝑎11 = − 𝑑1 , 𝑎12 = (
𝜌
𝛼
− 𝑐1) .

𝑠
𝑑1
 , 𝑎14 =− 𝑎1.

𝑠
𝑑1

 

𝑎22 = 𝑟1− 
𝑐3
𝑏2
− 𝑐2 .𝑠

𝑑1
 , 𝑎32 =− 

𝑐4
𝑏2

 

𝑎33 = −𝑟2 ,𝑎34 = − 
𝑎3
𝑏2
 , 𝑎44 = − 𝑑2 

The R and Q needed for the LQR technique were set to 

the static matrices of in Table III, the resultant ARE of (22) 

were solved for the constant P matrix of (21) which was 

directly used for the training of the critic network of the 

SNAC technique. Four different RBFs were used to construct 

the critic network, one for each costate variable. Note that 

four networks each having a single output is generally better 

than single network with four outputs, this is due to the fact 

that the convergence of the costate variables can take 

different rates which we cannot know since they have no 

physical meaning, hence the use of single network for each 

costate variable eliminates the effect of different rate 

convergence problem. Each RBF network has as inputs the 

four states, and twenty nodes in the hidden layer. The costate 

and optimal control equations needed for the implementation 

of the SNAC technique are derived below, which can be 

found by direct application of the equations of (20), the 

costate equations are summarized in the following form 

(where for convivence the time dependency was dropped).  

�̇̇�∗(𝑡) = −𝑄(𝑡). 𝑥(𝑡) −  [
𝜕𝑎(𝑥∗(𝑡), 𝑢∗(𝑡))

𝜕𝑥(𝑡)
]

𝑇

 . �̇�∗(𝑡) 

𝜆1
∗̇
 
= −𝑞11 . 𝑥1 + 𝜆1

∗  . (𝑐1. 𝑥2 + 𝑑1 + 𝑎1. (1 − 𝑒
−𝑥4)

−  
𝜌 .  𝑥2
𝛼 + 𝑥2

) + 𝜆2
∗ . (𝑐2. 𝑥1) 

𝜆2
∗̇
 
= −𝑞22 . 𝑥2 + 𝜆2

∗  . (2. 𝑟1. 𝑏1. 𝑥2 + 𝑐2 . (𝑥1 +
𝑠

𝑑1
)

+ 𝑐3. ( 𝑥3 + 
1

𝑏2
) + 𝑎2

 . (1 − 𝑒−𝑥4) − 𝑟1)

+ 𝜆1
∗  . (𝑐1. 𝑥1 −

𝛼 . 𝜌.  𝑥1
(𝛼 + 𝑥2)

2
 )

+  𝜆3
∗  . (𝑐4. ( 𝑥3 + 

1

𝑏2
))   

𝜆3
∗̇
 
= − 𝑞33 . 𝑥3 + 𝜆2

∗  . (𝑐3. 𝑥2)  

+ 𝜆3
∗  . (𝑟2 + 2. 𝑟2. 𝑏2 . 𝑥3

+ 𝑐4 . 𝑥2  𝑎3 . (1 − 𝑒
−𝑥4))   

𝜆4
∗ = −𝑞44 . 𝑥4 + 𝜆1

∗  . (𝑎1. (𝑥1 + 
𝑠

𝑑1
 ) . 𝑒−𝑥4) + 𝜆2

∗  . (𝑎2. 𝑥2. 𝑒
−𝑥4)

+  𝜆3
∗ . (𝑎3. (𝑥3 + 

1

𝑏2
) . 𝑒−𝑥4  ) + 𝜆4

∗ . (𝑑2)   

The optimal control equations (without taking the 

inequality constraints limits into consideration): 

u∗(t)= −R(t)−1. [
∂a(x(t), u(t))

∂u(t)
]

T

. λ 
 
 
∗
(t) 

            𝑢1
∗(𝑡)= 1

𝑟11
 . 𝜆1

∗
(𝑡) 𝑎𝑛𝑑  𝑢2

∗(𝑡)= 1
𝑟22
 . 𝜆4

∗
(𝑡)    

In discrete form (and taking the inequality constraints into 

consideration): 

𝑢1
∗(𝑘)=

{
 
 

 
 0 − 1

𝑟11
 . 𝜆1

∗
(𝑘+ 1) < 0

− 1
𝑟11
 . 𝜆1

∗
(𝑘+ 1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1 − 1
𝑟11
 . 𝜆1

∗
(𝑘+ 1) > 1

}
 
 

 
 

 

𝑢2
∗(𝑘) =

{
 
 

 
 0 − 1

𝑟22
 . 𝜆4

∗
(𝑘+ 1) < 0

− 1
𝑟22
 . 𝜆4

∗
(𝑘+ 1)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1 − 1
𝑟22
 . 𝜆4

∗
(𝑘+ 1) > 1

}
 
 

 
 

 

The training process took a total of thirty iterations. At 

each iteration a new dataset containing 2000 state vectors (in 

the admissible region) is randomly generated, and all the 

networks were trained to recognize this set for 1000 epochs. 

The final performance measure for all the networks were less 

than 10−7. The results of applying this technique on the two 

case studies are summarized in Fig. 5, Fig. 6, Fig. 7, and Fig. 

8. 
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TABLE III. THE EXACT NUMERICAL VALUES OF THE PARAMETERS OF THE CANCER THERAPY OCP 

Parameter Description Case 1 Case 2 

𝑁 Number of sample points 2000 2000 

ℎ Sampling period 0.05 [day] 0.05 [day] 

𝑥0 Initial states [0.15,1,1,0.1]𝑇 [0.15,1,1,0.1]𝑇 

𝑁𝑚 Lower limit of NK cells 0.3 0.6 

𝑅 Control weighing matrix 𝑑𝑖𝑎𝑔([1,1]) 𝑑𝑖𝑎𝑔([1,1]) 
𝑄 static Static state weighting matrix 𝑑𝑖𝑎𝑔([10, 100, 10, 0.01]) 𝑑𝑖𝑎𝑔([10, 20, 10, 0.01]) 
𝜇 NK dynamic weight 100 100 

𝛿 
NK maximum constraint 

deviation 
0.05 0.05 

- Dose period 
Q21D. (Latin abbreviation for once every 21 

days) [88] 

Q16D. (Latin abbreviation for once every 16 

days) 

The SNAC approach is a promising method for solving 

the optimization problem in cancer treatment, but its 

complexity and computational requirements raise concerns 

about its practical feasibility and efficiency in real-time 

applications. The SNAC approach has several advantages for 

solving the optimization problem in cancer treatment: 

− SNAC can handle complex and dynamic systems, 

allowing it to adapt to changing conditions and optimize 

treatment strategies accordingly. 

− The stochastic nature of SNAC makes it more robust to 

uncertainties and noise in the data, which is common in 

cancer treatment. 

− SNAC can be applied to various types of cancer and 

treatment modalities, making it a versatile approach for 

optimizing cancer treatment. 

− SNAC can be tailored to individual patients, taking into 

account their unique characteristics and treatment 

responses. 

− SNAC can adapt to changing conditions in real-time, 

allowing for more effective and efficient treatment 

strategies. 

− SNAC has been shown to improve treatment outcomes by 

optimizing treatment schedules and reducing side effects. 

Reduced Drug Usage: SNAC can reduce the amount of 

drugs used in treatment, which can lead to fewer side effects 

and improved patient quality of life. 

− SNAC can enhance patient outcomes by optimizing 

treatment strategies and improving treatment efficacy. 

− SNAC can identify optimal treatment strategies by 

considering multiple objectives and constraints, leading 

to more effective treatment plans. 

E. LQR Technique 

The final technique applied in this context is the LQR, 

which is implemented by applying (19) to the system 

dynamics represented by matrices A and B, and incorporating 

the static weighting matrices Q and R, as detailed in Table III. 

The results of this application are summarized in Fig. 9 to Fig. 

12. The final technique applied in this context is the LQR, 

which is implemented by applying (19) to the system 

dynamics represented by matrices A and B, and incorporating 

the static weighting matrices Q and R, as detailed in Table V. 

In order to fully understand and interpret these results, it's 

important to distinguish between the two types of therapies 

applied in the studies [23][56]: 

Continuous Therapy: This is more of a theoretical 

approach, included in the study for mathematical purposes. 

It's not practically feasible in real-world applications, but it 

represents the actual solution to the OCP of the discrete 

Quadratic Regularization Problem (QRP) for the cancer 

chemo-immune therapy system. Continuous therapy serves 

as a benchmark for comparing the performance of various 

studied techniques. 

Dosed Therapy: This is the more practical approach used 

in actual treatment scenarios, involving periodic 

administration of therapy (e.g., every 21 or 16 days). It does 

not represent the solution to the OCP of the QRP as precisely 

because it lacks the dosed constraint on the control signals in 

the QRP formulation. 

The analysis of the results revealed that all optimal 

control techniques produced almost identical control 

sequences for both control variables  𝑢1  𝑎𝑛𝑑 𝑢2. The SNAC 

technique stood out by generating the best response in terms 

of the optimization criterion, owing to its use of advanced 

heuristic techniques for computing the optimal solution. The 

LQR techniques, while not achieving the optimal solution, 

provided a highly stable and robust suboptimal solution due 

to their reliance on extended linearization theory. 

When examining the continuous therapy solutions for 

both case studies, an interesting observation was noted in the 

treatment policies generated by the SNAC technique. Despite 

having identical control weighting matrices R for both cases, 

the optimal control techniques exhibited noticeable 

differences in response. In Case 1, focusing on a young 

patient, the techniques prioritized rapid tumor eradication. 

In Case 2, involving an elderly patient with additional 

health issues, there was a shift towards balancing tumor 

control with the preservation of immune cells, reflected in the 

different formulations of the state weighting matrix Q for 

each case. Table V provides a comprehensive summary of the 

final values of the state variables and the optimization 

criterion for all techniques studied, covering both continuous 

therapy after 20 days and dosed therapy after 90 days, 

offering a clear comparison of outcomes under different 

treatment approaches. 
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TABLE IV. MODEL PARAMETERS VALUES 

Equation Parameter Value Unit Normalized Value 

�̇� 

𝑠 − 𝐷𝑎𝑦−1 0.33 

𝜌 1.245 ∙ 10−2 𝐷𝑎𝑦−1 0.01 

𝛼 2.5036 ∙ 10−3 𝐼𝑈/𝑙−1 0.3 

𝑐1 3.422 ∙ 10−10 𝑐𝑒𝑙𝑙𝑠−1/𝐷𝑎𝑦−1 1 

𝑑1 9 ∙ 10−3 𝐷𝑎𝑦−1 0.2 

𝑎1 4.86 ∙ 10−2 𝐷𝑎𝑦−1 0.2 

�̇� 

𝑟1 4.31 ∙ 10−1 𝐷𝑎𝑦−1 1.5 

𝑏1 1.02 ∙ 10−9 𝐷𝑎𝑦−1 1.0 

𝑐2 − 𝐷𝑎𝑦−1 0.5 

𝑐3 2.9077 ∙ 10−3 𝑙/𝑐𝑒𝑙𝑙𝑠−1/𝐷𝑎𝑦−1 1.0 

𝑎2 9 ∙ 10−1 𝐷𝑎𝑦−1 0.3 

�̇� 

𝑟2 − 𝐷𝑎𝑦−1 1.0 

𝑏2 1.25 ∙ 10−2 𝐷𝑎𝑦−1 1.0 

𝑐4 2.794 ∙ 10−13 𝑐𝑒𝑙𝑙𝑠−1/𝐷𝑎𝑦−1 1.0 

𝑎3 6.75 ∙ 10−2 𝐷𝑎𝑦−1 0.1 

�̇� 𝑑2 5.199 ∙ 10−1 𝐷𝑎𝑦−1 0.2 

TABLE V. TERMINATING VALUES OF THE OPTIMIZATION CRITERION AND THE STATE VARIABLES FOR THE TWO TREATMENT PROTOCOLS. (C) FOR 

CONTINUOUS AND (D) FOR DOSED 

Variable Therapy 
Case 1 Case 2 

SNAC LQR 𝒙𝑓 SNAC LQR 𝒙𝑓 

Optimization criterion 
C 52.3585 56.6678 - 20.0454 20.369 - 

D 584.1334 686.5033 - 241.4729 261.7581 - 

CD8+ T cells 
C 1.6514 1.6499 1.65 1.6502 1.6499 1.65 

D 1.6503 1.6488 1.65 1.6498 1.65 1.65 

Tumor cells 
C 0.0007 0.001 0 0.0009 0.001 0 

D 0 0.0001 0 0 0 0 

NK T cells 
C 0.999 0.9985 1 0.9987 0.9985 1 

D 1 0.9999 1 1 1 1 

Chemotherapy drug 
C 0 0 0 0 0 0 

D 0 0 0 0 0 0 

SNAC and LQR are two distinct techniques used in 

clinical settings to develop treatment policies for patients. 

Both methods have their own strengths and limitations, which 

are crucial to understand in the context of patient care, 

particularly when considering the differences in treatment 

policies for young and elderly patients. 

5) SNAC Clinical Significance and Potential Impact on 

Patient Care 

− Personalized Treatment: SNAC is a data-driven approach 

that uses machine learning to develop personalized 

treatment policies based on individual patient data. This 

allows for more effective and efficient treatment, as it 

takes into account the unique characteristics and needs of 

each patient. 

− Adaptability: SNAC's adaptive nature enables it to adjust 

treatment policies in real-time as new data becomes 

available. This adaptability is particularly important in the 

context of elderly patients, who may have complex and 

changing health needs. 

− Improved Patient Outcomes: By using SNAC, clinicians 

can develop treatment policies that are tailored to the 

specific needs of each patient, leading to improved patient 

outcomes and enhanced quality of life. 

 

 

6) LQR Clinical Significance and Potential Impact on 

Patient Care 

− Linear Control: LQR is a linear control technique that 

uses a mathematical model to develop treatment policies. 

While it is effective for simple systems, its limitations 

become apparent when dealing with complex, non-linear 

systems like those encountered in clinical practice. 

− Limited Adaptability: LQR is a fixed-policy approach 

that does not adapt to changing patient conditions. This 

can lead to suboptimal treatment outcomes, particularly 

for elderly patients who may have rapidly changing health 

needs. 

− Limited Generalizability: LQR is typically developed 

using a specific dataset and may not generalize well to 

other patient populations or settings. This can limit its 

applicability and effectiveness in clinical practice. 

7) Comparison of SNAC and LQR in the Context of Young 

and Elderly Patients 

− Young Patients: For young patients, both SNAC and LQR 

can be effective in developing treatment policies. 

However, SNAC's adaptability and personalized 

approach may be particularly beneficial in this 

population, as they are more likely to have complex and 

changing health needs. 

− Elderly Patients: For elderly patients, SNAC's 

adaptability and personalized approach are crucial in 
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developing effective treatment policies. LQR's fixed-

policy approach may not be suitable for this population, 

as their health needs can change rapidly and 

unpredictably. 

The key findings from the analysis are: 

1. Convergence Rates: The results shows that the Policy 

Iteration (PI) strategy typically converges faster than the 

Value Iteration (VI) strategy. The maximum absolute 

change in the value function decreases more rapidly for 

PI compared to VI over the time horizon. 

2. Computational Efficiency: While the convergence rate is 

faster for PI, it requires additional computations for the 

policy evaluation and policy improvement steps at each 

iteration. VI, on the other hand, has a simpler update rule 

and may be more computationally efficient, especially for 

larger problem sizes. 

3. Solution Quality: The final solutions obtained from both 

VI and PI are expected to be of similar quality, as they 

both converge to the optimal value function and control 

policy under the given problem formulation. However, 

the rate of convergence may impact the practical 

implementation, especially for real-time applications with 

time constraints. 

The choice between VI and PI for a specific cancer 

treatment application would depend on factors such as the 

problem size, the required solution accuracy, the available 

computational resources, and the time constraints for the 

decision-making process. In some cases, a hybrid approach 

that combines the strengths of both methods may be 

beneficial. Empirical evaluation on a range of realistic 

scenarios would be necessary to provide a more 

comprehensive assessment of the relative performance of VI 

and PI strategies. 

To address the challenges of computational complexity, 

sensitivity to initial conditions, and convergence problems in 

the practical implementation of numerical solvers for OCT in 

cancer treatment, the following strategies can be employed: 

1. Develop reduced-order models that capture the essential 

dynamics of the cancer treatment problem while 

significantly reducing the computational complexity.  Use 

techniques like proper orthogonal decomposition (POD) 

or balanced truncation to construct low-dimensional 

models. 

2. Design the optimal control-based treatment protocols to 

seamlessly integrate with the existing cancer treatment 

infrastructure and practices and engage with cancer 

treatment experts to ensure the practical feasibility and 

clinical relevance of the optimal control solutions. 

3. Discretize the control and state variables, and solve the 

resulting nonlinear programming problem. Also, derive 

the necessary optimality conditions and solve the 

resulting boundary value problem. Employ min-max 

optimization to find solutions that are optimal under the 

worst-case realization of the uncertain parameters. 

4. Run the numerical solver from multiple, randomly 

generated initial guesses to increase the chances of 

finding the global optimum. Use clustering techniques to 

identify distinct locally optimal solutions and select the 

most promising one. Also, dynamically adjust the step 

size of the numerical solver to ensure stable and reliable 

convergence. 

 

 

Fig. 5. Continuous therapy solution using SNAC technique for case 1 
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Fig. 6. Dosed therapy solution using SNAC technique for case 1 

 

Fig. 7. Continuous therapy solution using SNAC technique for case 2 
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Fig. 8. Dosed therapy solution using SNAC technique for case 2 

 

Fig. 9. Continuous therapy solution using LQR technique for case 1 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1284 

 

Ahmed J. Abougarair, Cancer Treatment Precision Strategies Through Optimal Control Theory 

 

Fig. 10. Dosed therapy solution using LQR technique for case 1 

 

Fig. 11. Continuous therapy solution using LQR technique for case 2 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 1285 

 

Ahmed J. Abougarair, Cancer Treatment Precision Strategies Through Optimal Control Theory 

 

Fig. 12. Dosed therapy solution using LQR technique for case 2 

In general, to address the lack of experimental validation, 

some potential steps could include: 

− Collaborate with clinicians and researchers to design and 

conduct meaningful preclinical and clinical studies to 

validate the optimal control-based treatment approach. 

− Revisit the underlying optimal control theory and 

mathematical models, and refine them based on available 

experimental data and feedback from the clinical 

community. This iterative process can help improve the 

model's accuracy and relevance to real-world scenarios. 

− Stepwise approach to validation, starts with in vitro 

experiments, then progressing to animal studies, and 

eventually moving towards early-phase clinical trials. 

This gradual validation process can help build confidence 

in the approach and identify any limitations or challenges 

before large-scale clinical trials. 

− Engage with experts in various fields, such as systems 

biology, computational biology, and control engineering, 

to leverage their expertise and gain new perspectives on 

the optimal control-based approach to cancer treatment. 

IV. CONCLUSION 

Cancer is an extremely complex and heterogeneous 

disease and can vary significantly between patients and even 

within the same tumor. This paper makes significant strides 

in modeling cancer progression and the immune system's 

response, integrating both chemotherapy and 

immunotherapy, with a particular focus on LQR and SNAC, 

establishing foundational principles of OCT. These principles 

encompass problem formulation, tackling inequality 

constraints, and elucidating the necessary conditions for 

achieving optimal solutions. 

In summary, SNAC and LQR techniques have strengths 

and weaknesses in cancer treatment for young and elderly 

patients. Low side effects of SNAC, low cost, high patient 

compliance, high treatment flexibility, and high real-time 

adaptability are advantages but in return, long training time, 

amount of high-quality data for training, high patient-specific 

modeling, and high physiological variations are 

shortcomings. In this technique, model validation and clinical 

implementation can be challenging due to the complexity of 

the model and the need for extensive testing and validation. 

However, LQR's fixed treatment duration, increased side 

effects, higher cost, lower patient compliance, low treatment 

flexibility, low model complexity, low computational 

requirements, low real-time adaptability, low patient-specific 

modeling, low physiological variations, and low treatment 

personalization make it less effective for elderly patients. 

Through this comparison and the results obtained, we 

conclude that SNAC technique has better effectiveness than 

LQR in treating cancer, and we look in the future forward to 

comparing this technique with other new techniques to 

overcome the shortcomings. As the healthcare landscape 

continues to evolve, it is essential to consider the clinical 

significance and potential impact of these techniques on 

patient care. This may be achieved through more research and 

effort in the future. 

V. FUTURE WORK 

The future work for cancer treatment involves several 

directions, including: 

Future research should focus on developing more robust 

optimization techniques that consider the dynamic nature of 

cancer progression and treatment responses. These 

techniques should be based on mathematical models that 
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accurately capture the dynamic interactions between cancer 

cells and treatment modalities. 

Incorporating spatial characteristics of tumors using 

advanced methods like Linear Time-Varying (LTV) 

approximation to better capture the dynamics of cancer 

growth and treatment response. 

Exploring immunotherapy approaches that can enhance 

the body's natural immune response to cancer, such as 

checkpoint inhibitors and cancer vaccines. 

Developing targeted therapies that can specifically target 

cancer cells and minimize harm to healthy cells, such as 

precision medicine approaches. 

Developing real-time monitoring systems that can track 

the progression of cancer and treatment response, allowing 

for more effective and timely interventions. 
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